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Ladder Theorem and length-scale estimates for a

Leray alpha model of turbulence

Hani Ali
∗

Abstract

In this paper, we study the Modified Leray alpha model with periodic boundary con-
ditions. We show that the regular solution verifies a sequence of energy inequalities that
is called ”ladder inequalities”. Furthermore, we estimate some quantities of physical rele-
vance in terms of the Reynolds number.

MSC:76B03; 76F05; 76D05; 35Q30.

Keywords: Turbulence models; Regularity; Navier-Stokes equations

1 Introduction

We consider in this paper the ML-α model of turbulence
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∂u

∂t
+ (u · ∇)u − ν∆u +∇p = f in IR+ × T3,

−α2∆u+ u+∇π = u in T3,
∇ · u = ∇ · u = 0,
∮

T3

u =

∮

T3

u = 0,

ut=0 = uin.

The boundary conditions are periodic boundary conditions. Therefore we consider these
equations on the three dimensional torus T3 =

(

IR3/T3
)

where T3 = 2πZ3/L , x ∈
T3, and t ∈]0,+∞[. The unkowns are the velocity vector field u and the scalar pres-
sure p. The viscosity ν, the initial velocity vector field uin, and the external force f with
∇ · f = 0 are given. In this paper the force f does not depend on time.
This model has been first studied in [9], where the authors prove the global existence
and uniqueness of the solution. They also prove the existence of a global attractor A to
this model and they made estimates of the fractal dimension of this attractor in terms of
Grashof number Gr.
The dimension of the attractor gives us some idea of the level of the complexity of the
flow. The relation between the number of determining modes, determining nodes and the
evolution of volume elements of the attractors are discussed by Jones and Titi in [13].

∗IRMAR, UMR 6625, Université Rennes 1, Campus Beaulieu, 35042 Rennes cedex FRANCE;

hani.ali@univ-rennes1.fr
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Temam also interprets in his book [16] the dimension of the attractors as the number of
degrees of freedom of the flow.
It is easily seen that when α = 0, eqs. (1) reduce to the usual Navier Stokes equations for
incompressible fluids.
Assuming that f ∈ C∞, any C∞ solution to the Navier Stokes equations verifies formally
what is called the ladder inequality [4]. That means, for any C∞ solution (u, p) to the
(NSE), the velocity part u satisfies the following relation between its higher derivatives,

(2)

1

2

d

dt
HN ≤ −νHN+1 + CNHN ‖∇u‖

∞
+H

1/2
N ΦN

1/2,

where HN =

∫

T3

∣

∣∇Nu
∣

∣

2
dx and ΦN =

∫

T3

|∇Nf |2dx.

This differential inequalities are used first in [4] to show the existence of a lower bound
on the smallest scale in the flow. The same result is obtained in [5] by a Gevrey Class
estimates. Recently, the ladder inequalities are used to study the intermittency of solutions
to the Navier Stokes equations see [10]. While the ladder inequalities to the Navier Stokes
equations are based on the assumption that a solution exists, so that the higher order
norms are finite, no such assumption is necessary in the case of alpha regularistaion where
existence and uniqueness of a C∞ solution are guaranteed. The ladder inequalties are
generalized in [11, 12] to other equations based on the Navier stokes equations such as
Navier Stokes-alpha model [6] and Leray alpha model [2].
We aim to study in this paper ladder inequalities for model (1). In the whole paper, α > 0
is given and we assume that the initial data is C∞. One of the main results of this paper
is:

Theorem 1.1 Assume f ∈ C∞(T3)
3 and uin ∈ C∞(T3)

3. Let (u, p) := (uα, pα) be the
unique solution to problem (1).Then the velocity part u satisfies the ladder inequalities,

(3)

1

2
(
d

dt
HN + α2 d

dt
HN+1) ≤ −ν(HN+1 + α2HN+2)

+CN ‖∇u‖
∞
(HN + α2HN+1) +HN

1/2
ΦN

1/2,

where

(4) HN =

∫

T3

∣

∣∇Nu
∣

∣

2
dx, C0 = 0 and CN ≈ 2N for all N ≥ 1.

The gradient symbol ∇N here refers to all derivatives of evrey component of u of order N
in L2(T3).

Remark 1.1 We note that, as α → 0, HN → HN . Thus we find the inequality (2).

