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NONPARAMETRIC ESTIMATION FOR PURE JUMP IRREGULARLY
SAMPLED OR NOISY LÉVY PROCESSES

F. COMTE1 AND V. GENON-CATALOT1

Abstract. In this paper, we study nonparametric estimation of the Lévy density for pure jump
Lévy processes. We consider n discrete time observations that may be irregularly sampled or
possibly corrupted by a small noise independent of the main process. The case of non noisy
observations with regular sampling interval has been studied by the authors in previous works
which are the benchmark for the extensions proposed here. We study first the case of a regular
sampling interval and noisy data, then the case of irregular sampling for non noisy data. In each
case, non adaptive and adaptive estimators are proposed and risk bounds are derived. October
13, 2009

Keywords. Adaptive nonparametric estimation. Lévy processes. High frequency-low frequency data.
Irregular sampling. Noisy observations.

1. Introduction

Recently, Lévy processes, i.e. processes with stationary independent increments, have become
of common use in modeling financial data (see e.g. Eberlein and Keller (1995), Barndorff-Nielsen
and Shephard (2001), Cont and Tankov (2004)). Statistical inference for such processes has been
the subject of many recent contributions which, for the major part, focus on nonparametric
estimation, as the parametric approach is rather difficult (see e.g. Figueroa-López (2009) and
the references therein).

The distribution of a Lévy process (Lt, t ≥ 0) is completely specified by the characteristic func-
tion ψt of the random variable Lt, given by the Lévy-Kintchine formula (see e.g. Bertoin (1996)
or Sato (1999)). This is why nonparametric inference for Lévy processes is often based on the
relation between the characteristic function ψt and the characteristic triple (drift, Gaussian com-
ponent, Lévy measure) of the process (see e.g. Watteel and Kulperberg (2003), Jongbloed and
van der Meulen (2006), van Es et al. (2007), Neumann and Reiss (2009), Gugushvili (2009)).

In the simpler case where (Lt) is of pure jump type, with finite variation on compact sets, non-
parametric estimation of the Lévy measure is investigated in Comte and Genon-Catalot (2008,
2009) for discretely observed real-valued Lévy processes. More precisely, the present authors
consider a Lévy process whose characteristic function has the form:

(1) φLt(u) := ψt(u) = E(exp iuLt) = exp
(
t

∫
R

(eiux − 1)n(x)dx
)
,

where the Lévy density n(x) satisfies

(H1)
∫

R
|x|n(x)dx <∞.

Nonparametric estimation of the function

g(x) = xn(x)
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is studied based on a discrete observation of the sample path with regular sampling interval ∆.
The statistical procedure relies on the i.i.d. sample (Lk∆−L(k−1)∆, k = 1, . . . , n) with common
characteristic function ψ∆(u). Due to (H1), E|L∆| < ∞ and using (1), the following relation
holds:

(2) −iψ′∆(u) = E[L∆e
iuL∆ ] = g∗(u)∆ψ∆(u),

where g∗(u) =
∫
eiuxg(x)dx is the Fourier transform of g. Relation (2) suggests to build first

an empirical estimator ĝ∗ of g∗ and then deduce an estimator of g by Fourier inversion. For
integrability purpose, we introduce a cutoff parameter m, and define:

(3) ĝm(x) =
1

2π

∫ πm

−πm
e−ixuĝ∗(u)du.

Then, a data-driven procedure must be found to select the appropriate cut-off parameter m̂ lead-
ing to an adaptive estimator ĝm̂. This strategy is developed in Comte and Genon-Catalot (2008)
for low frequency data, i.e. when ∆ is kept fixed and n → +∞, and in Comte and Genon-
Catalot (2009) for high frequency data, i.e. ∆ = ∆n → 0 while n∆n → +∞.

Our aim in this paper is to show that the method can be extended to the case of noisy obser-
vations or irregular sampling interval. We consider (Lt, t ≥ 0) a Lévy process with characteristic
function of the form (1) and Lévy density satisfying (H1). We focus on the estimation of g. At
n discrete instants 0 < t1 < · · · < tn, we have at disposal noisy observations

(4) Uk = Ltk + δεk, k = 1, . . . , n,

where δ > 0 is a small parameter and (εk) is a sequence of i.i.d. centered random variables
with unit variance, independent of the process (Lt). The statistical procedure and the Fourier
strategy are adapted to the random variables:

(5) Vk = Uk − Uk−1 = Zk + δηk

with

(6) Zk = Ltk − Ltk−1
, ηk = εk − εk−1.

In Section 2, we present some notations and preliminary assumptions. Sections 3-4-5 are
devoted to study the L2-risks of the estimators (3) for a fixed cutoff parameter m, with ĝ
defined according to observations (5)-(6). The estimation method based on (3) generates a
systematic bias which is common to all contexts of observations. In Section 3, the order of decay
of the systematic bias is studied according to classes of regularity for the unknown function g
and some examples are investigated. Section 4 concerns the case where the sampling interval
tk−tk−1 = ∆ is regular. For the sake of clarity, we recall the results of Comte and Genon-Catalot
(2008, 2009) which deal with the non noisy case. Difficulties appearing due to the presence of
the noise are discussed. Section 5 is devoted to the case of irregular sampling interval. In this
case, for simplicity, we only study non noisy observations (δ = 0). Two estimating strategies are
proposed. Conditions on the sampling scheme {tk = tk,n, k = 1, . . . , n} are given generalizing
the case where ∆k = tk − tk−1 = ∆ → 0 an n∆ → +∞. Section 6 deals with the random
cutoff case and adaptive estimation. Section 7 concludes the paper. Proofs are given in Section
8, except for the adaptive procedures. Indeed, the latter proofs are technical and lengthy. Full
details may be found in Comte and Genon-Catalot (2008, 2009) for the regular sampling case
with non noisy observations. In the Appendix, some auxiliary results are given.



ESTIMATION FOR NOISY OR IRREGULARLY SAMPLED LÉVY PROCESSES 3

2. Notations and preliminary assumptions.

For any complex valued function h belonging to L1(R), we denote by h∗ its Fourier transform
defined as h∗(u) =

∫
eiuxh(x)dx. For integrable and square integrable functions h, h1, h2 we

denote by ‖h‖, < h1, h2 >, h1 ? h2 the quantities

‖h‖ =
∫
|h(x)|2dx, < h1, h2 >=

∫
h1(x)h̄2(x)dx,

and

h1 ? h2(x) =
∫
h1(y)h̄2(x− y)dy.

We recall that
(h∗)∗(x) = 2πh(−x), < h1, h2 >= (2π)−1 < h∗1, h

∗
2 > .

