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UNIVERSALITY OF BLOW-UP PROFILE FOR SMALL RADIAL TYPE II
BLOW-UP SOLUTIONS OF ENERGY-CRITICAL WAVE EQUATION

THOMAS DUYCKAERTS?, CARLOS KENIG?, AND FRANK MERLE?®

ABSTRACT. Consider the energy critical focusing wave equation on the Euclidian space. A
blow-up type II solution of this equation is a solution which has finite time of existence but
stays bounded in the energy space. The aim of this work is to exhibit universal properties of
such solutions.

Let W be the unique radial positive stationary solution of the equation. Our main result
is that in dimension 3, under an appropriate smallness assumption, any type II blow-up radial
solution is essentially the sum of a rescaled W concentrating at the origin and a small remainder
which is continuous with respect to the time variable in the energy space. This is coherent with
the solutions constructed by Krieger, Schlag and Tataru. One ingredient of our proof is that
the unique radial solution which is compact up to scaling is equal to W up to symmetries.
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1. INTRODUCTION

Consider the focusing energy-critical wave equation on an interval I (0 € I)

2 . N
(11) Ofu— Au— |u|¥2u=0, (t,x)el xR
Upg=0 = Up € Hl, 8tu“:0 =uj € L2,
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2 T. DUYCKAERTS, C. KENIG, AND F. MERLE
. . 2(N+1)
where u is real-valued, N € {3,4,5}, and H' := H'(R"). We will denote by S(I) := L 52 (I x
RYN). We will often restrict ourselves to the case of radial solutions in space dimension N = 3.
The Cauchy problem ([L.1]) is locally well-posed in H' x L2?. This space is invariant by the
scaling of the equation: if u is a solution to ([L.1), A > 0 and

)\—)\¥ A7>\ )

then w) is also a solution and ||ux(0)|| ;71 = [[woll g1 |0:ux(0)]| L2 = |Ju1lz2-
Let Ty € (0,+00] be the maximal positive time of definition for the solution w. It satisfies
the following finite time blow-up criterion

(1.2) T < oo = |ulls,1,) = +o0.
Note that this criterion does not rule out type II blow-up, i.e. solutions such that T} < co and
(1.3) sup (| Qpu(t)|[72 + [ Vu(t)|7 < oc.

te[0,74)

This is different to the case of lower order non-linearity (of the form |u[P~lu with p < %),

where the finite time blow-up implies the blow-up of the energy norm.

Energy arguments of Levine type [Lev74] are not expected to give directly type II blow-up.
Examples of radial type II blow-up solutions of ([.]) were constructed in space dimension N = 3
by Krieger, Schlag and Tataru [[KST09]. The aim of this article is to exhibit universal properties
of this type of solutions.

Let

1
(1.4) W .= =
(1 + N(‘Ja\c/‘—2))
which is a stationary solution of ([.1]). The construction of relies on an elaborate fixed
point argument which yields the following description of the solution

1 x
(1.5) ) = S W (A(t)> +e(t),
where \(t) = (T — )1, v > 0 and

(1.6) lim |Ve(t))? d +/

=T Jja|<Ty —t 2| <Ty—t

19,e(t)|? dﬂc+/ le()|® dz = 0.
2| <Ty—t
In this work, we investigate the converse problem: if we consider an arbitrary type II radial
blow-up solution, does such a decomposition hold?
We will obtain this result in an appropriate smallness case. From || g, if,
2 2 2
sup [[Vu(t)|[72 + [[Ou(t)|[ 72 < VW72,
t€[0,T+)
then T, = 400 and the solution scatters forward in time, and in particular does not blow
up. In this work, the authors introduce a general road map to tackle such critical problems
in focusing and defocusing situations. From a concentration-compactness result (in this case
[BG99]), one reduces the proof to some rigidity property of solutions of ([.I]) that are compact
in the energy space up to the invariances of the equation. This rigidity property has to be shown
by independent arguments.
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The threshold |[VW/|2, is sharp. Indeed from [KSTO0J], for all 79 > 0 there exists a type II
blow-up solution such that
(1.7) sup [|Vu(t)l[72 + 10pu(t)l|F: < VW72 + 0.
t€[0,T+)

In the present article, we consider type II blow-up solutions such that ([[.7) holds. Our main
result is the following.

Theorem 1. Assume that N = 3. There exists ng > 0 such that for any radial solution u of
(L) such that Ty (u) = Ty < oo that satifies ([L.7), there exist a solution v(t) of (L) defined
in a neighborhood of t = T\, a sign 1o € {1}, and a C° positive function \(t) on (0,Ty) such
that, as t = T\,

(1.8) u(t) =v(t) + /\1/L§(t)W <)\:(Et)> +o(1) in H',
(1.9) dyu(t) = dpw(t) + o(1) in L?,
(1.10) A(t) = o(Ty —t).

Note that ([.g), (.9) imply that u is of the form ([LJ) with e satisfying ([L.6): any radial
blow-up solution satisfying ([.7) is of the type of the solutions constructed by Krieger, Schlag
and Tataru.

As it is now well-known from previous works on similar problems (see remarks below), the
result is based on classification of solutions of ([[.1)) that are compact up to the symmetry of the
equation. We state this result for its own interest.

Theorem 2. Let u be a nonzero radial solution of ([L1]) in space dimension N = {3,4,5}.
Assume that there exists a function \(t) of t € (T—(u),T+(u)) such that

K = {(AN/2_1(t)u (£, A()-) s AN (1) (¢, A(t)-)) te ]R}

has compact closure in H' x L*. Then there exist \g > 0 and a sign 1o € {£1} such that

Lo T
u(t,r) = ——W | — ).
) =5 (5)

Remark 1.1. The proof of Theorem P (see Section []) uses the material of [DMO0g], where a first
classification result of this type was obtained. Namely, at the energy threshold E(ug,u1) =
E(W,0), all solutions such that [ [Vug|?+ [|u1|> < [ |[VW|? are globally defined, and the only
ones that do not scatter are (up to the transformations of the equation) W and a solution W,
which scatters backward in time and tends to W exponentially as ¢ goes to +oc.

Remark 1.2. These results are essential to understand type II blow-up. After one has exhibited
an universal profile for blow-up, one can hope using local dynamics near W, or linearization
around W (see e.g. [KSO07]) to understand the possible blow-up speeds, which will complete
the program to understand type II blow-up. Moreover, this is the first step to prove that the
boundary of the set of initial data that lead to blow-up is given by type II blow-up solutions.
The proof of Theorem [I| highlights, through the mechanism of profile decomposition and the
finite speed of propagation, why the only candidates to be type II blow-up profiles are compact
solutions. The only case where such a striking fact was established was for GKdV by Martel

and Merle [MMO0d, MMO0]]].
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Remark 1.3. In the case of nonlinear wave maps, all blow-up solutions are of type II: the equation
is defocusing, in the sense that the energy provides a bound on the energy norm. An analogue
of Theorem [I] is known locally in space for a sequence of times (without size condition due to the
defocusing nature of the equation). Namely, if u is a blow-up solution, there exist a sequence of
times ¢, — T4 and a sequence X\, — 0T such that u(t,,z/)\,) tends to a nonlinear object. This
follows from a remarkable paper of Christodoulou and Tahvildar-Zadeh [[CTZ93]. See also the
article of Shatah and Tahvildar-Zadeh [FTZ97] which established a result similar to Theorem
in this context, the articles of Struwe [5tr03, Ftr03, and the recent preprint of Sterbenz and
Tataru [ for the general case of solutions without any special invariant properties. We also
refer to the works of Rodnianski and Sterbenz [RY], Krieger, Schlag and Tataru [KST0g] and
Raphaél and Rodnianski [RR]] for the construction of blow-up solutions.

Remark 1.4. Universality of blow-up profiles for a critical equation, as ¢ goes to the blow-up time
T, (without restriction to a sequence of times) was established, also under smallness condition,
in two cases:

- for the critical KdV equation
up = (Ugy + u‘f’)w, z€eR
by classification of compact solutions of the GKdV equation: see Martel Merle [MMOQ,

MMMOT, PAMOT;

- for the mass-critical NLS equation
iUy :Au—|—|u|%u, 1<N<5H
by Merle and Raphaél, by classification of solutions that are nondispersive (in a weak
sense) [MRO4].
See also the subcritical wave equation in dimension one where all blow-up profiles were found
by Merle and Zaag [MZ07, MZ0§] for general data (see the work of Caffarelli and Friedman for

specific data [[CF84]).

We next sketch the proof of Theorem [l

Consider a radial, blow-up solution u of ([[.1)) in space dimension N = 3 that satisfies ([[.7)
and assume for simplicity that the blow-up time T (u) is 1. As is shown in Section [J, u may
be decomposed as the sum of a solution to ([[.]) which is well-defined around the blow-up
time, and a singular part a(¢,x) which is supported in the light cone |z| < 1 —¢. Consider a
sequence t, — 1~ and a Bahouri-Gérard [BG9Y] profile decomposition associated to the sequence
(a(tn),Ora(tn))n. According to the result of [KMOJ], the bound ([[.7) implies that there is one
large profile and that the other profiles are small (see Remark B.10). This contrasts with
where the minimality of the solution imposes automatically that there is only one profile (the
large one). In our case, we must show by another mechanism that the small profiles do not exist,
which would imply by Theorem P that the large profile is W, yielding Theorem [i]

The main idea to exclude the small profiles is that any small block of energy norm decoupled
from the main profile would yield, for each time ¢,, a non negligible amount of energy norm
localized on a light cone.[] By finite speed of propagation one can show that these small energy
blocks, localized in disjoint light cones, sum up, implying the blow-up of the energy norm, which

IThis follows from a property of the radial three-dimensional linear wave equation that does not hold in the
non-radial setting or in higher dimensions (see Lemma @), which is the main reason why we restricted ourselves
to radial solutions in space dimension N = 3.



BLOW-UP FOR ENERGY CRITICAL WAVE 5

contradicts the bound ([.7). A similar phenomenon is highlighted in the context of the nonlinear
Schrodinger equation in [MROJ, MROg]. Unfortunately, this strategy can be implemented only
for a class of profiles that are very small and exterior in a certain sense (see Proposition [[4),
and we must exclude the other small profiles by indirect means (see Sections i, [] and f).

By Proposition p.J], the existence of a sequence 7, — 17 such that a(7,) concentrates at a
speed faster than self-similar implies, at least for another sequence of times t,, — 17, that all
profiles are equal to the stationary solution W. This property follows from rigidity arguments
involving virial type identities. In particular, there cannot be small profiles, and the bound ([[.7)
implies that W is the only profile for this particular sequence t,,. This yields the strong condition
that the energy of the singular part F(a,d;a) tends to E(W,0) as t — 1~ (see Corollary B.J)
which can be combined with the results of [KMOJ] to complete the proof (see §8.3 and §8.4)).

