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Abstract. Let L/K be an abelian extension of number fields. We prove an uniform

lower bound for the height in L∗ outside roots of unity. This lower bound depends only

on the degree [L : K].

1 Introduction.

Let h be the Weil height on Q and let µ the set of roots of units. Let L be
an abelian extension of the rational field. In a joint work with R. Dvornicich
([Am-Dv]) the first author proved that for any α ∈ L∗\µ

h(α) ≥ log 5

12
(1.1)

giving a positive answer to a question of E. Bombieri and the second author. This
result was generalized by several authors replacing Q

∗
by more complicated group

varieties (see [Ba], [Si], [Ba-Si], [Ami-Da]).
Later, in a joint paper ([Am-Za]), we proved a “relative” result, which combines

the lower bound (1.1) with a celebrate result of Dobrowolski ([Do]). Let L be an

abelian extension of a number field K and let α ∈ Q
∗\µ. Then

h(α) ≥ c(K)

D

(

log log 5D

log 2D

)13

,

where D = [L(α) : L] and where c(K) > 0 (see [Ra] for a generalization to elliptic
curves). More recently, the first author and E. Delsinne ([Am-De]) refine the error
term in this inequality and compute a lower bound for c(K). As the proof of

1



the original paper suggested, this lower bound depends on the degree and on the
discriminant of K.

In this paper we are interested in uniform lower bounds for the height on an
abelian extension of a number field K. We define

γab(K) = inf{h(α) such that α ∈ L∗\µ, L/K abelian} .

As a very special case of the result of [Am-Za], γab(K) ≥ c(K) and, by the results of
[Am-De], c(K) is bounded from below by an explicit positive function depending
on the degree and on the discriminant of K. A question which has been raised
explicitely by a number of mathematicians is whether γab(K) may be bounded
below in terms only of the degree of K, namely the following:

Problem 1.1 It is true that γab(K) ≥ f([K : Q]) for some positive function f(·)?

We give a positive answer to this question:

Theorem 1.2 Let K be a number field of degree d over Q and let α ∈ Q
∗\µ.

Assume K(α)/K abelian. Then

h(α) > 3−d2−2d−6 .

In other words, γab(K) > 3−d2−2d−6.

Let L be a dihedral extension of the rational field of degree 2n. Then L is
an abelian extension of its quadratic subfield fixed by the normal cyclic group of
order n. Thus

Corollary 1.3 Let L be a dihedral extension of the rational field and let α ∈ L∗\µ.
Then

h(α) ≥ 3−14 .

For further examples, results and conjectures, see section 5.

The proof of theorem 1.2 does not follow by a straighforward adaptation of the
previous methods and requires several new arguments and tools: we shall need a
finer use of ramification theory and especially a new descent argument to eliminate
dependence on discriminants; this was totally absent in the quoted papers in this
topic.

More precisely, here is a sketch of how these new arguments come into the
proof.

Let L/K be an abelian extension of number fields and let ℘ be a prime ideal
of K over a rational prime p. Let q = N℘. Assume that ℘ is ramified in L and
consider the subgroup

H℘ := {σ ∈ Gal(L/K) such that ∀γ ∈ OL, σγq ≡ γq mod ℘OL} .
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If K℘ = Qp, then L is locally contained in a cyclotomic extension of Q by the
Kronecker-Weber theorem. Using this remark, we proved in [Am-Za], Lemma 3.2,
that H℘ is non-empty. Here we need a generalization of this result, dropping the
assumption K℘ = Qp. This is done in section 2, using ramification theory. In
Section 3 we prove a lower bound for the height of α ∈ L, under the technical
assumption K(αq) = K(α): this step follows similarly to the papers [Am-Dv] and
[Am-Za] (see especially Lemma 3.2 therein).

However, to remove such annoying technical assumption in the most general
case we need a totally new “kummerian” descent argument, which is developed in
section 4.

Acknowledgments. We thank B. Anglès et G. Ranieri for reading a prelim-
inary version of this paper. We also thank R. Dvornicich for helpful discussions.

