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If the total degree of a polynomial in n ≥ 2 variables of dimension n s bounded by a double exponential function in n, we show that its Mahler measure is bounded from below by an absolute constant > 1.

1 Introduction.

In early 1933 Lehmer (cf. [START_REF] Lehmer | Factorization of certain cyclotomic functions[END_REF], 13, p. 476) wrote "The following problem arises immediately. If ε is a positive quantity, to find a polynomial of the form f (x) = x r + a 1 x r-1 + ... + a r where the a's are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and 1 + ε. (...) Whether or not the problem has a solution for ε < 0.176 we do not know."

Let P (x) = a(x -α 1 ) • • • (x -α d ) be a polynomial with complex coefficients. We define its Mahler measure as 

M (P ) = |a|
The best known result in the direction of this conjecture is Dobrowolski's lower bound

M (f ) ≥ C log D log log D -3
which holds for any f of degree D ≥ 2 as in conjecture 1.1. Here C is an absolute constant. In the original statement ( [START_REF] Dobrowolski | On a question of Lehmer and the number of irreducible factors of a polynomial[END_REF]) C = 1/1200; later Voutier ([14]) shows that one can take C = 1/4.

In this paper we are interested in the generalization of conjecture 1.1 to polynomials in several variables. Let n be a positive integer and x = (x 1 , . . . , x n ). We define the Mahler measure of a polynomial P ∈ C[x] as

M (P ) = exp 1 0 • • • 1 0
log |P e 2πit 1 , . . . , e 2πitn | dt 1 . . . dt n .

We remark that by Jensen's formula this definition coincide with the previous one if n = 1. Further, M (f ) ≥ 1 for f ∈ Z[x], as is easily seen by induction on n. An analogous of Kronecker theorem is known. Following Schinzel, we say that an irreducible f ∈ Z[x] is an extended cyclotomic polynomial if there exist a cyclotomic polynomial φ and λ, µ ∈ Z n such that

f (x) = ±x λ φ(x µ ) . In other words, f ∈ Z[x] is extended cyclotomic if and only if the hypersurface {f = 0} in G n
m is a torsion variety (i. e. an union of translates of subtori by torsion points) defined and irreducible over the rationals. Kronecker's theorem generalizes as follows. Let f ∈ Z[x] be irreducible. Then M (f ) = 1 if and only if f = ±x j or if f is an extended cyclotomic polynomial ([3], [START_REF] Lawton | A generalization of a theorem of Kronecker[END_REF] and [START_REF] Smyth | A Kronecker-type theorem for complex polynomials in several variables[END_REF] independently).

We remark that conjecture 1.1 implies the lower bound

M (f ) ≥ C
for any nonconstant irreducible f ∈ Z[x] such that f = ±x j and f not extended cyclotomic. In this statement, C is the same as in conjecture 1.1. This is an easy consequence of the following result of Lawton (see [START_REF] Lawton | A problem of Boyd concerning geometric means of polynomials[END_REF]). Let P ∈ C[x], and define, for

λ ∈ N n , q(λ) = min{max |µ j | | µ ∈ Z n \{0}, λ.µ = 0} . and P λ (t) = P (t λ 1 , . . . , t λn ) ∈ C[t] .
Then, lim

q(λ)→+∞ M (P λ ) = M (P ) .
Unfortunately, the quoted result of Lawton cannot be used to deduce an analogue in several variables of Dobrowolski's result. Nevertheless, the method of Dobrowolski's proof has been generalized to several variables in [START_REF] Amoroso | Minoration de la hauteur normalisée des hypersurfaces[END_REF]. Let

f = λ f λ x λ ∈ Z[x]
be irreducible. Following Smyth ([12]) we define the dimension dim f as the dimension in R n of the convex-hull of the set {λ such that f λ = 0}. It is easy to see that dim f is the smallest integer m such that f comes from a polynomial in m variables by a monomial transformation:

f (x) = x λ 0 g(x λ 1 , . . . , x λm ) (1.1)
where g ∈ x[y 1 , . . . , y m ] and λ 0 , . . . , λ m ∈ Z n . Note that this formula implies the equality M (f ) = M (g). Further, dim f is the codimension of the stabilizer of the hypersurface {f = 0} in G n m . In [START_REF] Amoroso | Minoration de la hauteur normalisée des hypersurfaces[END_REF] the authors show that for an irreducible polynomial f

