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Towards GP-based optimization with finite time horizon

David Ginsbourger and Rodolphe Le Riche

Abstract During the last decade, Kriging-based sequential algorithms like EGO [2] and its variants have
become reference optimization methods in computer experiments. Such algorithms rely on the iterative
maximization of a sampling criterion, the expected improvement (EI), which takes advantage of Kriging
conditional distributions to make an explicit trade-off between promizing and uncertain search space points.
We have recently worked on a multipointsEI criterion meant to simultaneously choose several points, which
is useful for instance in synchronous parallel computation. The research results that we wish to present in
this paper concern sequential procedures with a fixed numberof iterations. We show that maximizing the
1-point criterion at each iteration (EI algorithm) is suboptimal. In essence, the latter amounts toconsidering
the current iteration as the last one. This work formulates the problem of optimal strategy for finite horizon
sequential optimization, provides the solution to this problem in terms of multipointsEI, and illustrates the
suboptimality of the usualEI algorithm on the basis of a first counter-example.

1 Introduction

Gaussian Process (GP) [4] has become a major tool inmetamodeling for computer experiments. When study-
ing a multivariate numerical simulator with scalar output,y : x ∈ D ⊂ R

d −→ y(x) ∈ R, GP metamodeling
consists of assuming thaty is one path of a GPY . The main focus in this paper is on metamodel-based opti-
mization with finite time horizon. In GP-based optimization, it is common to sequentially enrich the current
Design of Experiments (DoE)X = {x1, . . . ,xn} ∈Dn (n∈N

∗) —denoted byX = X0 andn = n0 in the initial
state— by maximizing a probabilistic criterion of interest, update the GP model, and iterate. As detailed in
[1], theExpected Improvement (EI) is now one of the most popular GP-based optimization criteria:

EI(x) = E
[
(min(Y (X))−Y (x))+ |Y (X) = Y

]
= E [I(x)|A] (1)
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whereI(x) := (min(Y (X))−Y (x))+ is the random variable of improvement atx, andA is the event sum-
marizing all available points and corresponding observations.EI is appreciated for providing a trade-off
between exploitation of known information and explorationof not already visited zones of the search space.
Furthermore,EI is known in closed form (Cf. [2]), which allows very fast evaluations and even analytical
calculation of its derivatives. Such a criterion, though regularly updated by taking the new data into account,
is most of the time considered at each iteration without structural change. In fact, inEI algorithms likeEGO,
the pointxn+ j to be visited at thejth iteration is set by maximizing a conditional expectation:

Algorithm 1 EI algorithm with known Kriging parameters and fixed number of iterationsr ∈ N
∗

1: function EGO(X, Y, r)
2: for j← 1,r do
3: A j−1 =

{
Y (x1) = y(x1), . . . ,Y (xn+ j−1) = y(xn+ j−1)

}

4: xn+ j = argmaxx∈D
{
E

[
I(x)|A j−1

]}

5: end for
6: end function

Example 1. We consider a 1-dimensional test-case whereD = [0,1] and the objective fonction is defined
by y1 : x ∈ [0,1]→ y1(x) = sin(10x + 1)/(1+ x) + 2cos(5x)x4 ∈ R. The initial design of experimentsX0

is a set ofn0 = 3 irregularly spaced points,{0.1,0.2,0.85}. Simple Kriging is performed using a Matern

covariance kernel (ν = 3
2, see [7] for details), with a unit variance and a range of

√
3

6 . Fig. 1 illustratesy1 and
its actual minimizer, the design of experimentsX0, as well as the associated 1-pointEI function and 2-points
EI contour lines. Comments are to be found in the caption of fig. 1and to be resumed in section 3.2.
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Fig. 1 y1 (upper left) with its global minimizer (in green) and the designX0 (in red), 1-pointEI and 2-pointsEI criteria (lower
left, and right) corresponding to the Kriging model of example 1. The vertical blue line locates the 1-pointEI maximizer, at
≈ 0.55. The maximum of the 2-pointsEI is reached with one point as previously, and one point at the boundary point 1.
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2 What is a strategy and how to measure its performance?

