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Abstract

We review the approach to glasses based on the replica formalism. The replica approach presented

here is a first principle’s approach which aims at deriving the main glass properties from the microscopic

Hamiltonian. In contrast to the old use of replicas in the theory of disordered systems, this replica

approach applies also to systems without quenched disorder (in this sense, replicas have nothing to do

with computing the average of a logarithm of the partition function). It has the advantage of describing

in an unified setting both the behaviour near the dynamic transition (mode coupling transition) and

the behaviour near the equilibrium ‘transition’ (Kauzmann transition) that is present in fragile glasses.

The replica method may be used to solve simple mean field models, providing explicit examples of

systems that may be studied analytically in great details and behave similarly to the experiments.

Finally, using the replica formalism and some well adapted approximation schemes, it is possible to

do explicit analytic computations of the properties of realistic models of glasses. The results of these

first-principle computations are in reasonable agreement with numerical simulations.

PACS numbers:
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I. INTRODUCTION

A. General considerations

In recent years the replica formalism has been brought to bear in the study of glasses. This

may seem paradoxical as the replica method was developed in the seventies in order to study

systems with quenched disorder1,2,3, while there is no such quenched disorder in glasses. It

turns out that the replica method is actually much more general than is usually thought, and

can be used to study systems, like glasses, where disorder is ’auto-induced’, in the sense that

there exist many ‘random’ equilibrium configurations4,5,6. In a nutshell, one can summarize

the replica approach as follows: in a glass, it is extremely difficult to describe each equilibrium

state, and therefore, we have a priori no theoretical tool which allows us to polarize the system

in one of its equilibrium states. However, the system itself ’knows’ about these equilibrium

states, and therefore one can use some other copy (’replica’) of the system as an external field

which helps to polarize the system. This initial idea needs to be refined and expanded, in

particular as one wants to find out an external field which does not modify too strongly the

Boltzmann measure. But it carries the main idea: replicas have nothing to do with computing

the logarithm of a partition function! The discovery that replicas can be used in systems where

there is no randomness in the Hamiltonian has been a key step which is at the heart of recent

progress in the theoretical study of glasses.

There are many indications that, if we could follow the evolution of a glass at a micro-

scopical level, we would discover that at low temperatures the glass freezes in an equilibrium

(or quasi equilibrium) configuration that is highly non-unique. This essential non-uniqueness

of the ground state is present in many others systems where the energy landscape is highly

corrugated: e.g. it is widely believed to be present in spin glasses, i.e. magnetic systems

with a quenched randomness due to a random mixture of ferromagnetic and antiferromagnetic

interactions1,2,7,8. This property is responsible for the peculiar behaviour of glassy systems and,

at the same time, it makes the theoretical study of these systems very hard. The main ingredi-

ent of the approach is therefore the statement that glasses may freeze in many microscopically
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different configurations when we decrease the temperature. This statement is common to many

other approaches9,10, however the replica approach gives us a panoply of sophisticated physi-

cal and mathematical tools that strongly increase our ability to describe, study and compute

analytically the properties of glasses.

These replica-based tools have been used in two types of analytic computations. First of all,

they allow to compute analytically in an exact and detailed way the properties of some mean-

field models for the glass transition. Although theses toy models are somewhat far from reality

(the range of the forces is infinite), they display a very rich behaviour11: for example there exist

soluble mean field models without quenched disorder where there is an equilibrium glass-liquid

transition (Kauzmann transition12), a dynamical transition13,14,15 (mode coupling transition(16)

and, at a higher temperature, a liquid-crystal transition that cannot be seen in the dynamic of

the system (starting from the liquid phase) unless we cool the system extremely slowly4,5,17,18.

The existence of these soluble models is very precious to us; they provide a testing ground of

new physical ideas, concepts, approximation schemes that are eventually used in more realistic

cases. On the other hand, the replica approach can also be used to obtain some quantitative

results on some realistic models of glasses, starting from a microscopic description in terms of

their hamiltonian. These results can be confronted to those of numerical simulations.

The aim of this review is to present an introduction to the replica approach to glasses,

and to stress the underlying physical ideas. The amount of work that has been done in the

field is extremely large, and here we will consider only a few most important aspects. Some

complementary references to can be found for instance in19,20,21,22.

B. Glassiness, metastability and hysteresis

A key feature of glasses is the presence of metastability, however it is fundamentally different

from the usual case of metastability that we know in non-disordered materials (which can be

summarized by: “a piece of glass is very different from a diamond”).

The ‘usual’ case of metastability is a system that undergoes a first order phase transition

when we change a parameter. When the first order transition happens by changing the tem-

perature, if we cool the systems sufficiently slowly, the high temperature phase survives also
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below the critical temperature, until the spinodal temperature is reached.

A familiar example is the ferromagnetic Ising model, where the control parameter is the

magnetic field h (an other example would be the solid-liquid transition where the control

parameter could be the temperature or the pressure). We present this discussion using the

magnetic field as control parameter because many of the ideas that we present originate in

the study of spin glasses, and in this field there are extensive theoretical analyses, numerical

simulations and experiments. At low temperature the equilibrium magnetization m(h) is given

by m(h) = ms sign(h) + O(h) for small h (ms being the spontaneous magnetization): the

magnetization changes discontinuously at h = 0 in the low temperature phase where ms 6= 0.

Let us consider a system that evolves with some kind of local dynamics. If we slowly

change the magnetic field from positive to negative h, we enter in a metastable region where

the magnetization is positive, and the magnetic field is negative. The system remains in this

metastable state a quite large time, given by τ(h) ∝ exp(A/|h|α), where α = d − 123 for an

homogeneous system without impurities. When the observation time is of order of τ(h) the

system suddenly jumps into the stable state. This phenomenon is quite common: generally

speaking we always enter into a metastable state when we cross a first order phase transition

by changing some parameters and the system remains in the wrong phase for a long time. The

time the system remains in the wrong phase strongly depends on the microscopic details and

on the presence of impurities that may decrease the height of the barriers and trigger the phase

transition,

Let us study further this ’usual’ type of metastability in first order transitions24. Starting

from state where m > 0 at h = 0, if we add a positive magnetic field h at time 0, the linear

response susceptibility is equal to

χLR = lim
t→∞

∂

∂h
m(t, h), (1)

m(t, h) being the magnetization at time t. By linear response theory we find:

β−1χLR = lim
h→0+

∑

i

〈σ(i)σ(0)〉c ≡ lim
h→0+

∑

i

(〈σ(i)σ(0)〉 − 〈σ(i)〉〈σ(0)〉). (2)

The linear response susceptibility is not equal to the equilibrium susceptibility that at h exactly
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equal to zero is infinite:

χeq =
∂

∂h
lim
t→∞

m(t, h)

∣

∣

∣

∣

h=0

ms =
∂

∂h
sign(h)

∣

∣

∣

∣

h=0

= ∞. (3)

The difference between the two susceptibilities exists only at h = 0:

χeq(h) = χLR(h) +msδ(h) . (4)

The introduction of the two susceptibilities adds nothing into the discussion of standard

metastability. We claim that in glassy systems the metastability is of a different nature and

here the study of the two susceptibilities, χeq and χLR gives important information.

First of all, the difference between the two susceptibilities occurs in a whole region of pa-

rameter space (the glass phase), not just at a transition. If we consider the case of spin glasses,

it is well known that (at lest in the mean field approximation) there is an open region in the

space of parameters, where, if we change a parameter of the system (e.g. the magnetic field h)

by an amount ∆h, we have that χLR 6= χeq. This region, the glass phase, is characterized by

|h| < hc(T )25. The function hc(T ) increases when we decrease the temperature; hc(T ) vanishes

at the critical point.

In this region

∆m(t) = χLR∆h for 1 ≪ t≪ τ(∆h),

∆m(t) = χeq∆h for τ(∆h) ≪ t, (5)

where τ(∆h) may have a power like behaviour (e.g. τ(∆h) ∝ |∆h|−4).

If we define the irreversible susceptibility by

χeq = χLR + χirr , (6)

the glassy phase is characterized by a non-zero value of χirr
2. If we observe the system for a

time less than τ(∆h), its behaviour at a given point of the parameter space depends on the

previous history of the system, and strong hysteresis effects are present. Note that, in our

terminology, hysteresis and history dependence do not necessarily imply glassiness. Hysteresis

may be present if the time scale for approaching equilibrium is very large (larger than the

experimental time), but finite, has it usually happens at a first order transition. Glassiness
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FIG. 1: The experimental results for the FC (field cooled) and the ZFC (zero field cooled) magneti-

sation (higher and lower curve respectively) vs. temperature in a spin glass sample (Cu87Mn13.5) for

a very small value of the magnetic field H =1 Oe (taken from26). For a such a low field, non-linear

effects can be neglected and the magnetization is proportional to the susceptibility.

implies an equilibration time that is arbitrarily large, meaning that it diverges when the system

size goes to infinity. In other words hysteresis can be explained in terms of finite free energy

barriers that may involve only a few degrees of freedom. Glassiness implies the existence of

arbitrarily large barriers that may arise only as a collective effect of many degrees of freedom:

it can exist only when correlations extend to arbitrary large distances. In the case of hysteresis

the barrier are local and may be overcome by the presence of impurities, in the case of glassiness

there must exist a divergent correlation length.

The physical origine of χirr is clear. When we increase the magnetic field, the states with

higher magnetization become more likely than the states with lower magnetization: this effect

contributes to the increase in the magnetization. However the time needed for a global rear-

rangement of the field is very high (it is strictly infinite in the infinite volume limit and for

infinitesimal variations of the magnetic fields where non-linear effects are neglected): conse-

quently the time scales relevant for χLR and χeq are widely separated.

