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Towards GP-based optimization with finite time horizon

David Ginsbourger and Rodolphe Le Riche

Abstract During the last decade, Kriging-based sequential algmstfike EGO [2] and its variants have
become reference optimization methods in computer exgertisn Such algorithms rely on the iterative
maximization of a sampling criterion, the expected improeat El), which takes advantage of Kriging
conditional distributions to make an explicit trade-offlween promizing and uncertain search space points.
We have recently worked on a multipoiriE$ criterion meant to simultaneously choose several poirtig;tw

is useful for instance in synchronous parallel computatidre research results that we wish to present in
this paper concern sequential procedures with a fixed nuothiggrations. We show that maximizing the
1-point criterion at each iteratiof( algorithm) is suboptimal. In essence, the latter amountstsidering
the current iteration as the last one. This work formulatesproblem of optimal strategy for finite horizon
sequential optimization, provides the solution to thishbhee in terms of multipoint&l, and illustrates the
suboptimality of the usudtl algorithm on the basis of a first counter-example.

1 Introduction

Gaussian Process (GP) [4] has become a major tondiamodeling for computer experiments. When study-
ing a multivariate numerical simulator with scalar outputx € D ¢ R — y(x) € R, GP metamodeling
consists of assuming thgis one path of a GF. The main focus in this paper is on metamodel-based opti-
mization with finite time horizon. In GP-based optimizatidris common to sequentially enrich the current
Design of Experiments (DoB = {x%,...,x"} € D" (n € N*) —denoted byX = X° andn = ng in the initial
state— by maximizing a probabilistic criterion of interagpdate the GP model, and iterate. As detailed in
[1], the Expected Improvement (EI) is now one of the most popular GP-based optimizatioteiGa:

El(x) =E[(min(Y(X)) =Y(x))"[Y(X) = Y] = E[I (x)|A] 1)
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wherel (x) := (min(Y(X)) —=Y(x))" is the random variable of improvementxgtandA is the event sum-
marizing all available points and corresponding obseovatiEl is appreciated for providing a trade-off
between exploitation of known information and exploratidmot already visited zones of the search space.
FurthermoreEl is known in closed form (Cf. [2]), which allows very fast ewations and even analytical
calculation of its derivatives. Such a criterion, thouggularly updated by taking the new data into account,
is most of the time considered at each iteration withoutcstmal change. In fact, i&l algorithms likeEGO,

the pointx™i to be visited at the™" iteration is set by maximizing a conditional expectation:

Algorithm 1 El algorithm with known Kriging parameters and fixed numbkiterationsr € N*

1: function EGO(X, Y,r)

2 for j —1,rdo

3 A1 = {YOE) =y0d), .. Y (01 = y(xE) )
4 X" = argmaxep {E [1(x)|Aj_1] }

5 end for

6: end function

Example 1. We consider a 1-dimensional test-case wHere [0, 1] and the objective fonction is defined
by y1 : x € [0,1] — y1(X) = Sin(10x+ 1) /(1 +x) + 2cog5x)x* € R. The initial design of experiments®

is a set ofny = 3 irregularly spaced point§0.1,0.2,0.85}. Simple Kriging is performed using a Matern
covariance kernel(= % see [7] for details), with a unit variance and a rangeg).f Fig. 1illustrates/; and
its actual minimizer, the design of experimeXt§ as well as the associated 1-pdaitfunction and 2-points
El contour lines. Comments are to be found in the caption of fand.to be resumed in sectior?3
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Fig. 1 y1 (upper left) with its global minimizer (in green) and the desigh(in red), 1-pointEl and 2-point€El criteria (lower
left, and right) corresponding to the Kriging model of exampldie vertical blue line locates the 1-poiat maximizer, at
~ 0.55. The maximum of the 2-pointsl is reached with one point as previously, and one point at theadwary point 1.
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2 What is a strategy and how to measure its performance?

2.1 Deterministic strategies with finite horizon

We now propose a definition of sequential deterministicagias for optimization with finite horizon. As-
sume that one has a budgetradvaluations after having evaluatgét an arbitraryn-points designX. One
step of a sequential strategy essentially consists in tgpkir the next point where to evaluatesayx"*?.

In some sampling procedures like crude Monte Cadld! may be determined without taking into account
the designX and the corresponding observationhsHowever, in the considered case of adaptive strategies,
x"1 is determined on the basis of the available informationttirmore, we restrict ourselves here to the
case of deterministic strategies, i.e. whefé! only depends on the past and doesn't involve any random
operator (like mutations in genetic algorithms).»8d* is in fact defined as some function XfandY::

s1:(X,Y)e (DxR)"—x"1=g5(X,Y)eD )

For instances, (.) is defined in Alg. 1 as argmaxp E[(min(Y (X)) —Y(x))"|Y(X) = Y]. Back to the nota-
tions of the previous section , one can similarly define ations;(.) : (D x R)0*i~1 — Dforall j € [2,r].