For a random variable Y , we denote by φY (u) = E(eiuY ) its characteristic function. When Y
has finite expectation, we set

(7) θY (u) = E(Y eiuY ) = −iφ′Y (u).

As described in the introduction, in all settings of observations, we first propose an estimator
ĝ∗ of g∗, and then deduce a collection of estimators (ĝm) of g depending on a cutoff parameter
m. Each ĝm is given by (3). Additional assumptions on g are required:

(H2)(p) For p integer,
∫

R |x|
p−1|g(x)|dx =

∫
R |x|

pn(x)dx <∞.
(H3) The function g belongs to L2(R).

Assumptions (H1) and (H2)(p) are moment assumptions for the random variables Zk. Under
(H1), (H2)(p) for p > 1 implies (H2)(k) for k ≤ p. The required value of p is given in each
proposition or theorem.

For the risk bound computation, we define

gm(x) =
1

2π

∫ πm

−πm
e−ixug∗(u)du.

Notice that the Fourier transform of gm is given by g∗m(u) = g∗(u)1[−πm,πm](u) and analogously
(see 3)) the Fourier transform of the estimator ĝm is ĝ∗m(u) = ĝ∗(u)1[−πm,πm](u). To compute
the L2-risk of the estimator ĝm, the basic relation is the following:

‖g − ĝm‖2 =
1

2π
‖g∗ − g∗m + g∗m − ĝ∗m‖2

=
1

2π

∫
|u|≥πm

|g∗(u)|2du+
1

2π

∫ πm

−πm
|ĝ∗(u)− g∗(u)|2du

= ‖g − gm‖2 + ‖gm − ĝm‖2.

The L2-orthogonality of the two terms is due to the disjoint supports of their Fourier transforms.
The term ‖gm − ĝm‖2 is a variance term, which increases with m with a rate depending on ĝ∗.
Whatever the estimator ĝ∗, there appears a common systematic square bias term produced by
the method, which decreases as m increases, given by

(8) ‖g − gm‖2 =
1

2π

∫
|u|≥πm

|g∗(u)|2du.

The order of this bias term is evaluated by considering classes of regularities for the function g
expressed in terms of g∗. Since the study of this term is common to all cases investigated here,
we detail it first and give examples.
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3. Systematic bias on examples.

Suppose g belongs to the Sobolev class

C(a, L) =
{
g ∈ (L1 ∩ L2)(R),

∫
(1 + u2)a|g∗(u)|2du ≤ L

}
.

In that case,

‖g − gm‖2 =
1

2π

∫
|u|≥πm

|g∗(u)|2du ≤ L

2π
(πm)−2a.

If g is analytic, i.e. belongs to a class

(9) A(γ,Q) = {f,
∫

(eγx + e−γx)2|f∗(x)|2dx ≤ Q},

then (8) has order O(exp(−γm)).
Let us now look at examples of Lévy processes for which we can compute the order of (8).

The last line of the tables below are useless now and to be read after Section 4.

Example 1. Compound Poisson processes.
Let Lt =

∑Nt
i=1 Yi, where (Nt) is a Poisson process with constant intensity c and (Yi) is a

sequence of i.i.d. random variables with density f independent of the process (Nt). Then, (Lt)
is a Lévy process with characteristic function (1) with n(x) = cf(x). Since f is integrable,

1 ≥ |ψt(u)| ≥ exp
(
−2ct

∫
R
f(x)dx

)
.

As f is any density and g(x) = cxf(x), any type of rate can be obtained. We summarize in
Table 1 the bias orders obtained for several choices of f . Note that the specific problem of
decompounding for known c is studied in van Es et al. (2007).

Density f Gaussian N (0, 1) Exponential E(1) Uniform U([0, 1])

g(x)(= cxf(x)) = cxe−x
2/2/
√

2π cxe−x1IR+(x) cx1I[0,1](x)

g∗(u) = ciue−u
2/2 c/(1− iu)2 c

eiu − 1− iueiu

u2∫
|u|≥πm |g

∗(u)|2du = O(me−π
2m2

) O(m−3) O(m−1)∫
|u|≤πm u

2|g∗(u)|2du = O(1) O(1) O(m)

Table 1. Bias order in three compound Poisson examples.

Example 2. The Lévy gamma process. Let α > 0, β > 0. The Lévy Gamma process (Lt) with
parameters (β, α) is a subordinator such that, for all t > 0, Lt has distribution Gamma with
parameters (βt, α), i.e. has density:

(10)
αβt

Γ(βt)
xβt−1e−αx1x≥0.

The characteristic function of Lt is equal to:

(11) ψt(u) = E(eiuLt) =
(

α

α− iu

)βt
.



ESTIMATION FOR NOISY OR IRREGULARLY SAMPLED LÉVY PROCESSES 5

The Lévy density is n(x) = βx−1e−αx1I{x>0} so that g(x) = βe−αx1I{x>0} satisfies our assump-
tions. We have: g∗(u) = β/(α− iu). Table 2 gives the bias orders.

Example 2. (continued) More generally, we consider the Lévy process (Lt) with parameters
(ω, β, c) and Lévy density

n(x) = cxω−1/2x−1e−βx1x>0.

For ω > 1/2,
∫ +∞

0 n(x)dx < +∞, and we recover compound Poisson processes. For 0 < ω ≤ 1/2,∫ +∞
0 n(x)dx = +∞ and g(x) = xn(x) belongs to L2(R)∩L1(R). This includes the case ω = 1/2

of the Lévy Gamma process. We have:

g∗(u) = c
Γ(ω + 1/2)

(β − iu)ω+1/2
.

Moreover

|ψt(u)| = exp
(
−ctΓ(ω + 1/2)

1/2− ω
[(β2 + u2)−(ω−1/2)/2 − β−(ω−1/2)]

)
.

Example 3. The variance Gamma stochastic volatility model. This model was introduced by
Madan and Seneta (1990).

Let (Wt) be a Brownian motion, and let (Vt) be an increasing Lévy process (subordinator),
independent of (Wt). Assume that the observed process is

Lt = WVt .

We have

ψt(u) = E(eiuLt) = E(e−
u2

2
Vt) =

(
α

α+ u2

2

)tβ
.

The Lévy measure of (Lt) is equal to:

nL(x) = β(2α)1/4)|x|−1 exp (−(2α)1/2|x|).

Setting α̃ = (2α)1/2, β̃ = β(2α)1/4,

g(x) = β̃ exp(−α̃x)1Ix≥0 − β̃ exp(α̃x)1Ix<0 ⇒ g∗(x) =
2iα̃β̃x
α̃2 + x2

.