∈ Z[x] of dimension n, we have log M (f ) ≥ 1 C(n + 1) 1+4/n n 2 • (log((n + 1) log((n + 1)D))) 2+1/n (log((n + 1)D)) 1+2/n
where C is a positive constant. Note that the exponents on the error terms are slightly better than the exponent 3 in Dobrowolski's result.

The above considerations suggest that in some sense a generalized Lehmer's conjecture could be easier than the original one. More precisely, for any n ≥ 2 we propose the following weaker form of Lehmer's conjecture.

Conjecture 1.2 There exists an absolute constant C > 1 such that for any irre-

ducible f ∈ Z[x 1 , . . . , x n ] of dimension n ≥ 2 we have M (f ) ≥ C .
Our main result shows that any eventual counterexample to this conjecture must have a very high degree with respect to n.

Theorem 1.3 Let f ∈ Z[x 1 , . . . ,
x n ] be an irreducible polynomial of dimension n. Let D be the maximum of its partial degrees. Assume n ≥ 9 and

D ≤ 3 2 n . Then log M (f ) ≥ 1 23 . Let f ∈ Z[x 1 , . . . ,
x n ] be an irreducible polynomial. The normalized height ĥ(V ) of the hypersurface

V = {f = 0} ⊂ G n m is log M (f ).
If V is not defined over the rationals, see §2 for the definition of ĥ(V ). Theorem 1.3 generalizes to a lower bound for the normalized height of a hypersurface defined and irreducible over a number field (theorem 3.4 and remark 3.6). Moreover, in theorem 3.5 we bound from below ĥ(V ) by a function c(n, D) > 0 depending on n and on D = deg(V ). Unfortunately, c(n, D) might go to zero according to the growth of D with respect to n.

We finally mention that one formulate an even more optimistic conjecture. In [START_REF] Boyd | Speculations concerning the range of Mahler's measure[END_REF], Boyd asked whether the function

m(n) = inf{M (f ) such that f ∈ Z[x 1 , . . . ,
x n ] is irreducible and dim f = n} tends to infinity with n. Concerning this problem, the best known sequence of polynomials is the simplest one:

f n (x) = x 1 + • • • + x n . For these polynomials we have log M (f n ) ∼ 1 2 log n
(see [START_REF] Smyth | On measures of polynomials in several variables[END_REF], [START_REF] Myerson | On measures of polynomials in several variables; corrigendum[END_REF]).
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Overview of the proof.

Let F be an auxiliary polynomial vanishing on a geometrically irreducible variety V ⊂ G n m . Then, if some inequalities concerning degrees and heights hold, F must vanish on the translates of V by p-torsion points, at least for small primes p.

In [START_REF] Amoroso | Minoration de la hauteur normalisée dans un tore[END_REF] we exploit this vanishing principle to obtain a lower bound for the normalized height of V , under the assumption that V is not a translate of a subtorus. The main new idea behind the proof of theorem 1.3 is the following: the above vanishing principle make use of the fact that V is p-adically close to ζV for all p-torsion points ζ. But all the translates of V by p-torsion points are close to each other. Thus, we replace the vanishing principle used in [START_REF] Amoroso | Minoration de la hauteur normalisée dans un tore[END_REF] by a symmetric vanishing principle. For technical reasons, it is more convenient to use an interpolation determinant than an auxiliary function. This will be done in proposition 3.2, which contains all the information needed for the proof of theorem 1.3.

2 Notation and preliminary results.

Normalized height, essential minimum.