It remains to exclude the case of self-similar concentration, which is the object of Proposition
B3, For this, we argue by contradiction, showing (as a consequence of the non-existence of
small exterior profiles) that this self-similar concentration, if it exists, must concern the large
profile. The solution of ([.1)) corresponding to this profile is globally defined and non-scattering
backward in time, satisfies a global bound similar to ([.7) for negative times, and is partially
located around the light cone |t| = |z|, as t — —oo. This type of solution is excluded by
Proposition [/, using the non-existence, shown in [KMOg], of self-similar blow-up solutions of
(A)) which are compact up to scaling.

The outline of the paper is as follows.

After some preliminaries (Section []), we give in Section [ general results on type II blow-up
solutions of ([L1]) in space dimensions N = 3,4,5. In the two next sections we restrict ourselves
to radial solutions in space dimension 3. In Section | we show the nonexistence of small exterior
profiles for a radial type IT blow-up solution. In Section [, we assume that the solution does not
concentrate at a self-similar rate, and show that in this case, there exists a sequence t, — T
such that u(t,) decomposes as a sum of rescaled stationary solutions.

In the two following sections, we consider solutions of ([[.1]) that do not blow up in finite time.
Section [] is devoted to the proof of Theorem [}, which is a consequence of the classification
result of [DM0g]. Section [] is concerned with the localization of the energy for globally defined,
bounded, non-scattering solutions of ([L.])).

Section f gathers the results of all previous Sections to prove Theorem []. In Appendix [A] we
prove some technical properties of profile decompositions. Appendix [J shows a simple result on
a family of sequences of positive numbers which is needed in some parts of the proof.

In all the article, for sequences of positive numbers {«, }, and {f,},, we will write «,, < 3,
when oy, /3, — 0 as n — oo, and «a,, &~ 3, when C o, < 3, < Cay, for some large constant n.
We will denote by 0, (1) a sequence that goes to 0 as n goes to oco.

2. PRELIMINARIES

2.1. Cauchy problem. The Cauchy problem for equation ([.1]) was developped in [Pec8{,

[GSV97, [£S94, BS94, BS99, Bogdd, [Kap94]. If I is an interval, we denote by

2(N+1) 2(N+1) 2(N+1)

SIy=L"7~2 (IxRY), WI)=L~1 (IxRY), N(I)=L"7~ (IxRY).




6 T. DUYCKAERTS, C. KENIG, AND F. MERLE

Let S, (t) be the one-parameter group associated to the linear wave equation. By definition, if
(vo,v1) € H' x L? and t € R, v(t) = S.(t)(vg, v1) is the solution of

(2.1) O*v — Av =0,
(2-2) Vt=0 = Vo0, 5t’Urt:0 = 1.
We have

1
NN

S.(t)(vg, v1) = cos(tvV—A)vy +
By Strichartz and Sobolev estimates,

(2.3) olls e + HD;”/%}HW

sin(tv/—A)vy.

® < Cg (HUOHHl + ”UluL?) .

A solution of (L) on an interval I, where 0 € I, is a function u € C°(I,H") such that
o € C°I,L?),
(2.4) J € I = ||Dy?ullw gy + llull sy < o0
satisfying the Duhamel formulation
Esin ((¢ — s)V—A) 4
2.5 t) =S(t + N-2 ds.
(25) () = s+ [ THEZEE (o) M2 u(e)) ds
We recall there exists a small §y > 0 such that for any interval I containing 0 and any (ug,u1) €
H' x L? such that

(2.6) 181 (£) (w0, u1)l g1y < o,

there exists an unique solution u of ([[1]) on I. Furthermore if &y is chosen small enough, this
solution satisfies:

(2.7) [ulls(ry) < 2118u(t) (uo, ur)l gz -

Sticking together these local solutions, we get that for any initial condition (ug,u1) in the
energy space, there exists an unique solution v of ([.I), which is defined on a maximal interval
of definition

Imax = Imax(uo,u1) = (T (uo, u1), Ty (ug, w1)).
We will often write Iax(u), T4 (u), instead of Iax(uo, w1), T (ug, u1).
If |[81.(t) (o, w1)| sy = & < do, then u is close to the linear solution with initial condition

(ug,uy) in the following sense: if A = HD;MSL(t)(uo, ul)HW(I), we have

(2.8)  [Ju() = 8u.(-) (w0, w1)l| gpy
s (1) = (0) (0. )l s -+ 1900(t) = (S (D)o, w))2) < CA6F,

(see for example [KMOG], proof of Theorem 2.7).
Any solution u of ([[.I)) satisfies the blow-up criterion ([.4), and the analogue for negative

time. As a consequence, if |ul[gr,) < oo, then Ty = +oo. Furthermore in this case, the

solution scatters forward in time in H' x L?: there exists a solution v of the linear equation
(1)) such that

Jim () — o)z + [10pu(t) — G ()] 22 = 0.
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Of course an analoguous statement holds backward in time also.
We next recall a long-time perturbation theory result for ([.1)) (see Theorem 2.20 of [KMO0g]).

Theorem 2.1. Let M > 0. There exists g = eo(M) with the following property. Let I C R be
a time interval such that 0 € I, and @ be defined on I x RN such that

lalls +sup (@@l + [9a(®)l2) < M, T el=|D¥%| <o,
tel W(J)
Denote by (i, i) = (@(0), d;1(0)). Consider (ug,u1) € H' x L? and € € (0,g9). Assume

4

O — At — |a|v-

2i=e, (t,z)elxRY

. - 1/2
and |lug — to|| gr + |Jur — || 2 + HDx/ eHN(D <e

Then the solution u of ([.1]) with initial condition (ug,u1) satisfies Imax(u) C I and for a By > 0,
[ulls(ry < C(M), (S;elPHU( ) = a(@)ll g1 + [|1Bu(t) — 8tﬂ(f)lle) < C(M)e™

2.2. Remarks on stationary solutions of ([.1). Recall from ([:4) the definition of the sta-
tionary solution W. It is known from the works of T. Aubin [Aub7q] and G. Talenti [Tal7q] that
W is the unique minimizer, up to translation, scaling and multiplication by a scalar constant,
for the Sobolev inequality on RY

171l 22, < CNIIV S L2
By a classical ODE argument, we also have the following uniqueness result:

Claim 2.2. Let U be a (real) HY(RY) radial solution of

AU +|U|7=2U = 0.
Then
1 €T
U=0 or dN>0,U=+—FW
e\

0

Note that the equation AW+ W2 =0 implies E(W,0) = & [ |[VW|? > 0. This fact is used
to prove the following variational properties of W which will be needed throughout the paper.

Claim 2.3. Letv € H. Then
VW7

(2.9) Vo[22 < [VW|22 and E(v,0) < E(W,0) = || Vv[32 < E(TOL;E(U,O) = NE(v,0).

N—

Furthermore, if | Vol|3, < (NA_TQ) s VW |2,, then E(v,0) > 0.

Proof. The first part of the claim is shown in [DMO§] (see the proof of Claim 2.4). For the
second part, write

B0 = 5 1900 = 532 [ 2 5 [ oo - B 208 </|Wl2>
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where Cly is the best constant in the Sobolev inequality |[v]| ax < Cn||V| 2. Let y = [ |[Vol?
N—-2

and assume that E(v,0) is negative. Then

1 N-2 28

0> —y— ~_20N-7,53
2 " Ton N Y
2N N

This shows that y > y,, where y, is the unique positive solution of %y — %C’P yN-2 = (.
N-2

Using that C’;,N = VW2, we obtain y* = (%) 7 1l |VW|?, which concludes the proof. [

2.3. Profile decomposition. We recall here the profile decomposition of H. Bahouri and
P. Gérard [BG9Y]. This paper is written in space dimension N = 3 but the results stated
below hold in all dimension N > 3. See also [BC8F] and [[Lio8] for the elliptic case and [MV9g
for the Schrédinger equation. '

Consider a sequence (v, 1, )n, Which is bounded in H! x L2, Let (Ug)jzo be a sequence of
solutions of the linear equation (R.1)), with initial data (Ug, Uf) € H' x L2, and (A\jn; Tjnitjn) €
(0,400) x RN x R, j,n € N, be a family of parameters satisfying the pseudo-orthogonality
relation

Aj A tin—t -
(2.10) j# k= lim 220 4 Zhn by = b + [Zin = Tkn| _ +00.
= Aen Ajn Ajin Ajin

We say that (vop,v1n)n admits a profile decomposition {Uf} AN s T tj,n}j ,, When
J b

1 —tin T—
vo,n = Z N-—2 UIZ < )\-37"7 b\ jm) +w0Jn(‘T)7
=1\ 2 Jn Jn
(2.11) ; J’"
1 —~tin T—T
U1,n Z N atUg ( /\,J’n’ A J,TL> +wi]n(x)v
=1 )\ﬁn Jn Jn
with
(2.12) lim limsup Hw;{HS(R) =0,

where w;] is the solution of (R.1)) with initial conditions (w{,, wy,,). Then:

Theorem 2.4 ([BGYY)). If the sequence (vo.n, v1.n)n is bounded in the energy space H' x L?, there
always exists a subsequence of (Vo n,v1n)n which admits a profile decomposition. Furthermore,

)
J;m n— 00

N-2 N
(2.13) j<d = <Ajﬁ Wi (Ems T + Njnd) s AL Oewis (Ems Tjon + /\jmy)> —0,
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weakly in H 1 x L2, and the following Pythagorean expansions hold for all J > 1

J 2
2 i (=t 2
219 ponlln =3 [2 (G2 + il + ontt)
j:l ],sm H1
J " 2 )
2 e
(215) ol =3 00 (522)| -+ ludall + 000
j—l J,m L2

J
; tin
(2.16) E(vopn,v1n) E E <UJ ( 3 > , OU7 ( 3, >> +E(w0n,w1 n) + on(1).
e VKD Jim

Replacing Ug(t, x) by VLj(t, x) = /\N 5 U] (t :J xg’) for some good choice of the parameters
J
Aj, tj, rj, and extracting subsequences, we can always assume that one of the following two cases
occurs

tjn
(2.17) Vn, tj, =0 or lim I e {00, +o0}

n—oo )\
We will need the following bound on the parameters.

Lemma 2.5. Let v, be as above and {uy}n, be a sequence of positive numbers. Assume

(2.18) lim hmsup/ ([Vvoul® +vi,) dz = 0.
|z[>Rpn 7

R—+400 n—+oco

Then for all j, the sequences {ij—"} , {Z”} and {gij—"} are bounded. Furthermore, there is
mn n mn n n n

>\.
LR does not converge to 0.
n

Proof. The case 1, = 1 follows from [BG99] (see p.154-155 for the proof). For the general case,
apply the result of the case i, = 1 to the rescaled sequence (¥, 01,n)n defined by

Gon(t,x) = ph/?! ph/?

at most one j such that

UO,n(,unx)a ﬁl,n(tafﬂ) = Ul,n(:unx)a

O
Notation 2.6. For any profile decomposition with profiles {Uj } and parameters {\;,,tjn, Zjn},

we will denote by {U 9} the non-linear profiles associated with {U ! < ) Oy U] < ) } which
t .
are the unique solutions of ([[.]) such that for all n, m € Inax (U ) and
=0.