Example 3 (continued). The variance Gamma stochastic volatility model is a special case
of bilateral Gamma process (see Küchler and Tappe (2008), Comte and Genon-Catalot (2008)).
Consider the Lévy process Lt with characteristic function

ψt(u) =
(

α

α− iu

)βt( α′

α′ + iu

)β′t
and Lévy density

n(x) = |x|−1(βe−αx1I(0,+∞)(x) + β′e−α|x|1I(−∞,0)(x)).

Bias orders are given in Table 2.
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Process Example 2 Ex.2 (continued) Example 3
ω ∈]0, 1/2[ (continued)

g∗(u) =
β

α− iu
c

Γ(ω + 1/2)
(β − iu)ω+1/2

β

α− iu
− β′

α′ − iu∫
|u|≥πm |g

∗(u)|2du = O(1/m) O(1/m2ω) O(1/m)∫
|u|≤πm u

2|g∗(u)|2du = O(m) O(m2−2ω) O(m)

Table 2. Bias order in examples 2, 2 (continued), 3 (continued).

4. Estimators in the case of a regular sampling interval and a fixed cut-off
parameter.

In this section, we build estimators of g based on observations (5)-(6) with tk = k∆ for
k = 1, . . . , n. We separate the case of low frequency data (∆ fixed) and the case of high
frequency data (∆ = ∆(n) tends to 0 as n tends to infinity while n∆(n) tends to infinity). To
have a better understanding of the definitions of the estimators, we first recall what was done
in the case of non noisy observations (δ = 0).

4.1. Low frequency (LF). We start with no noise as is done in Comte and Genon-Catalot (2008).
Assume that Vk = Zk = Lk∆ − L(k−1)∆, for k = 1, . . . , n. These r.v. are i.i.d. with common
characteristic function ψ∆(u) (see (1)) satisfying under (H1):

(12) g∗(u) =
θZ(u)

∆ψ∆(u)
,

with θZ(u) = E(Z1e
iuZ1) (see (2) and (7)). To estimate g∗, we replace the numerator and the

denominator above by empirical counterparts. Since the empirical estimator of the denominator
may be null, we truncate it as in Neumann (1997) and Neumann and Reiss (2009). This gives
the following low frequency (LF) estimator of g∗:

(13) ĝ∗LF (u) = θ̂Z(u)/(∆ψ̃∆(u)),

where

(14) θ̂Z(u) =
1
n

n∑
k=1

Zke
iuZk ,

(15)
1

ψ̃∆(u)
=

1

ψ̂∆(u)
1I|ψ̂∆(u)|>κψn−1/2 , ψ̂∆(u) =

1
n

n∑
k=1

eiuZk ,

and κψ is a constant (that can be equal to one). Then, we build the estimator denoted by ĝm,LF
by formula (3) with ĝ∗ = ĝ∗LF .

Now, we turn to the noisy case. When δ 6= 0, the r.v. (Vk) given by (5) are identically
distributed with common characteristic function

(16) φV (u) = E(eiuV1) = ψ∆(u)φη(δu).

where the characteristic function of the ηk’s satisfies φη(u) = |φε(u)|2 and φε is the common
characteristic function of the εk’s. The question is how small must be δ for the procedure with
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δ = 0 to be still correct? Derivating (16), we get

(17) θV (u) = E(VkeiuVk) = θZ(u)φη(δu) + δθη(δu)ψ∆(u).

Thus, using (12), we find

(18)
θV (u)
φV (u)

= ∆g∗(u) + δ
θη(δu)
φη(δu)

.

To build the new estimator of g∗, we set

(19) θ̂V (u) =
1
n

n∑
k=1

Vke
iuVk , φ̂V (u) =

2
n

[n/2]∑
k=1

eiuV2k .

Note that, since the Vk’s are no more independent because of the presence of the ηk’s, we
construct φ̂V using only even indices 2k to maintain a sum of independent random variables.
This point is useful in the proofs. Thus, we set, for κV a constant (that can be taken equal to
one):

(20)
1

φ̃V (u)
=

1

φ̂V (u)
1I|φ̂V (u)|>κV n−1/2 .

We propose the estimator
ĝ∗LFN (u) = θ̂V (u)/(∆φ̃V (u)),

The estimator of g, denoted by ĝm,LFN , is given by formula (3) with ĝ∗ = ĝ∗LFN :

ĝm,LFN (x) =
1

2π

∫ πm

−πm
e−ixuĝ∗LFN (u)du.

To obtain a risk bound for the estimators ĝm,LF and ĝm,LFN , additional assumptions con-
cerning ψ∆, g and the noise distribution are required.

(H4) There exist constants cψ, Cψ and β ≥ 0 such that
∀x ∈ R, we have cψ(1 + u2)−∆β/2 ≤ |ψ∆(u)| ≤ Cψ(1 + u2)−∆β/2.

(H5) There exists some positive a such that
∫
|g∗(u)|2(1 + u2)adu < +∞.

(H6) There exists some positive c0 such that, ∀u ∈ [−π, π], |φη(u)| ≥ 1/c0.
(H7) E(ε2

1) <∞ and E(ε1) = 0.
Note that we give separate assumptions on ψ∆ and on g since there may be no relation at all
between g∗ and ψ∆. For instance, in Example 1, β = 0 and g∗ can have any order of regularity.
Assumption (H4) is used to compute rates of convergence for L2-risks. Exponential rates for ψ∆

could also be considered (see Example 2 (continued)). Note that the assumptions on the noise
distribution (H6)-(H7) are rather weak.

Proposition 4.1. • Under Assumptions (H1)-(H2)(4)-(H3), for all m:

(21) E(‖ĝm,LF − g‖2) ≤ ‖g − gm‖2 +K
E1/2(Z4

1 )
∫ πm
−πm du/|ψ∆(u)|2

n∆2
,

where K is a constant.
• Under Assumptions (H1)-(H2)(4)-(H3), for all m,

(22) E(‖ĝm,LFN − g‖2) ≤ ‖g− gm‖2 +K
E1/2(V 4

1 )
∫ πm
−πm du/|φV (u)|2

n∆2
+ 2

δ2

∆2

∫ πm

−πm
| θη(δu)
φη(δu)

|2du,

where K is a positive constant.
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The first bound is proved in Comte and Genon-Catalot (2008). The second one is proved
below (see Section 8). We will require δ to be small enough for the last term to be negligible
when computing rates. This is obtained in the following corollary:

Corollary 4.1. Under Assumptions (H1)-(H2)(4)-(H3) and (H6)-(H7). Then, for all m ≤ n
and δ ≤ 1/n,

(23) E(‖ĝm,LFN − g‖2) ≤ ‖g − gm‖2 +Kc20E1/2(V 4
1 )

1
n∆2

∫ πm

−πm

du

|ψ∆(u)|2
+ 2

c2
0E(η2

1)
n∆2

.

