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ABSTRACT

In this work, we deal with source separation of linear - quad-
ratic (LQ) and linear mixtures. By relying on a Bayesian ap-
proach, the developed method allows one to take into account
prior informations such as the non-negativity and the tempo-
ral structure of the sources. Concerning the inference scheme,
the implementation of a Gibbs’ sampler equipped with latent
variables simplifies the sampling steps. The obtained results
confirm the effectiveness of the new proposal and indicate
that it may be particularly useful in situations where classi-
cal ICA-based solutions fail to separate the sources.

1. INTRODUCTION

In Blind Source Separation (BSS), the goal is to retrieve a
set of sources by using only mixed versions of these original
signals. Usually, one assumes a linear mixing process and the
separation is performed via Independent Component Analysis
(ICA) [1]. However, despite the notorious results provided by
this classical framework, its extension to the nonlinear case is
desirable as it can broaden the range of BSS applications.

Unfortunately, BSS becomes more involved in its nonlin-
ear extension [2]. For example, due to the degree of flex-
ibility in a nonlinear model, the application of ICA does not
guarantee source separation, that is, one may recover indepen-
dent components that are still mixed versions of the sources.
For such reasons, a more realistic approach is to consider re-
stricted classes of nonlinear models for which source separa-
tion is still possible. A typical example in this context is the
linear-quadratic (LQ) model [3, 4]. Besides the theoretical in-
terest in the LQ model —it may pave the way for polynomial
mixtures —this nonlinear model is useful in chemical sensing
problems, such as in the design of gas electrode arrays [5].

Since the inversion of the LQ mixing model does not ad-
mit closed formulae in the general case, a major challenge
in LQ-BSS concerns the definition of a suitable structure for
the separating system. In [3, 4], this problem was dealt with
by defining a recurrent separating system that was trained by
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ICA-based cost functions. Nonetheless, despite its simplic-
ity and its good performance, this approach can operate only
when the sources and the mixing parameters lie within the
stability region of the recurrent system. Even if the develop-
ment of more elaborate recurrent networks [6] can extend the
stability region, it seems that the resulting training algorithms
may be quite complicate in these new situations.

Motivate by the above-mentioned problems, we propose
in this work a Bayesian method for separating LQ mixtures.
Indeed, as the Bayesian approach treats the BSS problem
rather as a data representation problem, there is no need to
define a separating system in this case. Furthermore, the
Bayesian framework permits us to take into account prior
information other than the statistical independence. For in-
stance, we consider here two prior informations that are typ-
ical in chemical sensing applications, namely: 1) the bounds
of the sources and of the mixing coefficient values are known
in advance, and 2) the sources have a temporal structure. It is
worth mentioning that, under minor changes, the developed
method can also be applied to linear models. Finally, even for
the nonlinear model treated here, a simple inference scheme
can be set by using a MCMC method able to simulate the
posterior distributions of the parameters. In that respect, the
Gibbs sampler and some auxiliary variables are employed.

Concerning the organization of the paper, we start with the
mixing model description. After that, in Section 3, we present
the details of our proposal. Aiming to assess the gains brought
by the proposed method, a set of simulations is conducted in
Section 4. Finally, we present our conclusions in Section 5.

2. MIXING MODEL

Let xi,t and sj,t represent the i-th mixture and the j-th source
at time t, respectively. The LQ mixing model is given by

xi,t =
ns∑

j=1

ai,jsj,t +
∑

1≤j<k≤ns

bi,j,ksj,tsk,t + ni,t

∀i ∈ 1, . . . , nc, ∀t ∈ 1, . . . , nd, (1)

where ai,j et bi,j,k are the mixing parameters, and ni,t

corresponds to the noise term, which is assumed i.i.d and
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Gaussian with unknown variance σ2
i . The parameters ns,

nc and nd correspond to the number of sources, sensors
and available samples, respectively. Henceforth, all the
unknown parameters will be represented by the vector1

θ = [sj,t, ai,j , bi,j,k, σ2
i , µj , pj ], and the following nota-

tion will be adopted: θ−θq
represents the vector containing

all elements of θ except θq .