Another Task of this paper is to estimate quantities of physical relevance in terms of
the Reynolds number, these result are summarized in the table 1 whose proof is given in
section 5. For simplicity the eqs. (1) will be considered with forcing f(x) taken to be L2

bounded of narrow band type with a single lenght scale ℓ (see [10, 11]) such that

(5) ‖∇nf‖L2 ≈ ℓ−n‖f‖L2 .

In order to estimate small length sacles associated with higher order moments, we combine
in section 5 the force with the higher derivative of the velocity such that

(6) JN = FN + 2α2FN+1,
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where

(7) FN = HN + τΦN ,

and the quantity τ is defined by

(8) τ = ℓ2ν−1(Gr lnGr)−1/2.

The JN is used to define a set of time-depend inverse length scales

(9) κN,r =

(

JN
Jr

)
1

2(N−r)

.

The second main result of the paper is the following Theorem.

Theorem 1.2 Let f ∈ C∞(T3)
3 with narrow-band type and uin ∈ C∞(T3)

3. Let u := uα

be the velocity part of the solution to problem (1). Then estimates in term of Reynolds
number Re for the length sacles associated with higher order moments solution κN,0 (N ≥
2), the inverse Kolomogrov length λk and the attractor dimesion dF,ML−α(A) are given by

(10) ℓ2
〈

κ2N,0

〉

≤ C(α, ν, ℓ, L)(N−1)/NRe5/2−3/2N (lnRe)1/N + CRe lnRe.

(11) ℓλ−1
k ≤ cRe5/8.

(12) dF,ML−α(A) ≤ c

(

L3ℓ−4

α2λ
3/2
1

)3/4

Re9/4.

Where 〈·〉 is the long time average defined below (14)

The paper is organized as follows: In section 2, we start by summarizing and discussing
the results given above. In section 3 we recall some helpfuls results about existence and
uniqueness for this ML−α model, and we prove a general regularity result. In section 4,
we prove Theorem 1.1. We stress that for all N ∈ N fixed, inequality (3) goes to inequality
(2) when α → 0, at least formally. In section 5, we prove Theorem 1.2.

2 Summary and discussion of the results

Generally the most important of the estimates in Navier stokes theory have been found
in terms of the Grashof number Gr defined below in terms of the forcing, but these are
difficult to compare with the results of Kolomogrov scaling theories [8] which are expressed
in terms of Reynolds number Re based on the Navier Stokes velocity u. A good definition
of this is

(13) Re =
Uℓ

ν
, U2 = L−3

〈

‖u‖2L2

〉

,

where 〈·〉 is the long time average

(14) 〈g(·)〉 = Limt→∞

1

t

∫ t

0
g(s)ds.
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Where Lim indicates a generalized limit that extends the usual limits [7].
With frms = L−3/2‖f‖L2 , the standard definition of the Grashof number in three dimen-
sions is

(15) Gr =
ℓ3frms

ν2
.

Doering and Foias [3] have addressed the problem of how to relate Re and Gr and have
shown that in the limit Gr → ∞, solutions of the Navier Stokes equations must satisfy

(16) Gr ≤ c(Re2 +Re).

Using the above relation (16), Doering and Gibbon [10] have re-expressed some Navier
Stokes estimates in terms of Re. In particular they showed that the energy dissipation
rate ǫ = ν

〈

‖∇u‖2L2

〉

L−3 is bounded above by

(17) ǫ ≤ cν3ℓ−4
(

Re3 +Re
)

,

and the inverse kolomogrov length λ−1
k = (ǫ/ν3)1/4 is bounded above by

(18) ℓλ−1
k ≤ cRe3/4.

The relation (16) is essentially a Navier Stokes result. In [11] it has been shown that this
property holds for the Navier Stokes-alpha model [6]; the same methods can be used to
show this also holds for eqs. (1). In this paper, we will use (16) to obtain estimates in
terms of the Reynolds number Re.

NS NS-α/Bardina Leray-α ML-α Eq.