Let K be a number field and let V be a hypersurface in G n m defined over K:

V = {α ∈ G n m such that f (α) = 0} with f ∈ K[x] square-free. Let M K be the set of places of K. We define ĥ(V ) = 1 [K : Q] v∈M K [K v : Q v ] log M v (f ),
where if v is non archimedean M v (f ) is the maximum of the v-adic absolute values of the coefficients of f and if v is an archimedean place associated with the embedding σ :

K ֒→ Q M v (f ) = M (σf ) .
We recall that ĥ is an additive function. Let V be a reduced hypersurface, say

V = W 1 ∪ • • • ∪ W l
where W 1 , . . . , W l are geometrically irreducible hypersurfaces. Then ĥ(V ) = ĥ(W 1 ) + • • • + ĥ(W l ). For a more general definition of ĥ and for more of its properties, see [START_REF] David | Minorations des hauteurs normalisées des sous-variétés des tores[END_REF]. Let V be a K-irreducible hypersurface. For θ ≥ 0 we denote

V (θ) = {α ∈ V (Q) such that ĥ(α) ≤ θ},
where ĥ(α) = h (1 :

α 1 : • • • , α n )
and h is the Weil height on the projective space. Hence V (0) is the set of torsion points on V . Let define the essential minimum μess (V ) of V as the infimum of the set of θ ≥ 0 such that V (θ) is Zariski dense in V . By a special case of Zhang's inequality (see [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF]) we have

μess (V ) ≤ ĥ(V ) deg(V ) ≤ nμ ess (V ).
We consider a variant of the essential minimum. Let j ∈ {1, . . . , n} and θ ≥ 0. We define V j (θ) as the subset of α ∈ V (Q) such that α i is a root of unity for i = j and h(α j ) ≤ θ. We set μess j (V ) as the infimum of the set of θ ≥ 0 such that V j (θ) is Zariski dense in V . Let j ∈ {1, . . . , n} and assume that the partial degrees D j satisfy D j > 0. In [START_REF] Amoroso | Minoration de la hauteur normalisée des hypersurfaces[END_REF], proposition 2.7 (i) we prove the inequality

D j μess j (V ) ≤ ĥ(V ) . (2.2) 
Although this is not needed in the proof of the lower bounds for ĥ(V ), this inequality is in fact an equality. See Appendix, theorem 4.1. Let V = {f = 0} be a K-irreducible hypersurface. In the second part of proposition 2.7 of [START_REF] Amoroso | Minoration de la hauteur normalisée des hypersurfaces[END_REF], we deduced a new proof of Zhang's upper bound μess (V ) ≤ ĥ(V )/ deg(V ) from the inequality (2.2). As Martin Sombra pointed out, there is a mistake in the proof of this implication. If the polynomial f (x 1 x n , . . . , x n-1 x n , x n ) is not necessarily irreducible over K, we cannot apply the result of the part (i) of that proposition.

The stabilizer.

We recall the definition and some properties of the stabilizer of a subvariety V ⊆ G n m . We define the stabilizer of V as the group

Stab(V ) = {α ∈ G n m , αV = V } .
We also denote by Stab(V ) 0 the connected component of Stab(V ) containing the identity. Let l be an integer. We remark that l acts on G n m by α → α l . Let k be the codimension of Stab(V ) and assume that V is geometrically irreducible. Then for any prime p such that

p ∤ [Stab(V ) : Stab(V ) 0 ] ker[p]V is an union of p k distinct translates of V .

Hilbert Functions.