—tin —t; —tin —t;
o (52) - (322, + o (522) -owt (52)
)‘J n /\jm H? /\J n Aj,n L2

Assuming (P:17), the proof of the existence of U7 follows from the local existence for (1)) if
tjn = 0 and from the existence of wave operators for equation (1)) if ¢;,,/); ,, tends to too. By
the Strichartz inequalities on the linear problem and the small data Cauchy theory (see (R.7)),
if limy o0 522 = +00, then T} (U7) = 400 and

lim ‘
n—-4o0o

(2.19) so > T_ (U7) = ||U7]| 5(s0,4-00) < 90,

. . i
an analoguous statement holds in the case lim, o 2" = +00.
7,
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Notation 2.7. We will often write, for the sake of simplicity

. 1 (t—ti, T —x; ; 1 (t—ti, T —x;
U] t — U] J,n J,n UJ t — UJ J,n J,n .
w(h:2) )\%2_1 ( YDV Lt ) %2—1 ANV

We will need the following approximation result, which follows from Theorem P.1 and is an
adaptation to the focusing case of the result of Bahouri-Gérard (see the Main Theorem p. 135
in [BG9Y)).

Proposition 2.8. Let {(von,vin)}n be a bounded sequence in H' x L2, which admits the profile
decomposition ([R.11). Let 0, € (0,+00). Assume that for all j, n,

(2.20) Vji>1, Vn, On = tjn < Ty (U?) and limsup HUjHS(
n—-—+00

) _tin On—tjn
]7”

) < Q.
i Ajn

Let uy, be the solution of ([1)) with initial data (von,vin). Then for large n, uy, is defined on
[07 011);

(2.21) lim sup lunls(0,6,) < 00,
and
(2.22) VE€[0,0n), un(t.z)=> Uj(t.z)+wy(tz)+r)(t ),
j=1
where
(2.23) lim 13msup 7211 50.6.,) + S(llp IV Olz2 + 1875 (8)]| 2) = 0.
n—+00 j_, 1 n On

An analoguous statement holds if 6,, < 0.
Remark 2.9. Assume that for all 7, at least one of the following occurs:

: : 5
(a) Ul g + U722 < C—O, where the constant Cig is given by the Strichartz estimate (P.3)
S
and &g by the small data theory;

. _t_],TL
(b) Jlim N O
. en - tj,n j
(¢) limsup ——2= < Ty (U7).
n—-+4o0o 7,mn
Then (2.20) holds. Indeed in case (H), it follows from (R.3) and the small data theory. In case
(H), it follows directly from the small data theory: see (R.1J). It remains to treat case (f]),
when ¢, = 0 or —t;,/\j, — —oo. If t, = 0, then by definition 7_ (U7) < 0 and (R.20) is
a consequence of (P.4) and (H). If —¢;,,/\;, — —o0, then the analogue of (R.19) for negative
times and () imply (R.20).

Remark 2.10. When N is odd, under the assumptions of Proposition R.§, we have localized
pseudo-orthogonality properties for all time of the interval (0,6,,) as follows: let 7, € (0,6,,) for
all n, {u,} be any sequence of positive numbers and y € C§°(RY) be radial and such that x = 1

DO
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in a neighborhood of 0. Then, if ¢ =1, ¢ = x or ¢ = 1 — ¥, one can show after extraction the
following Pythagorean expansion:

o () IWiutrpas - g [0 (L) 19t ot [ (2 ) Vsl ) doron(1),

where |V, ul? = (0u)? + |V,u|?. This follows easily from Claim [A.] in the appendix and we
omit the proof.
Sketch of proof of Proposition B.§. Denote by F(u) = |u|ﬁu the nonlinearity. Let
J
1 (t—tj, v—a;
@i(tax):ZWUj < J,n7$ l’y,n> +wl(t, 7).
: Ajn Ajm

)

We will apply Theorem P-] to @, and u, for large n.
We notice that there exists Jy > 0 such that for all j > Jy + 1,

< 50,

(2.24) Vi Jo+1, HUg' .

where dy is given by the small data theory for ([.1). Indeed, it is an immediate consequence of
the Pythagorean expansions (R.14), (R.15) and Strichartz estimates. Thus we can use the small
data theory which implies by (B.7)

(2.25) iz do+ 1 ([0l gm < C (103l + 072
Fixing a large .J, one can show, as a consequence of the orthogonality (R.1() of the parameters,

2(N+1) 2(N+1)
N-2 N—2

J J
1 (t—tin, T—T; 1 (t—ti, x— T,
Z N-2 v’ < /\.]m’ s ]m) :Z N—2 U’ < )\}J,n’ s J,TL> +0n(1)'
1\ VKD Jin el D Jin VKD

j= J= in 5(0,60n)

2
J,n S(079n)
Combining with (R.25) and the Pythagorean expansions (2.14), (R.17), we get

lim sup lim sup HﬂiHS(O,Gn) < 0.
J—00 n— oo

Let J > Jg and €] = (0? — A)ii;] — F(%;]). Then

n
1 (t—t S
ei(t,x):ZF MU]< )\.]m) - F Z MU]< )\_J’n>+wg
j=1 Aim Jm =1 Jm

From (R.20) and again the orthogonality (R.1() of the parameters, we can deduce

J
n

=0.
N(0,m)

lim limsup HD}C/ Ze
J—400 pn—+too

Furthermore
15, (0) = 1 (0), 9ty (0) = Dyuy (0),
which yields by Theorem R.]] the conclusion of the proposition. O

We will also need the following technical claim. The proof is postponed to Appendix [].
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Claim 2.11. Assume that N is odd. Let w, be a sequence of the radial solutions to the linear
wave equation (2.)) with bounded energy and such that

(2.26) Jimf|wy [ s@) = 0.

Let (wo,n, w1,n) be the initial data of wy,, X € C(‘)X’(]RN), radial and such that x = 1 around the
origin, and X\, be a sequence of positive numbers and consider the solution wy, to (R.1]) with

initial data (Wo p, W1 p) = <¢(|$|/Xn)w0,n,@(|$|/Xn)w1,n>, where ¢ = x or ¢ =1 —x. Then
(2.27) T | 5y = 0.

3. DESCRIPTION OF GENERAL TYPE II BLOW-UP SOLUTIONS

In this section we consider a general type IT blow-up solution of ([[.I)) in space dimension
N € {3,4,5}, that is a solution u bounded in the energy space and such that T (u) < oco. We
do not assume that wu is spherically symetric.

Definition 3.1. Let 2o € RY. We will say that the point x is regular if
2

3.1)  Ve>0, IR, Vi € [0, T, (w), / Vul? + + () <e.

lz—zo|<R |z — w2
If ¢ is not regular, we will say that it is singular. We will denote by S the set of singular points.

Theorem 3.2. Let u be a solution of ([L.])) with type II blow-up forward in time, and Ty = T4 (u)
the blow-up time. Then there exists K € N* and K distinct points my,...,mg of RN such that

S = {mi,...,mg}. Furthermore there exists (vo,v1) € H' x L? such that
(3.2) (u(t), Opu(t)) e (vo,v1) weakly in H' x L%
—T4
If o € Cg° (RN) is equal to 1 around each singular point, we have
(33 T (1= ) (u(t) = w0) 1 + (1 = ) @yu(t) = v1) 2 =0,
Furthermore, if k€ 1... K,
(3.4) lim sup / Vu(t, )| + [t )2 > / VWP
t—>T+ |m—mk\§|t—T+\
2

(3.5) lim inf Vult,2)2 + [dpu(t, 2)2 > —/vay2.

=T S <l N

Definition 3.3. Under the assumptions of Theorem B.J, le v be the solutions of ([[.1]) such
that (v(T4),0w(Ty)) = (vo,v1). We will call v the regular part of u at the blow-up time 7%,
and a = u — v the singular part of u. Note that (B) implies, together with the finite speed of
propagation, that

K
suppa C U {(t,x), |z —my| < |t —T4] }
k=1
This section is divided into two parts. In §p.1], we perform a first analysis of the behaviour of
u around each singular point, showing (B.2) and (B.d). In §B.3, we write a profile decomposition
of the solution around each singular point to show (B.4) and (B.H).
We will assume in all the sequel without loss of generality that the blow-up time is 7 (u) = 1.
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3.1. Generality on regular and singular points.

Lemma 3.4. There exists a constant 61 > 0 with the following properties:
(a) for all zg € RN, g € (0,1) and R > 0, if

1
/ Valto) P+ [ouu(to) P+ ———[u(to)® < 1,
le—z0|<|to—1|+R |z — o]
and ¢ € C(RN) has compact support in {|x — xo| < R}, then (pu(t), pdyu(t)) has a
limit in H* x L? ast = 1;
(b) for all ty € (0,1), and R > 0, if

1
[ 19utto)? + oratto)? + s lutta) P < 61
le|>R ]
and ¢ € C®(RYN) is equal to 1 at infinity and is supported in the set |z| > R+ |1 — to|,
then (pu(t), pdyu(t)) has a a limit in H' x L? ast = 1.

Proof. Let us prove (f). Assume that for some parameter 79 > 0 to be determined later,

/ Vulto)|? + |dulto)? + (t0) > < mE(W,0).
|lz—z0|<|to—1|+R ‘

x—x0]2‘u

If ng is chosen small enough, then, by a standard extension theorem, there exist 4y € H' @, € L?
compactly supported on RY and such that

(3.6) to(z) = u(ty,z) and uy = dwu(to, x) if |z — zo| < [to — 1| + R,
1
(3.7) / Viig|? + i1 |* + —— |io|* < CE(W,0) < E(W,0).
RN |z — o
Consider the solution @ of ([[.1]) with initial condition (&g, @) at ¢ = to. By (B.]), we have
1 1 N —2 2N
E(io, ) = = w2 = [ P — S [ jae|vE < E(W,0
) = [ Va5 [ mlP - 557wl < oo

Vo2, < E(W,0) < / Sl

By the result of Kenig-Merle [[KMO0§], @ is globally defined. The mapping ¢ — (a(t), dyu(t)) is
continuous from R to H' x L?. By the finite speed of propagation and (B.G),

Vt € [to, 1], Vz € RY, |z — o] < |t — 1| + R = u(t,x) = a(t, ), dyu(t,z) = dyi(t, ),

In particular, (pu(t), poiu(t)) = (@u(t), ¢oiu(t)) has a limit as t — 1, which concludes the proof
of case (H).
Case ([)) is similar. Indeed in this case, if 01 is small enough, there exist @y and @, such that

to(z) = u(ty,z) and uy = dwu(ty, x) if |z| > R,
1

[, V0l + il + gl < BOY-0)

Consider the solution @ with initial data (ug, 1) at ¢t = tg. By the finite speed of propagation, u
and @ coincide if |x| > [tg — t| + R, and the result follows again by the global existence of . O
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Corollary 3.5. For any singular point m, for all t € Inax = Imax(u),
1
(3.8) 5 < / Tult)? + Bult)  + ——fu(t) .
jo—m|<|t—1| [z —ml|

where 81 is given by Lemma [3.4. Furthermore, the set S of singular points is finite.

Proof. The finiteness of S follows immediately from (B.§) and the fact that the blow-up is of
type II.

Let us show (B.§). We argue by contradiction. Consider a singular point m, and assume that
for some tg € Inax and € > 0,

1
72|u(t0)|2 < 0y.