ℓλ−1
k Re3/4 Re5/8 Re7/12 Re5/8 (18)

〈

H1

〉

Re3 Re5/2 Re7/3 Re5/2 (72)
〈

H2

〉

- Re3 Re8/3 Re3 (69)
〈

H3

〉

- - / - Re3 Re7 (60)

dF (A) - Re9/4 / Re9/5 Re9/7 Re9/4 (75)

ℓ2
〈

κ2N,r

〉

- Re11/4 Re17/4 Re5/2 (62)

ℓ2
〈

κ21,0
〉

Re lnRe Re lnRe Re lnRe Re lnRe (57)
〈

‖u‖2
∞

〉

- Re11/4 Re5/2 Re11/4 (58)

〈‖∇u‖∞〉 - Re35/16 Re17/12 Re5/2 (61)

ℓ2
〈

κ2N,0

〉

- Re
11
4
−

7
4N (lnRe)

1
N Re

17
12

−
5

12N (lnRe)
1
N Re

5
2
−

3
2N (lnRe)

1
N (65)

Table 1: Comparison of various upper bounds for the Navier Stokes, Navier Stokes-α, Bardina,
Leray-α and Modified Leray-α with constant omitted

These estimates are listed in Table 1. The estimate for dF,ML−α(A) are consistent with the
long-standing belief that Re3/4×Re3/4×Re3/4 resolution grid points are needed to numer-
ically resolve the flow. The fact that this bound is not valid to the Navier Stokes equations
is consistent with the fact that dF,ML−α(A) blows up as α tends to zero. The improved
estimate to the inverse kolomgrov λ−1

k coincide with the estimate to the Navier Stokes

alpha given in [11] and blows up when α tends to zero. The estimate for
〈

κ2N,0

〉

comes

out to be sharper than those given for the Navier Stokes alpha because of the ‖∇u‖∞
term in the ladder inequality as opposed to the ν−1‖u‖2

∞
in [11]. This estimate gives us a

length scale that is immensely small. Such scale is unreachable computationally and the
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regular solution on a neighbour of this scale is unresolvable. Thus the resolution issues in
computations of the flow are not only associated with the problem of regularity but they
also raise the question of how resolution length scales can be defined and estimated.

We finish this section by the following remark. The existence and the uniqueness of a
C∞ solution for all time T to the ML-α motivate the present study. Provided that regular
solution exists for a maximal inteval time [0, T ∗[, we can show the ladder inequalities to
the Navier Stokes equations in [0, T ∗[. We then naturally ask ourselves If can we use the
convergence of (3) to (2) in [0, T ∗[ to deduce some informations about the regular solution
beyond the time T ∗? This is an crucial problem.

3 Existence, unicity and Regularity results

We begin this section by recalling the system (1) considered with periodic boundary con-
ditions.

(19)



































∂u

∂t
+ (u · ∇)u − ν∆u +∇p = f in IR+ × T3,

−α2∆u+ u+∇π = u in T3,
∇ · u = ∇ · u = 0,
∮

T3

u =

∮

T3

u = 0,

ut=0 = uin.

Note that given u = u−α2∆u the Poincaré inequality ‖u‖L2 ≤ L/2π‖∇u‖L2 immediately
leads to

(20) α2‖u‖H2 ≤ ‖u‖L2 ≤ (
L2

4π2
+ α2)‖u‖H2 .

In order to proof the ladder inequalities (3) we need first to show a regularity result for
(1) or (19).

Proposition 3.1 Assume f ∈ Hm−1(T3)
3 and uin ∈ Hm(T3)

3, m ≥ 1, then the solution
(u, p) of (1) is such that

u ∈ L∞([0, T ],Hm(T3)
3) ∩ L2([0, T ],Hm+1(T3)

3),(21)

p ∈ L2([0, T ],Hm(T3)
3).(22)

The following Theorem is a direct consequence of proposition 3.1.

Theorem 3.1 Assume f ∈ C∞(T3)
3 and uin ∈ C∞(T3)

3. Let (u, p) be the solution to
problem (1). Then the solution is C∞ in space and time.

The aim of this section is the proof of proposition 3.1. We begin by recalling some known
result for (1) or (19).

3.1 Known results

Results in [9] can be summarised as follows:
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Theorem 3.2 Assume f ∈ L2(T3)
3 and uin ∈ H1(T3)

3. Then for any T > 0, (1) has a
unique distributional solution (u, p) := (uα, pα) such that

u ∈ L∞([0, T ],H−1(T3)
3) ∩ L2([0, T ], L2(T3)

3),(23)

u ∈ L∞([0, T ],H1(T3)
3) ∩ L2([0, T ],H2(T3)

3),(24)

(25)
‖u(t)‖2L2 + α2‖u(t)‖2H1 ≤ (‖uin‖2L2 + α2‖uin‖2H1) exp

(

−4πνt/L2
)

+
L2

4π2ν2
‖f‖2H−1

(

1− exp
(

−4πνt/L2
))

.