Remark 4.1. If θη(u)/φη(u) is square-integrable on R, we have:

δ2

∫ πm

−πm
| θη(δu)
φη(δu)

|2du ≤ δ
∫

R
| θη(u)
φη(u)

|2du ∝ δ.

The last noise-related term in inequality (22) is negligible for δ ≤ 1/n.

Hence, if the noise level is small enough, its presence will not affect the rates of the risk
bound. More precisely, suppose that g belongs to the Sobolev class C(a, L). From Section 3, we
have ‖g − gm‖2 = O(m−2a). Under (H4), the second term in (21)-(23), a variance term of the
estimator, satisfies: ∫ πm

−πm du/|ψ∆(u)|2

n∆
= O

(
m2β∆+1

n∆

)
.

The best compromise between the first and the second term in the risk bounds yields that
the optimal choice for m is m = O((n∆)1/(2β∆+2a+1)). The resulting rate for the risk is
O((n∆)−2a/(2β∆+2a+1)). It is worth noting that the sampling interval ∆ explicitly appears in
the exponent of the rate. Therefore, for positive β, the rate is worse for large ∆ than for small
∆. Thus we can state the following result as a consequence of Proposition 4.1 and Corollary
4.1:

Corollary 4.2. Assume that g ∈ C(a, L). Under assumptions (H1)-(H2)(4)-(H3)-(H4)-(H6)-
(H7), then

E(‖ĝm,LFN − g‖2) = O(n∆)−2a/(2β∆+2a+1)) when m = O((n∆)1/(2β∆+2a+1)).

The same holds for ĝm,LF without assumptions (H6)-(H7).

We can illustrate these rates through the examples described in Section 3. The results are
also summarized in Tables 1, 2, 3, 4.

Example 1. Compound Poisson processes.
In this case, β = 0. If g belongs to the Sobolev class C(a, L), the upper bound of L2-risk is of

order O((n∆)−2a/(2a+1)).
If g is analytic, i.e. belongs to a class given by (9), then the bias satisfies ‖g − gm‖2 =

O(e−2γπm). Choosing m = O(ln(n∆)), we obtain that the risk is of order O(ln(n∆)/(n∆)).

Example 2. The Levy Gamma process.
We have

∫
|u|≥πm |g

∗(u)|2dx = O(m−1) and
∫

[−πm,πm] du/|ψ∆(u)|2 = O(m2β∆+1). The result-

ing rate is of order (n∆)−1/(2β∆+2) for a choice of m of order O((n∆)1/(2β∆+2)).

Example 2, continued. For the process described in example 2 (continued),
∫

[−πm,πm] du/|ψ∆(u)|2 =

O(mω+1/2 exp(κm1/2−ω)) and
∫
|u|≥πm |g

∗(u)|2dx = O(m−2ω). In this case, choosing κm1/2−ω =
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ln(n∆)/2 gives the rate [ln(n∆)]−2ω which is thus very slow. This case does not satisfy (H4)
(which is not required for the general risk bound).

Example 3. For the Bilateral Gamma process with (β, α) = (β′, α′), we have

ψ∆(u) =
αβ∆

(α2 + u2)β∆
, g∗(u) =

2iβαu
α2 + u2

.

Therefore
∫
|u|≥πm |g

∗(u)|2dx = O(m−1) and
∫

[−πm,πm] du/|ψ∆(u)|2 = O(m4β∆+1). The resulting

rate is of order (n∆)−1/(4β∆+2) for a choice of m of order O((n∆)1/(4β∆+2)).

As can be seen from these examples, the relevant choice of m depends on the unknown func-
tion, in particular on its smoothness. A model selection procedure that proposes a data driven
criterion to select m is presented in Section 6.

Example of distributions for the noise. Let us now give examples of noise distributions
and the corresponding functions φη(u) = |φε|2 (to study (H6)) and θη(u)/φη(u) (in relation with
Remark 4.1).
• Ordinary smooth case: φη(u) = c/(1 + u2)γ/2 (γ > 0) satisfies (H6) and

| θη(u)
φη(u)

| = 2γ|u|/(1 + u2)

is square integrable on R.
Examples of such type of densities for the noise ηk are given by Laplace densities (where the
density of ηk is fη(x) = (1/2)e|x|) or more generally, symmetrized Gamma densities.

• Super smooth case: φη(u) = c1 exp(−c2(1 +u2)c3/2), ci > 0, i = 1, 2, 0 < c3 ≤ 2, satisfies (H6)
and

|θη(u)/φη(u)| = c2c3
|u|

(1 + u2)1−c3/2
.

The order of |θη(u)/φη(u)| for large u is O(|u|c3−1), that is O(|u|) in the Gaussian case (c3 = 2).
Therefore, it is not square integrable.

4.2. High frequency data (HF). Now, the asymptotic setting is that ∆ = ∆(n) tends to 0
and n∆ tends to infinity. For simplicity, we omit the dependence on n in the sampling interval
∆. However, the benchmark for rates is now evaluated in terms of n∆, the total length time
interval where observations are considered.

We start by defining the estimators in the case of non noisy observations (δ = 0). Since ∆
is small, ψ∆(u) is close to 1 and we need not estimate it (see 12). Therefore, we construct the
estimator ĝ∗HF of g∗ by simply setting

ĝ∗HF (u) =
θ̂Z(u)

∆
,

with θ̂Z(u) given in (14). Then, as before ĝm,HF (x) is given by (3) with ĝ∗ = ĝ∗HF . In this case,
the integral (3) can be explicitly computed and yields an explicit formula for the estimator of g:

ĝm,HF (x) =
1

2π

∫ πm

−πm
e−iuxĝ∗HF (u)du =

m

n∆

n∑
k=1

Zkϕ(m(Zk − x)),
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where

(24) ϕ(x) =
sin(πx)
πx

, (with ϕ(0) = 1).

Consequently, the estimator is easy to compute and appears as a kernel estimator with kernel
ϕ and bandwidth 1/m.

Now, we look at the noisy observations and recall (see (16)) that φV (u) = E(eiuV1) =
ψ∆(u)φη(δu). Derivating, we get (see (17)): θV (u) = ∆ψ∆(u)g∗(u)φη(δu) + δθη(δu)ψ∆(u).

Since both ∆ and δ are now small, both ψ∆(u) and φη(δu) are close to 1. Thus, we propose
the estimator ĝ∗HFN of g∗ given by:

(25) ĝ∗HFN (u) = θ̂V (u)/∆,

with θ̂V (u) defined in (19). As previously, we define the estimator of g, ĝm,HFN (x), using ĝ∗HFN
and (3). Again, explicit integration is possible and yields:

ĝm,HFN (x) =
1

2π

∫ πm

−πm
e−iuxĝ∗HFN (u)du =

m

n∆

n∑
k=1

Vkϕ(m(Vk − x)),

Now, we can prove the following result:

Proposition 4.2. Assume that (H2)(2)- (H3) hold.
• For all positive m,

E(‖ĝm,HF − g‖2) ≤ ‖g − gm‖2 + [E(Z2
1/∆)]

m

n∆
+
‖g‖21
π

∆2

∫ πm

−πm
u2|g∗(u)|2du.