3. BAYESIAN SOURCE SEPARATION METHOD

In view of Eq. (1), the BSS problem treated in this work can
be put as follow: given X (matrix containing all xi,t), esti-
mate the parameters of the vector θ. In the Bayesian frame-
work, this estimation task requires the expression of the poste-
rior distribution p(θ|X), which, according to the Bayes’ rule,
can be written as p(θ|X) ∝ p(X|θ)p(θ), where p(X|θ) is
the likelihood function and p(θ) denotes the prior distribu-
tions. Due to the assumption of white Gaussian noise in the
observation model, the likelihood function is given by

p(X|θ) =
nd∏
t=1

nc∏

i=1

Nxit

(
ns∑

j=1

ai,jsj,t

+
∑

1≤j<k≤ns

bi,j,ksj,tsk,t; σ2
i

)
, (2)

where Nxik
(µ; σ2) corresponds to a Gaussian distribution of

xik with mean µ and variance σ2. The expressions of prior
distributions will be presented in the sequel.

3.1. Definition of prior distributions

3.1.1. Sources

If the limit values of the sources are known, one can incorpo-
rate this information by modeling them according to a trun-
cated Gaussian distribution, i.e.

p(sj,t|µj , pj , s
min
j , smax

j ) =
√

pj

2π exp
(
−pj

2 (sj,t − µj)
2
)
1[smin

j ,smax
j ](sj,t)

Φ
(√

pj

(
smax

j − µj

))− Φ
(√

pj

(
smin

j − µj

)) , (3)

where µj , pj are the unknown distribution parameters, and
Φ(·) is the cumulative distribution function of the standard
normal distribution. 1[smin

j ,smax
j ](sj,t) denotes the indicator

function, which takes one in the interval [smin
j , smax

j ] and
zero otherwise.

The sources usually possess a time structure in real prob-
lems. Motivated by that, a second prior modeling2 can be

1The parameters µj and pj correspond to the sources hyperparameters.
2Since the derivation of a Bayesian method is almost the same for the

i.i.d. and the Markovian modeling, our calculations will be based in Eq. (3).
Note however that, in the Markovian modeling, there is no need to estimate
the term µj that appears in this equation.

defined by substituting µj = sj,t−1 in Eq. (3). The result-
ing prior is a first-order Markovian model quite similar to
the classical AR(1) model driven by Gaussian noise, with the
only difference that the recurrence is limited in the interval
[smin

j , smax
j ]. Both in the i.i.d. and in the Markovian mod-

eling, we assume that the sources are mutually independent3,
i.e.4 p(S) =

∏ns

j=1 p(sj,:).

3.1.2. Sources hyperparameters

For the i.i.d. modeling, uniform priors are assigned for the
sources hyperparameters, that is

p(µj) ∝ 1[µmin
j ,µmax

j ](µj), (4)

p(pj) ∝ 1[pmin
j ,pmax

j ](pj), (5)

where the parameters µmin
j , µmax

j , pmin
j and pmax

j should be
assigned according to the available information. If, for ex-
ample, the sources are expected to be concentrated near the
minimum value, one can set µmin

j < µmax
j < smin

j . Con-
versely, if no additional information is available, one must
increase the limits of both hyperparameters. Regarding the
Markovian modeling, we have only one hyperparameter (pj)
and the same prior of Eq. (5) is assigned for it.

3.1.3. Mixing parameters

Before assigning priors for the mixing parameters, let us
rewrite the LQ mixing model as

xi,t =
J∑

m=1

ci,ms̄m,t + ni,t, (6)

where J = ns + ns!
2(ns−2)! . The vector ci = [ci,1, . . . , ci,J ]

stems from the concatenation of [ai,1, . . . , ai,ns ] and [bi,1,2,
. . . , bi,ns−1,ns ]; and the vector s̄t = [s̄1,t, . . . , s̄J,t] denotes
the concatenation of the sources [s1,t, . . . , sns,t] and the linear
quadratic terms [s1,ts2,t, s2,ts3,t . . . , sns−1,tsns,t]. This new
expression points out that the conditional distributions of ai,j

and bi,j,k used in the Gibbs’ sampler (see Section 3.3) assume
similar expressions. Therefore, for sake of simplicity, both
ai,j and bi,j,k will be represented by ci,m.