Furthermore, if uin ∈ H2(T3)
3 then

u ∈ L∞([0, T ], L2(T3)
3),(26)

u ∈ L∞([0, T ],H2(T3)
3),(27)

‖u(t)‖2H1 + α2‖u(t)‖2H2 ≤ k(t).(28)

Where k(t) verifies in particular:
(i) k(t) is finite for all t > 0.
(ii) lim sup

t→∞

k(t) < ∞.

Remark 3.1 (1) The proof is based on the following energy inequality that is obtained by
taking the inner product of (1) with u,

(29)
1

2
(
d

dt
‖u‖2L2 + α2 d

dt
‖∇u‖2L2) + ν(‖∇u‖2L2 + α2‖∆u‖2L2) ≤ ‖f‖L2‖u‖L2 .

(2) Note that the pressure may be reconstructed from u and u by solving the elliptic equa-
tion

∆p = ∇ · ((u · ∇)u).

One concludes from the classical elliptic theory that p ∈ L1([0, T ], L2(T3)
3).

We recall that we can extract subsequences of solution that converge as α → 0 to a weak
solution of the Navier Stokes equations. The reader can look in [9], [6] and [1] for more
details.

Corollary 3.1 (1) We have u ∈ L2([0, T ], L2(T3)) and by Sobolev embending u ∈ L2([0, T ], L∞(T3)).
Thus there exists a constant M(T ) := M(uin,f , α, T ) > 0 such that

∫ t

0
‖u‖2L∞ ≤

1

α2

∫ t

0
‖u‖2L2 ≤ M(T ) for all t ∈ [0, T ].

(2) We also observe by using (20) that there exists a constant C(α) := C(α,L) > 0 such
that

‖u(t)‖2L2 ≤ C(α)k(t) for all t > 0.(30)
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3.2 Regularity: Proof of proposition 3.1

The proof of proposition 3.1 is classical (see for example in [14]). In order to make the
paper self-contained we will give a complete proof for this regularity result. The proof is
given in many steps.
Step 1: we show that u ∈ L∞([0, T ], L2(T3)

3) ∩ L2([0, T ],H1(T3)
3).

Step 2: we take ∂tu as a test function in (1).
Step 3: We take the m− 1 derivative of (1) then we take ∂t∇

m−1u as a test function and
the result follows by induction.

Step 1:

We have the following Lemma.

Lemma 3.1 For uin ∈ L2(T3)
3 and f ∈ H−1(T3)

3, eqs. (1) have a unique solution (u, p)
such that

u ∈ L∞([0, T ], L2(T3)
3) ∩ L2([0, T ],H1(T3)

3).(31)

Proof of Lemma 3.1. We show formal a priori estimates for the solution established in
Theorem 3.2. These estimates can be obtained rigorously using the Galerkin procedure.
We take the inner product of (1) with u to obtain

(32)
1

2

d

dt
‖u(t,x)‖2L2 + ν‖∇u(t,x)‖2L2 ≤ ‖∇−1f‖L2‖∇u‖L2 + |((u · ∇)u,u)|.

Integration by parts and Cauchy-Schwarz inequality yield to

(33) |((u · ∇)u,u)| ≤ ‖u⊗ u‖L2‖∇u‖L2

and by Young’s inequality, we obtain

(34)
‖∇−1f‖L2‖∇u‖L2 ≤

1

ν
‖∇−1f‖2L2 +

ν

4
‖∇u‖2L2 ,

|((u · ∇)u,u)| ≤
1

ν
‖u⊗ u‖2L2 +

ν

4
‖∇u‖2L2 .

From the above inequalities we get

(35)

d

dt
‖u(t,x)‖2L2 + ν‖∇u(t,x)‖2L2 ≤

2

ν
‖∇−1f‖2L2 +

2

ν
‖uu‖2L2

≤
2

ν
‖∇−1f‖2L2 +

2

ν

1

α2
‖u‖4L2 ,

where we have used in the last step that

(36) ‖u‖2L∞ ≤
1

α2
‖u‖2L2 .