• Assume, moreover, that H :=
∫
|θη(v)|2dv < +∞. Then, for all m,

E(‖ĝm,HFN − g‖2) ≤ ‖g − gm‖2 + 12[E(Z2
1/∆) + (δ2/∆)E(η2

1)]
m

n∆

+
3
π

∆2‖g‖21
∫ πm

−πm
u2|g∗(u)|2du+

3
π
δ4E2(η2

1)
∫ πm

−πm
u4|g∗(u)|2du+

3
2π
H

δ

∆2
.(26)

The first inequality is proved in Genon-Catalot and Comte (2009). The second one is proved
below (see Section 8). In the high frequency framework, E(Z2

1/∆) is bounded under (H2)(2).
This is due to the fact that:

E(Z2
1 ) = ∆m2 + ∆2m2

1,

where ml =
∫
xln(x)dx is well defined for l = 1, 2 (see the Appendix).

Let us look at the last two terms of (26). Choosing δ = ∆4 and assuming that m ≤ n∆ and
n∆3 ≤ 1 yields

δ4

∫ πm

−πm
u4|g∗(u)|2du ≤ ∆16(πm)2

∫ πm

−πm
u2|g∗(u)|2du ≤ π2∆12

∫ πm

−πm
u2|g∗(u)|2du.

So, we can state:

Corollary 4.3. Assume that assumptions (H1), (H2)(2) and (H3) are satisfied and that H :=∫
|θη(v)|2dv < +∞. If in addition, δ = ∆4, n∆3 ≤ 1 and m ≤ n∆, then

E(‖ĝm,HFN − g‖2) ≤ ‖g − gm‖2 + 12π[E(Z2
1/∆) + ∆5E(η2

1)]
m

n∆

+C∆2‖g‖21
∫ πm

−πm
u2|g∗(u)|2du,

where C is a constant depending on H, E(η2
1).
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Remark 4.2. For δ = ∆3 and n∆2 ≤ 1, we get

δ/∆2 = ∆ ≤ 1
n∆

,

which would also make the last term in (26) negligible.

Let us discuss the rates obtained for the risk. The compromise between bias and variance
term correspond to the compromise between ‖g−gm‖2 and m/(n∆). If g belongs to the Sobolev
class C(a, L), the optimal choice for m is m = O((n∆)1/2a+1) and yields the rate O((n∆)2a/2a+1).
The other terms must be negligible.

The term containing
∫ πm
−πm u

2|g∗(u)|2du is evaluated in Table 1 and 2 (last line) on the exam-
ples. In the general case where g belongs to C(a, L), then

∆2

∫ πm

−πm
u2|g∗(u)|2du = ∆2O(m2(1−a)+

).

We restrict the choice of m to m ≤ n∆. Therefore, if a ≥ 1, we get the constraint n∆3 = O(1).
If a ∈ (0, 1), we need

∆2m2(1−a)+
= O(m−2a).

This holds under the condition n∆2 = O(1).

Proposition 4.3. Assume that (H1)-(H2)(2)-(H3) hold and that H :=
∫
|θη(v)|2dv < +∞.

Assume that g belongs to C(a, L). If n → +∞, ∆ → 0, n∆2 ≤ 1 and δ = ∆4, we have, for
m = O((n∆)1/(2a+1),

E(‖ĝm,HFN − g‖2) ≤ O((n∆)−2a/(2a+1)).
If a ≥ 1, then it is enough to have n∆3 = O(1) (instead of n∆2 ≤ 1).

The rates corresponding to the different examples described in Section 3 are given in Tables
3 and 4. In the cases LF-LFN, the rates are to be read as functions of n. In the cases HF-HFN,
the rates are measured as functions of n∆.

Density f Gaussian N (0, 1) Exponential E(1) Uniform U([0, 1])

g(x)(= cxf(x)) = cxe−x
2/2/
√

2π cxe−x1IR+(x) cx1I[0,1](x)
Optimal m = m =

√
ln(n∆)/π m = O((n∆)1/4) m = O((n∆)1/2)

Rate = O(

√
ln(n∆)
n∆

) O((n∆)−3/4) O((n∆)−1/2)

Table 3. Choice of m and rates in three compound Poisson examples (Cases
LF-LFN, set ∆ = 1 and HF-HFN, ∆ small).

Let us give examples of noise distribution and study of the condition H =
∫
|θ(v)|2dv < +∞.

• Ordinary smooth case: φη(u) = c/(1 + u2)γ/2 (γ > 0) gives

|θη(u)| = γ|u|/(1 + u2)1+γ/2.

thus θη is square integrable on R.
Examples of such type of densities for ηk are given by Laplace distributions (with density
(1/2)e−|x|) or more generally, symmetrized Gamma densities.
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Process Example 2 Ex.2 (continued) Example 3
ω ∈]0, 1/2[ (continued)

g∗(u) =
β

α− iu
c

Γ(ω + 1/2)
(β − iu)ω+1/2

β

α− iu
− β′

α′ − iu

Optimal m = O((n∆)1/2) O((n∆)1/(2ω+1)) O((n∆)1/2)

Rate in case HF-HFN O((n∆)−1/2) O((n∆)−2ω/(2ω+1)) O((n∆)−1/2)

Rate in case LF-LFN O((n∆)−1/(2β∆+1)) O([ln(n∆)]−2ω) O((n∆)−1/(4β∆+1))

Table 4. Choice of m and rates in examples 2, 2 (continued), 3 (continued),
cases LF-LFN and HF-HFN.

• Super smooth case: φη(u) = c1 exp(−c2(1 + u2)c3/2), ci > 0, i = 1, 2, 0 < c3 ≤ 2, gives

|θη(u)| = c1c2c3u(1 + u2)c3/2−1 exp(−c2(1 + u2)c3/2).

This implies
∫
|θη(v)|2dv < +∞.

5. Estimators in the case of irregular sampling and fixed cutoff parameter.

Here, we study the extension of the high frequency setting to irregular sampling. For
simplicity, we only study the non noisy observations case. Hence, we consider observations
Zk, k = 1, . . . , n which are independent, but not identically distributed. The r.v. Zk has char-
acteristic function ψ∆k

.
Let D̄ and ∆̄ be defined by

(27) D̄−1 =
1
n

n∑
k=1

∆−1
k , ∆̄ =

1
n

n∑
k=1

∆k.