In our method, the mixing coefficients ci,m are modeled
through uniform priors, i.e.

p(ci,m) ∝ 1[cmin
i,m ,cmax

i,m ](ci,m). (7)

The distribution bounds should be set based on the available
information. An interesting aspect of this modeling is that it

3As discussed in [7], for instance, the independence assumption in the
Bayesian approach is rather a working assumption, i.e., by assuming that, we
are just omitting in our model a possible relation between the sources.

4In this work, cl,m:n is an abbreviation for representing the elements
cl,m, . . . , cl,n; and cl,: represents the elements cl,1, . . . , cl,f where f is
the total number of elements.



renders possible to perform linear BSS using the same imple-
mentation of the LQ case. Indeed, if one sets cmin

i,ns+1:J =
cmax
i,ns+1:J = 0, then the parameters that multiply the linear-

quadratic terms become null, i.e. the resulting model becomes
linear. Moreover, if smin

j = 0 and smax
j → ∞, our proposal

becomes able to model non-negative prior as in non-negative
matrix factorization (NMF).

3.1.4. Noise variances

A common approach [8] is to assign Gamma priors for the
noise precisions ri = 1/σ2

i , that is

p(ri) ∝ r
αri

−1

i exp
(−ri

βri

)
1[0,+∞[ (ri) . (8)

This choice culminates in a conjugate pair, which eases the
sampling step in the Gibbs sampler. Moreover, it is possi-
ble to set the hyperparameters αri

and βri
to obtain a vague

prior [8].

3.2. Bayesian inference and Gibbs sampler

Since we assume that all elements of p(θ) are statistically in-
dependent (except the sources sj,: and their hyperparameters
µj and pj), the posterior distribution p(θ|X) can be rewritten
as

p(θ|X) ∝ p(X|θ)×
nc∏

i=1

J∏
m=1

p(ci,m)×
ns∏

n=1

p(sj,:|µj , pj)

×
ns∏

n=1

p(µj)×
ns∏

n=1

p(pj)×
nc∏

i=1

p(σ2
i ). (9)

The next step is to define an adequate algorithm for the es-
timation of θ using this posterior distribution. A possible
approach is based on calculating the Bayesian minimum
mean square error (MMSE) estimator [9] which is defined as
θMMSE =

∫
θp(θ|X)dθ.

Even though the integral present in the Bayesian MMSE
estimator makes its exact calculation difficult, it is still possi-
ble to obtain good solutions through approximation methods.
For example, if θ1, θ2, . . . , θM represents a set of samples
drawn from p(θ|X), then the Bayesian MMSE estimator can
be approximated by θ̃MMSE = 1

M

∑M
i=1 θi. Therefore, in

this methodology, which is called Monte Carlo integration,
the implementation of the Bayesian MMSE estimator boils
down to the task of finding an efficient way for sampling from
the distribution p(θ|X).

In this work, the simulation of p(θ|X) is conducted
via the Gibbs’ sampler [10], a Markov chain Monte Carlo
(MCMC) method tailored to deal with high-dimensional
distributions. One of the attractive features of the Gibbs’
sampler is that it permits to simulate a joint distribution by
sequentially sampling from the conditional distribution of
each variable. This procedure can be summarized as follows:

1. Initialize all the parameters θ0
1, θ

0
2, . . . , θ

0
N ;

2. For p = 1 to P do

θp
1 ∼ p(θ1|θp−1

2 , θp−1
3 , , . . . , θp−1

N ,X)

θp
2 ∼ p(θ2|θp

1 , θp−1
3 , . . . , θp−1

N ,X)
...

θp
N ∼ p(θN |θp

1 , θp
2 , . . . , θp

N−1,X)

end

The notation x ∼ p(x) stands for the sampling operation, i.e.
x is a sample obtained from the distribution p(x). Therefore,
the implementation of the Gibbs’ sampler requires the con-
ditional distribution of each unknown parameter of our prob-
lem. We shall obtain these expressions in the sequel.