This implies that

(37)
d

dt
(1 + ‖u(t,x)‖2L2) ≤ C1(1 + ‖u(t,x)‖2L2)

2,

where C1 = max( 2ν
1
α2 ,

2

ν
‖∇−1f‖2L2), and by Gronwall’s Lemma, since ‖u‖2L2 ∈ L1([0, T ])

(Corollary 3.1) we conclude that

1 + ‖u(t,x)‖2L∞([0,T ],L2) ≤ K1(T ),
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where K1(T ) := K1(T,u
in,f) is given by

K1(T ) = (1 + ‖uin‖2L2) exp

(

C1

∫ T

0
(1 + ‖u(s)‖2L2)ds

)

.

Furthermore, for every T > 0 we have from (35),

(38) ‖u(T,x)‖2L2 + ν

∫ T

0
‖∇u(t,x)‖2L2dt ≤ ‖uin‖2L2 +

2

ν
‖∇−1f‖2L2T +

2

ν
K1M.

Thus u ∈ L2([0, T ],H1(T3)
3) for all T > 0.

Step 2:

With the same assumption in the inital data as in Theorem 3.2 , we can find the following
result:

Lemma 3.2 Assume f ∈ L2(T3)
3 and uin ∈ H1(T3)

3 . Then for any T > 0, eqs. (1)
have a unique regular solution (u, p) such that

u ∈ C([0, T ],H1(T3)
3) ∩ L2([0, T ],H2(T3)

3),(39)

du

dt
∈ L2([0, T ], L2(T3)

3),(40)

p ∈ L2([0, T ],H1(T3)
3).(41)

Proof of Lemma 3.2 It is easily checked that since u ∈ L∞([0, T ], L2(T3)
3)∩L2([0, T ],H1(T3)

3),
then u ∈ L∞([0, T ],H2(T3)

3) ∩ L2([0, T ],H3(T3)
3). Consequently, by Sobolev injection

Theorem, we deduce that u ∈ L∞([0, T ], L∞(T3)
3) and ∇u ∈ L2([0, T ], L∞(T3)

3).
Therefore,

(42) (u · ∇)u ∈ L2([0, T ], L2(T3)
3).

Now, for fixed t, we can take ∂tu as a test function in (1) and the procedure is the same as
the one in [15]. Note that the proof given in [15] is formal and can be obtained rigorously
by using Galerkin method combined with (42).
Once we obtain that u ∈ L∞([0, T ],H1(T3)

3)∩L2([0, T ],H2(T3)
3)∩H1([0, T ], L2(T3)

3) and
p ∈ L2([0, T ],H1(T3)

3). Interpolating between L2([0, T ],H2(T3)
3) and H1([0, T ], L2(T3)

3)
yields to u ∈ C([0, T ],H1(T3)

3).

Step 3:

We proceed by induction. The case m = 1 follows from Lemma 3.2.
Assume that for any k = 1, ...,m − 1, if f ∈ Hk−1(T3)

3 and uin ∈ Hk(T3)
3 then u ∈

L∞([0, T ],Hk(T3)
3) ∩ L2([0, T ],Hk+1(T3)

3) holds.
It remains to prove that when k = m, f ∈ Hm−1(T3)

3 and uin ∈ Hm(T3)
3 that u ∈

L∞([0, T ],Hm(T3)
3) ∩ L2([0, T ],Hm+1(T3)

3).
It is easily checked that for u ∈ L∞([0, T ],Hk(T3)

3) ∩ L2([0, T ],Hk+1(T3)
3),

u ∈ L∞([0, T ],Hk+2(T3)
3) ∩ L2([0, T ],Hk+3(T3)

3). Consequently, by Sobolev injection
Theorem, we deduce that ∇ku ∈ L∞([0, T ], L∞(T3)

3), and ∇k+1u ∈ L2([0, T ], L∞(T3)
3).

By taking the m− 1 derivative of (1) we get in the sense of the distributions that

(43)















∂∇m−1u

∂t
+∇m−1 ((u · ∇)u)− ν∇m−1∆u +∇m−1∇p = ∇m−1f ,

∇ · ∇m−1u = 0,
∇m−1ut=0 = ∇m−1uin.