Definition 1. We call deterministic strategy with horizonr (r € N*) any finite sequence” = (sj);e1,r Of
measurable functiorg(.) : (D x R)™*i=1 — D (j € [1,r]), and denote b, the space of sucl¥’.

In Alg. 1, thes]s are implicitely taken as argmaxp E[l (x)|X )71, Y (XI~1)] for all j € [2,r], wherex~* =

XOU {xno* . xhoti=11 andY I~ = Y(XI~1) denote the augmented design and vector of observations.
Hence the only changes in the criteria of such El algorithtihésupdated information. We now consider
strategies with a broader generality, wherea’pxamay be subject to structural changes at each iteration.

After the r function evaluations, it is possible to evaluate the success%fe S, by comparing the best
response at the initial statey := min(y(X°)) with the best response observed during the additional runs,

Mgy == min(y(x®™t1), . y(xMt). (3)

The corresponding performance measure can be writtennrstef multipoints improvement [6, 5, 1]:
Definition 2. The (@ posteriori) improvement of € S, seen from the initial state is defined as

i°() := (Mo —myr) ™ = (Mo —min(y(su (X%, Y),....y(s: (X1 Y1) * (4)

Similarly, the random variablé®(.7”) = (min(Y(X?)) — min(Y (x"*1),....Y(x0"")))* denotes the im-
provement at the point™*L . x0t) wherey is replaced by the proceds More generally;!(.7)
andl!(.#) (1< j <r) refer to the same objects wiP replaced byX! in min(y(X?)) and mir(Y(X9)).

Our purpose here is to find strategies that produce the kgpgssiblea posteriori improvement in a given
number of iterations. In other words, we are looking for #e..,s; that maximize the improvement of
eq. 4. However, evaluating.’) obviously requires already knowing" andY', i.e. being at the end of
the algorithm. So we need a criterion that takes a stratégy (sj) <1, @s argument while not explicitly
depending on the design points and response values to bevethskiring the algorithm. This is what we
will propose in the next subsection with the adaptation efikpected Improvement criterion tosequential
strategies. Let us first recall a few measurability results and intradlsome additional notations.
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2.2 Expected Improvement of a sequential strategy

2.2.1 Measurability with respect to a random variable.

We now consider two arbitrary real random variabl¥esandY defined over the same probability space
(Q,.7,P). 0 (X) denotes the sub-field of .%# generated by. Let us recall that (X) is the sube-field
X~1(#(R)) of .Z generated by all events of the kidd1(B) := {w € Q|X(w) € B}, whereB € Z(R).

Definition 3. Y is saido(X)-mesurable (or more simp)-mesurable) wheo (Y) C o (X)

In essence, saying thdtis o(X)-mesurable amounts to saying that knowing the realizaign) specifies
enough the state € Q to be able for the observer to dedut@v). Y can then been seen as a functiorXof

Theorem 1.(seeeg. [8]) Y is measurable with respect to g (X) if and only if there exists some measurable
function f : (R, Z(R)) — (R, 2(R)) such that Y = f(X).

2.2.2 Expected Improvement of a strategy in finite time, andte associated optimality problem

More notations: we already know thatX?, Y°) denotes the initial design and observation vectors, artd tha
thex™*1 (j e [1,r]) are the points visited within the considered strategy. Bigj X" andY™*I denote

the initial design and observation vectors respectivefynaented by the™* andy(x0t) (1<i< |, je
[1,r]). Note that all these quantities are deterministic from thietof view of an observer having collected
information at or after thé!" iteration. We now propose additional notations and defailshe case where
the latter are seen from the past of iteratjpmand hence inherits from an epistemic random nature:

The 2*)'s denote the random variables corresponding toxthél’s (j € [1,r]), and X"t = XU
{gmotl . 2 Mot} the random design correspondingX® ! with known initial desigrX™. Similarly,
Yo+l = YO {Y (2 MotL) ... Y (2 *])} denotes the random vector correspondiny ot ).

In a purely deterministic strategy’ as considered here? ™+ = 5, (X9, Y?) is in fact non-random. How-
ever, 2”02 = 55(X!, Y1) is random, and is more preciselyoY (X"0"1))- or o(Y*)-mesurable random
variable. More generally, each ™%/ is clearly ac(Y/~1)-mesurable random variable for the same reason.