The two susceptibilities have been measured experimentally in spin glasses as follows.
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• The first susceptibly (χLR) is measured by adding a very small magnetic field at low

temperatures. This extra field should be small enough in order to neglect non-linear

effects. In this situation, when we change the magnetic field, the system remains inside

a given state and it is not forced to jump from a state to an other state and we measure

the ZFC (zero field cooled) susceptibility, that corresponds to χLR.

• The second susceptibility (χeq) can be approximately measured by cooling the system in

presence of a small magnetic field, and comparing the observed magnetization to the one

measured without this small magnetic field. In this case the system has the ability to chose

the state that is most appropriate in presence of the applied field. This susceptibility,

the so called FC (field cooled) susceptibility is nearly independent from the temperature

(and from the cooling rate - the quasi-independence of the field cooled magnetization on

the cooling rate confirms that the field cooled magnetization is near to the equilibrium

one-) and corresponds to χeq.

Therefore one can identify χLR and χeq with the ZFC susceptibility and with the FC sus-

ceptibility respectively. The experimental plot of the two susceptibilities is shown in fig. (1).

They are clearly equal in the high temperature phase while they differ in the low temperature

phase. Similar history dependent effects are quite common in structural glasses.

Another characteristic aspect of glassy systems is the aging of their response functions20,27,28.

Let us consider an aging experiment where the system is cooled and brought to its glass phase

at time 0.

The response function R(t, tw) is the variation of an observable at time tw + t in response

to a perturbation of the Hamiltonian at a previous time tw. For instance in spin systems

the perturbation could be a change in the magnetic field, and the observable could be the

magnetization. Aging means that the function R(t, tw) is not a constant in the region where t

and tw are both large:

R(t, tw) = RS for t≪ tw

R(t, tw) = RE for t≫ tw (7)

By definition RS = χLR and the identification of RE with χeq follows from general arguments.
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The existence of the glass phase is signalled by RS 6= RE . This is what is experimentally

seen in many experiments done by humans using values of tw, t that are somewhat shorter than

their life time. The glass phase can be defined experimentally by the fact that RS 6= RE on

time scales smaller than 10 hours for instance. These times are much larger (15 or 20 order of

magnitude) than the microscopic time and the aging effect is quite non-trivial. Many people

do believe that, at low enough temperatures, the aging in the response, i.e. RS 6= RE , should

survive on much larger time scales. A mathematical definition of the glass phase could be that,

for an infinitely large system, aging survives in the limit where t and tw go to infinity.

Of course it might be that, in some systems, the glass phase does not exist in the mathemat-

ical sense, and the observed aging in experiments is due to the fact that they are performed on

too short times. In this case aging would disappear in the limits t, tw → ∞. Knowing for which

system, and at what temperatures, the glass phase strictly exists is certainly an important

fundamental issue. We will not discuss it here, but rather we will study the physics of glasses

starting from the hypothesis that the glass phase exists. Independently of whether the glass

phase disappears on infinite time scales, this should be a good starting point to describe the

experiments performed on human time scales, where aging is seen. This is the same argument

that we would use if we want to study some physical properties (like e.g; the spectrum of

phonons) in diamond: it is certainly better to start from the hypothesis that diamond exists,

and forget about its actual finite lifetime.

Here we want to focus on the first-principle theoretical study of glasses, starting from some

microscopic Hamiltonian. The aim of such studies is to get a theoretical understanding of these

effects and to obtain both qualitative and quantitative predictions. The replica formalism

is a very efficient way of addressing these issues, as it allows for a simple thermodynamic

description of systems where χirr 6= 0. It has the advantage of being very compact and allowing

for detailed explicit computations. On the other hand, it is very important to always keep in

mind the physical meaning of the computation that are being done: the dictionary between

the replica computations and the actual physics is non-trivial, and one should always keep it

at hand. In the glass phase, the difference between the two susceptibilities is in one-to-one

correspondence with a phase transition in the replica formalism known as replica symmetry

breaking and, to the best of our knowledge, it can be explained only in this framework (or the
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equivalent framework of the cavity method2). Replica symmetry breaking is associated with

the existence of many states (each replica can be in one or another of these states). A small

change in the magnetic field pushes the system in a slightly metastable state, that may decay

only with a very long time scale. This may happens only if there are many states that differs

one from the other by a very small amount in free energy.

II. COMPLEXITY

A. Metastable states

We have seen that some important properties of glasses point to the existence of metastable

states. Although the word metastable state has a strong intuitive appeal, we would like to

define it in a more precise way. There are two different (hopefully equivalent) definitions of a

metastable state or valley:

• From an equilibrium point of view a valley is a region of configuration space separated

by the rest of the configuration space by free energy barriers that diverge when N → ∞.

More precisely the system, in order to go outside a valley by moving one spin (or one

particle) at once, must cross a region where the free energy is higher than that of the

valley by a factor that goes to infinity with N .

• From the dynamic point of view a valley is a region of configuration space where the

system remains confined, at all times smaller than an escape time that goes to infinity

with N .

The rationale for assuming that the two definitions are equivalent is the following. We expect

that for any reasonable dynamics74 where the system evolves in a continuous way (i.e. one spin

flip at time), the system must cross a configuration of higher free energy when it goes from a

valley to an other valley (this does not apply to kinetically constrained models, where some

local movements are forbidden, so that one can find dynamical valleys that do not correspond

to valleys from the equilibrium point of view). The time for escaping from a valley is given by

τ ≃ τ0 exp(β∆F ) (8)
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where ∆F is the free energy barrier.

It is crucial to realize that in infinite range models valleys may have a free energy density

higher than that of equilibrium states. This phenomenon is definitely not present in short range

models. Two equilibrium states with infinite mean life must have the same free energy. If there

exist two phases (or valleys), denoted as A and B, where the free energy density of B is higher

than that of A, it is clear that the system can go from B to A in a continuous way, by forming

a bubble of radius R of phase A inside phase B. If the surface tension between the two phases

A and B is finite, as happens in any short range model (but not necessarily in infinite range

models), for large enough R the free energy of the system with a bubble of radius R will be

smaller than the free energy of the pure B system, and the bubble will expand. This argument

does not work in mean field models where in some sense surface effects are as important as

volume effects.

In the real systems there are metastable states with very large (e.g. much greater than

one year) mean life. We shall consider here the infinite time metastable states of the mean

field approximation as precursors of these finite mean life states: corrections to the mean field

approximation will give a finite (but large) mean life to these states.

B. The basic definitions

The complexity is a kind of entropy associated with the multiplicity of metastable states.

Before discussing the difficulties related to the definition of the complexity in short range

models, we shall present here the main definitions that are correct in the mean field approach.

The basic ideas are simple6,13,14,15,29,30,31,32: we partition the whole configuration space into

valleys. If we call Zα the contribution of each valley to the partition function, the corresponding

free energy is given by

Zα = exp(−βFα) . (9)

This definition does not give us a practical way to find the valleys. One possibility is the

following. Let us consider for simplicity of notation a monoatomic system and let us consider

the density ρ(x). We can introduce a free energy functional F [ρ] that depends on the density

and on the temperature. The explicit form of the functional is not crucial. We suppose that
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at sufficiently low temperature the functional F [ρ] has many local minima (i.e. the number of

minima goes to infinity with the number N of particles). Exactly at zero temperature these local

minima coincide with the local minima of the potential energy as function of the coordinates

of the particles. Let us label them by an index α. To each of them we can associate a free

energy Fα and a free energy density fα = Fα/N . In this way the valleys are associated with

local minima of the free energy functional.

In this low temperature region we suppose that the total free energy of the system can be

well approximated by the sum of the contributions to the free energy of each particular local

minimum. We thus find:

Z ≡ exp(−βNfS) =
∑

α

exp(−βNfα) . (10)

When the number of minima is very high, it is convenient to introduce the function

N (f, T,N), i.e. the density of minima whose free energy density is fα = f . With this no-

tation we can write the previous formula as

Z =

∫

df exp(−βNf)N (f, T,N). (11)

If we assume that N is exponentially large in the system size, we can write

N (f, T,N) ≈ exp(NΣ(f, T )), (12)

where the function Σ is called the complexity or the configurational entropy (it is the contri-

bution to the entropy coming from the existence of an exponentially large number of locally

stable configurations).

The minimum possible value of the free energy is given by fm(T ), the maximum value is

fM(T ). The relation (26) is valid in the region fm(T ) < f < fM(T ). Outside this region we

have that N (f, T,N) = 0 for large enough N . It all known cases Σ(fm(T ), T ) = 0, and the

function Σ is continuous at fm. On the contrary, in mean field models it frequently happens

that the function Σ is discontinuous at fM .

For large values of N we can write

Z = exp(−NβfS) ≈
∫ fM

fm

df exp(−N(βf − Σ(f, T ))). (13)
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We can thus use the saddle point method and approximate the integral with the integrand

evaluated at its maximum. We find that

βfS = min
f

Φ(f) ≡ βf ∗ − Σ(f ∗, T ), (14)

where the potential Φ(f) (that will play a crucial role in this approach) is given by

Φ(f) ≡ βf − Σ(f, T ). (15)

(This formula is quite similar to the well known homologous formula for the free energy, i.e.

βf = minE(βE − S(E)), where S(E) is the entropy density as function of the energy density.)