8



where boundary conditions remain periodic and still with zero mean and the initial con-
dition with zero divergence and mean.
Therefore, after using Leibniz Formula

(44) ∇m−1 ((u · ∇)u) =

m−1
∑

k=0

Ck
m−1∇

ku∇m−ku,

since
∇ku ∈ L∞([0, T ], L2(T3)

3)

and
∇k+1u ∈ L2([0, T ], L∞(T3)

3),

for any k = 1, ...,m − 1.
We deduce that

(45) ∇m−1 ((u · ∇)u) ∈ L2([0, T ], L2(T3)
3).

Now, for fixed t, we can take ∂t∇
m−1u as a test function in (43) and the procedure is the

same as the one in [15]. One obtains that u ∈ L∞([0, T ],Hm(T3)
3)∩L2([0, T ],Hm+1(T3)

3)
and p ∈ L2([0, T ],Hm(T3)

3). This finishes the proof of proposition 3.1.

4 Ladder Inequalities: Proof of theorem 1.1.

The first step in the proof of theorem 1.1, which has been expressed in section 1, is the
energy inequality (29) that corresponding to the case N = 0 of (3). Having showing in the
above section the regularity result for (1). We can take the N derivative of (1), we get in
the sense of the distributions that for all N ≥ 1,

(46)















∂∇Nu

∂t
+∇N ((u · ∇)u)− ν∇N∆u +∇N∇p = ∇Nf ,

∇ · ∇Nu = 0,
∇Nut=0 = ∇Nuin.

where boundary conditions remain periodic and still with zero mean and the initial con-
dition with zero divergence and mean. Taking ∇Nu as test function in (46), we can write
that

1

2

d

dt

∫

T3

∣

∣∇Nu
∣

∣

2
dx+α2 1

2

d

dt

∫

T3

∣

∣∇N+1u
∣

∣

2
dx = ν

∫

T3

∇Nu∇N∆udx−να2

∫

T3

∇Nu∇N∆∆udx

+

∫

T3

∇Nu∇N ((u · ∇)u)dx− α2

∫

T3

∇Nu∇N ((∆u · ∇)u)dx+

∫

T3

∇Nu∇Nfdx.

Where the pressure term vanishes as ∇ · ∇Nu = 0.
Using the defintion of HN in (4) we obtain
(47)

1

2
(
d

dt
HN + α2 d

dt
HN+1) ≤ −ν(HN+1 + α2HN+2) + |

∫

T3

∇Nu∇N ((u · ∇)u)dx|

+α2|

∫

T3

∇N+1u∇N−1((∆u · ∇)u)dx|+ |

∫

T3

∇Nu∇Nfdx|.
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Where we have integrated by parts in the Laplacien terms.
The central terms are

(48) NL1 = |

∫

T3

∇Nu∇N ((u · ∇)u)dx|

and

(49) NL2 = α2|

∫

T3

∇N+1u∇N−1((∆u · ∇)u)dx|

These two terms NL1 and NL2 can be bounded using the following Gagliardo-Nirenberg
interpolation inequality [4]:

Lemma 4.1 The Gagliardo-Nirenberg interpolation inequality is:
For 1 ≤ q, r ≤ ∞, j and m such that 0 ≤ j < m we have

(50)
∥

∥∇jv
∥

∥

p
≤ C ‖∇mv‖ar ‖v‖

1−a
q

where
1

p
=

j

d
+ a

(

1

r
−

m

d

)

+
1− a

q

for
j

m
≤ a < 1 and a =

j

m
if m− j −

d

r
∈ N∗ .

The first nonlinear term NL1 is estimated with the Gagliardo-Nirenberg inequality [4] by
cN ‖∇u‖

∞
HN , where c0 = 0 and cN ≤ c2N . Indeed, the nonlinear first term NL1 is found

to satisfy

NL1 =

∣

∣

∣

∣

∫

T3

∇Nu∇N ((u · ∇)u)dx

∣

∣

∣

∣

≤ 2NHN
1/2

N
∑

l=1

∥

∥

∥
∇lu

∥

∥

∥

Lp

∥

∥

∥
∇N+1−lu

∥

∥

∥

Lq
,

where p and q satisfy 1/p+1/q = 1/2 according to the Hölder inequality. We use now the
two Gagliardo-Nirenberg inequalities

∥

∥

∥
∇lu

∥

∥

∥

Lp
≤ c1

∥

∥∇Nu
∥

∥

a

L2 ‖∇u‖1−a
∞

,

∥

∥

∥
∇N+1−lu

∥

∥

∥

Lq
≤ c2

∥

∥∇Nu
∥

∥

b

L2 ‖∇u‖1−b
∞

.