2 Ramification

We recall some basic fact about higher ramification groups. Let L/K be a normal
extension of number fields with Galois group G. Let ℘ be a prime ideal of K
and let Q be a prime ideal of L over ℘. We consider the decomposition group
G−1 = G−1(Q/℘) = {σ ∈ G such that σ(Q) = Q} and (for k = 0, 1, . . .) the k-th
ramification group

Gk = Gk(Q/℘) = {σ ∈ G such that ∀γ ∈ OL, σγ ≡ γ mod Q
k+1} .

Then G ⊇ G−1 ⊇ G0 ⊇ G1 ⊇ · · · Moreover, for all k ≥ 0, Gk is a normal subgroup
of G−1. Let (p) = ℘ ∩ Z. Writing e := |G0| = e0p

a with (e0, p) = 1 we have
|G0/G1| = e0.

Let π be a uniformizer at Q (i. e. π ∈ Q\Q2). We consider the map

θ0 : G0/G1 → (OL/Q)∗

which sends σ to the class of σ(π)/π. We also consider, for k ≥ 1, the map

θk : Gk/Gk+1 → Q
k/Q

k+1

which sends σ to the class of σ(π)/π − 1. Then (cf [Co], proposition 10.1.14)

Proposition 2.1 The maps θk are well-defined and injective. Moreover, they do
not depend on the choice of the uniformizer π.

Let now assume that G−1 is an abelian group. Then

Proposition 2.2

i) The image of θ0 is contained in (OK/℘)∗.

ii) For all k ≥ 1, the image of θk is contained in a OK/℘ vector space of
dimension 1.
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In particular
|Gk/Gk+1| ≤ N℘ (2.2)

for k = 0, 1, . . ..

Proof. For i), see [Ca], corollary 2, page 136. For ii), a straightforward compu-
tation shows that the image of θk is fixed by G−1. Indeed let τ ∈ Gk, σ ∈ G−1

and α := τπ/π − 1. Let also σ(π) = xπ with x 6∈ Q. Thus σ−1(π) = σ−1(x−1)π
and

τ(π) = στσ−1(π) = (στ)(σ−1(x−1)π)

= τ(x)−1(στ)(π)

= τ(x)−1σ(π + απ)

= τ(x)−1x(1 + σ(α))π .

Since τ ∈ Gk and x 6∈ Q, τ(x)−1x ≡ 1(πk+1). Thus α = τ(π)/π − 1 ≡ σ(α)(πk+1).
Since θk(τ) is the class of α in Qk/Qk+1, this last congruence proves that

θk(τ) = σ(θk(τ)) . (2.3)

Let now v0, v ∈ Im(θk) with v0 6= 0 (if Gk/Gk+1 is trivial the result is clear). Since
Qk/Qk+1 is a vector space of dimension 1 over OL/Q, we have v = λv0 for some λ ∈
OL/Q. Equation (2.3) shows that λ is fixed by G−1. Since Gal(OL/Q/OK/℘) ∼=
G−1/G0, we infer that λ ∈ OK/℘. Thus Im(θk) is contained in the OK/℘-vector
space spanned by v0.

�

Proposition 2.3 Let L/K be an abelian extension of number fields with Galois
group G and let ℘ be a prime ideal of K, ramified in L. Let q = N℘. Then

H℘ := {σ ∈ G such that ∀γ ∈ OL, σγq ≡ γq mod ℘OL}

is a non trivial subgroup of G.

Proof. As before, let G−1 and Gk be the inertia group and the ramification
groups of a prime Q over ℘ (since G is abelian, these groups do not depend on
the choice of Q). Let e = |G0| and (p) = ℘ ∩ Z. We write as before e = e0p

a with
(e0, p) = 1. Assume first that ℘ is tamely ramified in L. Thus e = e0 = |G0/G1| ≤
q, by (2.2) of Proposition 2.2. Let σ ∈ G0 and γ ∈ OL; then

(σγ − γ)q ∈ Q
q ⊆ Q

e

and
(σγ − γ)q ≡ σγq − γq mod pOL .

This implies
σγq ≡ γq mod ℘OL .
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Thus H℘ ⊃ G0. On the other hand, G0 is non-trivial because ℘ ramifies in L by
assumption.

Let now assume p | e. By Hasse-Arf theorem ([Se], §7, Th. 1’, p.101)

∀j ≥ 1, Gj 6= Gj+1 =⇒ 1

e

j
∑

i=1

|Gi| ∈ Z .