Clearly we have

1 =

(
1
n

n∑
k=1

√
∆k

1√
∆k

)2

≤ 1
n

n∑
k=1

∆k
1
n

n∑
k=1

1
∆k

.

Therefore, ∆̄/D̄ ≥ 1 or ∆̄ ≥ D̄.
We assume that ∆̄ tends to 0 and n∆̄ = tn tends to infinity. Hence, D̄ tends to 0. Moreover,

in one the two strategies, we assume further that nD̄ tends to infinity.
Two different strategies can be used to build an estimator of g∗. Derivating ψ∆k

yields the
relation:

∆kψ∆k
(u)g∗(u) = θZk(u)

with θZk(u) = E(ZkeiuZk) (compare with (12)). The first strategy follows from writing

1
n

(
n∑
k=1

ψ∆k
(u)

)
g∗(u) =

1
n

n∑
k=1

∆−1
k θZk(u).
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The second strategy comes from∑n
k=1 ∆kψ∆k

(u)∑n
k=1 ∆k

g∗(u) =
∑n

k=1 θZk(u)∑n
k=1 ∆k

.

For both approaches, the coefficient of g∗(u) is close to 1 and need not be estimated.

5.1. First strategy. To estimate g∗, we propose first to define

(28) ĝ∗IR1(u) =
1
n

n∑
k=1

∆−1
k Zke

iuZk ,

and with (3),

ĝm,IR1(x) =
m

n

n∑
k=1

∆−1
k Zkϕ(m(x− Zk)).

Proposition 5.1. Assume that assumptions (H1), (H2)(2) and (H3) are fulfilled. Then

(29) E(‖ĝm,IR1 − g‖2) ≤ ‖g − gm‖2 + 2(m2 +m2
1)
m

nD̄
+ 2∆̄2‖g‖21(

∫ πm

−πm
u2|g∗(u)|2du),

where m` =
∫
x`−1g(x)dx, ` = 1, 2. Moreover, if ∆̄2 = O(1/(nD̄)) and g belongs to C(a, L), for

m = (nD̄)1/(2a+1),
E(‖ĝm,IR1 − g‖2) = O((nD̄)−2a/(2a+1)).

This result is proved in Section 8 and also uses the Appendix.

5.2. Second strategy. To estimate g∗, we propose secondly to define

(30) ĝ∗IR2(u) = (n∆̄)−1
n∑
k=1

Zke
iuZk ,

and by (3),

ĝm,IR2(x) =
m

n∆̄

n∑
k=1

Zkϕ(m(x− Zk)).

Now, we can prove the following result:

Proposition 5.2. Assume that assumptions (H1), (H2)(2) and (H3) are fulfilled. Then

(31) E(‖ĝm,IR2 − g‖2) ≤ ‖g − gm‖2 + 2(m2 +m2
1)
m

n∆̄
+ 2‖g‖21(

∫ πm

−πm
u2|g∗(u)|2du)

∆̄2
2

(∆̄)2
,

where ∆̄2 = (1/n)
∑n

k=1 ∆2
k.

Moreover, if ∆̄2
2/∆̄

2 = O(1/(n∆̄)) and g belongs to C(a, L), for m = (n∆̄)1/(2a+1),

E(‖ĝm,IR2 − g‖2) = O((n∆̄)−2a/(2a+1)).

Since 1/(n∆̄) ≤ 1/(nD̄), the variance term in strategy 2 is smaller. If g ∈ C(a, L), the rate
for strategy 1 is O((nD̄)−2a/(2a+1)) , whereas the rate for strategy 2 is O((n∆̄)−2a/(2a+1)). The
latter rate is thus always of lower order. Strategy 2 should therefore be preferred.

Concerning the residual term, (∆̄)2 ≤ ∆̄2. Hence, ∆̄2
2/(∆̄)2 ≥ (∆̄)2. Therefore, we search for

some examples of ∆k satisfying (∆̄2)2/(∆̄)2 ≤ 1/(n∆̄):
• ∆k = 1/k, ∆̄ = O(ln(n)/n), ∆̄2 = O(1/n) and thus ∆̄2

2/(∆̄)2 = O(1/ ln2(n)) =
O(1/(n∆̄)2).
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• ∆k = 1/
√
k, ∆̄ = O(1/

√
n), ∆̄2 = O(ln(n)/n) and thus (∆̄2)2/(∆̄)2 = O(ln2(n)/n) =

o(1/(n∆̄)).
• ∆k = 1/kβ, 1/2 < β < 1, ∆̄ = O(n−β), ∆̄2 = O(1/n) and thus ∆̄2

2/(∆̄)2 = O(n−2(1−β))
which is o(1/(n∆̄)) as 1/(n∆̄) = 1/n1−β.

On the opposite,
• ∆k = 1/kβ, 0 < β < 1/2, ∆̄ = O(n−β), ∆̄2 = O(n−2β) and thus ∆̄2

2/(∆̄)2 = O(n−2β)
which is not O(1/(n∆̄)) = O(1/n1−β).
• ∆k = 1/kβ, with β > 1 is such that n∆̄ = O(1) does not tend to infinity.

Thus the admissible values of this form are ∆k = k−β with β ∈ [1/2, 1].

6. Model selection and adaptive estimator.

As shown previously, there is an optimal choice of the cutoff parameter which realizes the
best compromise between the square bias and the variance terms in the risk bounds (see Tables
3, 4, Corollary 4.2, Propositions 4.3, 5.1, 5.2).

The aim of the model selection procedure is to propose a data driven value m̂ of the cutoff
parameter which realizes automatically the bias-variance compromise. Recall that the risk is
decomposed into

E(‖ĝm − g‖2) = ‖g − gm‖2 + E(‖gm − ĝm‖2),
where ‖g − gm‖2 is the bias term and E(‖gm − ĝm‖2) is the variance term.

Using Parseval’s Equality, it is easy to see that ‖g − gm‖2 = ‖g‖2 − ‖gm‖2. Therefore, the
bias term is estimated, up to the constant ‖g‖2, by an estimation of ‖gm‖2, which is taken as
‖ĝm‖2, where ĝm is an estimate of g. We introduce a penalty function pen(m) which estimates
the variance term E(‖gm − ĝm‖2). Actually, we only estimate its highest order term.

We define the criterion:

m̂ = arg min
m∈Mn

(−‖ĝm‖2 + pen(m))

where Mn = {1, . . . ,mn} with mn ≤ n∆ and

pen(m) ∝ estimator of the highest order term in the variance.

The low frequency (LF) case is rather difficult and treated in Comte and Genon-Catalot (2008),
see Theorem 4.2 therein. The low frequency with noise (LFN) case may be studied analogously.