Let I ⊂ Q[x] be an ideal and ν = (ν 1 , . . . , ν n ) ∈ N n . We denote the multihomogeneous Geometric Hilbert Function by

H g (I; ν) = dim(Q[x] ν /I ν ) .
In this formula Q[x] ν is the vector space of polynomials of partial degrees D j ≤ ν j and I ν is its vector subspace

I ∩ Q[x] ν . Let V ⊂ G n m ⊆ (P 1 ) n be an equidimensional reduced cycle, i. e. V = W 1 ∪ • • • ∪ W l
where W 1 , . . . , W l are geometrically irreducible of the same dimension. Let I ⊂ Q[x] ν be the ideal defining V and let I (T ) be the T -symbolic power of I, i. e. the ideal of polynomials vanishing with multiplicity ≥ T on the Zariski set defined by I. By abuse of notation, we set H g (V ; ν) = H g (I; ν) and H g (V, T ; ν) = H g (I (T ) ; ν). For a hypersurface V of multi-degrees (D 1 , . . . , D n ) we have:

H g (V, T ; ν) = (ν 1 + 1) • • • (ν n + 1) -(ν 1 -T D 1 + 1) • • • (ν n -T D n + 1) . (2.3)
We further need an Arithmetic Hilbert Function. Given a linear subspace E ⊆ Q N of dimension L, we define, following Schmidt ( [START_REF] Schmidt | Diophantine approximation and Diophantine equations[END_REF], Ch. 1, §. 8), its height as

h L 2 (E) = v [K v : Q v ] [K : Q] log w 1 ∧ • • • ∧ w N v ,
where w 1 , . . . , w N is any basis of E, K is a number field on which this basis is defined, • v is the sup norm if v ∤ ∞ and

w 2 v = j |w j | 2 v
otherwise. Take ν as before and set

N = (ν 1 + 1) • • • (ν n + 1). We identify Q[x] ν with Q N by λ q λ x λ → (q λ ) 0≤λ j ≤ν j . Given a polynomial F ∈ K[x] ν we set h L 2 (F ) = v [k v : Q v ] [k : Q] log F v . Thus h L 2 (F ) = h L 2 (E) where E ⊆ Q N is the linear subspace generated by F .
We recall Landau's theorem: if P ∈ C[x] then M (P ) is bounded by the quadratic mean of its coefficients. Thus, if F ∈ Z[x] vanishes on a reduced hypersurface V , ĥ({F = 0}) ≤ h L 2 (F ) .

(2.4)

Let V be an equidimensional reduced cycle as in the beginning of this subsection. We define its Arithmetic Hilbert Function as

H a (V ; ν) = h L 2 ([I] ν ) .
3 Proof of the main results.

The following lemma is the key ingredient for the proof of the main results.

Lemma 3.1 Let ν 1 , . . . , ν n , T be positive integers, {α 1 , . . . , α L } ⊆ P n (C), and λ 1 , . . . , λ L be multi-indexes such that 0 ≤ λ i,j ≤ ν j for i = 1, . . . , L and j = 1, . . . , n . Define

T 0 := L -H g ({α 1 , . . . , α L }, T ; ν) T .
Then the multi-homogeneous polynomial

F (x 1 , . . . , x L ) = det(x λ j i ) 1≤i,j≤L .
vanishes on (α 1 , . . . , α L ) ∈ P n (C) L with multiplicity at least T 0 .

Proof. Let S 0 = {α 1 , . . . , α L }. If H g (S 0 , T ; ν) ≥ L the assertion is obvious. Assume H g (S 0 , T ; ν) < L and let L 0 = L -H g (S 0 , T ; ν). Then there exist linearly independent polynomials G k = L j=1 g kj x λ j (k = 1, . . . , L 0 ) vanishing on S 0 with multiplicity ≥ T . By elementary operations we replace the last L 0 columns of the matrix (x

λ j i ) by G k (x 1 ), . . . , G k (x L ) t , k = 1, . . . , L 0
(the exponent t means "transpose"). Let F ′ (x 1 , . . . , x L ) be the determinant of this new matrix; then F ′ (x 1 , . . . , x L ) = cF (x 1 , . . . , x L ) for some c ∈ C * . The polynomials G k vanish on S with multiplicity ≥ T . Expanding F ′ (x 1 , . . . , x L ) with respect to the last L 0 columns we see that F ′ (x 1 , . . . , x L ) vanishes on (α 1 , . . . , α L ) ∈ P n (C) L with the prescribed multiplicity.