Let k ≥ 1 such that Gk 6= Gk+1 = {1}. We also define h = 0 if Gk = G1 and
otherwise we define h ≥ 1 by

Gh 6= Gh+1 = · · · = Gk 6= Gk+1 = {1} .

Then

1

e

h
∑

i=1

|Gi| ∈ Z and
1

e

k
∑

i=1

|Gi| ∈ Z .

Thus e divides

k
∑

i=h+1

|Gi| = (k − h)|Gk| = (k − h)|Gk/Gk+1| .

Thus, by inequality (2.2) of Proposition 2.2 we have e ≤ kq.
Therefore, for any σ ∈ Gk−1 and for any γ ∈ OL

(σγ − γ)q ∈ Q
kq ⊆ Q

e.

As before, this implies
σγq ≡ γq mod ℘OL .

Thus {1} 6= Gk−1 ⊆ H ⊆ G0.

�

3 A first lower bound

The following is Lemma 1 of [Am-Dv].

Lemma 3.1 Let L be a number field and let ν be a non-archimedean place of L.
Then, for any α ∈ L∗ there exists an algebraic integer β ∈ L such that βα is also
integer and

|β|ν = max{1, |α|ν}−1.

We now prove our main proposition:
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Proposition 3.2 Let K be a number field of degree d over Q. Let ℘ be a prime
ideal of K. We denote q = N℘. Let α ∈ Q

∗\µ and assume that K(α) is an abelian
extension of K. Assume further

K(α) = K(αq) . (3.4)

Then

h(α) ≥ log
(

q1/d/2
)

2q
.

Proof. Let (p) = ℘∩Z and let e = e(℘/p), f = f(℘/p), be resp. the ramification
index and the inertial degree of ℘ over p.

A first case occurs when ℘ does not ramify in L; let then φ be the Frobenius
automorphism of Q/℘, where Q is any prime of L over ℘ (since L/K is abelian, φ
does not depend on the choice of Q).

Let ν be a place of L := K(α), normalized so to induce on Q one of the
standard places. We shall estimate |αq − φ(α)|ν . Suppose to start with that ν|℘.

By Lemma 1, there exists an integer β ∈ L such that αβ is integer and

|β|ν = max{1, |α|ν}−1.

Then (αβ)q ≡ φ(αβ) mod ℘OL and βq ≡ φ(β) mod ℘OL. We recall that ∀γ ∈ ℘OL

we have |γ|ν ≤ p−1/e. Using the ultrametric inequality, we deduce that

|αq − φ(α)|ν = |β|−q
ν |(αβ)q − φ(αβ) + (φ(β) − βq)φ(α)|ν

≤ |β|−q
ν max

(

|(αβ)q − φ(αβ)|ν , |βp − φ(β)|ν |φ(α)|ν
)

≤ max(1, |α|ν)qp−1/e max(1, |φ(α)|ν) .

Suppose now that ν is a finite place not dividing ℘. Then we have plainly

|αq − φ(α)|ν ≤ max(1, |α|ν)q max(1, |φ(α)|ν) .

Finally, if ν|∞, we have

|αq − φ(α)|ν ≤ 2 max(1, |α|ν)q max(1, |φ(α)|ν) .

Moreover x := αq − φ(α) 6= 0, since α is not a root of unity. Indeed, if x = 0
then qh(α) = h(αq) = h(φ(α)) = h(α), which implies h(α) = 0. We apply the
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product formula to x:

0 =
∑

ν∤∞
ν∤℘

[Lν : Qν ]

[L : Q]
log |x|ν +

∑

ν |℘

[Lν : Qp]

[L : Q]
log |x|ν +

∑

ν |∞

[Lν : Qν ]

[L : Q]
log |x|ν

≤
∑

ν

[Lν : Qν ]

[L : Q]
(q log+ |α|ν + log+ |φ(α)|ν) −

log p

e

∑

ν |℘

[Lν : Qp]

[L : Q]

+
∑

ν |∞

[Lν : Qν ]

[L : Q]
log 2

= qh(α) + h(φ(α)) − [L℘ : Qp] log p

e[L : Q]

∑

ν |℘

[Lν : Qp]

[L℘ : Qp]
+ (log 2)

∑

ν |∞

[Lν : Qν ]

[L : Q]
.