The high frequency case is simpler and we detail it. When the sampling is regular, we set

m̂HFN = arg min
m∈Mn

(−‖ĝm,HFN‖2 + penHFN (m)),

where Mn = {1, . . . ,mn} with mn ≤ n∆ and

penHFN (m) = κ

(
1
n∆

n∑
k=1

V 2
k

)
m

n∆
.

We shall denote by
ˆ̂gHFN = ĝm̂HFN ,HFN .

Note that

E(penHFN (m)) = κ(E(V 2
1 )/∆)

m

n∆
= κ

E(Z2
1 ) + δ2E(η2

1)
∆

m

n∆
.

Compare with bound (26).
The constant κ here is a numerical value that helps to avoid under-penalization.
The following oracle-type result is obtained
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Theorem 6.1. Assume that (H2)(8)-(H3) are fulfilled and
∫
x2g2(x)dx < +∞, that n is large

and ∆ is small with n∆ tends to infinity when n tends to infinity. Assume in addition

(32)
∫
|θη(v)|2dv < +∞, δ = ∆4 and n∆3 ≤ 1.

Then there exists a universal constant κ such that

E(‖g − ˆ̂gHFN‖2) ≤ C inf
m∈{1,...,mn}

(
‖g − gm‖2 + E(penHFN (m)

)
+
C ′∆2

2π

∫ πmn

−πmn
u2|g∗(u)|2du+

C” ln2(n∆)
n∆

where C,C ′, C” are constants.

Note that (H3) and
∫
x2g2(x)dx < +∞ imply (H1) since:

‖g‖21 = (
∫
|g(x)|dx)2 ≤

∫
(1 + x2)g2(x)dx

∫
dx

1 + x2
.

Theorem 6.1 is proved for the case HF (case δ = 0, see Theorem 3.1 in Comte and Genon-
Catalot (2009)). In this case, the conditions given in (32) are not required. The extension to
the noisy case follows the same line and is not detailed here. The proof of the result relies on
Talagrand deviation inequality (see Talagrand (1996) or Klein and rio (2005)) and Rosenthal
type bounds on higher moments of the observed process.

The constant κ may be increased. Actually, it is calibrated by numerical simulations (see
Comte and Genon-Catalot (2009)).

If under the assumptions of Theorem 6.1, g belongs to a class of regularity C(a, L), with
unknown a and L, the estimator is automatically such that

E(‖g − ˆ̂gHFN‖2) ≤ C
[
(n∆)−2a/(2a+1) + ∆2m2(1−a)+

n +
C” ln2(n∆)

n∆

]
.

Then, even if a is unknown,

E(‖g − ĝm̂‖2) = O((n∆)−2a/(2a+1)).

In the case of irregular sampling with strategy 2,

penIR2(m) = κ

(
1
n∆̄

n∑
k=1

Z2
k

)
m

n∆̄
.

Then

E(penIR2(m)) = κ(m2 +
∆̄2

∆̄
m2

1)
m

n∆̄
,

which must be compared to (31). Let us denote by

ˆ̂gIR2 = ĝm̂IR2,IR2

the corresponding adaptive estimator. Then the result of Comte and Genon-Catalot (2009) can
be extended as follows:

Theorem 6.2. Assume that (H2)(8)-(H3) are fulfilled and
∫
x2g2(x)dx < +∞, that n is large

and ∆̄ is small with n∆̄ tends to infinity when n tends to infinity. Then there exists a universal
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constant κ such that

E(‖g − ˆ̂gIR2‖2) ≤ C inf
m∈{1,...,mn}

(
‖g − gm‖2 + E(penIR2(m)

)
+
C ′(∆̄2)2

(∆̄)2

∫ πmn

−πmn
u2|g∗(u)|2du+

C” ln2(n∆̄)
n∆̄

where C,C ′, C” are constants.

If under the assumptions of Theorem 6.2, g belongs to a class of regularity C(a, L), with
unknown a and L, the estimator is automatically such that

E(‖g − ˆ̂gIR2‖2) ≤ C
[
(n∆̄)−2a/(2a+1) +

(∆̄2)2

(∆̄)2
m2(1−a)+
n +

ln2(n∆̄)
n∆̄

]
.

Then, if n∆̄2 ≤ 1 and ∆̄2
2 ≤ C∆̄4 (with C > 1),

E(‖g − ĝm̂‖2) = O((n∆̄)−2a/(2a+1)),

even if a is unknown.

7. Concluding remarks

In this paper, the nonparametric estimation of the Lévy density n(.) of a pure jump Lévy
process is investigated under assumption (H1). This is done through the estimation of g(x) =
xn(x). Several kinds of observations are considered: discrete observations with regular sampling
interval corrupted by a small noise, or irregular sampling interval. The methods developped
in Comte and Genon-Catalot (2008, 2009) are extended and yield an adaptive estimator of
g. Our estimators reach the minimax risk bounds of Figuroa-López (2009). The numerical
implementation for high frequency data is performed in Comte and Genon-Catalot (2009) and
illustrates the fact that the method works on simulated data.

8. Proofs

8.1. Proof of Proposition 4.1 and Corollary 4.1. The result in (23) follows from

(33) ‖g − ĝm,LFN‖2 =
1

2π

∫
|u|≥πm

|g∗(u)|2du+
1

2π

∫ πm

−πm
|ĝ∗LFN (u)− g∗(u)|2dx,

and

ĝ∗LFN (u)− g∗(u) = (ĝ∗LFN (u)− θV (u)
∆φV (u)

) + (
θV (u)

∆φV (u)
− g∗(u)).

The first term above can be studied as in Comte and Genon-Catalot (2008). The definition of
φ̂V and φ̃V allows us to extend the result of Neumann (1997) and Neumann and Reiss (2007)
(see Lemma 4.1 of Comte and Genon-Catalot (2008)). For the second one, it follows from (18)
that

θV (u)
∆φV (u)

− g∗(u) = (δ/∆)
θη(δu)

∆φη(δu)
.

This implies (22).
Next, Inequality (23) follows from (H6), (H7) and δ|u| ≤ πmδ ≤ π which imply

1/|φV (u)|2 ≤ c2
0/|ψ∆(u)|2

and

| θη(δu)
∆φη(δu)

|2 ≤ c2
0E(η2

1).
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�.

8.2. Proof of Proposition 4.2. We start as in the previous cases and get

‖g − ĝm,HFN‖2 = ‖g − gm‖2 +
1

2π

∫ πm

−πm
|ĝ∗HFN (u)− g∗(u)|2du.