3.3. Conditional distributions

After some manipulations, one can check that the conditional
distribution of a given parameter θq is given by

p(θq|θ−θq
,X) ∝ p(X|θ)p(θq). (10)

Therefore, the calculation of the conditional distributions can
be achieved by substituting the likelihood function and the
prior distribution into this expression. In the sequel, this pro-
cedure will be done for each unknown parameter.

3.3.1. Sources

It is not difficult to show that, by substituting expressions (2)
and (3) into (10), one has

p(sj,t|θ−sj,t ,X) ∝ exp

[
−

nc∑

i=1

1
2σ2

i

(
Ψi,j,tsj,t

+ Ωijt

)2

− 0.5pj (sj,t − µj)
2

]
1[smin

j ,smax
j ](sjt), (11)

where

Ωi,j,t = xi,t −
ns∑

g=1,g 6=j

ai,gsg,t

−
∑

1≤g<k≤ns,g 6=j

bi,g,ksg,tsk,t, (12)

and

Ψi,j,t = ai,j +
ns∑

g=1,g 6=j

bi,j,gsg,t. (13)

After expanding Eq. (11), one can obtain the expression of the
conditional distribution of the sources, given by

p(sj,t|θ−sj,t ,X) ∝ exp

(
−

(
sj,t − µPostj

)2

2σ2
Postj

)

1[smin
j ,smax

j ](sj,t), (14)



where σPostj
= σ2

Lj
σ2

j /(σ2
Lj

+ σ2
j ) and µPostj

= (µLj
σ2

j +
µjσ

2
Lj

)/(σ2
Lj

+ σ2
j ), and

σ2
Lj

=

(
nc∑

i=1

Ψ2
ijt

σ2
i

)−1

, (15)

µLj = σ2
Lj

nc∑

i=1

ΩijtΨijt

σ2
i

. (16)

The expression in (11) corresponds to a truncated Gaus-
sian distribution and its simulation can be easily conducted by
the procedure proposed in [11].

3.3.2. Source hyperparameters

Let us start with the derivation of the conditional distribution
of pj . As the likelihood function (2) is not a function of pj , it
asserts that p(pj |sj,:, µj) ∝ p(sj,:|, pj , µj)p(pj), that is

p(pj |sj,:, µj) ∝ p
nd
2

j exp
(
− 0.5pj

nd∑
t=1

(sj,t − µj)
2
)

×
1[pmin

j ,pmax
j ](pj)

Φ
(√

pj

(
smax

j − µj

))− Φ
(√

pj

(
smin

j − µj

)) . (17)

This expression does not assume a standard form because
of the nonlinearity in the denominator of the second term.
This is also true for the distribution p(µj |sj,:, pj) that ap-
pears in the i.i.d. modeling. These non-standard distributions
could be simulated through the Metropolis-Hastings (MH) al-
gorithm [10]. However, this sort of solution requires the defi-
nition of an instrumental function which is usually not a trivial
task. Besides, the presence of MH would increase the com-
plexity of our final solution.

In an alternative approach, the use of latent variables re-
sults in conditional distributions that assume standard forms.
This idea, which was developed in [12], is based on the fol-
lowing transformation:

lj,t = µj + p
−1/2
j

×Φ−1

(
Φ

(√
pj (sj,t − µj)

)− Φ
(√

pj

(
smin

j − µj

))

Φ
(√

pj

(
smax

j − µj

))− Φ
(√

pj

(
smin

j − µj

))
)

.

(18)

It can be proved [12] that if sj,t follows a truncated Gaussian
with parameters µj and pj , then lj,t is distributed according to
a Gaussian distribution of mean µj and precision pj . There-
fore, the definition of lj,t turns the problem of estimating the
parameters of a truncated Gaussian into the one of estimating
the mean and precision of a Gaussian.