We recall that h(φ(α)) = h(α). Moreover,

∑

ν |∞

[Lν : Qν ]

[L : Q]
= 1,

∑

ν |℘

[Lν : Qp]

[L℘ : Qp]
= [L : K]

and [L℘ : Qp] = ef . Thus

0 ≤ (q + 1)h(α) + log 2 − f

d
log p

i. e.

h(α) ≥ log
(

q1/d/2
)

q + 1
≥ log

(

q1/d/2
)

2q
.

Assume now that ℘ is ramified in L and let σ be a non trivial automorphism in
the subgroup H℘ defined in Proposition 2.3. Let ν be a place of L dividing ℘ and
let β as in the first part of the proof. We have (αβ)q ≡ σ(αβ)q mod ℘OL and
βq ≡ σβq mod ℘OL. Using the ultrametric inequality, we find

|αq − σ(α)q|ν = |β|−q
ν |(αβ)p − σ(αβ)q + (σβq − βq)σ(α)q|ν

≤ p−1/e max(1, |α|ν)q max(1, |σ(α)|ν)q.

Assume σ(α)q = αq. Since σ(α) 6= α we have K(αq) ( K(α), which contradicts
hypothesis (3.4).

Thus x := αq − σ(α)q 6= 0. Applying the product formula to x as in the first
part of the proof, we get

0 ≤ 2qh(α) + log 2 − f

d
log p .

Therefore

h(α) ≥ log
(

q1/d/2
)

2q
.

�
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4 Radicals reduction

In this section we show that a slightly weaker version of Proposition 3.2 still holds
without assuming (3.4). The proof of the main theorem will follow.

We need the following lemma (perhaps known, but for which we have no ref-
erence):

Lemma 4.1 Let B, k be integers with B ≥ 5 and k ≥ 60B log B. Then, for every
subgroup H of (Z/(k))∗ of index ≤ B, there are h1, h2 ∈ H such that

2 < h1 − h2 ≤ 60B log B .

Proof. Write an integer decomposition k = k1k2 where k1 is divisible only by
primes ≤ B5 and where k2 is coprime to any such prime. Then gcd(k1, k2) = 1 and
we have a decomposition (Z/(k))∗ ∼= (Z/(k1))

∗ × (Z/(k2))
∗ = G1G2, say, where

G1 = (Z/(k1))
∗×{1}, G2 = {1}×(Z/(k2))

∗. Further, for i = 1, 2 put Hi := H∩Gi,
so [Gi : Hi] ≤ B.

By the corollary to theorem 7 of [Ro-Sc], for any x > 1

∏

l≤x

(

1 − 1

l

)

>
e−γ

log x

(

1 − 1

(log x)2

)

where γ is Euler’s constant and in the product l runs through prime numbers.
Since B ≥ 5,

k1

φ(k1)
≤

∏

l≤B5

(

1 − 1

l

)−1

< 5eγ

(

1 − 1

(5 log 5)2

)−1

log B < 10 log B . (4.5)

Let s be the integer defined by

1

3
|H1| − 1 ≤ s <

1

3
|H1| .

We have |H1| ≥ φ(k1)/B, so by (4.5) and since k1 ≥ 60B log B,

s ≥ φ(k1)

3B
− 1 ≥ k1

30B log B
− 1 ≥ k1

60B log B
.

By the Pigeon-hole principle, there exist integers x1, . . . , x4 whose class modulo k1

is in H1 and such that

x1 < x2 < x3 < x4 and x4 − x1 <
k1

s
≤ 60B log B .

Let x = x1 and t = x4 − x1. Then x, x + t ∈ H1 and 2 < t ≤ 60B log B.
Let now la be a power of the prime l dividing exactly k2 and set H(l) =

H ∩ (Z/(la))∗, where we view the group on the right as a subgroup of G2, as
before. Let V (l) be the the kernel of the reduction r : (Z/(la))∗ → (Z/(l))∗ modulo
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l. Remark that the index b = [(Z/(la))∗ : H(l)] ≤ B. Since [(Z/(la))∗ : V (l)] = l−1
and l > B, we have V (l) ⊆ H(l). Thus r(H(l)) has index b in F∗

l and r(H(l)) =

{ub |u ∈ F∗
l }. The curve Xb − Y b = t over Fl has a plane projective closure which

is nonsingular, because 0 < t < l, and whose genus is g ≤ (B − 1)(B − 2)/2. By a
celebrated theorem of Weil (but more elementary methods amply suffice for this

case) the curve has then at least l + 1 − 2g
√

l projective points. Hence at least

l + 1 − 2g
√

l − 3b of them lie in the affine piece and have XY 6= 0; in turn, since
B ≥ 5, this lower bound is > l − 2g