If we call f ∗ the value of f that minimizes Φ(f), there are two possibilities:

• The minimum f ∗ is inside the interval and it can be found as a solution of the equation

β = ∂Σ/∂f . In this case we have

βfS = Φ(f ∗) = βf ∗ − Σ∗, Σ∗ = Σ(f ∗, T ). (16)

The system at equilibrium will be found in any of the exp(NΣ∗) minima which have the

free energy density f ∗. The total entropy of the system is thus the sum of the entropy

of a typical minimum and of Σ∗, i.e. the contribution to the entropy coming from the

exponentially large number of microscopical configurations.

• The function φ(f) reaches its minimum f ∗ at the extreme value of the range of variability

of f . Then f ∗ = fm and Φ = fm. In this case the contribution of the complexity to

the total free energy is zero. The relevant states all have the free energy density fs,

their number does not grow exponentially with N . They have a difference in free energy

density that is of order N−1 (a difference in total free energy of order 1). From the point

of view of replica theory, this phase where the free energy is dominated by a few different

minima is called the replica symmetry broken phase2,33.

This discussion shows that all the properties of the system depend crucially on the free

energy landscape34, i.e. the function Σ(f, T ), the distance among the minima, the height of the

barriers among them...
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C. Computing the complexity

The complexity is the entropy of metastable states. We need a method that allows to

estimate it, without having to solve the impossible task of finding all the (many!) minima of

the free energy functional. The solution consists in using the system as a polarizing tool for

itself, by introducing new artificial couplings. This new approach also works in cases where the

free energy functional is not known exactly, so that its minima cannot be computed.

The basic idea is to start from an equilibrium configuration and to explore the configuration

space phase around it6,22,31,32,35,36.

More precisely, we study a system of N interacting atoms defined by their positions x = {xi},
i = 1, ..., N , with a Hamiltonian H(x), which might be for instance a pairwise interaction

potential

H(x) =
∑

i<j

Vij(|xi − xj|) , (17)

like either a hard sphere potential, a ‘soft sphere’ potential (Vij(r) = A/r12), or a Lennard-Jones

potential (Vij(r) = A/r12 − B/r6). Given two configurations x and y we define their overlap

as q(x, y) = −1/N
∑

i,k=1,N w(xi − yk), where w(r) is an arbitrary function with the following

properties. w increases with the distance, w(r) = −1 for r small, w(r) = 0 for r larger than

the typical interatomic distance.

We now add an extra term to the Hamiltonian: we define

exp(−NβF (y, ǫ)) =

∫

dx exp(−βH(x) + βǫNq(x, y)) . (18)

Now suppose that y is an equilibrium configuration at the inverse temperature β, and define

Γ(ǫ) = 〈F (y, ǫ)〉σ , (19)

where 〈·〉σ denotes the average over y, with the measure (1/Z) exp(−βH(y)). For ǫ sufficiently

large, the new term in the Hamiltonian forces the system x to be near to the reference system y,

and produces a quenched disorder for the system x. By changing the value of ǫ we can explore

the phase space at a given distance around a given equilibrium configuration y. In the end

we average over y the logarithm of the y dependent free energy. We can measure the typical

overlap between the configuration x and its reference configuration y by

q(ǫ) = −〈∂F (y, ǫ)

∂ǫ
〉σ . (20)
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The quantity Γ(ǫ) is well defined and it may be computed also in numerical simulations.

However it is interesting to evaluate it in mean field models, where analytic computations are

possible. The analytic computation of Γ(ǫ) can be done by considering n = 1 + s replicas. We

introduce n configurations xa, a = 1, . . . , n, each of them being a configuration of N particles:

xa = {xa
i } , i = 1, ..., N . These replicated systems interact through the Hamiltonian:

Hs(x
1, . . . , xn) ≡ H(x1) +

1+s
∑

a=2

H(xa) − ǫN

1+s
∑

a=2

q(x1, xa) . (21)

Here x1 plays the role of y and the xa (for a = 2, 1 + s) are s replicas of the x variables. The

quenched limit (where there is no feedback reaction of the x variables on the y variables) is

obtained in the limit s→ 0. It gives:

Γ(ǫ) = − 1

Nβ
lim
s→0

∂

∂s
ln

(

∫

∏

a=1,1+s

dxa exp(−βHs(x
1, . . . , x1+s))

)

(22)

It is convenient to define the Legendre transform of Γ(ǫ), defined as

W (q) = Γ(ǫ(q)) + ǫ(q)q ,

∂W (q)

∂q
= ǫ(q) . (23)

The potential W (q) has the meaning of the free energy with the constraint that the overlap of

our configuration x with the generic thermalized configuration y is equal to q: defining

exp(−NβW (y, q)) =

∫

dx exp(−βH(x))δ(q − q(x, y)) , (24)

we have W (q) = 〈W (y, q)〉σ. As far as we are interested in studying the q-dependence of W (q),

we can shift the origin of W so that W (0) = 0.

In the following we will study the phase diagram of the model in the ǫ − T plane. Exact

computations can be found in the literature mainly in the mean field models31,32, but the

conclusions have a general validity. If one computes the functions Γ(ǫ) and W (q) in a mean

field model, one typically finds that the shape of the function W is characteristic of a mean-

field system undergoing a first order phase transition. At high enough temperature W is

an increasing and convex function of q with a single minimum for q = 0. Decreasing the

temperature below a value Tf , where for the first time a point qf with W ′′(qf ) = 0 appears,
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FIG. 2: Different shapes of the function W for various temperatures: the upper curves correspond to

higher temperatures.

the potential looses the convexity property and a phase transition can be induced by a field. A

secondary minimum develops at Td, the temperature of the ‘dynamical transition’11, signaling

the presence of long-life metastable states. The height of the secondary minimum reaches the

one of the primary minimum at T = Ts and thermodynamic coexistence at ǫ = 0 takes place.

This is the thermodynamic transition. In figure 2 we show the shape of the potential in the

various regions.

Therefore the potential W (q) has usually a minimum at q = 0, where W (0) = 0. It may

have a secondary minimum at q = qD. Depending on the value of the temperature, we meet a

few different situations:

• At T > TD the potential W (q) has only the minimum at q = 0. The dynamical transition

temperature is defined as TD. A more careful analysis37 shows that for TD < T < TV

there are still valleys with energy less than the equilibrium one, but these valleys cover a

so small region of phase space that they are not relevant for equilibrium physics.

• Exactly at T = TD we sit at a phase transition point where some susceptibilities are

divergent. This fact implies (in short range models) that there is a divergent dynamical

correlation length that is related to dynamical heterogeneities38.
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FIG. 3: Phase diagram in the T − ǫ plane. At the upper curve the low q solution disappear, at the

lower curve the high q solution disappear and two locally stable solutions are present only in the region

among the upper and lower curves. The middle curve is the coexistence line where the two solutions

have equal free energy. The coexistence line touches the axes ǫ = 0 at T = Ts, while the lower curve

touches it at T = TD.

• At Tc < T < TD, there is a secondary minimum ofW (q) with a positive value, W (qD) > 0.

In this intermediate temperature region, we can put one replica y at equilibrium and have

the second replica x in a valley near to y. It happens that the internal energy of both the

y configuration (by construction) and of the x configuration are equal to the equilibrium

one. However the number of valleys is exponentially large (there is a finite complexity)

so that the free energy of a single valley is higher than the total free energy. One finds in

this way that W (qD) > 0 is given by

W (qD) =
lnNe

N
≡ TΣ∗ (25)

where Ne is the average number of the valleys having the equilibrium energy6,39 . The

total entropy is

S = Σ∗ + Sv , (26)

where Sv is the internal entropy of one valley. The complexity Σ∗ is thus the difference

between the full entropy and the internal valley entropy. It vanishes at Tc and becomes
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exactly equal to zero for T < Tc
11 .

• In the whole region T < Tc, the secondary minimum at qD is at the same level as the

minimum at q = 0: W (qD) = 0. This means that we can put two replicas both at overlap

0 and at overlap qEA without paying any prize in free energy. In this case qD is the

Edwards-Anderson order parameter, qD = qEA.

Although the behavior of this potential function W is analogous to the one found in ordinary

systems undergoing a first order phase transition, the interpretation is here radically different (a

hint of the existence of a basic difference is the fact that W (qD) = 0 in the whole phase T < Tc,

and not just at T = Tc). While in ordinary cases different minima represent qualitatively

different thermodynamical states (e.g. gas and liquid), this is not the case here. In our problem

the secondary local minimum of W (q) found at q = qD appears when ergodicity is broken, and

the configuration space splits into an exponentially large number of components. The two

minima are different manifestations of states with the same characteristics. The height W (qD)

of the secondary minimum, relative to the one at q = 0 measures the free-energy loss to keep

the system near one minimum of the free energy (in configurations space). This is just the

complexity TΣ, i.e. the logarithm of the number of distinct valleys of the system.

It is interesting to study the overlap function q(ǫ). This function gives the typical overlap

of the configuration x with its reference configuration y, for a given value of the coupling ǫ. Its

value is given by the solution of the equation ∂W (q)/∂q = ǫ. In the region of the T − ǫ plane

shown in fig. 3, this equation has two stable (and one unstable) solutions (the stable solutions

are the ones which correspond to a local minimum of W (q) − ǫq). Along the upper and lower

curves of this figure, one of the two solutions loose its stability and disappears: these two curves

are the equivalent of the spinoidal lines in usual first order transition. The point where the

lower curve crosses the axis ǫ = 0 is the dynamical transition32: only at lower temperatures

can the two systems remain with a high value of the overlap without having a force that keeps

them together (i.e. ǫ = 0). On the contrary the static transition is characterized by the fact

that the coexistence line touches the axis ǫ = 0.

In systems with finite range interactions, the situation must be considered more carefully.