2.1 Deterministic strategies with finite horizon

We now propose a definition of sequential deterministic strategies for optimization with finite horizon. As-
sume that one has a budget ofr evaluations after having evaluatedy at an arbitraryn-points design,X. One
step of a sequential strategy essentially consists in looking for the next point where to evaluatey, sayxn+1.
In some sampling procedures like crude Monte Carlo,xn+1 may be determined without taking into account
the designX and the corresponding observationsY. However, in the considered case of adaptive strategies,
xn+1 is determined on the basis of the available information. Furthermore, we restrict ourselves here to the
case of deterministic strategies, i.e. wherexn+1 only depends on the past and doesn’t involve any random
operator (like mutations in genetic algorithms). Soxn+1 is in fact defined as some function ofX andY:

s1 : (X,Y) ∈ (D×R)n −→ xn+1 = s1(X,Y) ∈ D (2)

For instance,s1(.) is defined in Alg. 1 as argmaxx∈D E[(min(Y (X))−Y (x))+|Y (X) = Y]. Back to the nota-
tions of the previous section , one can similarly define a fonction s j(.) : (D×R)n0+ j−1−→D for all j ∈ [2,r].

Definition 1. We call deterministic strategy with horizon r (r ∈ N
∗) any finite sequenceS = (s j) j∈[1,r] of

measurable functionss j(.) : (D×R)n0+ j−1−→ D ( j ∈ [1,r]), and denote bySr the space of suchS .

In Alg. 1, thes′js are implicitely taken as argmaxx∈D E[I(x)|X j−1,Y (X j−1)] for all j ∈ [2,r], whereX j−1 =

X0∪{xn0+1, . . . ,xn0+ j−1} andY j−1 = Y (X j−1) denote the augmented design and vector of observations.
Hence the only changes in the criteria of such EI algorithm isthe updated information. We now consider
strategies with a broader generality, where thes′js may be subject to structural changes at each iteration.

After the r function evaluations, it is possible to evaluate the success ofS ∈ Sr by comparing the best
response at the initial state,m0 := min(y(X0)) with the best response observed during the additional runs,

m1:r := min(y(xn0+1), . . . ,y(xn0+r)). (3)

The corresponding performance measure can be written in terms of multipoints improvement [6, 5, 1]:

Definition 2. The (a posteriori) improvement ofS ∈ Sr seen from the initial state is defined as

i0(S ) := (m0−m1:r)
+ = (m0−min(y(s1(X0,Y0)), . . . ,y(sr(Xr−1,Yr−1))))+ (4)

Similarly, the random variableI0(S ) = (min(Y (X0))−min(Y (xn0+1), . . . ,Y (xn0+r)))+ denotes the im-
provement at the points(xn0+1, . . . ,xn0+r), wherey is replaced by the processY . More generally,i j(S )
andI j(S ) (1≤ j ≤ r) refer to the same objects withX0 replaced byX j in min(y(X0)) and min(Y (X0)).

Our purpose here is to find strategies that produce the largest possiblea posteriori improvement in a given
number of iterations. In other words, we are looking for thes∗1, . . . ,s

∗
r that maximize the improvement of

eq. 4. However, evaluatingi(S ) obviously requires already knowingXr andYr, i.e. being at the end of
the algorithm. So we need a criterion that takes a strategyS = (s j) j∈[1,r] as argument while not explicitly
depending on the design points and response values to be observed during the algorithm. This is what we
will propose in the next subsection with the adaptation of the Expected Improvement criterion tosequential
strategies. Let us first recall a few measurability results and introduce some additional notations.
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2.2 Expected Improvement of a sequential strategy

2.2.1 Measurability with respect to a random variable.

We now consider two arbitrary real random variablesX andY defined over the same probability space
(Ω ,F ,P). σ (X) denotes the sub-σ -field of F generated byX . Let us recall thatσ (X) is the sub-σ -field
X−1(B(R)) of F generated by all events of the kindX−1(B) := {ω ∈Ω |X(ω) ∈ B}, whereB ∈B(R).