Where a anb b must satisfy

1

p
=

l − 1

3
+ a

(

1

2
−

N − 1

3

)

,

1

q
=

N − l

3
+ b

(

1

2
−

N − 1

3

)

.

Since 1/p + 1/q = 1/2, we deduce a+ b = 1. Thus we obtain

(51)

∣

∣

∣

∣

∫

T3

∇Nu∇N ((u · ∇)u)dx

∣

∣

∣

∣

≤ cN ‖∇u‖
∞
HN .

In the same way, we can estimate the nonlinear second term with Gagliardo-Nirenberg
inequality in order to have

(52) α2|

∫

T3

∇N+1u∇N−1((∆u · ∇)u)dx| ≤ c
′

Nα2 ‖∇u‖
∞
HN+1,

where c
′

N ≤ c2N .
The result (3) then follows.
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5 Estimates in terms of Reynolds number: Proof of Theo-

rem 1.2

5.1 Proof of inequality (10)

We begin by forming the combination

FN = HN + τΦN

where the quantity τ is defined by

τ = ℓ2ν−1(Gr lnGr)−1/2.

We define the combination
JN = FN + 2α2FN+1

The following result is a consequence of Theorem 1.1 and it is proof follows closely to that
for the Navier Stokes-alpha model in [11] and we will not repeat it.

Theorem 5.1 As Gr → ∞, for N ≥ 1, 1 ≤ p ≤ N the unique solution to eqs. (1)
satisfies

(53)
1

2

d

dt
JN ≤ −ν

J
1+ 1

p

N

J
1
p

N−p

+ CN,α ‖∇u‖
∞
JN + Cνℓ−2Re(lnRe)JN

and for N = 0,

(54)
1

2

d

dt
J0 ≤ −νJ1 + Cνℓ−2Re(lnRe)J0

When α → 0, JN tends to FN = HN + τΦN , and the result of theorem 5.1 is consistent
with the result achived to Navier Stokes equations in [4].
To obtain length scales estimates let us define the quantities

κN,r =

(

JN
Jr

)
1

2(N−r)

In the α → 0 limit, the κN,0 behaves as the 2Nth moment of the energy spectrum.
The aim of this subsection is to find a estimate for the length sacles associated with higher

order moments solution κN,0 (N ≥ 2). To this end, we find first upper bounds for
〈

κ2N,r

〉

,
〈

κ21,0
〉

and 〈‖∇u‖∞〉 . Then we use the following identity

(55) κ2N,0 = κ
2(N−1)/N
N,1 κ

2/N
1,0

in order to deduce the result.
(a) The First two bounds are obtained by dividing by JN in Theorem 5.1 and time aver-
aging to obtain

(56)
〈

κ2N,r

〉

≤ CN,αν
−1 〈‖∇u‖

∞
〉+ Cℓ−2Re(lnRe)

and

(57)
〈

κ21,0
〉

≤ Cℓ−2Re(lnRe).
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Remark 5.1 Note that the bound on
〈

‖u‖2
∞

〉

is found to satisfies (see in [11] for more
details),

(58)
〈

‖u‖2
∞

〉

≤ Cℓ−2ν2VαRe11/4

Where

Vα :=

(

L

(ℓα)1/2

3)

.

(b) It is also possible to estimate 〈‖∇u‖∞〉: return to the eqs. (1) and take a different
way. We take u = −α2∆u + u as test function, then integration by parts (see Lemma
3.1), using (28) and time averaging, we obtain
(59)

ν
〈

H1 + 2α2H2 + α4H3

〉

≤ C
〈

‖∇u‖L2‖∆u‖2L2

〉

+ (1 + α2ℓ−2)
〈

H0
1/2

Φ0
1/2
〉

≤ C
〈

‖∆u‖2L2

〉

‖u‖L∞([0,T ],H1) + (1 + α2ℓ−2)
〈

H0
1/2

Φ0
1/2
〉

≤ Cα−2ν2ℓ−4L3Re3Gr2 + C(1 + α2ℓ−2)ν3ℓ−4L3Re3.