/ Vulto)? + Beulto)|? +
le—m|<|to—1|+¢ |3j _m|

Let ¢ € Cg°(RY) such that o(z) = 0 if [z — m| > € and ¢(z) = 1 if |z — m| < §. By Lemma
B4, (pu, pdyu) converges in H' x L? as t tends to 1, contradicting, in view of the continuous

x—m)|

We have proven that for all ¢ € I},.y, for all € > 0,

embedding of H' into L2 <‘—1§d$) the assumption that m is a singular blow-up point.

1
51§/ Vut)]? + |0u(t)]* + ——|u(t)|?,
|x—m\§|t—l\+e’ O + [Ou(?)] ‘x_m‘g‘ (®)]
concluding the proof of (B.§). O

We are now ready to prove (B.9) and (B.J) of Theorem B.9. Let us first show that (u(t), dyu(t))
has a weak limit in H' x L? as t = 1. It is equivalent to show that all weak limits of sequences
{(u(tn),(‘)tu(tn))}n where t, = 1, coincide. For this, notice that the definition of a regular
point and Lemma B.4 show that if (vg,v1) and (g, ?1) are such limits, then they must coincide
around any regular point. As the set of singular point is finite, this shows as desired that
(vo,v1) = (¥g, 01). Denote by

(v0,01) = w-lim (u(t), D).
By point () of Lemma B4, (u, dyu) has a limit in H. (RV\ S) x LE . (RV\ S) as ¢ goes to 1.
The uniqueness of limits shows that this limit must be (vg,v1). Using point ([) of Lemma B.4|,
we get that the convergence to v is also global, hence (B.3).

We finish this part by noting that there is at least one singular point. If not, (B.J) shows
that (u(t),dyu(t)) has a limit as ¢ — 1, which shows that 1 is not the maximal positive time of
existence, a contradiction.

3.2. Bounds from below on the norm of the main profile. In this subsection we will
complete the proof of Theorem B.J by studying the behavior of u in the neighborhood of singular
points by using a profile decomposition. We assume that

0es.

Consider an increasing sequence {7,} € (to,1)" that tends to 1 and a function ¢ € C§° (RY)
such that ¢ = 1 close to 0 and suppy¥ NS = {0}. After extracting a subsequence, we can assume
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that there exists a profile decomposition

—tjn T—Tjn

J

1 .
)\ j,n
J=1"n

j,TL
39 P o 1 oUl
_U _ _U — L _t.?m’ T — ':Uj,n
Q’bat (Tn) Q’bat (Tn) o ;:1 /\N/2 ot < /\j,n ’ /\j,n > +w1’n(gj)7
1A

where U/ is a solution of the linear wave equation (B1) with initial conditions (Ug, Uf )
As 9(u — v) is supported in {|z| < 1 —t}, when ¢ is close to 1, Lemma R.5 implies

(3.10) Vi =1, 3C5 Yn,  [Ajn| + [tjn] + 250 < C5(1 = 7).

Let us first show:

Lemma 3.6. Reorder the decomposition (B.9) so that

12 1112 j 2 J 2
(3.11) 1903155 + W0 = s (703, + ]
Then
2
(3.12) VU5 + [|UT]) 2 = < IV W 2.

Lemma B.6, together with the Pythagorean expansions (2.14) and (R.15) implies immediately

B3

Remark 3.7. In space dimension N = 3, we have the following immediate corollary of Lemma

B-4. Assume

timint (IVu(t)32 + 10(B)3) < SIVW]3,
then there is only one singular point. See Remark below for an improvement.
Proof of Lemma [3.4. Assume that
IVUR I3 + 10312 < < IVW3a,
and thus for all j > 1,
IV + 10213 < IV W12

Using that 2E(f,g) < [[Vf[%, + ||lg|/2. and that E(W,0) = +[[VW|%,, we get that there exists
an gy > 0 such that for all j,n

E (Uf (—tjm/Njm) U} (—tj,n//\j,n)) < E(W,0)—eo, VU2 <|IVW|22 — 0.

Then according to [KMO0Y], for all j, U7 is globally define and scatters. By Proposition R.§ the
solution with initial condition (¢Yu(ry,),du(r,)) is globally defined and scatters for large n.
Using the finite speed of propagation, we get a contradiction with the fact that 0 is singular.

Hence (B.12). O

It remains to show (B.4). We first recall the following scattering result (see [KMOg, Corollary
7.4]):
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Proposition 3.8. Let u be a solution of ([.I) such that
lim sup [|Vu(t) |72 + |19u(®)llz: < [VWIZ.
T+ (u)
Then u is globally defined and scatters.
The following proposition implies (B-4) by the Pythagorean expansions (£.19), (B-17):

Proposition 3.9. Let g9 > 0. There exists a sequence {7,} € (to, 1) that tends to 1 such that

(Va(Th),v0ra(T,)) admits a profile decomposition {ﬁf} , {)\j,n,fjm,t]—,n}‘ such that t, =0
j

]7”
and

(3.13) \W%iJWﬂM;ﬂwww—@.

Proof. We follow the lines of the proof of [KMO0§, Corollary 7.5]. In all the proof, we will always
work up to the extraction of a subsequence for sequences indexed by n. In particular, any real
sequence indexed by n will be assumed to have a limit in R U {£o00}.

Consider an increasing sequence {7,,} € (to, 1) that tends to 1. Let i, and @, be the solutions

of (7)) such that
(ﬁna atﬂn) [t=Tn — (#JU(Tn), 1/1(9{&(7%)), (f)na a1€7~)n) [t=Tn — (wv(Tn)a watU(Tn))'
By finite speed of propagation, and the fact that x = 0 is a singular point for w, T (i,) < 1.

Furthermore, (Yv(7,),¥dv(7,)) has a limit in H' x L? as n — oo, which implies that there
exists a small ¢y > 0 such that 0, (7, + t) is well defined for large n and |¢| < to.

After extracting a subsequence, there exists a profile decomposition with profiles Ug } and
parameters {\; ,%;n,Z;n} associated to the sequence (ﬂn(Tn) — Un(Tn), Optin (T0) — 8t?7n(7'n))
The fact that ¢ (u — v) is supported in {|z| < 1 — ¢} and Lemma P.5 imply
(3.14) Vi =1, 3C5 Yn,  [Ajn| + [tjn] + 250 < C5(1 = 7).

Let us consider the associated nonlinear profiles U7 (see Notation R.§). Reordering the profiles,
we get a Jy such that

n

Vi<Jo, U |lsr iy =00, Yi=Jo+1, U/ ]sor, ws) < oo

By the finite blow-up criterion, T, (U%) = +o0 if j > Jy + 1. By Proposition P.§ there is at
least one solution U’ that does not scatter forward in time (otherwise we would have Tl (u) > 1),
and thus Jy > 1.

For 1 < j < Jy, lim, % =/{; € {—oo} UR (the case ¢; = +o0o is excluded as the nonlinear
profile does not scatter forward in time). If ¢; is finite, the corresponding profile is compact up
to scaling and translation, and we may assume t;, = 0. Thus
(3.15) Vie{l,...,Jo}, tjn=0o0r lim P — 0.

’ n—+00 Ajn
By Proposition B.g, for all j € {1,...,Jo}, there exists a time T} such that
(3.16) T-(U7) <T; < Ty (U7) and ||[Vu(T))l[72 + [100u(T) |22 = VW72 — co,
furthermore, using that 7. (U J ) > 0 if tj,, = 0, we may choose T} such that

(VYn, tjn=0) = T; > 0.
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Extracting subsequences and reordering the profiles, we may assume

(3.17) Vo, tin+ AT = ér];ignjo (tjn +XjnTy) .
Denote by 6, = t1,, + A1,,T1. Note that 6,, > 0 for large n and, by (B14)
(3.18) lim 6, =o.
For all j, we have, by definition of 6,, 6"/\;2’" < Tj < Ty (U7). According to Remark R.9 we

can use Proposition P.§ which shows that 7, + 6, < T (a,) < 1, that {||@nlls(r,,r+6,)},, 18
bounded and

J
~ ~ 1 1 t_t, IIJ‘—ZE',
(319) in(r+) = Tulra +1) + 3 MUg< e, Aj,n’">

+ w;{(t,:n) + ri(t,:p), t € (0,6,),

where 7 satisfies (:2). If j > 1, there exists (extracting if necessary) a linear wave U/ such

that
lim HUj (M) i <M> H N ‘ o, <9n - tm) 000 <0n - tm)
n—oo >\j,n /\jm e /\j,n >\j,n

Indeed, if {G”A_tj’"} converges this is obvious, if it goes to —oo, it implies that {0’1}\_&} also
n n

Jsm 7,

=0.
L2

goes to —oo, and we can take ﬁf = Uf. Writing 7,, = 7, + 6,, and fj,n = tjn — 0, we get by

(GRER

- o\~ 1~ (~tjn v —xjp
(i = 0 (o) = 3 00 (522 2222 ) s ) +7(00) + 0n 1)
A2 g Ajn
(3.20) T )
5 o 1 ~(—tin T—Tin
Oy (i — ) ) = 3 NatU£< Lin 2% )+atw;{<en>+atr;{<en>+on<1>,
Az, g Ajn

This a profile decomposition for the sequence (ﬂn(?n) — 0 (Th) s Otin (Ty) —8tz7n(7~'n)), with profiles
ﬁf and parameters \; ,, T n, fj,n. Note that the orthogonality of the parameters follows directly
from the equality fj,n - fkm =tjn — thn-

Next notice that by finite speed of propagation and the definitions of 4, and v,,, there exists
a rg > 0 such that, if n is large and || < rg then 4,(7,) = u(7,), Otn(Th) = Owu(Ty),
On(Tn) = v(T,) and 040,(7n) = Ow(T,). Using that u(7,) — v(7,) and Owu(T,) — dw(T,) are
supported in the set {|x| < 1 — 7,}, one can replace, in the decomposition (B.2(), @, and v, by
YPu and Y.

Gn—tl,n

Finally, =—* = T3. Thus the first profile U! in the decomposition (B.2() is compact up to

modulation, and we may assume #1 , = 0 as announced. The inequality (B.13) follows from the
choice of Tj. O

Remark 3.10. We can improve Remark B.7 as follows. If for some ¢y € (0,1),

2
sup [Tu(O) + 1003 < (143 ) I9WIE-,
te(to,1)



18 T. DUYCKAERTS, C. KENIG, AND F. MERLE

then there is only one singular point. This is a direct consequence of (B.4) and (B.H).

4. FINITE SPEED OF PROPAGATION AND EXCLUSION OF SMALL EXTERIOR PROFILES

In the two next sections, we assume that N = 3 and that u is spherically symmetric, blows
up at time 7' = 1 and satisfies

(4.1) sup 1/IVu(®)|Z, + [, < Co.
To<t<1

In these two sections we will not make any further assumption on Cy > 0. By spherical symmetry
0 is the only singular point. We denote by
a(t,z) = u(t,x) — v(t,x)

the singular part of u at the blow-up time ¢t = 1 (see Definition B.J).