In what follows we let V ⊆ G n m be a geometrically irreducible hypersurface of multi-degrees (D 1 , . . . , D n ). Proposition 3.2 Let ν 1 , . . . , ν n , T be positive integers and let p be a prime number. Let h 1 , . . . , h n be positive real numbers. Let S be a subset of G n m of points α satisfying h(α i ) ≤ h i for i = 1, . . . , n. We assume that S is Zariski dense in V . Then

H a (ker[p]V ; ν) H g (ker[p]V ; ν) ≤ -1 - H g (V, T ; ν) H g (ker[p]V ; ν) T log p p -1 + n 2 log(ν max + 1) + ν 1 h 1 + • • • + ν n h n . (3.5)
where ν max = max{ν 1 , . . . , ν n }.

Proof. For simplicity let S

′ = ker[p]S, V ′ = ker[p]V and N = (ν 1 +1) • • • (ν n +1).
We associate to β ∈ S ′ the vector

w β = β λ 0≤λ j ≤ν j ∈ Q N .
Let E be the vector space generated by the w β with β ∈ S ′ . Since S is Zariski dense, E ⊥ = [I] ν where I is the ideal defining V ′ . We recall that h L 2 (E) = h L 2 (E ⊥ ) (see [START_REF] Schmidt | Diophantine approximation and Diophantine equations[END_REF], Ch. 1, §8). Thus

H a (V ′ ; ν) = h L 2 (E) . (3.6) Further L := dim E = H g (V ′ ; ν) .
We choose a basis β 1 , . . . , β L of E and we denote for brevity w j = w β j . Let v be a place. Then (see [START_REF] Schmidt | Diophantine approximation and Diophantine equations[END_REF], proof of lemma 8A),

w 1 ∧ • • • ∧ w L v ≤ L j=1 w j v .
Moreover, for any

β ∈ S ′ , log w β v ≤    n i=1 max{1, |β i | v } ν j , if v ∤ ∞ ; N 1/2 n i=1 max{1, |β i | v } ν j , if v | ∞ .
Thus, using the inequality N ≤ (ν max + 1) n , log

w 1 ∧ • • • ∧ w L v ≤    L j=1 n i=1 ν j log max{1, |β j,i | v }, if v ∤ ∞ ; n 2 L log(ν max + 1) + L j=1 n i=1 ν j log max{1, |β j,i | v }, if v | ∞ . (3.7)
We give a better bound for v | p. Let's choose distinct λ (1) , . . . , λ (L) with 0 ≤ λ j,i ≤ ν j for j = 1 . . . , L and i = 1, . . . , n. We consider the determinant ∆ = det β λs r r,s=1,...,L

Let α 1 , . . . , α L ∈ S such that β j ∈ ker[p]α j and set F (x 1 , . . . , x L ) = det(x λs r ) r,s=1,...,L .

Thus ∆ = F (β 1 , . . . , β L ) and, by lemma (3.1), F vanishes on (α 1 , . . . , α L ) with multiplicity at least

T 0 := L -H g ({α 1 , . . . , α}, T ; ν) T ≥ L -H g (V, T ; ν) T .
Since v | p, we have

|α j,i -β j,i | v ≤ p -1/(p-1)
for j = 1, . . . , L and i = 1, . . . , n. Thus, by Taylor expansion of F around (α 1 , . . . , α L ),

|∆| v = |F (β 1 , . . . , β L )| v ≤ p -T 0 /(p-1) L j=1 n i=1 max{1, |β j,i | v } ν j L .
This formulas holds for the determinant of any 

L × L submatrix of the L × N matrix (β λ j ) j=1,...,L 0≤λ i ≤ν i . Thus, log w 1 ∧ • • • ∧ w L v ≤ - T 0 log p p -1 + L j=1 n i=1 ν j log max{1, |β j,i | v } . ( 3 
H a (V ′ ; ν) ≤ - T 0 log p p -1 + n 2 L log(ν max + 1) + (ν 1 h 1 + • • • + ν n h n )L . Proposition 3.2 follows.
Choosing the parameters in a suitable way, we deduce Proposition 3.3 For any prime number p,