General arguments tell us that the free energy is a convex function of the q, so that the correct

shape of the function W can be obtained by the Maxwell construction (see fig. 4). This means
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FIG. 4: The full line is the function W (q) computed in the mean field approximation. The dashed

line is the correct result (Maxwell construction).

that, when Tc < T < TD, the equilibrium overlap function q(ǫ) has the monotonously increasing

behaviour shown in Fig. 5. We see a typical metastability effect: when one decreases ǫ, the

overlap starts from a large value close to qD. At a critical value of ǫ, given by the vertical line in

Fig. 5, the equilibrium overlap jumps to a value close to 0. However there exists a metastable

branch at large overlaps, and it is reasonable to believe that, if the rate of decrease of ǫ is not

infinitely small, the system will follow this metastable branch. The mean-field computation of

the complexity, giving Σ∗ = W (qD)/T , corresponds to the minimum of W (q) − ǫq at ǫ = 0

and q = qD. As can be seen from the figures, for Tc < T < TD, where Σ∗ is non-zero, this

point is always in the metastable region. This causes an intrinsic ambiguity in the definition

of complexity in finite range systems: the free energy is a notion defined in a metastable phase

and as such it is not defined with infinite precision. However we can use the fact that the free

energy is a C∞ function of ǫ near the discontinuity point to extrapolate from high ǫ to ǫ = 0.

The extrapolation allows to obtain the free energy in the metastable region, and to compute

Σ∗. The ambiguity created by this extrapolation becomes smaller when T becomes closer to

Tc (the amount of the extrapolation becomes smaller) and in general it is rather small unless
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correct result and the dashed line is the output of a mean field approximation.

we are very near to the dynamic phase transition. So this ambiguity is not important from

practical purposes; however it implies that there is no sharp, infinitely precise definition of the

equilibrium complexity. If we forget this intrinsic ambiguity in the definition of the complexity

we may arrive to contradictory results.

D. Complexity and replicas

The complexity function plays a major role in this whole approach. Let us see how it can

be computed. As we have seen, when a system can be in many valleys, we can write

Z(β) =
∑

a

exp(−βNfa(β)) =

∫

dN (f, β) exp(−βNf) , (27)

where fa(β) is the free energy density of the valley labeled by a at the temperature β−1, and

N (f, β) is the number of valleys with free energy density less than f , which is supposed to be, in

some regions of the f, β space, exponentially large: N (f, β) = exp(NΣ(f, β)). The complexity

Σ(f, β) is supposed to be positive in the region f > fm(β) and to vanish continuously at
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f = fm(β). The quantity fm(β) is the minimum value of the free energy: N (f, β) is zero for

f < fm(β).

A simple strategy to compute the complexity Σ(f, β) is the following. We introduce a

modified partition function in which the various states are weighted with an inverse temperature

γ which may differ from β. The modified partition function is defined as

Z(γ; β) ≡ exp(−NγG(γ; β)) =
∑

a

exp(−γNfa(β)). (28)

It is evident that Z(β; β) is the usual partition function and G(β; β) is the usual free energy.

Using standard saddle point arguments it can be easily proven that in the limit N → ∞, for a

given value of β, the function G, considered as a function of γ, is the Legendre transform of Σ,

seen as a function of f . Precisely :

γG(γ; β) = γf − Σ(β, f), f =
∂(γG(γ; β))

∂γ
. (29)

The complexity is obtained from G(γ; β) in the same way as the entropy is obtained from the

usual free energy6,35,36,40:

Σ(β, f) = γ2∂G(γ; β)

∂γ
. (30)

A few observations are in order:

• In the new formalism, the parameter γ, the free energy, the complexity, and the function

G, play respectively the same role as β, the energy, the entropy, and the free energy in

the usual formalism.

• In the new formalism the usual inverse temperature β only indicates the value of the

temperature that is used to compute the free energy and the new inverse temperature γ

controls which part of the free energy landscape is sampled.

• When β → ∞ (at least in mean field models) the new formalism samples the energy

landscape:

Z(γ;∞) =
∑

a

exp(−γNea) =

∫

ν(e)de exp(−γNe) (31)

where ea are the minima of the Hamiltonian and ν(e) is the density of the minima of the

Hamiltonian.
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• The equilibrium complexity is obtained by taking γ = β. On the other hand its value in

the limit γ = ∞ give us information on the number of minima of the Hamiltonian.

In principle it is possible to get the function Σ(f) by computing directly the number of

solution of the TAP equations for a given value of the free energy density. However it is simpler

to obtain it by using the replica formalism and it is reassuring that one gets the same results

with both methods6,32,35,39,41,42.

The computation of the modified partition function Z(γ; β) can be easily done in the replica

formalism32,35,39. If we consider a system with m replicas (with m integer) and we constrain

them to stay in the same state we find that

Z(β,m) =
∑

a

exp(−βmNfa(β)) (32)

This expression coincide with Z(γ; β), where the new inverse temperature is

γ = mβ . (33)

Therefore there is a very simple method to compute G(γ; β). We must consider the partition

function of m replicas that are constrained to stay in the same state. This means that the

overlap between the various replicas must be a value q which is large enough (as we will

see, q must be chosen in a self consistent way). We shall study this replicated system at a

given temperature, varying the value of m. The partition function is written in terms of the

complexity as:

Z(β,m) = e−NβG(m,β) =

∫

dfeN(Σ(β,f)−βmf) . (34)

It is thus dominated by free energy densities f ∗(m) such that ∂Σ
∂f

(f ∗) = m
T

, and G as function of

m is the Legendre transform of Σ as function of f . By varying m at a fixed temperature, we can

thus reconstruct the complexity function. Fig.6 shows the typical behaviour of this Legendre

transformation, when the temperature is T < Td (this curve has been obtained using a spin

glass model with p-spin interactions, but as we shall see in the following sections the qualitative

behavior is the same in all glass models, at the mean field level). When m is small enough,

the dominating free energy f ∗ is in a region where Σ(f ∗, T ) is positive. When m increases,

there is a phase transition when the typical free energy density f ∗(m) reaches the minimum
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FIG. 6: The curve shows a typical shape of the complexity Σ(β, f) as function of f . The thermo-

dynamic properties of the system with m replicas is dominated by the states free energy densities

f∗(m) such that ∂Σ
∂f (f∗) = m

T . When m increases beyond a critical value, solution of ∂Σ
∂f (fm) = m

T , the

dominating states are those with the lowest possible free energy density, f = fm.

free energy fm (when ∂Σ
∂f

(fm) = m
T

). For larger values of m, the typical configurations remain

those at f = fm, and the total free energy density does not vary with m.

Although we have based our discussion on mean-field models, we expect that the qualitative

features of the phase diagram presented here survive in finite dimension. The existence of

a coexistence line, terminating in a critical point, is a constitutive feature of systems whose

physics is dominated by the existence of long lived metastable states like glasses. As we shall see

below, the predictions derived from the replica approach can be submitted to numerical tests in

glassy model systems like e.g. Lennard-Jones or hard spheres, or polymer glasses. For example

the identification of the complexity Σ as the free energy difference between the stable and the

metastable phases provides another method to measure this quantity in a simulation. Indeed

the ending of the transition lines in a critical point implies that the metastable state can be

reached via closed paths in phase diagram leaving always the system in (stable or metastable)

equilibrium; the free energy difference of the two phases can be computed integrating the

derivative of the free energy along such a closed path.
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E. Old replicas and new replicas

It is interesting to have an understanding of the relationship between the new use of replicas

(sometimes named ‘clones’ in this context35) that we are proposing here and the ‘old’ notion

of replicas used in the study of disordered systems. We have already stressed the very different

philosophy, as the use of replicas that we have presented in the above sections does not assume

the existence of any quenched disorder. This very different general philosophy explains why

the replica approach, so successful in the study of spin glasses2, has appeared in the science

of structural glasses only many years later4,5,43,44,45. Yet, in practice, the two uses of replicas

are very deeply related. This explains why the vocabulary and concepts of replica symmetry

breaking have been immediately transcribed to the study of structural glasses.

In order to understand this important point, let us consider a system with quenched disorder,

described by a Hamiltonian H(J, s), where s are the thermalized variables (they could be spins

in a spin glass, or position variables in a structural glass model with quenched disorder), and the

J are quenched random variables, distributed according to a law P (J). A given sample means

a given set of J variables. For each given sample the s variables are thermalized, meaning that

their distribution is

PJ(s) =
1

ZJ
e−βH(J,s) . (35)

The thermodynamic properties are obtained from the partition function ZJ and the free energy

density FJ = − logZJ/(Nβ). The self-averaging property, typical of systems with quenched

disorder, means that, while ZJ has large sample-to-sample fluctuations, FJ is self-averaging,

meaning that the distribution of FJ concentrates around its mean value in the large N limit.

This indicates that, for large samples, almost all samples will have a free energy density equal

to F = EJFJ =
∑

J P (J)FJ . Therefore the thermodynamic properties are obtained from an

estimate of the quenched average:

e−βNF = EJ logZJ =
∑

J

P (J) log

(

∑

s

e−βH(J,s)

)

. (36)

The usual replica method is based on the observation that, in general, it is very difficult to

perform this quenched average, but it is often relatively easy (at least in mean field problems)

to compute the average of a system which has been replicated n times, with n a positive integer.
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One thus introduces the replicated partition function

Zn
J =

∑

s1,...,sn

e−β
Pn

a=1
H(J,sa) . (37)

Taking the average over samples gives

EJZ
n
J =

∑

J

P (J)
∑

s1,...,sn

e−β
Pn

a=1
H(J,sa) =

∑

s1,...,sn

e−βHn(s1,...,sn) , (38)

which has become a problem of n interacting replicas (the interaction Hn is induced by the

average over J) without any quenched disorder. Then the usual replica method proceeds by

using

EJ logZJ = lim
n→0

EJZ
n
J − 1

n
. (39)

If one knows how to estimate EJZ
n
J at n close to 0, this gives the desired result.