The main result of this section (Proposition [[.4), shown in §[L.9, is that the norm of the most
exterior profile of any profile decomposition of a sequence (a(t,,), dra(t,)) is bounded from below
by an universal constant independent of the solution.

4.1. Linear behavior. We start by two preliminaries results on the linear problem, valid in odd

dimension only, that will be needed in the sequel. The first one follows from Huygens principle:

Lemma 4.1. Assume that N is odd. Let v be a solution of the linear wave equation (B1), with
initial conditions (vo,v1), {An},, {tn}, be two real sequences, with X, positive.

(t )_ 1 t x
un(t, x _)\nN/2_1U NN )

and assume lim, f\fz = /(€ [—00,+00]. Then, if { = £oo.

R—0o0 n—oo

1
lim lim sup/ |V, ()| + —2]vn(tn)]2 + (8w (tp))? dz =0
|t | > R |z
and if £ € R,

1
lim lim sup /{IrIZRAn} IV on (tn) ]2 + —=|vn (tn)|? + (8yvn(tn))? dz = 0.

2
R—o0 n—oo T
U{lz|<fAn} 2

Proof. This is a classical property. In the case ¢ € R, just notice that

1 x . 1 x .
Un(tn, ) = W’U <€, )\—n> +on(1) in H', Oy, (ty,z) = Waﬂ) <€, )\_n> + op(1) in L?,

which implies the announced estimate (in this case we do not need any assumption on the parity
of N).
Let us treat the case £ = +00. Let ¢ > 0, x € C°(RY), such that y(x) = 1 for |z| < 1/2 and
x(z) =0 for |z| > 1. Then
x x

Rh—]?;o HV(vgz - ’U(])HL2 + Hv{% - ’U1HL2 = 0, where vfi(z) = x <E> vo(z), vi(z) = x <E> v1(z).
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Choose R. such that for R > R, \/HV fué% — Hiz + H,U{% UlHiz <e. Let R > R. and denote

by v the solution with initial condition vé%n = A V2 vtz /M), o1, = /\;N/zv{%(:n/)\n). By
conservation of the energy and the scaling of the equation,

VIVOE(t) = Vou (b2 + 1008 (E) — Bvalta) |2 < =.

By the strong Huygens principle, (vZ(t,), 9:vE(t,)) is supported in the ring {|t,| — R\, < |z| <
|tn| + R\, }. Hence for large n (using Hardy’s inequality),

1/2
1
/ [Von(tn) > + =5 lvn(ta)|* + (Byvn(tn))? da:
|ltn] ~ |2l | > ~An ||

1/2
S (/‘t | ‘ “>R)\ |va(tn)‘2 + #‘Uf(tn)e + (atvf(tn))2 dx) + CE — CE,

which concludes the proof of the lemma. O

We next give, in Lemma [I.9, a property of the energy of radial solutions to the linear equation
in space dimension N = 3. In Corollary [l.d we deduce a similar property for solutions of the
non-linear equation which are sum of small profiles.

Lemma 4.2. Assume that N = 3. Let v be a radial solution of (R.1]), to € R, 0 < rg < 7.
Then the following property holds for all t > to or for all t < tg

(4.2) / (0 (rolt, x)))2 + r2(9yu(t, z))dr
ro+|t—to|<r<ri+|t—to|

> %/ro<r<r1 (0, (7"1)(750,:17)))2 + 729y (to, z))>dr.

Proof. We can assume that tg = 0. Let f =1rv, fo = fr=0, f1 = Ot fji=0. Then
(4.3) Of =9%f, teR, r>0.

Furthermore, as v(t) is in H! for all t, by Hardy’s inequality in dimension 3,

/%(f(t,r))zdr + / (&f(t,r))zdr < 0.
By Sobolev embeddings in dimension 1, for all ¢, f(¢,-) is continuous and satisfies the condition
f(t,0) = 0. By explicit computation we get

ft,ry=F({t+r)—F({t—r), teR, r>0
where F' is defined by

—fo filo s>0
F(s) = /
——fo( s) + 5 ; fl( )do, s <0.
Thus, if t € R,
ri+|t| r1+|t|
(4.4) / (Ouf (t,1)) + (D, F (£, 1)) 2dlr = 2 / (F'(t +)° + (F'(t —r)2dr.
ro+|t| ro—+|t|
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Consequently, if t > 0,

/ T O+ ) dr > 2 / N () dr,

o+|t| )
and if ¢t < 0,

/ N O+ ) > 2 / N (F)

o+t o
By ([4) at t = 0 we get that the inequality

ri+|t| r1
(/+ @J@Mf+@ﬁ@ﬂfwzé/ (F1))% + (0 folr)2dr

o+|t| o
holds for all ¢ > 0 or for all ¢ < 0, hence (£.9). O

Corollary 4.3. Assume that N = 3. Let Cy > 0. Then there exists a constant 61 = §1(Cp) > 0
with the following property. Consider J >0, and let {\1 ;,}n,. .. {\1n}n be sequences of positive
numbers such that

M L ... L Ay as 1 — 00.
Consider J radial solutions U', ..., U’ of (L) with initial conditions (U3, U7), j =1....J
such that

Ve L. 0y, IV + U712, =, < éu.

Consider a sequence wy, of solutions of the linear wave equation (R.1)) such that

Vie{l,...,J}, ()\;-\7/2_1w0,n()\jx),)\;-\7/2w1,n()\jx)> ——— 0 weakly in H' x L?,

Letn = \/23-]:1 7])2. and assume that n < Cy. Let

J
1 . t T
W“@:Zywaw<xmx>+W“”
]:1 .7777/ .7777/

j?n
Then there exists r1 > 0 such that for large n, the inequality
2 2 n
(4.5) / VU (2 + (BUn(t,2)) da > 1
1AL+t <l 4

holds for allt > 0 or for all t < 0.

Proof. Denote by
UOJL(‘T) = UN(Ou‘T)7 Ul,n(x) - atUn(O,.’I')

Let U be the solution of (B1]) with initial conditions (Ug, U7),j=1...J and

J

1 ; t T

Uinltir) = N/HU&(X o~ >+wn<t,x>
j=1 )\j,TL J,m J,m

Step 1. We first show that if §; = 6;(Cp) is chosen small enough, then

(16) sup /1Us(6) = Usn(®) s + 106U (8) — D (872 < 5.
te
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Indeed by , if 6% < ——, for some large constant C, then VUj 2+ UJ s =1 < 01
1= Tc, 0 L j

implies

2

2 ] . 2
sy -viof, + Javo - aatof, << 3.

teR

< 077]

By the triangle inequality and the fact that n < Cj,

sup <\/IIU — U (@)l + 10U () — atUL,nu)niz) <q=<7

teR 400
Hence ([L.0).
Step 2. We next show that there exists r1 > 0 such that
+0c0 9 9 772
(4.7) lim inf/ (0 (rUon(r)))” + (rUsn(r))"dr > ER
=0 Jridin

Indeed, if f € H! is a radial function and 0 < Ry < Ry,

1 Rq Ry
/R (@(Tf(?")))QdT: f2 4120, f)? + 2r fO, fdr = 2420, f)? 410, (f2) dr

Ro Ro Ry

Ry
_ / r2(9, f)2dr + Ry f2(Ry) — Rof*(Ry).

Ro

By Hardy’s inequality, | f2(t,r)dr < oo, which implies that there exist sequences R, — +o0
and R, — 0 such that R, f*(R,) — 0 and R, f?(R,) — 0. Letting Ry = R,, and n — 400, we

get

(4.8) / T 0. () 2 dr = /

Ro |z|>Ro

V£ 2dz — Rof2(Ro) < / IV f[2dz.

|z|>Ro

Letting Ry = R, and n — 400 we get

+oo
(4.9) /0 ((‘L(rf(r)))zdr = /R3 IV f|2dz.

By ([9), there exists 71 > 0 such that
e 1 2 17,1)2 n
(4.10) / (0, (rUg (r)))” + (rU (r))"dr > 2+
r1

Let ¢/ = 0,(rUJ(r)) € L*(dr). Then
—+oco
8, Ul <—> o, | - uk <L> dr
/ﬁ)\l,n ()\]17/5 )‘J” )\i{i 0 /\km
Jo o () s (5 ) #
—9i | ~— ) 539 | ~— ) dr
7‘1)\1,'” )\;/77/2 ’ A]vn A}C{j Akvn

(4.11) Al .=

n
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Letting j = k in ([L11]) we get that if j > 1, A%/ — 0 gjz(p)dp as n — oo. Furthermore if
1 < j < k we obtain, using that Ag ,/\;, — 400, that for all ¢ > 0,

Rs +00
\// Ain 2 >d0+Ck / 97 (p)dp < 0,(1) +e.

and hence A%* — 0 asn — oco. Similarly, noting that h,, = 0, (rwo) = won + 10w, is such
that )\1/2h (Ajn+) converges weakly to 0 in L?(dr) we get

+oo ; r 400 1/2
/ . O )\1/2 —=Up SV Op (rwo ) dr = / N/ (p))\j’n hi (Njmp) dp
T1ALn 7,m T *

X

_ f,f’o gl(p)A},/,fhn (Anp)dp+on(1) if j =1
o7 g (PN 2 hy (\jnp) dp + 0(1) i > 1,

]7”

A]k

which tends to 0 as n — oo. Using similar estimates on Uy, and w1, and combining with ()
we get (7).

Step 3: end of the proof. In view of Step 2 and Lemma [L.9, if n is large, then the following holds
for all t > 0 or for all t < 0:

+oo 772
/ (ar(rUn,L))2 + (8t(7’Un,L))2dT 2 —.
1AL, 0[] 4

By ([.§), we get that for all ¢ > 0 or for all ¢t < 0,

2
/ ’VUn,L’2 + ’atUn,L’2d$ > T]—
| >r1 A1, n+t] 4

By Step 1 and the triangle inequality,

/ VU |2 + [8,Un|2dz > T —
|2 >r1 A1 1] 2

which concludes the proof. ]

»hld
=3

4.2. No small exterior profile. Before stating the main result of this section, we introduce
some notations. In all the sequel we assume N = 3. Let 7, — 17 and consider a profile
decomposition of (a(7y,), d¢a(7y,)) with profiles {U } and parameters {\; ,,, ¢, }. We will consider
as usual the nonlinear profiles {U7} associated to {U71, —tjn/Ajn, and will write, for the sake
of simplicity

tj n xT

j - J Mmoo It x) = 7 = :
UL,n(t7 ;E) )\1/2 U < A]JL 3 A],n) 3 Un( ) IIJ‘) A3/2 U ( )\J’n ) )\J,n>

J,m J,m

The second expression is defined as long as (t — t;,)/Ajp is in (T-(U7), T4 (U7)). We will also
write

U = Uln(0,2), U, = (007,) (0,).
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Let j € N*. Extracting subsequences and time-translating the profiles if necessary we can assume
that

t.
(4.12) Vn, tj,=0or lim ﬂ € {—o0,+00}.
n—+oe Ajn
We will denote by
t.
Pin = |t],n| if | Jm| = 0
j7n

and
Pin = )‘jm if tj,n = 0.
According to Lemma [L.]] the sequence (Ug,n, Ufn)n is localized, for large n, around |z| = pj .
Reordering the profiles and extracting subsequences, we can find a Jy € N such that (here
61(Cp) is given by Corollary [.3, and Cj is the constant in assumption ([.1)):

. o 1 :
(4.13) j>Jo = (E(UJ,Uf) < N(al(co)f and |VU3 |, < HVWHL2>
or ( lim % € {£o0} and E(U,U7) < E(W, 0))
n—oo j7n
(4.14) PJon S PJo—1n NEEEDS Pin-

In particular if j > Jy and ¢, = 0 for all n, we have by Claim P. that HVUgHiZ + HUin? <
(61(Co)).