Definition 3. Y is saidσ(X)-mesurable (or more simplyX-mesurable) whenσ (Y )⊂ σ (X)

In essence, saying thatY is σ(X)-mesurable amounts to saying that knowing the realizationX(ω) specifies
enough the stateω ∈Ω to be able for the observer to deduceY (ω). Y can then been seen as a function ofX :

Theorem 1. (see e.g. [8]) Y is measurable with respect to σ(X) if and only if there exists some measurable
function f : (R,B(R))→ (R,B(R)) such that Y = f (X).

2.2.2 Expected Improvement of a strategy in finite time, and the associated optimality problem

More notations: we already know that(X0,Y0) denotes the initial design and observation vectors, and that
thexn0+ j ( j ∈ [1,r]) are the points visited within the considered strategy. Similarly, Xn0+ j andYn0+ j denote
the initial design and observation vectors respectively augmented by thexn0+i andy(xn0+i) (1≤ i ≤ j, j ∈
[1,r]). Note that all these quantities are deterministic from the point of view of an observer having collected
information at or after thejth iteration. We now propose additional notations and detailsfor the case where
the latter are seen from the past of iterationj, and hence inherits from an epistemic random nature:

The X n0+ j ’s denote the random variables corresponding to thexn0+ j ’s ( j ∈ [1,r]), and X
n0+ j = X0 ∪

{X n0+1, . . . ,X n0+ j} the random design corresponding toXn0+ j with known initial designXn0. Similarly,
Y

n0+ j = Y0∪{Y (X n0+1), . . . ,Y (X n0+ j)} denotes the random vector corresponding toYn0+ j.

In a purely deterministic strategyS as considered here,X n0+1 = s1(X0,Y0) is in fact non-random. How-
ever,X n0+2 = s2(X

1,Y1) is random, and is more precisely aσ(Y (Xn0+1))- or σ(Y1)-mesurable random
variable. More generally, eachX n0+ j is clearly aσ(Y j−1)-mesurable random variable for the same reason.

Finally, letA0 = {X0 = X0,Y (X0) = Y0} denote the information available at the initial state of thestrategy,
andA j = {X j = X j,Y (X j) = Y j} (1≤ j≤ r) stand for the information available at thejth iteration, i.e. right
after the calculation ofX n0+ j and the evaluation ofy at this point.

Definition 4. The Expected Improvement of a strategyS = (s j) j∈[1,r] seen from its initial state is given by

EI0(S ) : = E
[
(min(Y (X0))−min(Y (s1(X0,Y0)),Y (s2(X

1,Y1)), . . . ,Y (sr(X
r−1,Yr−1))))+|A0

]

= E
[
I0(s1(X0,Y0),s2(X

1,Y1), . . . ,sr(X
r−1,Yr−1))|A0

]
,

(5)

Definition 5. We denote byPr the problem: findS ∗
r = (s∗j) j∈[1,r] maximizingEI0.
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3 Towards deriving the optimal strategy in finite time

3.1 Main results

We restrict ourselves here to the case whereD is a compact subset ofR
d , and assume for convenience that

each consideredE[I j(x, . . .)|A j] (0≤ j ≤ r) possesses one unique global maximizer overD. This working
hypothesis grossly means that the possible symmetries havebeen taken into account, and that there is enough
expected improvement in the vicinity of the current DoE not to be damned to exploreD far away from the
observation points, where the predictions are all close to each other (in the case of 1st order stationarity). Let
us first write a trivial property of strategies with horizon 1which will nevertheless be crucial in the sequel:

Lemma 1. The solution of P1 is given by s∗1(X
0,Y0) = argmaxx∈D E[I0(x)|A0].

Proof. Directly follows from the definition ofP1.

Lemma 2.∀(a,b,c) ∈ R
3, (a−min(b,c))+ = (a−b)+ +(min(a,b)− c)+.