ĥ(V ) ≥ log p 7p - nk log p p k - n log(n 2 D max ) 2p k , (3.9) 
where k is the codimension of the stabilizer of V and where

D max = max{D 1 , . . . , D n } Proof. Let us assume first that p ∤ [Stab(V ) : Stab(V ) 0 ], so that (see subsection 2.2) V ′ = ker[p]V is a union of p k translates of V . We show in this case that ĥ(V ) ≥ log p 7p - nk log p p k - n log(nD max ) 2p k . ( 3.10) 
Let ε > 0. Assume D max = D n . By proposition 2.7 (i) of [START_REF] Amoroso | Minoration de la hauteur normalisée des hypersurfaces[END_REF] the set

S = {(ζ 1 , . . . , ζ n-1 , α) ∈ V (Q), ζ 1 , . . . , ζ n-1 roots of unity, h(α) ≤ ĥ(V )/D n + ε} is Zariski dense in V . We apply proposition 3.2 with h 1 = • • • = h n-1 = 0 and h n = ĥ(V )/D n + ε. We choose    ν j = np k D j -1, for j = 1, . . . , n -1; 
ν n = p k D n -1 and T = [p k /2] .
We remark that ν max = max{ν 1 , . . . , ν n } ≤ np k D max -1. Further, by (2.3)

H g (V, T ; ν) = (ν 1 + 1) • • • (ν n + 1) -(ν 1 -T D 1 + 1) • • • (ν n -T D n + 1) ≤ n n-1 p kn D 1 • • • D n - 1 2 n - 1 2 n-1 p kn D 1 • • • D n and H g (V ′ ; ν) = (ν 1 + 1) • • • (ν n + 1) -(ν 1 -p k D 1 + 1) • • • (ν n -p k D n + 1) = n n-1 p kn D 1 • • • D n so that 1 - H g (V, T ; ν) H g (V ′ ; ν) ≥ 1 2 1 - 1 2n n-1 ≥ 1 2 √ e .
Inequality (3.5) gives (forgetting the positive contribution of the Arithmetic Hilbert Function)

ν n h n ≥ T log p 2 √ ep - n 2 log(ν max + 1) ≥ p k log p 4 √ ep - log p 2 √ ep - n 2 log(np k D n ) ≥ p k log p 7p -nk log p - n 2 log(nD n ) .
Further,

ν n h n = (p k D n -1) ĥ(V ) D n + ε ≤ p k ( ĥ(V ) + εD n ) . Thus ĥ(V ) + εD n ≥ log p 7p - nk log p p k - n log(nD max ) 2p k .
By letting ε → 0 we obtain the lower bound (3.10).

We now consider the general case, when Stab(V ) is not necessarily connected. Proposition 2.4 of [START_REF] Amoroso | Minoration de la hauteur normalisée des hypersurfaces[END_REF] 1 gives a hypersurface W = {H = 0} with connected stabilizer of the same codimension k and normalized height ĥ(W ) ≤ ĥ(V ). Let r be the rank of the finite abelian group Stab(V )/ Stab(V ) 0 and let d r | • • • | d 1 its elementary divisors . By inspection of the proof of this proposition, we see that (after eventually renumbering the coordinates)

D ′ j := deg x j (H) =    (j -1 + 1/d j )D j if j = 1, . . . , r ; (r + 1)D j if j = r + 1, . . . , n .
Thus W has multi-degree (D ′ 1 , . . . , D ′ n ) with D ′ j ≤ nD j . By inequality (3.10) we deduce ĥ(V ) ≥ ĥ(W )

≥ log p 7p - nk log p p k - n log(n 2 D max ) 2p k .
We now assume k = n, i. e. Stab(V ) discrete. Choosing p = 5 we obtain

Theorem 3.4 Assume that Stab(V ) is discrete, n ≥ 9 and max D j ≤ 3 2 n .
Then ĥ(V ) ≥ 1 23 .