From the discussion of the last paragraph, lj,t follows a
Gaussian distribution, and therefore

p(lj,:|µj , pj) =
nd∏
t=1

√
pj

2π
exp

(
−pj

2
(lj,t − µj)

2
)

. (19)

Using this equation and the prior distributions (4) and (5), one
can show that the new conditional distributions of µj and pj

are given by

p(µj |pj , lj,:) ∝ p(µj)p(lj,:|µj , pj) ∝ 1[µmin
j ,µmax

j ](µj)

× exp


−pj · nd

2

(
µj − 1

ns

nd∑
t=1

lj,t

)2

 (20)

p(pj |µj , lj,:) ∝ p(pj)p(lj,:|µj , pj) ∝ 1[pmin
j ,pmax

j ](pj)

× p
nd
2

j exp

(
−pj

nd∑
t=1

(lj,t − µj)
2

)
. (21)

Now we have more tractable distribution, since p(µj |pj , lj,:)
is a truncated Gaussian whereas p(pj |µj , lj,:) is a truncated
Gamma. The simulation of these two distributions can be
conducted through the method proposed in [11].

The original procedure of [12], described in the last para-
graphs, can be readily extended for estimating pj when the
Markovian modeling is considered. Indeed, this can be done
by observing that the innovation process sj,t − sj,t−1 is dis-
tributed according to a truncated Gaussian whose limits de-
pend on the time index. Therefore, the conditional distribu-
tion of pj in this case is obtained by substituting µj = sj,t−1

in Eq. (21). Also, the same substitution should be conducted
in Eq. (18) for the calculation of the latent variables lj,t.

3.3.3. Mixing parameters

The calculation of the conditional distributions can be done
by substituting equations (7) and (2) into Eq. (10). Therefore,
one obtains after some calculations

p(ci,m|θ−ci,m ,X) ∝ exp

(
− ρL

i,m

2
(ci,m − νL

i,m)2
)

1[cmin
i,m ,cmax

i,m ](ci,m), (22)

where

ρL
i,m = σ2

i

nd∑
t=1

s̄m,t, (23)

νL
i,m =

∑nd

t=1 s̄m,t

(
xi,t −

∑J
g=1,g 6=m ci,g s̄g,t

)
∑nd

t=1 s̄2
m,t

. (24)

Again, the resulting conditional distribution (Eq. (22)) is a
truncated Gaussian distribution and can be simulated by the
technique presented in [11].

3.3.4. Noise variances

The conditional distribution of the noise precision ri = 1/σ2
i

is obtained by substituting (8) and (2) into Eq. (10), which



gives

p(ri|θ−ri ,X) ∝ r
nd
2

i exp (−0.5riΘi,t)

r
αri

−1

i exp
(−ri

βri

)
1[0,+∞[ (ri) (25)

where Θi,t = xi,t−
∑ns

j=1 ai,jsj,t−
∑

i,j,k bi,j,ksj,tsk,t. This
equation can be rewritten as

p(ri|θ−ri
,X) ∝ exp

(
−ri

(
0.5Θi,t +

1
βri

))

r
nd
2 +αri

−1

i 1[0,+∞[ (ri) , (26)

which is a Gamma distribution with parameters αi = nd

2 +αri

and β−1
i = 0.5Θi,t + β−1

ri
.

4. RESULTS

To access the performance of our proposal, we conduct a set
of simulations with synthetic data. In a first scenario, we test
our method in a linear source separation problem where the
sources and the mixing coefficients are non-negative. Then,
we address the case of linear-quadratic mixtures. In both sit-
uations, the following performance index is considered

SIR =
1

nd · ns

ns∑

j=1

nd∑
t=1

10 log

(
E{s2

j,t}
E{(sj,t − ŝj,t)

2}

)
, (27)

where ŝj,t is the estimation of the source j at time t. It is
worth remembering that ŝj,t is given by ŝj,t = 1

P−B

∑P
p=B sp

j,t,
where sp

j,t represents the p-th sample of sj,t provided by the
Gibbs’ sampler; P and B denotes the number of total itera-
tions and the length of the burn-in period5, respectively.