Now, using (17), the following decomposition appears:

1
2π

∫ πm

−πm
|ĝ∗HFN (u)− g∗(u)|2du ≤ 3

2π∆2

∫ πm

−πm
|θ̂V (u)− θV (u)|2du

+
3

2π

∫ πm

−πm
|g∗(u)(ψ∆(u)φη(δu)− 1)|2du

+
3δ2

2π∆2

∫ πm

−πm
|θη(δu)ψ∆(u)|2du

It is easy to see that

E(|θ̂V (u)− θV (u)|2) = E{| 1
n

n∑
k=1

[VkeiuVk − E(VkeiuVk)]|2} ≤ 4
E(V 2

1 )
n

.

Therefore
2

∆2
E
(∫ πm

−πm
|θ̂V (u)− θV (u)|2du

)
≤ 4πm

n∆
(E(Z2

1/∆) + (δ2/∆)E(η2
1)).

Our first constraint here is δ2 = O(∆).
For the second term, note that |ψ∆(u)− 1| ≤ ∆|u|‖g‖1 and, with a second order development

using E(η) = 0,

|φη(δu)− 1| ≤ u2δ2

2
E(η2).

Thus∫ πm

−πm
|g∗(u)(ψ∆(u)φη(δu)− 1)|2du ≤ 2

∫ πm

−πm
|g∗(u)|2|ψ∆(u)− 1|2|φη(δu)|2du

+2
∫ πm

−πm
|g∗(u)|2|φη(δu)− 1|2du

≤ 2∆2‖g‖21
∫ πm

−πm
u2|g∗(u)|2du+ 2δ4E2(η2)

∫ πm

−πm
u4|g∗(u)|2du

Lastly, (
δ

∆

)2 ∫ πm

−πm
|ψ∆(u)θη(δu)|2du ≤ δ

∆2

∫
|θη(v)|2dv.

Gathering all terms implies inequality (26) and gives the result. �

8.3. Proof of Proposition 5.1. As announced, we start from

(34) ‖g − ĝm,IR1‖2 = ‖g − gm‖2 +
1

2π

∫ πm

−πm
|ĝ∗IR1(u)− g∗(u)|2dx.

The first term is the standard bias term already evaluated. We study the second one. We can
note that

E(ĝ∗IR1(u)− g∗(u)) =

[
1
n

n∑
k=1

(ψ∆k
(u)− 1)

]
g∗(u).
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Moreover, a first order development implies that (see the Appendix)

(35) |ψ∆k
(u)− 1| ≤ |u|∆k‖g‖1.

Thus, ∫ πm

−πm
|ĝ∗IR1(u)− g∗(u)|2du ≤ 2

∫ πm

−πm
|ĝ∗IR1(u)− E(ĝ∗IR1(u))|2du

+2
∫ πm

−πm
|g∗(u)|2| 1

n

n∑
k=1

(ψ∆k
(u)− 1)|2du.

It is easy to see that

E(|ĝ∗IR1(u)− E(ĝ∗IR1(u))|2) = E{| 1
n

n∑
k=1

[∆−1
k Zke

iuZk − E(∆−1
k Zke

iuZk)]|2} ≤ 1
n2

n∑
k=1

∆−2
k E(Z2

k).

Therefore, using Proposition 9.1, we find

E
(∫ πm

−πm
|ĝ∗IR1(u)− g∗(u)|2du

)
≤ 2πm

n
(m2/D̄ +m2

1) ≤ 2πm(m2 +m2
1)

nD̄
.

On the other hand,∫ πm

−πm
|g∗(u)|2| 1

n

n∑
k=1

(ψ∆k
(u)− 1)|2du ≤ 2‖g‖21∆̄2

∫ πm

−πm
u2|g∗(u)|2du.

Gathering the bounds implies (29). �

8.4. Proof of Proposition 5.2. We start by (34) as above and we study the second term as
well. We can note that

E(ĝ∗IR2(u)) = (n∆̄)−1(
n∑
k=1

∆kψ∆k
(u))g∗(u).

Thus, ∫ πm

−πm
|ĝ∗IR2(u)− g∗(u)|2du ≤ 2

∫ πm

−πm
|ĝ∗IR2(u)− E(ĝ∗IR2(u))|2du

+2
∫ πm

−πm
(∆̄)−2|g∗(u)|2| 1

n

n∑
k=1

∆k(ψ∆k
(u)− 1)|2du

It is easy to see that

E{| 1
n

n∑
k=1

[ZkeiuZk − E(ZkeiuZk)]|2} ≤ 1
n2

n∑
k=1

E(Z2
k) =

1
n

(m2∆̄ +m2
1∆̄2).

Therefore

2
∫ πm

−πm
E
(
|ĝ∗IR2(u)− E(ĝ∗IR2(u))|2

)
du ≤ 4πm

n∆̄
(m2 + (∆̄2/∆̄)m2

1) ≤ 4πm(m2 +m2
1)

n∆̄
.

On the other hand, using (35) again yields

2
(∆̄)2

∫ πm

−πm
|g∗(u)|2| 1

n

n∑
k=1

∆k(ψ∆(u)− 1)|2du ≤ 2‖g‖21∆̄2
2

(∆̄)2

∫ πm

−πm
u2|g∗(u)|2du.

Gathering the bounds implies (31). �
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9. Appendix.

The random variables (Zk), k = 0, . . . , n are independent, with characteristic function equal
to ψ∆k

(u) := E(eiuZk), with, according to (1):

(36) ψ∆k
(u) = exp

(
∆k

∫
(eiux − 1)n(x)dx

)
.

By derivation under (H1), we have

(37) ψ′∆k
(u) = i∆kψk(u)g∗(u) = iE(ZkeiuZk),

The following bounds hold under (H1):

(38) |ψ∆k
(u)− 1| ≤ |u|∆k‖g‖1,

(39) |∆−1
k E(ZkeiuZk)− g∗(u)| ≤ |u|∆k‖g‖21.

The first bound follows from the Taylor formula and the second is deduced from the first one.
The following result is a straightforward generalization of Proposition 2.2 in Comte and

Genon-Catalot (2009):

Proposition 9.1. If
∫
|x|pn(x)dx < +∞, then E(|Zk|p) < +∞. Moreover, let us define

m` =
∫

R
x`−1g(x)dx =

∫
R
x`n(x)dx.

Then E(Zk) = ∆km1, E(Z2
k) = ∆km2 + ∆2

km1, and for ` = 2, . . . , p,

E(Z`k) = ∆km` +
∑̀
j=2

∆j
kcj ,

where the cj’s are explicit functions of the mj’s, for j ≤ `.
Lastly, E|Zk| ≤ 2∆k|g|1.
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Preprint MAP5 2008-12. To appear in Ann. Inst. H. Poincar Probab. Statist..
[4] Comte, F. and Genon-Catalot, V. (2009). Nonparametric estimation for pure jump Lévy processes based on
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