In many mean field models, the average EJZ
n
J is obtained by a saddle point procedure in

terms of an overlap matrix Qab, 1 ≤ a ≤ b ≤ n, where Qab is a suitably defined overlap between

the two replicas a and b. A much studied class of problems are those displaying ‘one-step replica

symmetry breaking’, where the equilibrium glass phase (obtained at T < Tc) is obtained for an

overlap matrix

Qab =







q1 if I[a/x] = I[b/x]

q0 if I[a/x] 6= I[b/x]
(40)

where I[p] is the integer part of p. This means that the set of n replicas is partitioned into

n/x groups, each containing x replicas. The overlap between two replicas in the same group

is q1, the overlap between two replicas in different groups is q0 < q1. In mean field models,

the values of q0, q1 and x are obtained as the solutions of the stationarity condition of the free

energy expressed in terms of q0, q1, x (and, when n→ 0, the parameter x must be in the interval

0 < x < 1)2.

This structure is the simplest example of the hierarchical, ‘ultrametric’, structure which

is typical of replica symmetry breaking46. It appears in particular in the random energy

model47,48,49, and in many other spin glass models with p-spin interactions15. These are pre-

cisely the systems which have a phenomenology close to the one of structural glass formers11

(the corresponding one step replica symmetry breaking transition is also called a random first

order transition).
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Let us understand how our new replica approach, described in the previous section, applies

to these systems exhibiting a one step replica symmetry broken phase. Take a given sample J .

We should introduced m coupled copies of the systems, call them sa, with a = 1, . . . , m. These

copies should be constrained in such a way that their overlap takes the large value, which is

here equal to q1. Therefore the new-replicated partition function and free energy, for this given

sample, is expressed as

e−βNG(m,β,J) = ZJ(m) =
∑

s1,...,sm

e−β
Pm

a=1 H(J,sa)
∏

a<b

δ(Qab, q1) . (41)

From self averageness, one expects that the distribution of G(m, β, J) concentrates around its

mean, so that we can compute its typical value through the mean EJG(m, β, J). This we can

do through the introduction of n′ ‘old-type’ replicas, in the limit where n′ goes to zero:

G(m, β) = EJG(m, β, J) = − 1

βN
lim
n′→0

EJZJ(m)n′ − 1

n′
. (42)

At this stage, we see that if we write n′ = n/m, the new formalism reduces exactly to the

old one: the n′m = n replicas are grouped into n′ = n/m groups of m replicas, where the

intra-group replica overlap is constrained to take the value q1. The saddle-point analysis of the

model will then naturally lead to the fact that the inter-group overlap takes the value q0, as in

the old approach. The parameters x and m play exactly the same role in the two approaches,

and the quenched free energy F (m) for a given value x = m is related to the quenched free

energy G(m, β) by F (m) = G(m, β)/m.

The reader should now be puzzled by the fact that the new approach can be done for any

value of m, while in the old approach one chooses the value of x where the free-energy is

maximal. In the old approach one obtains the quenched free energy density F by choosing

the value of x which makes it stationary: ∂F/∂x = 0. As F (x) = G(x, β)/x, this condition

amounts to saying that G(x, β) = x∂G(x, β)/∂x, and the Legendre transform formulas (29)

show that this amounts to fix the value of x = m exactly such that the free energies of the

valleys f is the minimal one, f = fm, and therefore the complexity Σ(fm) is zero. This is

actually the correct condition: in the equilibrium glass phase, for T < Tc, we have seen that

the dominating valleys are precisely those with f = fm. So the new replica approach is able to

derive all the results of the old replica approach, with the extra bonus that the interpretation
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of the condition ∂F/∂x = 0, which is always somewhat mysterious in the old approach, now

acquires a very clear meaning: this is the condition insuring that one selects the valleys with

free energy density f = fm.

There is one point that should be stressed. In systems with quenched disorder, like spin

glasses, the free energy per replica depends on the total number of replicas. The average

over disorder induces an interaction among replicas. In systems like structural glasses, where

quenched disorder is absent, the free energy per replica does not depend on the total number of

replicas and replicas do not interact. However also in this case, when we constrain the replicas

to be near one to the other, replicas do interact and under this condition we have a dependance

of the the free energy per replica on the total number of replicas.

This phenomenon, present in the glassy phase, is similar to spontaneous symmetry breaking:

there is no interaction among replicas in the Hamiltonian, but adding and infinitesimal coupling

among replicas we end up with a system with strong correlations among replicas. This is a quite

general phenomenon that happens each time there is a spontaneous symmetry breaking of the

usual kind. For example if we take two replicas of a ferromagnetic model at low temperature and

we couple them together (albeit infinitesimally) we end up with the magnetization pointing in

the same direction in the two replicas. While we don’t need this construction in a ferromagnetic

case, where we know that the ordered phase has a spontaneous magnetization, it becomes very

very useful in disordered systems where we do not know the structure of the ordered phase

(this was the original motivation1 for introducing the Edwards-Anderson order parameter q).

F. A summary of the results

Let us now summarize the results. As we have seen we can distinguish a few temperature

regions.

• For T > Tf the only minimum of the free energy functional is given by the high temper-

ature result: we call it the liquid minimum (in the spins models it corresponds to a zero

magnetization phase).

• For Tf > T > TD there is an exponentially large number of minima29,37,39. For some

values of the free energy density the complexity Σ is different from zero, however the
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total contribution to the free energy coming from these minima is higher that the one

coming from the liquid solution with zero magnetization. The value TD coincides with

the critical temperature of the mode coupling approach and in the glass community it

is often called Tc. The real critical temperature of the model, that we call Tc, is usually

called TK in the glass literature.

• The most interesting situation happens in the region where TD > T > Tc (or Tc >

T > TK using the glassy notation). In this region the free energy is still given by the

high temperature solution (with zero magnetization in spin models). It is extremely

surprising6,31 that the free energy in this phase can also be written as the sum of the

contributions of an exponentially large number of non-trivial minima as in eq. 13).

Although the free energy is analytic at TD, below this temperature the system at each

given moment may stay in one of the exponentially large number of minima. The time (τ)

to jump from one minimum to an other minimum is quite large and it is controlled by the

height of the barriers that separate the different minima. In the mean field approximation

(i.e. for infinite range models) this height diverges with the system size, it is proportional

to exp(AN) with some non-zero A. In short range models in finite dimensions we expect

that the barriers are finite and τ ≈ τ0 exp(β∆(T )). The quantity β∆(T ) is often a large

number also at the dynamical temperature50 (e.g. O(10)) and the correlation time will

become very large below TD and for this region TD is called the dynamical transition

point. The correlation time (that should be proportional to the viscosity) should diverge

at TK . The precise form of this divergence is not completely understood. It is natural to

suppose that we should get a divergence of the form exp(A/(T −TK)ν) for an appropriate

value of ν51. Several attempts at studying this problem can be found in11,30,52,53.

The equilibrium complexity is different from zero (and is of order 1) when the temperature

is equal to TD; it decreases when the temperature decreases and it vanishes linearly at

T = Tc. At this temperature (the so-called Kauzmann temperature) the entropy of a

single minimum becomes equal to the total entropy and the contribution of the complexity

to the total entropy vanishes. At an intermediate temperature Tg the correlation time

becomes so large that it cannot be observed any more by humans.
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• In the region where T < Tc the free energy is dominated by the contribution of a few

minima of the free energy having the lowest possible value. Here the free energy is no

longer the analytic continuation of the free energy in the fluid phase. A phase transition

is present at Tc and the specific heat is discontinuous here.

G. Comments on some criticisms

The existence of a finite complexity density in finite dimensional systems with short range

forces has been criticized by many authors. In the nutshell they criticism arise from the well

know observation that equilibrium metastable state cannot exist in finite-dimensional systems

with short range forces. This is obvious: in this situation the barrier is finite and therefore the

supposed metastable state would decay; moreover it is not possible to define in a natural way

(e.g. respecting the local equilibrium Dobrushin-Lanford-Ruelle relations) a Boltzmann weight

that is concentrated on the metastable state.

If we had a finite equilibrium complexity, the free energy density of each of the exponential

large number of equilibrium states would be equal to the free energy plus the complexity. Such

a putative state would have a larger free energy than the equilibrium one and therefore it cannot

be a real thermodynamic equilibrium state. Of course this argument, proving the non-existence

of a finite complexity density, can be formulated in many different ways.

The tentative of defining a complexity by counting the number of inherent structures (i.e.

minima of the Hamiltonian) does not work. Indeed there are two possibilities:

• One considers all the minima of the Hamiltonian. However this correspond to counting

as different two minima that differ by the position of a single atom, i.e. a single localized

defect. The fact that the number of minima of this kind is exponentially large with the

volume is a quite common phenomenon which is also present in crystalline systems as soon

as localized defects are present. However it would be witless to consider configurations

that differ by a defect as different equilibrium state and in any case the barrier for going

from one state to an other state would be finite.

• One can try to regroup in the same state different minima of the Hamiltonian that differ

one from the other by a localized change. This is more sensible, however a careful analysis
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shows that the resulting complexity cannot be proportional to the volume, for reasons

very similar to those that lead to the non-existence of a finite thermodynamic complexity

density.

The previous criticism are absolutely correct, however they apply to a sharp definition of

complexity but not to the more sophisticated definition presented above, where the complexity

density is defined in a fuzzy way.