Finally, letAg = {X% = X°,Y(X?) = Y°} denote the information available at the initial state ofstrategy,
andAj = {X! = X1, Y(XJ) = YI} (1< j <) stand for the information available at t}f8 iteration, i.e. right
after the calculation 02" ™" and the evaluation of at this point.

Definition 4. The Expected Improvement of a strategy= (sj) <1 S€en from its initial state is given by

EI%(.): [(min(Y (X?)) —min(Y (s1(X% Y9)), Y (s2(X% YY), ..., Y(s (XL Y1) T |Ag]

[19(s1(X%,Y0), (X1, YY), .. s (XL Y1) A ®)

=K
=E

Definition 5. We denote by the problem: find”;* = (sj) je(1) maximizingE|°.
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3 Towards deriving the optimal strategy in finite time

3.1 Main results

We restrict ourselves here to the case wH2lis a compact subset @9, and assume for convenience that
each considereB[1/(x,...)|Aj] (0 < j <r) possesses one unique global maximizer @eThis working
hypothesis grossly means that the possible symmetriediesretaken into account, and that there is enough
expected improvement in the vicinity of the current DoE rmobé damned to explore far away from the
observation points, where the predictions are all closath @ther (in the case oftlorder stationarity). Let

us first write a trivial property of strategies with horizomvhich will nevertheless be crucial in the sequel:

Lemma 1. The solution of 2; isgiven by s;(X°,Y?) = argmaxcp E[1°(x)|Ad].
Proof. Directly follows from the definition of#?;.
Lemma 2.V(a,b,c) € R3, (a—min(b,c))* = (a—b)* + (min(a,b) —c)".

Proof. If a=min(a,b,c), then both left and right terms are 0.d&= min(a, b, c), both terms equala— b)
sincemin(b,c) = b and(min(a,b) —c)* = 0. Finally, if c = min(a, b, c), the left term equaléa — c) and the
right one equals @ (a—c) if b>aand(a—b)+(b—c)=(a—c)else. O

Theorem 2.1n 22, choosing x"o*" after r — 1 iterations amounts to maximizing E[I™2(.)|Ar_4]
Proof. After r — 1 iterations,{X"~%, Y"1} is known, and the maximization @&l over S reduces to a
simpler problem ove$;. NotingMg = min(Y (X°)) andMyy 1 = min(Y(x™*1) . Y(x"0*t—1)) we have:

X0 = argmax] (Mo — min(Y (x™*2), .Y (<" 1), Y (x))) A 4]

_ . (6)
=arg )r(r;gXE[(Mo —min(My;-1,Y(X))) " |Ar_1]
We then use lemma 2 with= min(Y(X%)), b= Mg;_1, c=Y(x) and get:
E[(Mo —min(Myy—1,Y(x)))"|Ar—1] = E[(Mo—Myy_1)" + (min(Y(XO), My 1) =Y (X)) |Ar 1] 7

=(Mo— IV'l:r—l)jL +EJl r71(><)|Ar—1]

Since(Mo — Myr_1)" doesn’t depend or, maximizing the left term oE[Ir‘l(x)|A,,1] are equivalent. O

Theorem 3.The solution .* = (sj,...,s) of & isgiven by the following recursion:
X0 = 5 (XY = argmar[l " (x) A1)
Xe

XOH =g (X2 Y2 = argma 2%, (XTHX), Y (X)) A2

X"t = (X% Y°) = arg Xn;gﬂ[lo(xvsi(xl(x)’Yl(X))y S (XTHX), YTH(X)) Ao
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Proof. The first equality directly follows from theorem 2. Now, theipt x"*"~1 is obtained after observa-
tion of X", Y"1 by maximizing the overall criterion

E [(Mo—min(Y(2™0), ... Y (270 72) Y (x),Y(20) A ]
=E [(mo —min(y(x"*4),..,y(x*"72),Y (x), Y (5 (X H(x), Y (%)) T A 2]
where the equality is due to the facts th&t*) andY (2 *l) (1< j <r —2) are known conditional
onA_, and 20t = s (X"1(x), Y ~1(x)) by the last result. Applying again lemma 2 wih= mg, b =

Muy—2, ¢=min (Y (x),Y (s (X"1(x),Y""1(x)))) leads to maximizing[I"~2(x,s; (X"~(x), Y (x))) | Ar—2].
The remaining points are similarly determined by backwadiiction.