√
l − 3B ≥ B5 − 2B2B5/2 − 3B > 0. Hence

there is xl so that the images of both xl, xl + t lie in the reduction of H(l) and
hence in H(l), which contains the kernel of reduction.

Finally, it suffices to pick with the Chinese Theorem an h2 congruent to x
modulo k1 and to xl modulo la, for each l dividing k2, and to put h1 := h2 + t.

�

We introduce the following notations. Given an integer k we let ζk be a prim-
itive k-th root of unity. Let α ∈ Q such that K(α)/K is a Galois extension. We
define

Γα := {ρ ∈ Gal(K(α)/K) : ρ(α)/α ∈ µ}.
Note that Γα is a subgroup of Gal(K(α)/K). We let Lα := K(α)Γα be its fixed
field; note that K(α)/Lα is Galois with group Γα.

We need the following simple generalization of a classical lemma in Kummer’s
theory.

Lemma 4.2 Let k be a positive integer, σ ∈ Gal(K(ζk)/K) and α ∈ Q. We
assume that K(α)/K is abelian. Then for any extension σ̃ ∈ Gal(K(α, ζk)/K) we
have

σ̃α/αg ∈ Lα ,

where g = gσ is defined by σζk = ζgσ

k and gσ ∈ [1, k).

Proof. Let τ ∈ Γα, then τα = ζu
k α for some u ∈ Z. Put α′ = σ̃α; note that α′

lies in K(α) because it is a conjugate of α over K. Then, since K(α, ζk)/K is also
abelian (as a composite of abelian extensions of K), we have

τα′/α′ = τ σ̃α/σ̃α = σ̃(τα/α) = σζu
k = ζugσ

k = (τα/α)gσ .

Thus α′/αgσ is fixed by τ for all τ ∈ Γα, and therefore it lies in Lα.

�

9



Proposition 4.3 Let K be a number field of degree d over Q and let ℘ be a prime
ideal of K. Let q = N℘, α ∈ Q

∗\µ and assume that K(α) is an abelian extension
of K. Then

h(α) ≥ log
(

q1/d/2
)

400d log(3d)q
.

Proof. We choose an integer k > 180d log(3d) such that any root of unity of the
shape ρ(α)/α for ρ ∈ Γα has order dividing k.

Note that Gal(K(ζk)/K) may be seen as a subgroup of (Z/k)∗ of index ≤
[K : Q] = d. We choose B = 3d ≥ 6 in Lemma 4.1. Since k ≥ 180d log(3d),
the assumptions of this lemma are satisfied. We thus see that there exist σ1,
σ2 ∈ Gal(K(ζk)/K) such that

2 < gσ2
− gσ1

< 180d log(3d) .

We define g = gσ2
− gσ1

. By Lemma 4.2 we have

σ̃2(α) = c αgσ̃1(α) (4.6)

with c ∈ Lα. We recall that

2 < g < 180d log(3d) . (4.7)

We want to apply Proposition 3.2 to c. To do that we need that c 6∈ µ and that
K(c) = K(cq). Let us verify these requirements.

• c 6∈ µ. Assume the contrary. Then, by (4.6),

gh(α) = h(αg) = h(σ̃2(α)/σ̃1(α)) ≤ 2h(α) .

Since g > 2 we get α ∈ µ. Contradiction.

• K(c) = K(cq). Assume the contrary. Note that K(c)/K(cq) is Galois,
as a subextension of the abelian extension K(α)/K. Then, let τ be a
non-trivial element of Gal(K(c)/K(cq)). We have τ(c) = θc for some
nontrivial root of unity θ.