Indeed we have seen in the discussion at the end of Sect.(IIC) that the determination of the

complexity contains an intrinsic ambiguity,

as it is obtained by the continuation of a free energy into a metastable region. As always

happens we can define an approximate value of the free energy in a metastable state as function

of the observation time τ . Although the free energy must be the equilibrium one in the infinite

time limit, it is clear that in many cases (e.g. liquid water a few degrees Celsius below 0) the

free energy does not depend on the time, when the time is larger than a very short microscopic

time and it is in the range accessible by humans.

In the case of glasses we can start from an equilibrium configuration and define the time-

dependent entropy S(τ) as the entropy of those configurations that can be reached in a time

τ . For τ much larger than a microscopic time and smaller than the very large equilibration

time we expect that S(τ) has a plateau and the value of this plateau (which is not sharply

defined) is the entropy in one state (or valley), that can be used to compute the complexity

using equation (26).

When the value of the equilibration time becomes infinite, i.e. at the Kauzmann transition

(if it exists), the length of the plateau becomes infinite and its value becomes sharply defined.

A similar game may be played in the framework of inherent structures. As noticed by

Stillinger54, the existence of many configurations that differ one from an other by a finite number

of local moves leads to a complexity that never goes to zero at any non-zero temperature, just

for the same reasons that forbid the standard entropy to go to zero at non-zero temperature.

In this case one should introduce a modified definition of inherent structures in such a way as

to avoid considering structures that are too similar. This can be done in many different ways.

In one approach one defines a minimum of order k of the energy (e.g.
∑

i<j v(ri − rj)) as a

local minimum such that there are no configurations of lower energy that can be obtained by
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moving k particles22. The minima of order 0 are (in a first approximation) equal to the standard

inherent structure (e.g. local minima of the Hamiltonian) while minima of infinite order are

global minima (the definition of minima that are stable with respect to the movement of k

particle is analogous to the k-spin-flip-stable minima in spin glasses. The number of minima of

order k is given by

N (k, V ) ≈ exp(VΣk) (43)

In the correct definition of the complexity one should assume that Σk, as a function of k has

a plateau in k in some region of k < kc, where kc ≫ 1 is the minimum number of particles

involved in a movement from one valley to an other valley (also kc should diverge at the

Kauzmann transition). The value of the complexity is Σk in the plateaux region. The obvious

fact that in short range models

lim
k→∞

Σk = 0 , (44)

cannot be used to argue against the existence of a plateau in Σk. Also in this case the length of

the plateau should go to infinity at the transition. In the same spirit we could also define a ∆

stable minimum, i.e. a local minimum that is separated by lower minima by an energy barrier

higher that ∆.

Although these last definitions (using the inherent structures) are not computationally

handy, they provide an other consistent definition of the complexity. On the other hand the

computation of the entropy of the valley can be easily implemented numerically.

In conclusions we have just shown that it is possible to give a precise, but fuzzy definition

of complexity, that does not have shortcomings or inconsistencies. Notice that the necessity

for this fuzzy definition has nothing to do with the replica approach: it is entirely due to the

physical nature of the glassy metastability as discussed in Sect.I B.

III. THE REPLICA APPROACH TO STRUCTURAL GLASSES: GENERAL FOR-

MALISM

We shall explain here how the replica approach described in the previous section can be

applied in practice to the first-principle study of some classes of structural glasses. We keep

here to the case of simple glass formers consisting of N particles interacting by a pair potential
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v(r) in a space of dimension d. Explicit computations in high density fluids are rather involved

already in the liquid phase. How can we hope to perform such a computation in the glassy

phase? The approach based on the replica approach allows us to reduce the properties of the

system in the low temperature phase to those of a slightly more complex, molecular, system in

its liquid phase.

Following the general approach explained in the previous section, the crucial point consists

in studying the thermodynamics of a system made of m replicas of the original system, where

we add an inter-replica attractive potential in such a way that the overlap between the different

replicas is fixed to a large value36,55. It will be useful to think of the m replicas as ‘colors’: in

the replicated system, each atom is replicated m times, and appears in m distinct color states.

What is the structure of this replicated fluid? If the inter-replica attractive potential would be

infinitely strong, all the replicas of a given particle would be exactly at the same point. The

total energy of a configuration wouls be m times the energy of the unreplicated configuration

occupying the same points in space. With a finite but large enough attractive potential the

replicated system builds up a fluid of molecules, where each molecule is a bound state of m

atoms, each atom being one distinct color of the original atom. If we focus on the m < 1 case,

constraining m replicas to be nearby decreases the energetic effects so is is natural to suppose

that in the m− T plane the glass transition point is shifted at lower temperature. The whole

region T > Tc(m, q) is in the high temperature phase and what happens there can be computed

by generalizing the liquid approach (see Fig.7). The free energy along the transition line at

m < 1 can be obtained from a high temperature computation in a correlated liquid. As the free

energy in the glass phase is independent of m (remember the behaviour of Fig.6), this allows to

compute the full free energy in the glass phase at m = 1. The idea will thus be to compute the

free energy as function of m, for m < 1, in the molecular fluid phase. From this free energy, by

varying m, we will be able to locate the glass transition line through the condition that Σ = 0,

and the value of the free energy at m = 1 is equal to the value at the transition line.
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FIG. 7: Typical phase diagram of a glass, replicated m times, in the limit of a small inter-replica

attractive potential, in the plane m - T (temperature). Above the full line the replicated fluid system

is in its liquid phase, below this line it is a glass. The dotted line is a first order transition line between

a liquid which is a molecular fluid, where each molecule is a bound state of m atoms of different color,

below the dotted line, and a liquid where the replicas don’t make bound states, above the line.

A. The partition function

The usual partition function, used e.g. in the liquid phase, is

Z1 ≡
1

N !

∫ N
∏

i=1

dxi e
−βH , (45)

where

H =
∑

1≤i<j≤N

v(xi − xj) . (46)

We wish to study the transition to the glass phase through the onset of an off-diagonal corre-

lation in replica space36,55. We use m replicas and introduce the Hamiltonian of the replicated

system:

Hm =
∑

1≤i<j≤N

m
∑

a=1

v(xa
i − xa

j ) + ǫ
∑

i=1N

∑

a<b=m

w(xa
i − xb

i) (47)

where w is an attractive interaction. The precise form of w is unimportant: it should be a short

range attraction respecting the replica permutation symmetry, and its strength ǫ that will be
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sent to zero in the end. For instance one could take

w(x) = −
(

c2

x2+c2

)6

(48)

with c is of the order of 0.2 times the typical intermolecular distance. A positive value of ǫ

forces m particles, one from each color, to build a molecular bound state. If two systems stay

in the same state, the expectation value of w represents the self overlap and is very near to 1.

The partition function of the replicated system is (leaving aside the trivial contribution from

the kinetic energy):

Zm ≡ 1

N !m

∫ N
∏

i=1

m
∏

a=1

dxa
i e

−βHm (49)

B. Molecular bound states

At low enough temperature, we expect the following behaviour: If we prepare the system

starting from large ǫ, so that we build the molecular bound states of m atoms (all replicas fall

into the same glass state), and then decrease ǫ, the bound state will still exist also when ǫ→ 0.

This is a way to detect the existence of a glass phase. In some sense this procedure is the analog

for glasses of the usual symmetry breaking procedure which allows to detect a phase transition

with a spontaneously broken symmetry. In an Ising ferromagnet in zero external field, we

can detect the transition by measuring the magnetization in the presence of a small positive

field, and letting the field go to 0+. If the result is non-zero, it is equal to the spontaneous

magnetization. The same philosophy is used with our replica bound states. We form the bound

states using the attractive potential at a finite ǫ, and then see if the bound states still survive

in the ǫ→ 0+ limit. If they do, the system is in a glass phase.

Thermal fluctuations are relatively small throughout the solid phase (one can see this from

the Lindeman criterion) and diffusion is very small, so one can identify the molecules and relabel

all the particles in the various replicas in such a way that the particle j in replica a always stays

close to particle j in replica b. All the other relabelings are equivalent to this one, producing a

global factor N !m−1 in the partition function.

We therefore need to study a system of molecules, each of them consisting of m atoms (one

atom from each replica). It is natural to write the partition function in terms of the variables
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ri that describe the centers of masses of the molecules, and the relative coordinates ua
i , with

xa
i = ri + ua

i and
∑

a u
a
i = 0:

Zm =
1

N !

∫ N
∏

i=1

dri

N
∏

i=1

m
∏

a=1

dua
i

N
∏

i=1

(

m3δ(
∑

a

ua
i )

)

exp

(

−β
∑

i<j,a

v(ri − rj + ua
i − ua

j ) − β
∑

i

∑

a,b

W (ua
i − ub

i)

)

(50)

C. The small cage expansion

In order to transform these ideas into a tool for doing explicit computations of the ther-

modynamic properties of a glass36 we have to use an explicit method for estimating Zm. This

will give access to the free energy as function of the temperature and m, which gives the com-

plexity by the Legendre transformation with respect to m. As is usually the case, in the liquid

phase exact analytic computations are not possible and we have to do some approximations.

In this section we shall use the fact that the thermal fluctuations of the particles in the glass

are small at low enough temperature: the size of the ‘cage’ seen by each particle is therefore

small, allowing for a systematic expansion. What we will be describing here are the thermal

fluctuations around the minimum of the potential of each particle, in the spirit of the Einstein

model describing the vibrations of a crystal.

We start from the replicated partition function Zm described in molecular coordinates in

(50). Assuming that the relative coordinates ua
i are small, we can expand w to leading order

and write:

Zm(α) =
1

N !