In this section we show:

Proposition 4.4. Under the above assumptions,

(4.15) lim lim sup/ (IVa(r,)|* + (8ra(r,))?) dz = 0.
|I|ZRP1,7L

R—+400 p—+oco
Proof. We argue by contradiction. If ([.1§) does not hold, there exists g9 > 0 and a sequence
P, such that

(4.16) / (IVa(r)|? + (8ia(12))?) dz > 9, lim Prn_ .
|z|>75, nteo Prn

Since suppa(r,) C {]az\ <1- Tn}, we have that 7,, < 1 — 7,. Moreover, by Claim B.1], we get,
extracting subsequences in n, a sequence {p, }, such that

and
(4.18) Vi,  pn <K pjn O pjn <K Pn-

Let x € C®(RY), such that y(z) = 1 if |2| > 2 and x(z) = 0 if || < 1. Then

(4.19) X <£> w7, T) = X (f) 0(Tn, 1) +j§:x <pin> Ul + X <pi> wi

Pn n n

(4.20) X (p%) du(r, ) = x (p%) O (T, ) + éx <pin> Uj, +x <

I
N—
g
e

3
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Claim 4.5. If p;, < py then

x ; x ;
"*+°°HX <0n> ool TG e

If pn < pjn then

lim X< >U Uil + x<~—>U]n—U]n =0.
Proof. Indeed by Lemma [i.1],
. 2 , .
lim liminf VU + v, :/ VU3, + v,
R—+00 n—00 %pj,ng‘w‘SRpj,n ’ ’ RN ’ ’
In the case pj, < pp, choose ¢ > 0 and R = R(e) such that
limsup/ VUgn + ‘U]
n—+oo J Rp; ,<|z| ’
As Rpjn < ppn, we get that for large n,
2 2 9
Gl + e (o)t = L, ool 1o
Pn Jig Pn " 2 Rpjn<|z| ’

which shows the first estimate of the claim. The proof of the second one is similar and we skip
it. O

Let us denote by Jex the set of indexes j such that p,, < p;,. Note that for j € Jext, 7 > Jo
and thus

(61(Co))*
N

J € Joxt = (E(Ug,U{> < and || VU]||,. < vauLz>

r < lim —2" = +o0 and E(UJ,U]) < E(W,O)>
n—oo Jin

so the corresponding nonlinear profile U7 is globally defined and scatters in both time directions.

In view of Claim [L.5, we rewrite (£.19), (£20) as

X ~
(4.21) X <~—> W, ) = (T, @)+ > US () + 07, ()
pTL ]chxt
i<J
(422) X <~£> 8tu(7-n7 ) 8tv Tn7 Z Ufn + wl n( )
pn JEJext
J<J
where

_ x S x .
Wy = X <ﬁ—> wy, +on(1) in H, i, =x <ﬁ—> wi, +o0,(1) in L2
n n
By Claim R.11],

(4.23) Jim_lim sup @ 5z
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Indeed if ([.23) does not hold, one can find, in view of ([R.13), sequences {ng}x, {Ji}x and € > 0
such that

vk, ||wlk

’;HS(R) > e and lim Hw :

i [zl =0

a contradiction with Claim P.11].
By ([:2), the decomposition ([.21)), (£:22) is a profile decomposition of the sequence

x
X <ﬁ_> (u(Tn, ), Opu(Tn, x)) .
Denote by i, the solution of ([L1]) such that
_ x _ x
Unp|t=r, = X <ﬁ_> u(Tnv:E)) 8tun[t=7'n =X <~_> atu(7n7$)-

Using that all the non-linear solutions U7, j € Jux are globally defined and scatter, we get by
Proposition R.§ that @, is globally defined for large n and

(4.24) Un(Th +t,2) = v(T) +t,2) + Z Ul(t,z) + ) (t,x) +rl(t, z),
j?g?]xt
where 7 satisfies (£.29). By the definition of i,
(4.25) Un(Tn, @) = u(Th, ), Oplin(Tn, x) = Opu(Ty, ) if || > 2pp,
By finite speed of propagation, as long as 0 < 7, +t < 1, we have
(4.26) Un (T +t,2) = u(my +t,x), Oin(Ty +t,x) = Opu(r, +t,x) if || > 2p, + |t].
The key point of the proof is the following claim:
Claim 4.6. The set Joxt is empty.
Proof. The proof takes several steps.
Step 1. No profile dispersing backward in time. Let k € Jext. We first show by contradiction that

iy iy
we cannot have % — —00. Let us assume that %
3T s

UF scatters backward in time. As a consequence, by Lemma [, if M is large enough, there
exists £, > 0 such that for all large n,

— —o00. Then py , = |t | Furtermore

k 2 k 2
/ ‘VUn (—Tn,az)‘ + ‘(%Un (—Tn,az)‘ dx > ey.
|z[>th,ntTn—MAk,n

As k € Jext, we know that ty,, = pgn > pn. Furthermore X\, = o(|ty|). Thus for large n,
ten + Tn — MM n > 2p, + 7, and the preceding inequality implies

(4.27) /
‘x‘22ﬁn+7'n

Using again that U* scatters backward in time and that p, < tin, we get by Lemma ]

(4.28) /
|x|§2ﬁn+7'n

vU* (—7'”,3:)‘2 + ‘@Urlf (—7'n,3:)‘2 dx > e.

vUk (—Tn,x)‘2 + ‘(%U,’f (—7',1,33)‘2 dr = o,(1).
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Let j € Jext \ {k}. Then U7 scatters in both time directions, and there exists a solution V of
the linear wave equation such that

. 0 -0l -+ 0020 - 00702 =0

t—tin o
,\ E\ A 7 Ajn
wave equation and (-)

Noting VLJ;n(t, x) = ) , we get, by the conservation of the energy for the linear

(4.29)
/ Vol (=) - ViuUF (=1 d:r_/ Vool (=7a) - ViaUE (=) dae + on(1)
|z|>Tn+2pn

/ Via Vi (0) - Voo UF,, (0) dz + 0n(1) = on(L).

where we used the orthogonality of the parameters (\;,,t;) and (Mg, tg ). Similarly, if J > E,
(4.30) / Vi UF (=7p,2) - Vi) (=7, 2) dz
|| >Tn+2m
= /Vt,fof (—Tn,x) - Vu:c’lf)i (—=Tn, x) dz + 0,(1)
= /VMVLITH (—=Tn,x) - Vt,xu?g (—=Tn,x) dz + 0,(1)

_ / Vea Vi (—tim ) - Vel (0,2) dx + 0n(1) = on(1).

At the last line, we used the conservation of the energy, and the fact that by ([.23), the w; are
the remainders of the profile decomposition , (E22) and thus by (P.13),

)\N/2Vt 2Wy, (tk s Ak na:) ——0in (LQ)NJrl

Combining (f.24) with t = —7,,, ([{25), (£27), (|429) and (4.3() we get, if n is large enough,

/ [1Ve0u(0,2) = [Vig0(0,2) ] = 5.
|x|>7'n+2ﬁn 2

Using that the function x +— [|Vmu(0,x)|2 - |va(0,x)|2} is supported in the set {|z| < 1},

we get

/ 191000, = Va0, ) | =
oo+ Tn|<z]<1 2

Letting n — oo we have 2p,, + |7,| — 1 which yields a contradiction.

Step 2. No profile dispersing forward in time. We next show by contradiction that if k € Joxt
we cannot have lim,, 4~ % — +o00. Let 0, = (1 — 73,) /2. Using that U k scatters forward in
time, we get by Lemma [ 1 that if M is large enough, there exists €, > 0 such that for all large
n?

2
(4.31) Vi UR (04, 2)| dz > e

/x>|tk,n+0n—M>\k,n
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By Lemma [L.]], we also have (using that A\, < [tgnl),

lim
n—oo

dx =0,

2
ViaU" (0, a;)(

|z|<on

from which we can deduce the analogues of the ortogonality conditions ({.29) and ({.30) with
Tn + 2pn replaced by o,. As in the preceding case, using (4.24)) with ¢t = o, we deduce from

(1.31)) that for large n,
147 2 147 2 €k
o252 e (5 )]

/|m|2<7n

As1— H’% = 0y, this contradicts the fact that on the support of u — v, |z| <1 —t.

Step 3. No compact profile. In this step we conclude the proof, showing that Ju. is empty.
According to Steps 1 and 2, for all j € Jext, and all n, ¢, = 0, and we can rewrite ({£.24)) as

- 1 (1 x ~
(4.32) Un(Th + 1) = v(1y + t,2) + Z 1/2U’ ()\' =V > + @ (t, x) + (¢, ),
jejcxt j,n Jn Jn
J<J

Furthermore, we know that for j € Jext, 7 > Jo and thus by the definition of Jy we have

(4.33) VIVUIR + [|[7 )7 < du(Co).
Assume that Jext is not empty. Then by assumption (@) for large J,

o<st= 5 vl il <

j€jcxt
i<J
Choose J such that
(434) sup \/[V72(8) 72 + 1005 (O] 2 < 7
teR
Let k € Jext, such that k£ < J and
A = inf A
k jEII}cxt J
J=1...0

By ([£33), we can use Corollary [£.3, which implies that there exists 79 > 0 such that the following
occurs for all t € [—7,,0) or for all £ € (0,1 —7,),
0
/ (VU (b 2) + 00 (t2) Pz > T
] Ao+ 16

where

1 - t x -
U= Y 1/2U3<A >+w;{<t,x>.

je\yext j,n j’” )\]’n
And thus by (l.34), for all ¢ € [—7,,0) or for all t € (0,1 — 7,),
2
n

(4.35) / IV (G (750 4 ) — 0(Tn + )| + |0¢tin (Tn + 1) — By (7 + 1)|* > —.
|2 > Ao o+ t] 64
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First assume that it holds for all t € (0,1 — 7,,). Letting ¢,, = w in (4.39), we obtain
that for large n,

~ 64

Furthermore, as k € Jox, we have 25, +t, <1 — 7, — t,, and thus by [{26), |z| <1 -7, —t,
on the support of u(7, + tn, ) — v(7, + tn, ) a contradiction.