Denote by τ̃ ∈ Gal(K(α)/K) an arbitrary extension of τ and set η :=
τ̃(α)/α. Now, apply (4.6) and its conjugate by τ̃ , taking into account
that we are working in an abelian extension of K. We obtain σ̃2(η) =
θηgσ̃1(η). Hence gh(η) ≤ 2h(η) which implies h(η) = 0. Hence η ∈ µ.
But then τ̃ ∈ Γα by definition. Since however c ∈ Lα and since Γα

fixes Lα we have a contradiction because θ 6= 1.

The hypotheses of Proposition 3.2 are therefore fulfilled. We get the lower
bound

h(c) ≥ log
(

q1/d/2
)

2q
.
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By (4.6) and by the upper bound g < 180d log(3d) (see (4.7)) we have

h(c) ≤ (g + 2)h(α) ≤ 182d log(3d)h(α) .

Thus

h(α) ≥ log
(

q1/d/2
)

400d log(3d)q
.

�

Proof of theorem 1.2. Let p be a prime number such that 3d ≤ p < 2 · 3d and
let ℘ be a prime of K over p. Let q = N℘. Then

3d ≤ p ≤ q ≤ pd < 3d2+d .

Thus, by proposition 4.3,

h(α) >
log(3/2)

400d log(3d) · 3d2+d
≥ 3−d2−2d−6 ,

since log(3/2) ≥ 1/3 and 400d log(3d) ≤ 3d+5.

�

5 Further remarks

In this section we denote by c1, c2, c3, c4 absolute positive constants.

5.1

The “natural” generalisation of Lehmer’s conjecture, namely

γab(K) ≥ c

[K : Q]

for some positive constant c, is false. Let Kn = Q(ζn) and Ln = Kn(21/n); then
Ln/Kn is cyclic and

h(21/n) =
log 2

n
.

Let n(x) be the product of all primes up to x > 1 and define d(x) := [Kn(x) : Q] =
ϕ(n(x)). Then, by elementary analytic number theory,

n(x) ≥ c1d(x) log log 3d(x) .

Therefore

γab(Kn(x)) ≤
log 2

c1d(x) log log 3d(x)
.

This prove

Proposition 5.1

lim inf
[K:Q]→∞

γab(K)[K : Q] log log[K : Q] < ∞ .
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5.2

For cyclotomic extensions of a number field K of degree d, we can deduce from the
main results of [Am-Za] and [Am-De] a lower bound for the height sharper than
theorem 1.2.

Proposition 5.2 Let ζ be a root of unity and let α ∈ K(ζ)∗\µ. Then

h(α) ≥ c2(log log 5d)3

d(log 2d)4
.

Proof. By Galois’ Theory, K(ζ) is an extension of Q(ζ) of degree bounded by
d. Since Q(ζ) is an abelian extension of Q, by the refined inequality of [Am-De]
there exists an absolute constant c2 > 0 such that

h(α) ≥ c2(log log 5d)3

d(log 2d)4
.

�

5.3

The example of subsection 5.1 cannot be substantially improved by “taking roots”
in a fixed field K.

Proposition 5.3 Let K be a number field of degree d. Let α ∈ Q
∗\µ such that

αn ∈ K for some positive integer n. Then, if K(α)/K is abelian,

h(α) ≥ c3(log log 5d)2

d(log 2d)4
.

Proof.

Let µn ∩ K∗ = µr; thus r is the number of n-roots of unity contained in K.
Since K(α)/K is abelian, the extension K(α, ζn)/K is also abelian. By a theorem
of Schinzel ([Sc], theorem 2), there exists γ ∈ K such that

αnr = γn .

Let δ = [K : Q(ζr)] = d/ϕ(r). Since Q(ζr) is an abelian extension of Q, by the
quoted result of [Am-De]

h(γ) ≥ c2(log log 5δ)3

δ(log 2δ)4
≥ c2(log log 5d)3

δ(log 2d)4
.

By elementary analytic number theory, r ≤ c4ϕ(r) log log 3ϕ(r) ≤ c4ϕ(r) log log 5d.
Thus

h(α) =
h(γ)

r
≥ c3(log log 5d)2

d(log 2d)4
.

�
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5.4

The examples and results above suggest the following conjecture.

Conjecture 5.4 Let K be a number field of degree d. Then, for any ε > 0 there
exists cε > 0 having the following property. Let α ∈ Q

∗\µ such that K(α)/K is
an abelian extension. Then

h(α) ≥ cεd
−1−ε .
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