∫ N
∏

i=1

dri

N
∏

i=1

m
∏

a=1

dua
i

N
∏

i=1

(

m3δ(
∑

a

ua
i )

)

exp

(

−β
∑

i<j,a

v(ri − rj + ua
i − ua

j ) −
1

4α

∑

i

∑

a,b

(ua
i − ub

i)
2

)

(51)

In the end we are interested in the limit ǫ ≡ (1/α) → 0. We would like first to define the size A

of the molecular bound state, that is also a measure of the size of the cage seen by each atom

in the glass, by:
∂ logZm

∂(1/α)
≡ m(1 −m)

2
dNA = −1

4

∑

i

∑

a,b

〈(ua
i − ub

i)
2〉 (52)
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(d is the dimension that we have taken equal to 3 and N is the number of particles). We

Legendre transform the free energy φ(m,α) = −(T/m) logZm, considered as a function of 1/α,

by introducing the thermodynamic potential per particle ψ(m,A):

ψ(m,A) = φ(m,α) + Td
(1 −m)

2

A

α
(53)

What we want to see is whether there exists a minimum of ψ at a finite value of A.

At low temperatures, this minimum should be at small A, and so we shall seek an expansion

of ψ in powers of A. It turns out that it can be found by an expansion of φ in powers of α,

used as an intermediate bookkeeping procedure in order to generate the small A expansion.

This may look confusing since we are eventually going to send α to ∞. However this method

is nothing but a usual low temperature expansion in the presence of an infinitesimal breaking

field. For instance if one wants to compute the low temperature expansion of the magnetization

in a d-dimensional Ising model in an infinitesimal positive magnetic field h, the main point is

that the magnetisation is close to one. One can organise the expansion by studying first the

case of a large magnetic field, performing the expansion in powers of exp(−2h), and in the

end letting h → 0. A little thought shows that the intermediate -large h- expansion is just a

bookkeeping device to keep the leading terms in the low temperature expansion. What we do

here is exactly similar, the role of h being played by 1/α.

1. Zeroth order term

We use the equivalent form:

Zm(α) =
1

N !

∫ N
∏

i=1

m
∏

a=1

(d3ua
i )
∏

i

d3Xi
√

2πα
m2

3 exp

(

−β
∑

i<j,a

v(xa
i − xa

j ) −
m

2α

∑

i,a

(xa
i −Xi)

2

)

. (54)

In the limit α → 0, the identity

exp
(

−m

2α
(xa

i −Xi)
2
)

≃
(

2πα

m

)d/2

δ3(xa
i −Xi) (55)

implies that:

Z0
m(α) =

(

2πα

m

)3N(m−1)/2
1

N !

∫

∏

i

dXi exp

(

−βm
∑

i<j

v(Xi −Xj)

)

. (56)
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In this expression we recognise the integral over the Xi’s as the partition function Zliq(T
∗) of

the liquid at the effective temperature T ∗, defined by

T ∗ ≡ T/m . (57)

Therefore the free energy, at this leading order, can be written as:

βφ0(m,α) =
3(1 −m)

2m
log

2πα

m
− 3

2m
log(m) − 1

mN
logZliq(T

∗) (58)

The result is intuitive: in the limits where the particles of different replicas stay at the same

point, the Hamiltonian for m replicas is just the usual one, multiplied by m.

2. First order term

In order to expand to next order of the α−1 expansion, we start from the representation (51)

and expand the interaction term to quadratic order in the relative coordinates:

Zm =

∫

∏

d3rid
3ua

i

∏

i

(

m3δ(
∑

a

ua
i )

)

exp

(

−βm
∑

i<j

v(ri − rj)

)

exp

(

−β
2

∑

i<j

∑

aµν

(ua
i − ua

j )(u
a
i − ua

j )
∂2v(ri − rj)

∂r2
− 1

4α

∑

a,b

(ua
i − ub

i)
2

)

.

(where for simplicity we have not introduced the indices µ and ν, running from 1 to d, that

denote space directions). Notice that in order to carry this step, we need to assume that the

interaction potential v(r) is smooth enough, excluding hard cores.

After some computations36, one finds that the free energy to first order is equal to:

βφ(m,α) =

3(m− 1)

2m
log

1

α
− αβC +

3(1 −m)

2m
log

2π

m
− 3

2m
logm− 1

mN
logZliq(T

∗)(59)

where the constant C is proportional to the expectation value of the Laplacian of the potential,

in the liquid phase at the temperature T ∗:

C ≡ 1

2

1 −m

m2

∑

j(6=i)

〈∆v(zi − zj)〉∗ (60)
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Differentiating the free energy with respect to 1/α gives the equation for the size of the cage:

β
∂φ

∂(1/α)
= −(1 −m)

2m
dα + α2βC = −(1 −m)

2
dA (61)

Expanding this equation in perturbation theory in A we have:

α = mA− 2βm3C

3(m− 1)
A2 (62)

The Legendre transform is then easily expanded to first order in A:

βψ(m,A) = βφ(m,α) + 3
(1 −m)

2

A

α

=
3(1 −m)

2m
log(2πA) − βmAC +

3(1 −m)

2m
− 3

2m
logm− 1

mN
logZliq(T

∗)(63)

This very simple expression gives the free energy as a function of the number of replicas, m,

and the cage size A. We need to study it at m ≤ 1, where we should maximise it with respect

to A and m. The fact that we seek a maximum when m < 1 instead of the usual procedure of

minimising the free energy is a well established fact of the replica method, appearing as soon

as the number of replicas is less than 12.

As a function of A , the thermodynamic potential ψ has a maximum at:

A = Amax ≡ d(1 −m)

2βm2

1

C
=

3

β

1
∫

d3rg∗(r)∆v(r)
(64)

where g∗ is the pair correlation of the liquid at the temperature T ∗. A study of the potential

ψ(m,Amax), that equals φ(m), as a function of m then allows to find all the thermodynamic

properties that we seek, using the formulas of the previous section. This step and the results

will be explained below in sect. IV, where we shall compare the results to those of other

approximations.

The systematic expansion of the thermodynamic potential ψ in powers of A can be carried

out easily to higher orders. However the result involves some more detailed properties of the

liquid at the effective temperature T ∗. For instance at second order one needs to know not only

the free energy and pair-correlation of the liquid at temperature T ∗, but also the three points

correlation. One can also obtain a partial resummation of the small cage expansion described

above by integrating exactly over the relative vibration modes of the molecules.
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D. Harmonic resummation

One can go beyond the first order small cage expansion by using the following method.

Keeping only the term quadratic in u in (59) (harmonic vibrations of the molecules), and

integrating over these vibration modes, one gets the ”harmonic resummation” approximation

where the partition function is given by:

Zm = Z0
m

∫

dr exp

(

−βmH(r) − m− 1

2
Tr logM

)

. (65)

Here Z0
m = mNd/2

√
2πT

Nd(m−1)
/N !, and the matrix M , of dimension dN × dN , is given by:

M(iµ)(jν) =
∂2H(r)

∂rµ
i ∂r

ν
j

= δij
∑

k

vµν(ri − rk) − vµν(ri − rj) (66)

and vµν(r) = ∂2v/∂rµ∂rν (the indices µ and ν denote space directions). Now we are back

to a real problem of liquid theory, since we have only d degrees of freedom per molecule (the

center of mass coordinates), and the number of clones, m, appears as a parameter in (65). In

particular there is no problem of principle to obtain results for arbitrary values of m from this

expression.

We have thus found an effective Hamiltonian for the centers of masses ri of the molecules,

which basically looks like the original problem at the effective temperature T ∗ = T/m, compli-

cated by the contribution of vibration modes which give the ‘Trace Log’ term. We expect that

this should be a rather good approximation for the glass phase. Unfortunately, even within this

approximation, it seems impossible to compute the partition function exactly. We can proceed

by using a ’quenched approximation’, i.e. neglecting the feedback of vibration modes onto

the centers of masses. This approximation becomes exact close to the Kauzmann temperature

where m→ 1. The free energy is then:

βφ(m,T ) = − d

2m
log(m) − d(m− 1)

2m
log(2π) − 1

mN
logZ(T ∗) +

m− 1

2m
〈Tr log (βM)〉∗ (67)

which involves again the free energy and correlations of the liquid at the temperature T ∗. Com-

puting the spectrum of M is an interesting problem of random matrix theory, in a subtle case

where the matrix elements are correlated. Some efforts have been devoted to such computations

in the liquid phase where the eigenmodes are called instantaneous normal modes56. It might be
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possible to extend these approaches to our case. A simple high density approximation, detailed

in36, leads to the following expression for the replicated free energy:

βφ(m,T ) = − d

2m
log(m) − d(m− 1)

2m
log(2π) − 1

mN
logZ(T ∗) +

d(m− 1)

2m
log(βr0)

+
(m− 1)

2m

∫

ddk

(2π)3

(

L3

(

a(k) + d−1
d
b(k)

r0

)

+ (d− 1)L3

(

a(k) − 1
d
b(k)

r0

)

)

− (m− 1)

4m

∫

ddrg(r)
∑

µν

vµν(r)
2

r2
0

(68)

where the function L3 is defined as:

L3(x) = log(1 − x) + x+ x2/2 , (69)

and the Fourier transformed functions a and b are defined from the pair correlation g∗(r) by:

∫

ddr g∗(r)vµν(r)e
ikr ≡ δµν a(k) +

(

kµkν

k2
− 1

d
δµν

)

b(k) . (70)

We can thus compute the replicated free energy Fm only from the knowledge of the free energy

and the pair correlation of the liquid at the effective temperature T ∗. The results will be

discussed in section IV.