4.1. Separation of linear mixtures

To illustrate the performance of our proposal in a linear case,
we tested it in situations where nd = 300, ns = 3, nc = 3;
and the mixing matrix is given by A = [1 0.5 0.5 ; 0.6 1 0.3
; 0.8 0.4 1] . Three scenarios were considered: 1) the sources
are realizations of truncated Gaussian distributions (matched
case with our i.i.d. modeling); 2) the sources are realizations
of truncated Gaussian Markovian process (matched case with
our Markovian modeling); 3) the sources correspond to a sine
wave, a ramp function and a sawtooth wave. In all these sit-
uations the signal-to-noise ratio (SNR) at each sensor was
20 dB. The total number of iterations of the Gibbs’ samples
was P = 10000 with a burn-in period of B = 5000.

The results presented in Tab. 1 represent the mean SIR
over 50 experiments. Despite a (not surprisingly) perfor-
mance degradation when the Markovian prior is used for

5Since the Markov chain associated with the Gibbs’ sampler takes some
iterations to reach the stationary distribution, the samples generate in an ini-
tial moment, the burn-in period, should be discarded.

Table 1. SIR (dB) for the separation of linear mixtures.
Situation 1 Situation 2 Situation 3

Bayesian method
i.i.d. modeling 17.50 17.69 15.55

Bayesian method
Markovian modeling 12.60 17.07 18.37

FastICA 20.43 17.74 11.81

separating i.i.d. sources, our proposal was able to separate
the sources. The FastICA algorithm [1] gave us better results
in the first two situations. On the other hand, the application
of this method on the third situation did not provide satisfac-
tory results. This was due to the existence of two correlated
sources in this scenario. It is worth remembering that, in
contrast to the Bayesian approach, the FastICA searches for
independent components and, therefore, it may fail when the
sources are not independent.

4.2. Separation of linear-quadratic mixtures

In a first moment, we considered a situation where nd = 500,
ns = 2 and nc = 2. The original sources and the mixtures
are presented in Figs. 1(a) and 1(b), respectively. The mixing
parameters were selected a1,1 = 1, a1,2 = 0.5, b1,1,2 = 0.2,
a2,1 = 0.5, a2,2 = 1, b2,1,2 = 0.2, and the SNR at each
sensor was 30 dB. The hyperparameters related to the limit
values of the prior distributions were6 smin

j = cmin
i,m = 0 and

smax
j = cmax

i,m = 1. Concerning the Gibbs sampler param-
eters, the total number of iteration was P = 20000 with a
burn in period of B = 8000. In this situation, the obtained
performed index were SIR = 26.63 dB for the i.i.d. model-
ing and SIR = 27.47 dB for the Markovian modeling. We
also tested the ICA method proposed in [4] which was able to
provide good approximations (SIR = 22.58 dB). Despite
the better performance, it worth mentioning that the gains
brought by our method comes at the price of a greater com-
putational effort.

We also tested our method in a second scenario simi-
lar to the first one with the only difference that the mix-
ing parameters are now given by a1,1 = 1, a1,2 = 0.7,
b1,1,2 = 0.6, a2,1 = 0.6, a2,2 = 1, b2,1,2 = 0.6. Our
method was able to retrieve the sources both for i.i.d. mod-
eling (SIR = 22.17 dB) and for the Markovian modeling
(SIR = 23.71 dB). To illustrate that, we shown in Fig. 1
the retrieved sources for the Markovian modeling. Note that,
despite the noise amplification, which is typical in nonlinear
systems, the retrieved signals are close to the sources. Con-
versely, in this new case, the method proposed in [4] failed to
separate the sources since the mixing coefficients violate the
stability condition of the recurrent separating system.

6We set amin
1,1 = amin

2,2 = 1 to avoid scaling ambiguities.
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(a) Sources
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(b) Mixtures

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Time

ŝ
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(c) Retrieved sources

Fig. 1. Separation of LQ mixtures (Markovian modeling).

5. CONCLUSION

We proposed a Bayesian source separation method that can
be used in linear-quadratic and linear mixing models. The
application of Gibbs’ sampler and the introduction of latent
variables provided an algorithm that is easy to implement.
Concerning the results, we observed that this proposal can
be useful in some situations where ICA methods cannot be
applied. One limitation of our solution concerns its com-
putational complexity. Indeed, each iteration of the Gibbs’
sampler performs ns × nd simulations of univariate random
variables. Therefore, the computational burden required by
our proposal may become quite large in problems where the

number of sources and samples are considerable.
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