Proof. We apply the above proposition with p = 5 and k = n. By assumption

D max ≤ 3 2 n . We obtain ĥ(V ) ≥ log 5 35 - n 2 log 5 5 n - n log(n 2 D max ) 2 × 5 n ≥ log 5 35 - n 2 log 5 5 n - 2n log n 2 × 5 n - n2 n log 3 2 × 5 n =: f (n) .
An easy computation shows that f is an increasing function and f (9) > 1/23.

We conclude this section with a more general and technical lower bound for the normalized height of a hypersurface. Theorem 3.5 Assume that V is not a translate of a torus. Then

ĥ(V ) ≥ 1 56 × max log(n log(n 2 D max )) k , 1 × log(n log(n 2 D max )) 28nk log(n 2 D max ) 1/(k-1)
where k is the codimension of the stabilizer of V and D max = max D j . In particular

ĥ(V ) ≥ log(n log(n 2 D max )) 2 6272n log(n 2 D max ) . Proof. Let N = 28nk log(n 2 D max ) log(n log(n 2 D max )) 1/(k-1)
.

(3.11)

Let us choose a prime p such that N ≤ p ≤ 2N . Since for any x > 0 log x ≤ x 1/2 (3.12)

we have log(n log(n

2 D max )) ≤ log(n(n 2 D max ) 1/2 ) ≤ log(n 2 D max ). Hence p k-1 ≥ N ≥ 28nk .
Moreover relation (3.12) gives

log p ≥ log N ≥ log(28n 1/2 k log(n 2 D max ) 1/2 ) k -1 ≥ log(n log(n 2 D max )) 2k . (3.13) Therefore p k-1 log p ≥ N k-1 log p ≥ 14n log(n 2 D max ) .
By proposition 3.3 we deduce ĥ

(V ) ≥ log p 7p - nk log p p k - n log(n 2 D max ) 2p k ≥ log p 7p - log p 28p - log p 28p = log p 14p .
By relation (3.13) and by the trivial bound log p ≥ log 2 we obtain ĥ

(V ) ≥ 1 14 × max log(n log(n 2 D max )) 2k , log 2 × 1 2N ≥ 1 56 × max log(n log(n 2 D max )) k , 1 × log(n log(n 2 D max )) 28nk log(n 2 D max ) 1/(k-1)
.

This proves the first inequality of theorem 3.5. For the second one, we remark that k ≥ 2 and k(nk) 1/(k-1) ≤ 4n. Thus ĥ

(V ) ≥ log(n log(n 2 D max )) 2 56 × 28 × 4n log(n 2 D max ) = log(n log(n 2 D max )) 2 6272n log(n 2 D max ) .
Remark 3.6 Let K be a number field and let V be any hypersurface defined and irreducible over K, of multidegree (D 1 , . . . , D n ). Let W be a geometrically irreducible component of V , of multidegree (δ 1 , . . . , δ n ). Then dim Stab W = dim Stab V , δ j ≤ D j and ĥ(W ) ≤ ĥ(V ). Thus, theorems 3.4 and 3.5 apply to a hypersurfaces defined and irreducible over a number field K. In particular, we deduce from theorem 3.4 the lower bound for the Mahler measure of a polynomial f ∈ Z[x 1 , . . . , x n ] announced in the introduction.

Appendix. Normalized height and essential minimum

Let V ⊆ G n m be a hypersurface of multi-degrees (D 1 , . . . , D n ) defined and irreducible over some number field K. We prove: Theorem 4.1 Let j ∈ {1, . . . , n} and assume D j > 0. Then ĥ(V ) = D j μess j (V ) .

Proof. We can assume j = n. We have already remarked that the inequality D n μess n (V ) ≤ ĥ(V ) is proved in [START_REF] Amoroso | Minoration de la hauteur normalisée des hypersurfaces[END_REF], proposition 2.7 (i). Hence, it is enough to prove ĥ(V ) ≤ D n μess n (V ) .