It remains to treat the case when ([.35) holds for all ¢t € [~7,,,0). Then ([.35) with t = —7,
yields

/ |V('L~Ln(7—n + tn) - U(Tn + tn))|2 + |at'L~Ln(7'n + tn) - 8tU(7—n + tn)|2 > —.
|[z|>1—Tn—tn

64

which is again a contradiction, recalling that (@, (0, x), 00, (0,2)) and (u(0,x), du(0,z)) coin-
cide for |x| > 7, + 2p,, and thus for |z| > 7, + A\, for large n. The proof of Claim [L.§ is
complete. ]

To finish the proof of Proposition [.4, we must show that if p,, is as in ([.16), and J is large,
then

(4.36) lim (IVwi ,|? + (wi ,)?) dz = 0.

=0 J|z|>p,

2
/ IV (i1, (0) — 0(0))[* + |94 (0) — Do (0))* > -,
[|> Ak, nr0+Tn

We will use that w;! is a radial solution of the linear wave equation (R-1)). By (Eg), we have

+o0o
(4.37) / (O (rud ) ?dr = / Vol | de - By, (5,)°

z|2p,

n |

By the construction of the profile decomposition (see (B.1J)), we can choose J so large that
(4.38) 1/2w0n(pn ) ——0in H.
n—oo

The map u — u(1) is a continuous linear form on the vector space of radial functions in H'.
Thus (§.3§) implies

(4.39) hm p1/2w0 n(Pn) = 0.

n—-4

To show ([E£.30), we argue by contradiction. Assume after extraction (in n) that for large n

[ Vi  w])?) do =
|z>P,,
Then by ({.37) and ([£39), for large n,

+oo
(4.40) / (Or (rwo J)2dr + (rwi n) dr > 5
By Lemma [L.2, and still extracting subsequences, the following holds for all ¢ > 0 or all ¢ < 0,
and for all large n,
“+oo
| @l )2 + o) dr =
P+ 4
By ([£.), this implies that for all ¢ > 0 or for all ¢ < 0,

/ |Vw;{(t)\2 + (Qpw (1)  dx > .
2| >P 1] 4
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By finite speed of propagation, we have

~J J ~

wn(t7$) = wn(tv$)7 |$| 2 2pn + |t|

As p, < p,,, we obtain for large n,

(4.41) / V@ (1)) + (@ (1))? de > 0,
|27+t 4’
for all t > 0 or for all ¢ < 0. In view of Claim [L.G, the equality (f.39) can be rewritten
(4.42) U (Tn + 1) = 0(T + t,2) + @) (t,2) + 70 (t,x), 0< 7, +t<1.
Taking ¢ = —7,, if ({41) holds for all ¢ < 0, and t = 1= if ({41) holds for all ¢ > 0, we get a
contradiction as in the proof of Claim [L§, concluding the proof of Proposition [£4. O

5. RIGIDITY ARGUMENT FOR NON-SELF-SIMILAR BLOW-UP

In the section we consider, as in the preceding one, a radial solution in space dimension N = 3
that blows up at time 7" = 1 and satisfies (f.1). We assume in addition that there exist sequences
{mn}, {\n} such that 7, € (0,1), 7, — 1 and

(51) A L1 =1,

(5.2) lim IVa(r,) | + (0ra(mn))? + #(a(m)f =0,

o0 Jla > A
where a = u — v is as usual the singular part of u. The main result of this section is the following

Proposition 5.1. Assume that u is radial and that (E1)), (B.1) and (B.3) hold. Then there exist
a sequence (t,), Jo >0, (tj)j=1..5, € {1}, and, for j = 1...Jy, sequences {\;j,}n of positive
numbers, such that

(5.3) w(tn, ) = v(tn,z) + Z L1]/2W < ) + wo p in H

(5.4) Opu(ty,x) = O (ty, ) + on(l) in L2,
where, denoting by w, the solution of (R.J]) with initial data (wq ,0),

lim a5z = 0.
n—oo

Let us mention that the assumption N = 3 is not essential for the arguments of this section.
In §b.1 we show that assumptions (b.1), (5.9) imply that 9;a is small in L? for a sequence of
times. Proposition .1 is proven in §p.2

5.1. Smallness of the time-derivative of the solution.

Lemma 5.2. Assume (p.9). Then

lim / (Ora) 2dx dt = 0.
n—oo 1 — T, R3
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Corollary 5.3. Under the assumption of Lemma [p.3, there exists an increasing sequence t, — 1,
€ (0,1) such that

1
(5.5) Vn, / |0sa(ty, z)|de < —,
R3 n
1 [t L
(5.6) Vn, Yo € (0,1 —t,), —/ / |0ya(t, z)|*dx dt < —
o

Let us first assume Lemma .9 and prove Corollary p.3.

Proof. Using that the map t — ia(t,-) is continuous from (0,1) to L*(R3) we get (f.) from

(p-9) letting o — 0.
To show (p.6), we argue by contradiction. The existence of a sequence {t,} satisfying (p.9) is

equivalent to
to+o
Ve >0, Vi, € (0,1), 3ty € (ts,1), Yo € (0,1 — 1), / / (Ora)’dx dt < e.
Assume

to+o
(5.7) de >0, Jt,. € (0,1), Vtg € (ts, 1), Jo € (0,1 — to), / / (Dra)?dx dt > e.

By Lemma .9 we can fix a large n such that 7, > t, and

/ (Ora) 2dx dt
1—Tn R3

Tn+o
A:{ae |—/ (Ora) da:dt>a}
R3

By (5.7), A is not empty. Furthermore, it is closed in (0,1 —73,). Let 8y = sup A. By the choice
of n, g # 1 — 7,. Furthermore,

l\?l(‘f)

Let

Tn+00
/ (Oya)?dx dt > £6y.
R3
By (b.1), using that t, < 7, + 6y < 1, there exists o € (0,1 — 7, — ) such that

Tn+90+0'
/ / (Ora)*dx dt > eo.
Tn+60 R3

Summing up the two preceding inequalities, we get

Tn+90+0'
/ / (Oya)2dz dt > £(00 + o),
Tn R3

with 6y + 0 € (09,1 — 7). Thus 0y + 0 € A, and 6y + o > 0y contradicting the fact that
0y = sup A. O

It remains to prove Lemma [.9.
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Proof of Lemma [p.3. Let
z1(t) = / [(udpu) — (VOyv)|dx,  22(t) = / [ Vudu — x - Vv dw|da.
R3 R3

As u — v and 9;(u — v) are compactly supported in the space variable, both integrals are well-
defined. We first show

=0.

(5.8) i 12T+ [22(70))

n—-+o00 1—7,

Indeed, write

() = /R a(m)ou(r) + / o(r)Oha(ra).

R3
Then, using that on the supports of a(7,) and dsa(m,), |z| <1 — 7,

'/ a(Tp)Opu(Ty,)

S e T et

1 1
< /Ixm rrla()ou(r)]+ (1= 7 /| L la(m)ou(m)].

z|>An "T‘
By (b1) and (B.2),

=o(l —1,), as n — oc.

‘ / a(r)dru(r)

Estimating the other terms in the same way we get (b.§).
Differentiating the definitions of z; and 29 and using that both u and v are solutions of ([L.1]),

we get
24 (t) = /(8tu)2 —/]Vu\2 —|—/u6 - [/(atv)zdm—/vadx—k/vﬁ}
(1) = —g/(atuf +% </|W|2 —/u6>
[ fare(fme- )

Noting that |z| < 1 — ¢ on the support of a, that v converges in H' x L? as t — 1 and that u is
bounded in H' x L?, we get, as t — 17,

2 (t) = /(&a)zdaf; - / |Val|*dz + /aﬁdl‘ +o(1)
25(t) = —g /(Z?ta)2 + % (/ |Val? — /a6> +o(1).

2(t) = %zl(t) o(t).

Let

Then
2 = - /(ataf Fo(l) ast — 1.
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Let € > 0, and m,n be two large integers with n < m. Integrating the preceding inequality we
get
Tm 9
[ [ @2 < 126) - 2] + el — 7
. JR

Letting m tends to infinity we obtain
1
/ (0a)? < |Z(1)| + o(1 — ) as n — oc.
R3
From (p.§) we deduce

/ 8ta o(1—m,) as n — oo.
R3
O

5.2. Decomposition into a sum of rescaled stationary solutions. The proof of Proposi-
tion p.J), is divided into four steps.

Step 1. Eutraction of a sequence and profile decomposition. Extracting a subsequence from
{tn}, we assume that {(a(t,),0wa(t,))}n admits a profile decomposition with profiles U7 and
parameters \; ,, tj,. By the Pythagorean expansion

|Bualta)|2 = zuatw /)| + 2 + 0(1) 51— o

and using (F), we get that for all j (here Uy is the rescaled profiled, defined in Notation P-7),
(5.9) nkar_loo 10:U2(0)|| 12 = nkar_loo 1007 (=tjn/Ajn)|| 2 = O

We deduce that for all j such that U7 # 0, {—t;,/\jn}, is bounded. Indeed assume that
there exists a subsequence in n such that —¢;,/\;,, — £oo. Then by definition of U J and the
equipartition of the energy for solutions of the linear equation (.1)) as t — +oc,

ot + oo L=

= i [0t

a2 ‘
showing that U’ = 0, a contradiction.
Translating in time the profiles, we may assume

(5.10) Vi, ¥n, tjn=0.

L2

As a consequence of (5.9), Uf = 0,U7(0) = 0 for all j. Let dyp > 0 be a small parameter (given
by the small data theory for ([I))). There exists a finite number Jy of profiles U’ such that

HUg + HU{ = HUO H i1 = 00. Reordering the profiles, we may assume

I Iz> =
031l > 00 = 1< <.
In view of (5.10) and the orthogonality of the profiles, we obtain, after a new extraction in n,
Vik J# k= Xjn <A OF Mgy < Ajp.
Thus we may reorder the first profiles so that

Adon L Ajp—1n K oot K A
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We show by contradiction that U7 € {W,-W}if 1 < j < Jo and Ui = 0if j > Jy. This is
equivalent to the fact that the set of indexes j such that U7 ¢ {0, W,—W} is empty. Assume
that this set is not empty and let

ko =min {j > 1, U7 ¢ {0,W, =W }}.

Let k1 = min {1 <j<Jy | Ajn K )‘kom}' If this set is empty, k1 is not defined, and we will
make the convention A, , = 0. By Claim @, there exists a sequence A\, — 0 such that

(5.11) Aern € A < Akom
(5.12) Vi, A < Ajn OF Ajip < Ap.
Let

Text = {j > 1, Xn < )\j,n}-
Note that by the first inequality in (p.11)),

(5.13) Vi, (€ T and Mjp < Apgin) =5 > Jo.

Step 2. Let T > 0 be in the domain of existence of U*0. Using that Mo S 1 —7,, we can
choose 1" small enough so that for large n, Ay, ,1" < 1 —t,. In this step we show

1 Ako,nT
(5.14) / /
Akon T Jo > Aeg me+t]

where by definition lim;_, . limsup,, . o) = 0. More precisely, we will show the following two
estimates which directly imply (F.19):

(5.15) L[
5.15 / /
Aeon T Jo | > Ak ne+IE]

1 Ak ,nT X
(5.16)  j € Jext and j # kg = lim / ’ / 0:U;, (t,:c)fdx dt = 0.
=00 Akon 1" Jo EECY

2
OUR (t,2) + Bpwl (t,x)| dadt = o,

2
dx dt = o/

81;U,{ (t,z) + atwi(t, x)

jejcxt
j<J

Proof of (p-19).
Consider a radial function x € C*°(R3), such that x(z) = 1 for |z| > 2 and x(z) = 0 for
|z| < 1. Let @, be the solution of ([[.1]) with initial data

Upt=t, = X (%) u(tn,x), Oilinp=t, = X <%> Opu(tn, x).

n n

Then, by finite speed of propagation, as long as t,, + s is in the domain of existence of u and 1,
Gt + $,3) = ultn +5,2), |z| > |s| + 2\n.