Proof. If a = min(a,b,c), then both left and right terms are 0. Ifb = min(a,b,c), both terms equal(a− b)
sincemin(b,c) = b and(min(a,b)− c)+ = 0. Finally, if c = min(a,b,c), the left term equals(a− c) and the
right one equals 0+(a− c) if b≥ a and(a−b)+(b− c) = (a− c) else. ⊓⊔
Theorem 2. In Pr, choosing xn0+r after r−1 iterations amounts to maximizing E[Ir−1(.)|Ar−1]

Proof. After r− 1 iterations,{Xr−1,Yr−1} is known, and the maximization ofEI over Sr reduces to a
simpler problem overS1. NotingM0 = min(Y (X0)) andM1:r−1 = min(Y (xn0+1), . . . ,Y (xn0+r−1)), we have:

xn0+r =argmax
x∈D

E[(M0−min(Y (xn0+1), . . . ,Y (xn0+r−1),Y (x)))+|Ar−1]

=argmax
x∈D

E[(M0−min(M1:r−1,Y (x)))+|Ar−1]
(6)

We then use lemma 2 witha = min(Y (X0)), b = M1:r−1, c = Y (x) and get:

E[(M0−min(M1:r−1,Y (x)))+|Ar−1] = E[(M0−M1:r−1)
+ +(min(Y (X0),M1:r−1)−Y (x))+|Ar−1]

= (M0−M1:r−1)
+ +E[Ir−1(x)|Ar−1]

(7)

Since(M0−M1:r−1)
+ doesn’t depend onx, maximizing the left term orE[Ir−1(x)|Ar−1] are equivalent. ⊓⊔

Theorem 3.The solution S ∗ = (s∗1, . . . ,s
∗
r ) of Pr is given by the following recursion:





xn0+r = s∗r (X
r−1,Yr−1) = argmax

x∈D
E[Ir−1(x)|Ar−1]

xn0+r−1 = s∗r−1(X
r−2,Yr−2) = argmax

x∈D
E[Ir−2(x,s∗r (X

r−1(x),Yr−1(x)))|Ar−2]

. . .

xn0+1 = s∗1(X
0,Y0) = argmax

x∈D
E[I0(x,s∗1(X

1(x),Y1(x)), . . . ,s∗r (X
r−1(x),Yr−1(x)))|A0]
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Proof. The first equality directly follows from theorem 2. Now, the point xn0+r−1 is obtained after observa-
tion of Xr−1,Yr−1 by maximizing the overall criterion

E
[
(M0−min(Y (X n0+1), . . . ,Y (X n0+r−2),Y (x),Y (X n0+r))+|Ar−2

]

=E
[
(m0−min(y(xn0+1), . . . ,y(xn0+r−2),Y (x),Y (s∗r (X

r−1(x),Yr−1(x))))+|Ar−2
]

where the equality is due to the facts thatX n0+ j andY (X n0+ j) (1≤ j ≤ r− 2) are known conditional
on Ar−2, andX n0+r = s∗r (X

r−1(x),Yr−1(x)) by the last result. Applying again lemma 2 witha = m0, b =
m1:r−2, c = min

(
Y (x),Y (s∗r (X

r−1(x),Yr−1(x)))
)

leads to maximizingE[Ir−2(x,s∗r (X
r−1(x),Yr−1(x)))|Ar−2].

The remaining points are similarly determined by backward induction.

3.2 Example: decomposing theEI of a two-iterations strategy

We consider for convenience a family of elementary 2-iterations strategiesS (a) (a∈D) defined as follows:

S (a) = ”choosea at the first iteration, and then maximize the 1-pointEI” (8)

Our purpose is to show that in some cases, there exists a better strategy than sequentially maximizing the
1-pointEI like in Alg. 1. Let us developEI(S (a)) for some fixeda∈ D. The second point is given by

X
n0+2 = s∗2(X

1,Y1) = argmax
x∈D

E

[(
min(Y1)−Y (x)

)+ ∣∣A0,Y (a)
]

(9)

Lemma 2 then enables us once again to provide an interesting decomposition of the expected improvement:

EI(S (a)) = E

[(
min(Y0)−min(Y (a),Y (X n0+2))

)+ ∣∣A0

]

= E

[(
min(Y0)−Y (a)

)+ ∣∣A0

]

︸ ︷︷ ︸
EI0

0:1(a):=EI(a)

+E

[(
min(Y1)−Y (X n0+2)

)+ ∣∣A0

]

︸ ︷︷ ︸
EI0

1:2(a)

(10)

The latter hence appears as the sum of the 1-pointEI at pointa —denoted here byEI0
0:1(a), i.e. ”the ex-

pected improvement between iteration 0 and 1, seen from the initial state”— and the expected value of the
future expected improvement atX n0+2 —similarly denoted byEI0