Thus we can right

(60)
〈

H3

〉

≤ C(α, ν, ℓ, L)Re7.

This can be used to find the estimate for 〈‖∇u‖∞〉. In fact, Agmon’s inequality [7]

‖u‖∞ ≤ ‖u‖
1/2
H1 ‖u‖

1/2
H2

says that

(61)
〈‖∇u‖∞〉 ≤

〈

H3

〉1/4 〈
H2

〉1/4

≤ C(α, ν, ℓ, L)Re5/2.

(c) Thus we obtain from (56) and (61) that

(62) ℓ2
〈

κ2N,r

〉

≤ C(α, ν, ℓ, L)Re5/2 + CRe(lnRe).

In particular, for r = 0

(63) ℓ2
〈

κ2N,0

〉

≤ C(α, ν, ℓ, L)Re5/2 + CRe(lnRe).

By choosing r = 1 we can then get an improvement for
〈

κ2N,0

〉

by writting

(64)

〈

κ2N,0

〉

=
〈

κ
2(N−1)/N
N,1 κ

2/N
1,0

〉

≤
〈

κ2N,1

〉(N−1)/N
〈

κ21,0
〉1/N

,

and then using the above estimates for
〈

κ2N,1

〉

and
〈

κ21,0
〉

which give for N ≥ 2,

(65) ℓ2
〈

κ2N,0

〉

≤ C(α, ν, ℓ, L)(N−1)/NRe5/2−3/2N (lnRe)1/N + CRe lnRe.

Note that when N = 1 we return to ℓ2
〈

κ21,0
〉

≤ CRe lnRe.
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5.2 Proof of inequality (11)

Let us come back to relation (3) , when N = 0, we get the energy inequality (29)

(66)
d

dt
(H0 + α2H1) ≤ −ν(H1 + α2H2) +H0

1/2
Φ0

1/2.

Poincaré inequality together with Cauchy Schwarz, Young and Gronwall inequalities in (66)
imply that H0 + α2H1 is uniformly bounded in time according to (25). Time averaging,
using the fact that the time average of the time derivative in (66) vanishes, we obtain

(67)

〈

H1 + α2H2

〉

≤
〈

H0
1/2

Φ0
1/2
〉

≤ cν2ℓ−4L3Re3.

Thus

(68)
〈

H1

〉

≤ cν2ℓ−4L3Re3.

and

(69)
〈

H2

〉

≤ cα−2ν2ℓ−4L3Re3.

From (69) and by using the following interpolation inequality

(70) HN ≤ HN−s

r
r+sHN+r

s
r+s ,

that is

(71) H1 ≤ H0

1
2H2

1
2 ,

we can improve (68) in order to obtain

(72)
〈

H1

〉

≤
〈

H0

〉
1
2
〈

H2

〉
1
2 ≤ cα−1ν2ℓ−3L3Re5/2.

This improve the Navier Stokes result (18) for the inverse Kolomogorov lentgh to

(73) ℓλ−1
k ≤ c(

ℓ

α
)1/4Re5/8.

We also deduce that the energy dissipation rate ǫ = ν
〈

‖∇u‖2L2

〉

L−3 is also bounded by

Re5/2 but all the improved estimates blow up when α tends to zero.

5.3 Proof of inequality (12)

The authors in [9] showed the existence of a global attractor A to this model and they
made estimates of the fractal dimension of this attractor. The sharp estimate found in [9]
for the fractal dimension of A expressed in terms of Grashof number Gr is

(74) dF,ML−α(A) ≤ c

(

2π

Lα2γ

)3/4

Gr3/2.

Where
1

γ
= min (1,

2π

α2L
)
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This however can be improved by noting that their estimate depends upon
〈

H1 + α2H2

〉

whose upper bound is Re3 not Gr2 ≤ cRe4. With this improvement it is found that the
estimate of dF,ML−α(A) in [9] convert to

(75) dF,ML−α(A) ≤ c

(

L3/2(2π)3/2ℓ−4

α2

)3/4

Re9/4.

In term of degrees of fredoom, this result says that Re3/4 ×Re3/4 ×Re3/4 resolution grid
points are needed.
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