IV. THE REPLICA APPROACH TO STRUCTURAL GLASSES: SOME RESULTS

A. Soft spheres

We have studied36 the case of soft spheres in three dimensions interacting through a potential

v(r) = 1/r12. We work for instance at unit density, since the only relevant parameter is the

usual combination Γ = ρT−1/4. Fig. 8 shows the complexity versus free energy at various

temperatures computed with the harmonic approximation. We see that the main effect of

changing the temperature is to shift the free energy. This indicates that the main effect of

temperature is to add a constant (≈ 3/2kT ) in the energies of all amorphous packings. This

correspond to the case where the vibration spectrum is approximatively state independent.

Fig. 8 shows the internal energy and specific heat at various temperatures computed with

the three approximations explained above. The specific heat has a downward jump at the
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FIG. 8: The configurational entropy Σ(β, f) versus the free energy, computed within the harmonic

resummation, at temperatures T = 1/β = 0., .05, .1 (from left to right).

glass temperature, from a value which is the liquid value to a value close to 1.5 which is the

Dulong Petit law (remember that we have left aside the contribution from the kinetic energy),

a very reasonable value for a solid within the Einstein model of vibrations in the classical limit.

Notice that it was not obvious at all a priori that we would be able to get such a result from our

computations. The fact of finding the Dulong-Petit law (from computations done in a molecular

liquid!) is an indication that our whole scheme of computation gives reasonable results for a

solid phase.

B. Binary mixtures of soft spheres

The above results are physically very sound, but they could not be directly compared to

simulations because of the fact that soft sphere tend to crystallize too easily. In order to be able

to have a quantitative comparison with numerical data, we have extended the above approach

to binary mixtures glass formers, where an appropriate choice of the interaction parameters

strongly inhibits crystallization.

For soft spheres, we have studied the mixture of spheres introduced in5758, where the poten-

tials are given by:

V ǫǫ′(r) =
(σǫǫ′

r

)12

, (71)
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FIG. 9: The internal energy (left) and the specific heat (right) versus the temperature, for a system

of soft spheres with unit density. These analytical results have been computed in an expansion to

first order (dashed-dotted line) and second order (full line) in the cage size A, and in the harmonic

resummation (dashed line). In the right panel the dotted line is the specific heat of the liquid.

where
σ++

σ−−

= 1.2, σ+− =
σ++ + σ−−

2
. (72)

The concentration is taken as c+ = 1/2, and the choice of the ratio R ≡ σ++/σ−− = 1.2 is

known to strongly inhibit crystallization. We also make the usual choice of considering particles

with average diameter 1 by setting

(σ++)3 + 2(σ+−)3 + (σ−−)3

4
= 1. (73)

All thermodynamic quantities depend on the density ρ = N/V and the temperature T only

through the parameter Γ ≡ ρT−1/4. For Γ larger than ΓD = 1.45 (corresponding to lower

temperatures) the dynamics becomes very slow and the autocorrelation time is very large.

Hence the system enters the ’aging’ regime, where violations of the equilibrium fluctuation-

dissipation theorem are observed59. This value of ΓD is supposed to correspond to the mode

coupling transition below which the relaxation is dominated by activated processes20,58.

The behaviour of the internal energy and the specific heat (shown in Fig.10) computed

from the replica approach60 are very similar to those found in the pure soft sphere case. The

equilibrium complexity Σ(β, f ∗(β)) can also be computed, and we have compared it to some

numerical estimates found as follows60. The complexity is estimated from

Σ(β) =
1

N
[Sliq(β) − Ssol(β)] . (74)
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FIG. 10: Results for binary mixtures of soft spheres. The top curve gives the specific heat, the bottom

curve gives the complexity. The full curve is the analytic prediction form the replica method. The

points are the numerical estimates of the complexity obtained with four different numerical methods:

sliq − s
(a)
sol (+), sliq − s

(b)
sol (×), a direct zero temperature Monte Carlo measurement(∗), and a study of

the system coupled to a reference configuration (�).

The liquid entropy at temperature T has been measured by numerical integration of the energy

from infinite temperature down to T . Careful Monte Carlo simulations can be performed at

high enough T , so that the thermalization can be controlled, and the data can be extrapolated

with a power law towards lower temperatures.

As for the solid entropy associated to vibrations within one valley, we have estimated it

numerically from
Ssol(β)

N
=
d

2
(1 + log(2π)) − 1

2N
〈Tr log(βM)〉 , (75)

by diagonalizing the ‘instantaneous’ Hessian M and by averaging over different configurations.
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This is a subtle task, as there always exists a non zero number of negative eigenvalues, which

decreases as exp(−C/T ) at low temperatures56 and is expected to be negligible below the Mode

Coupling temperature. We have adopted the following two measurements; the difference of their

results gives an idea of the uncertainties associated with this procedure. a) One includes in the

computation of Tr log(βM) only the Npos positive eigenvalues. b) One includes all eigenvalues,

but one takes the absolute values of the negative ones:

S
(a)
sol

N
=
d

2

[

(1 + log(
2π

β
)) − 〈 1

Npos

Npos
∑

i=1

log λi〉
]

S
(b)
sol

N
=
d

2

[

(1 + log(
2π

β
)) − 〈 1

dN

dN
∑

i=1

log |λi|〉
]

.

(76)

Fig. 10 shows a good agreement between the analytical result of the replica method and the

numerical simulations.

C. Binary mixtures of Lennard-Jones particles

Another case of a more realistic model for glasses is the binary mixture of particles (80%

large particles, 20 % smaller particles) interacting via a Lennard-Jones potential, introduced by

Kob and Andersen61. This Hamiltonian should mimic the behaviour of some metallic glasses

and it is one of the best studied and simplest Hamiltonian which do not lead to crystallization

at low temperature. The replica analysis performed in40 again agree well with the numerical

simulation results.

Fig. (11) shows in particular the complexity as function of T−.4. The numerical result

has been fitted with a polynomial of second degree in T−.4. The extrapolated configurational

entropy becomes zero at a temperature Tc = .31±.04, where the error contains systematic effects

due to the extrapolation (similar conclusions have been reached in ref.62). This compares quite

well with the result obtained from the replica theory, Tc ≃ .32.

D. Hard spheres

Hard spheres have been used as models for liquids, crystals, colloidal systems, granular,

and powders63. Packings of hard spheres have a wider interest: they are related to important

problems in information theory, such as digitalization of signals, error correcting codes, and
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FIG. 11: Analytical value of the complexity (upper line) compared with the numerical one (+ points),

as functions of β.4.

optimization problems64,65. In particular, amorphous packings have attracted a lot of interest

as theoretical models for glasses, because for polydisperse colloids and granular materials the

crystalline state is not obtained in experiments.

Hard spheres is the simplest theoretical model for glassy systems (although in three dimen-

sions they do crystallize very fast in the monodisperse case).

The replica approach can be used to study this problem, but the simple small cage expansion

of the previous sections does not work. Indeed we have seen that the first order correction in

A in the cage expansion is proportional to

∑

j(6=i)

〈(∇V (zi − zj))
2〉 . (77)

The previous quantity is infinite for hard spheres, where the potential is discontinous and it is

infinite for distances smaller than the diameter D. It easy to check that the divergence is not

an artifact: if we approximate V (x) by a continous potential (e.g. V (x) = C(D−|r|)θ(D−|r|)
we obtain a divergence in the hard limit where C → ∞.

This difficulty has a physical origin. Indeed if one make some approximations valid at small

A, but one waits to make the expansion in powers of A at the very end66,67,68,69, one obtains that

the first corrections are proportional to
√
A, not to A. It is evident why the simple expansion
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FIG. 12: The complexity of hard spheres in three dimensions, as a function of the packing fraction.

The points are from numerical simulation70, the two curves are the results of the analytic replica

approach, in which the liquid phase properties have been computed either with the Carnahan-Starling

(”CS”) approach72, or with the one of Speedy71.

in integer powers of A is divergent.

Using only the first term in the new expansion one obtains remarkably good results66,67,68,69.

For example we see in fig. (12) the computation of the complexity for three dimensional hard

spheres as function of the packing fraction φ, compared with the results coming from numerical

simulations70.

This approach allows a detailed computations of many properties of hard spheres system,

including those of jammed packing69, also for binary mixtures and four dimensional models.

The results are usually in a remarkable good agreement with the numerical data. A very

interesting case is the computation of detailed properties of binary mixtures like the number of

contact among particles of equal and different radius73.

V. CONCLUSION

Summarizing, we have described a simple method that is able to use standard methods

from liquid theory in order to derive properties of the glass phase, putting in practice the old
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adage a glass is a frozen liquid. The method uses replicas of the original system, where, in a

sense, each replica provides a polarizing field for the other replicas. This seems to be at the

moment the best way to study problems, like glasses, which can be in many metastable states.

Using this method, we have shown how to compute with some reasonable approximations the

thermodynamics and, with a little more effort, we can compute the equilibrium correlation

functions. Within the equilibrium framework, we have implemented so far our general strategy

using rather crude methods. These methods can be systematically improved, and one could

certainly perform a more careful study of the molecular liquid, using more sophisticated methods

from liquid theory.
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42 A. Cavagna, I. Giardina, M. Mézard and G. Parisi, On the formal equivalence of the TAP and

thermodynamic methods in the SK model, cond-mat/0210665.

43 S. Franz, J.Hertz, Phys. Rev. Lett. 74, (1995) 2114.

44 L.Cugliandolo, J.Kurchan, G.Parisi and F.Ritort, Phys. Rev. Lett. 74 (1995) 1012.

45 L.Cugliandolo, J.Kurchan, E.Monasson and G.Parisi, Math. Gen. 29 (1996) 1347.
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