1:2(a). SinceEI(a) is analytically known,
calculatingEI(S (a)) amounts to computing the second term of this sum. Now, seen from the initial state
(before evaluatingy at a), Y (a) is a random variable. Under usual assumptions of centered GPwith known
covariance kernel, the law ofY (a) conditional onA0 is well known and sends back to the results:

Y (a)|A0∼N
(
m0(a),s2

0(a)
)
, (11)

where the Simple Kriging equations [4] write

{
m0(a) := kT

0 (a)K−1
0 Y0

s2
0(a) := k(a,a)−k0(a)T K−1

0 k0(a)

Using the law of total expectation (See [8] for details) and conditional simulations based on eq. 11 will
finally allow us to compute the termEI0

1:2(a) by Monte-Carlo in the next subsection.
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3.3 Numerical application

Back to the framework ofexample 1, EI0(S (a)) is computed for the boundary pointa = 1 and compared
to theEI value obtained with two iterations of Alg. 1 (i.e. maximizing twice the regularEI). As detailed in
Alg. 3.3, the computation ofEI0

1:2(a) is based on the following:

EI0
1:2(a)≈ 1

m

m

∑
i=1

E

[(
min(Y1(a))−Y (X n0+2(a))

)+ ∣∣A0,Y (a) = yi
a

]
(12)

where theyi
a ∼N (m0(a),s2

0(a)) are independently drawn (1≤ i≤m). Figure 2 sums up the results obtained
by running Alg. 3.3 withm = 100, with botha = 1 anda fixed to the maximizer of the 1-pointEI.

Algorithm 2 Computation ofEI(S (a)) by Monte-Carlo

1: function ÊI(X, Y, a, m)
2: EI0

1 = E
[
I0(a)|A0

]

3: X1 = X0∪{a}
4: for j← 1,m do
5: ysim ∼N

(
m0(a),s2

0(a)
)

6: Y1 = Y0∪{ysim}
7: xn0+2

sim = argmaxx∈D
{
E

[
I1(x)|A1

]}

8: v j = E

[
I1(xn0+2

sim )
∣∣A1

]

9: end for
10: return ÊI0

1:2 = EI0
1 + 1

m ∑m
j=1 v j

11: end function

The highest expected improvement —and especially the medianvalue— obtained witha = 1 supports the
belief that maximizingEI at each iteration is not (always) the best thing to do in a sequential strategy
with fixed horizon. In this particular example, this phenomenon seems due to the good delayed payoff
associated with sampling ata = 1. Indeed, evaluatingy there at the first iteration leaves room to explore
the most interesting zone with a little bit more informationat iteration 2 than what we initially had. In the
straightforward strategy however, one greedily visits themain bump of the 1-pointsEI at the first iteration
and then almost systematically sampley at the boundary point during the second shot (See fig. 2, upperleft).

4 Conclusion and perspectives

The results presented in this paper extend the field of pertinence of themultipoints expected improvement
to the framework of optimization strategies with finite timehorizon. Thanks to an adequate modeling of
the future points and associated observations in terms of random variables, the latter criterion is used to
derive the sequence of decisions to be made during the optimal algorithm for any fixed horizon. It is in
particular illustrated on the basis of a dedicated example that the classicalEI algorithm is suboptimal, and
that the strategic value of a point can be decomposed as sum ofits 1-point expected improvement plus a
more delayed criterion of interest, which can be estimated by Monte-Carlo using conditional simulations.
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Fig. 2 The left graphics represents the two populations ofX n0+2 points (100 each) corresponding to both strategies, and the
right one compares the samples of improvement values obtained in both cases.

Perspectives include a detailed study and improvements of the latter Monte-Carlo method. Dimension reduc-
tion techniques and well-suited heuristics may be requiredto afford the computation of reasonable estimates
for the EI of a strategy with horizonr ≥ 3. Furthermore, both large-scale practical examples and deeper
connections with existing works in the field of sequential strategies, but also in control theory, are currently
considered. In particular, the close (but not similarly proven nor illustred) results given in the piece of work
[3] very recently discovered by the authors motivate revisting this book two decades later with both the
scientific approach in fashion and the increased computation capacity for testing and implementing ideas.
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