Let W 1 , . . . , W s be the geometrically irreducible components of V . Then μess n (V ) = μess n (W j ), ĥ(V ) = s ĥ(W s ) and D n = s deg xn (W j ). Thus we can assume that V is geometrically irreducible. Let θ > μess n (V ) and let p be a prime number. Let also k ≥ 1 be the codimension of the stabilizer of V . We apply proposition 3. Let ε > 0. The Absolute Siegel's lemma of Zhang (see [START_REF] David | Minorations des hauteurs normalisées des sous-variétés des tores[END_REF], lemme 4.7 and the remark which follows) shows that for any ε > 0 there exists a non-zero point x ∈ S such that Thus ĥ(V ) ≤ λ n-1 µ -(λ -1) n-1 (µ -1) (λ -1) n-1 (µ -1) µD n θ + λ n-1 µ (λ -1) n-1 (µ -1) n 2p k log(max{λ, µ}) + k log p .

h L 2 (x) ≤ h L 2 (
Taking p → +∞ and θ → μess n (V ) we obtain: ĥ(V ) ≤ λ n-1 µ -(λ -1) n-1 (µ -1) (λ -1) n-1 (µ -1) µD n μess n (V ) . 

  |α j |} . By Kronecker's theorem M (f ) = 1 for an irreducible polynomial f ∈ Z[x] if and only if f = ±x or if ±f is a cyclotomic polynomial. Lehmer's problem is equivalent to the following Conjecture 1.1 Let f ∈ Z[x] be a nonconstant irreducible polynomial. Assume f = ±x and that ±f is not a cyclotomic polynomial. Then M (f ) ≥ C for some absolute constant C > 1.

2 with h 1 =

 1 • • • = h n-1 = 0, h n = θ and ν j =    λp k D j -1, if j = 1, . . . , n -1 µp k D n -1, if j = nwhere λ and µ are positive integers. We further setT = [P k /2] .Inequality(3.5) gives (forgetting the extra contribution at the place dividing p):H a (ker[p]V ; ν) H g (ker[p]V ; ν) ≤ n2log(ν max + 1) + ν n θ . (4.14)

n

  2p k log(ν max + 1) .We haveN = λ n-1 µp nk D 1 • • • D n and, by (2.3), N -H g (ker[p]V ; ν) = (λ -1) n-1 (µ -1)p nk D 1 • • • D n .

It is now enough to remark that lim µ→+∞ lim λ→+∞ λ n- 1 µ

 1 -(λ -1) n-1 (µ -1) (λ -1) n-1 (µ -1)

  We choose in this statement S = [I] ν , with I the ideal of definition of ker[p]V . Let N = (ν 1 + 1) • • • (ν n + 1) and assume that H g (ker[p]V ; ν) < N . We have h L 2 (S) = H a (ker[p]V ; ν) and dim(S) = N -H g (ker[p]V ; ν) < N ≤ (ν max + 1) n .

				S) dim(S)	+	log dim(S) 2	+ ε .	(4.15)
	Let	ε =	n 2	log(ν max + 1) -	log dim(S) 2	> 0 .
					+	n 2	log(ν max + 1)
	≤	H g (ker[p]V ; ν) N -H g (ker[p]V ; ν)	ν n θ +	N N -H g (ker[p]V ; ν)	n 2	log(ν

By

(4.14) 

and

(4.15) 

there exists a non-zero

F ∈ Q[x] ν vanishing on ker[p]V and such that h L 2 (F ) ≤ H a (ker[p]V ; ν) N -H g (ker[p]V ; ν) max + 1) . By Landau's theorem (see (2.4)) p k ĥ(V ) ≤ h L 2 (F ). Thus ĥ(V ) ≤ H g (ker[p]V ; ν) N -H g (ker[p]V ; ν) p -k ν n θ + N N -H g (ker[p]V ; ν)

In this proposition, the authors assume that V is defined over Q and Q-irreducible. Nevertheless, the proof of the proposition can immediately be generalized to a geometrically irreducible hypersurface.