3.2 Example: decomposing thel of a two-iterations strategy

We consider for convenience a family of elementary 2-iteret strategies” (a) (a € D) defined as follows:

. (a) = "choosea at the first iteration, and then maximize the 1-pdiht (8)

Our purpose is to show that in some cases, there exists a bettegy than sequentially maximizing the
1-pointEl like in Alg. 1. Let us develofil (.7 (a)) for some fixeda € D. The second point is given by

27702 = 55(X1 YY) = argmak | (min(¥!) ~Y () [A0,Y(3)] (©)
Lemma 2 then enables us once again to provide an interestgantposition of the expected improvement:
EI(()) = E [ (min(Y®) —min(Y (a),Y(2™*%))) " |Ao]
_E [(min(vo) ~Y(@)" \Ao} +E [(min(Yl) —Y(gmor2)) \Ao} (10)

EI§.,(a):=El(a) EIf,(a)

The latter hence appears as the sum of the 1-fglirdt pointa —denoted here bEI8:1(a), i.e. "the ex-
pected improvement between iteration 0 and 1, seen frormttial istate”— and the expected value of the
future expected improvement &t "0*2 —similarly denoted byI{.,(a). SinceEl (a) is analytically known,
calculatingEl (.#(a)) amounts to computing the second term of this sum. Now, seen fine initial state
(before evaluating ata), Y(a) is a random variable. Under usual assumptions of centereditBlknown
covariance kernel, the law §f(a) conditional onAg is well known and sends back to the results:

Y(@)[Ao~ A (mo(a),5(a) (11)
. i, . ] Mo
where the Simple Kriging equations [4] er{e

Using the law of total expectation (See [8] for details) alodditional simulations based on eq. 11 will
finally allow us to compute the teril?,(a) by Monte-Carlo in the next subsection.
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3.3 Numerical application

Back to the framework ofxample 1, EI°(.#(a)) is computed for the boundary poiat= 1 and compared
to theEl value obtained with two iterations of Alg. 1 (i.e. maximigitwice the regulagl). As detailed in
Alg. 3.3, the computation dl?.,(a) is based on the following:

Elgzz(a) R ;iﬂf [(min(Yl(a)) —Y(,E&”noJrZ(a)))+ |A0,Y(a) = y'a} (12)

where the/, ~ ,/V(mo(a),%(a)) are independently drawn (i < m). Figure 2 sums up the results obtained
by running Alg. 3.3 withm = 100, with botha = 1 anda fixed to the maximizer of the 1-poifl.

Algorithm 2 Computation oEl (. (a)) by Monte-Carlo

1: function EI(X, Y, a, m)
2. EY=E[I°%@a)|Ad]
3 x'=xU{a}

4: for j «— 1,mdo
5-
6
7
8

Ysim ~ A (nb(a),%(a))
Yl=v0y {Ysm}
X042 — argmaxep {E [I1(x)|Ad] }
v =B [11050%) A
9: endfor
10 return EI9,=EI9+ 25T, v
11: end function

The highest expected improvement —and especially the mediae— obtained witta = 1 supports the
belief that maximizingEl at each iteration is not (always) the best thing to do in a eetjal strategy
with fixed horizon. In this particular example, this phenome seems due to the good delayed payoff
associated with sampling at= 1. Indeed, evaluating there at the first iteration leaves room to explore
the most interesting zone with a little bit more informatiiniteration 2 than what we initially had. In the
straightforward strategy however, one greedily visitsrtren bump of the 1-pointgl at the first iteration
and then almost systematically sampk the boundary point during the second shot (See fig. 2, Uefier

4 Conclusion and perspectives

The results presented in this paper extend the field of gertie of themultipoints expected improvement

to the framework of optimization strategies with finite tiferizon. Thanks to an adequate modeling of
the future points and associated observations in termsnofora variables, the latter criterion is used to
derive the sequence of decisions to be made during the dpailgarithm for any fixed horizon. It is in
particular illustrated on the basis of a dedicated exanyéethe classicatl algorithm is suboptimal, and
that the strategic value of a point can be decomposed as sits1 point expected improvement plus a
more delayed criterion of interest, which can be estimatellbnte-Carlo using conditional simulations.
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Fig. 2 The left graphics represents the two populationg20t*2 points (100 each) corresponding to both strategies, and the
right one compares the samples of improvement values obtainedhrchses.

Perspectives include a detailed study and improvemenkedatter Monte-Carlo method. Dimension reduc-
tion techniques and well-suited heuristics may be requoedford the computation of reasonable estimates
for the El of a strategy with horizom > 3. Furthermore, both large-scale practical examples apgate
connections with existing works in the field of sequentightggies, but also in control theory, are currently
considered. In particular, the close (but not similarlyyao nor illustred) results given in the piece of work
[3] very recently discovered by the authors motivate rawisthis book two decades later with both the
scientific approach in fashion and the increased computatipacity for testing and implementing ideas.
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