Furthermore, letting



34 T. DUYCKAERTS, C. KENIG, AND F. MERLE

we obtain (recall that Uf’n = 0 for all j)

(5.17) i (tn, ) = V(tn, ) = Y UJ,(2) + @, () + 0n(1) in H'
]ejcxt
j<J
(5.18) Oy (tn, ) — Opo(ty, ) = WY ,(x) + on(1) in L2,
By Claim together with the argument than we used to show ([£.23),
(5.19) lim lim sup HwnHS(R) = 0.
n—oo J—4o00

By (p-19), the two equations (b.17), (F.1§) yield a profile decomposition of the sequence
{U(tn, x) — v(tp, x),0ptu(ty, x) — Ov(tn, x)},, -

The development (B.17), (b-1§) satisfies the assumptions of Proposition B.§ with 6,, = Ay, T
Indeed for j > Jy the solution U7 scatters both forward and backward in time. Furthermore by

B33,
(j S {1, RN J()} N Jext and j # k()) = )‘komT < )\jm.
Thus by Proposition R.§, for s € [0, Ako.n T
(5.20) Up(tn + s,2) = v(t, + s,2) + Z Ul (s,x) + ) (s,2) + 1l (s, x),
jEJext
J<J

where 7 satisfies (P.23) with 6,, = AkonT. Let € > 0. We have, for large n (so that ey, , > ZXn),

1 t7l+)‘k‘0,7lT 9
1) = oa(t dx dt
on(1) NeonT /tn /]R3‘ a(t, x)|“dx

1 t7l+)‘k‘0,7lT
> < T/ / Oya(t, 2)[2dx dt
koI Jt,, []> kg e+ 1]

1 tn+)\k0 n
- / / |(Opun, — Opv)(t, )| *dx dt,
)\kOv’nT tn |x|2)‘k0,n€+‘t|

which yields (p.15) in view of (f.20).

Proof of (5.16).
Let Rjn = Aggn/Ajn- We have

1 Ako,nT ) 9
(5.21) / / |0,U7 (t, )| dadt
AMo,n T Jo []> kg n

= U7 (s, y)|” dyds.
TRjn Jo ly|>eR;n-ts]

If \jn < Mgy (and thus j > Jy), we have that R;,, — +oo. By finite speed of propagation,
for all n > 0, there exists M > 0 such that

Vs € R, / 007 (5, )| dy < n,
ly|>M+]s|

which implies that the right-hand member of (F.21)) tends to 0 as n — oc.
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If Meo.n < Ajns Rjn — 0, and thus

TRjn 1 TR;jn
U7 (s,y)| dyds <
TR] n / /y|>RJ nets| | ‘ TRjn Jo

U’ (s, y)‘2 dyds

/|8tUJ Oy‘ dy = 0,

n—oo
concluding the proof of (.16).

Step 3. Uniqueness argument and conclusion of the proof.

By (B.19),
/ /x>e+|t

Consider the mapping H'xI[? — R

ko
(fo, f1) — / /|m|>€+t|8tU (t,z) O f (t, x)dz dt,

2

o,Uko (t,x) + Ay / 8tw (Mgt M) | da dt = 0;{.

where f(t,z) is the solution of the linear wave equation with initial conditions (fo, f1). This is
a continuous linear form on H! x L2. By (R.13),

1/2 3/2
(Aké nw0n ()‘ko, ) A /

ko,n

le,n ()‘ko,n')> — 0 weakly in H' x 2.
Hence

lim — / / QU™ (t, ) x”’/ - Opw;) (Mo mts Mg n)da dt = 0,
|| >e+]¢|

and we conclude that for all € > 0,

1 T
T/O /x>a+|t
1 T

T/O /ﬂczlt

This shows that ;U (t,z) =0 if t < |z| and 0 <t < T. Let
0= {(t,x) € [0,7] x R3, |z > t}

2
QU (t,x)| dxdt =0

Letting € — 0 we get

2
oUM (t,x) | dedt =0

Then
(t,x) € Q = UM (t,2) = U ().

In Q, the non-linear wave equation 92U*0 — AU — (U’l‘“))5 = 0 becomes AU = —(Uk0)5.
Thus U*0 satisfies in the sense of distributions the elliptic equation

AU = — (Uk)® in B3\ {0},
This shows that U* is smooth in R?\ {0} and satisfies the preceding equation in the classical

sense in R?\ {0}. As a consequence AU(])CO + (U(]f‘))5 is a distribution in H~'(R3), supported at
the origin. The only distribution with these properties in dimension 3 is 0 and we deduce

AUF + (UF)° =0
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in the sense of distributions on R? and thus by Claim B3, as U ko is radial,

1 x 1 x
Uk (z) = —W <—> or Uko(g) = ———W <—> or Uko = 0,
@ =" (5 @ = (5
for some A\g > 0, which yields the desired contradiction. The proof is complete. O

6. ALL RADIAL COMPACT SOLUTIONS ARE STATIONARY

In this section we show Theorem [.
We will assume without loss of generality that A is continuous on (T (u), T4 (u)) (see || 0,
Remark 5.4]).

Step 1.

We show in this step that the solution is globally defined. Assume that 7% (u) < oco. For
the sake of simplicity, we will assume that T’y (u) = 1. By standard argument (see Section f]),
A(t) < C(1—t). By [KMO§, Section 6], self-similar, compact blow-up is excluded, which implies
that there exists a sequence {7Tn}n such that

€(0,1), lim 7, =1, lim A7)

Nn—00 n—+oo 1 — 7,

=0.

Using that the regular part of v at the blow-up point ¢t = 1 is 0, we get, arguing as in Corollary
.3 that there exists a sequence {t, },, such that

:.m

tn+o
(6.1) Vn, Vo € (0,1 —t,) / / Opu(t, z)|? do dt <
tn

Consider (Uy,Uy) € H' x L? such that for a subsequence,

lim (A¥(tn)u(tn,A(tn)x) ,A%(tn)u(tn,x(tn)x)) = (U, Uy).

n—oo

Let U be the solution of ([[.I)) with initial condition (Up,U;) and 79 € (0,74 (U)). Then by
Theorem P.]]

Jim AN (1) (Brt (b + Altn)5, (b)) dar ds = / U
n—oo RN RN

By (B.1), we obtaln
/ AV () (D (b + Atn)s, A(tn)z))? da ds
0o JRN

ToA(tn
1 / (Ouulty + t,2))2 dz dt — 0.
tn RN n—00
As a consequence, 0;U = 0 for t € [0,7]. By Claim .2, U =0 or U = W up to the invariances
of the equation. If U = 0, then E(ug,u;) = 0, and as the |[u(t,)|/ 71 tends to 0, this implies by
Claim that v = 0, contradicting our assumption. Thus U = W up to the invariances, and
by conservation of the energy we get that E(ug,u;) = E(W,0).

The solution u of ([L.1]) has threshold energy E(W,0), is not globally defined and satisfies
ug € L?. By the Theorem 2 of [DM0§], N = 5 and u has to be the special solution W+
constructed in this paper, which satisfies ||u(t) — W||z < e as t — —oo. This contradicts the
fact that u has compact support in space, concluding step 1.
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Step 2. We assume in this step that A is bounded on [0,400) or on (—o0,0], and show that
E(up,u1) = E(W,0). By time symmetry we can assume that A is bounded on [0, +00). By the
preceding step,
Ty (u) = +oo.
Let us fix ¢ € C§°(R?) such that ¢ =1 for |z| < 1, ¢ = 0 for |#| > 2. For R > 1, consider
or = ¢(xz/R), Yr = x¢(x/R) and

2
(6.2) p(R) = sup / \u_z + |Vul? + [0yu)? + |u|®dz.
LE(T- (u), T+ (u)) /2> R ]

The compactness of K and the boundedness of A implies that p(R) is finite, and tends to 0 as
R goes to infinity. Let

yr(t) = Vg - Vududr + E / wrudyudz.
R3 2 Jgs
Then (see [KMOg, Lemma 5.3])
(63 alt) = = [ 0)da + O(p())

Integrating with respect to time, we get that there exists a constant C' > 0, independent of R,
such that for all 7" > 0,

T
/O 10u(t) 224t < |yn(T) — yr(0)] + CTp(R).

using that, for any fixed R > 0, yg(t) is bounded independently of ¢, we get

N
(6.4) Jim /0 |8eu(t)|22dt = .
We next show that there exists a sequence t,, that tends to infinity and such that
. 1 tn+)\(tn) 9

Indeed, define a sequence 7, by
70=0, Tnt1="Tn+ A(T0).

We first show that 7, — +o00. If not, 7, has a finite limit 7.c = >, -, A(7»), which shows by
continuity of A that A(7o,) = 0 a contradiction with the assumption that X takes strictly positive
values.

To show (B.H), we argue by contradiction. Assuming that no subsequence {t,} of {7, } satisfies
(6.9), we get that there exists ¢ > 0 such that

Tn+1
Vn, / 1Bcu(t)|2adt > eX(r).
Summing up, and using that 7,41 = >__; AM(7%), we get

1 Tn+4+1
/ () adt > <,
Tn+1 Jo

Vn,

contradicting (.4). Hence (p.9).
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Extracting subsequences, we get (Up, U;) € H' x L? such that
(wﬁ—lu(tn,A(tn)x),Aﬁﬂatu(tn,x(tn)x)) s (Uo, ).

Let U be the solution of ([[.J)) with initial conditions (Up,Uy). Let 8y € (0,74 (U)) such that
6o < 1. Then by Theorem P-1,

1 tn+A(tn) 5 9 . 1 tn+00A(tn) 5 9 p
90)\(%) /tn H tu(t)”ﬂ t=> 90/\( )/n H tu(t)HLz t

1 Gok(tn
:W/o 10U (t/A(tn)) ||2adt + 00 (1)

0o
e

By (B-5), we get that ;U = 0 on [0,6p]. By Claim R.3, U = W, which shows that F(Up,U;) =
E(ug,u1) = E(W,0). This concludes Step 2.
Step 8. We next show that E(ug,u1) = E(W,0) also if A is unbounded on both intervals [0, +00)

and (—o0,0]. We will use an argument of [KMO{] to reduce to the previous case. We sketch the
argument for the sake of completness. Consider the sequence {t, },

tn =inf {t € [0,+00) | A(tn) = n}.

By continuity of A and the fact that A(¢) tends to +oo as ¢ tends to +00, we get that ¢, is
well-defined for large n and

(6.6) nh_)rglo tn = 400, Vte|[0,tn], AMt) < A(tn).

Extracting subsequences, consider (Uy,Uy) such that

lim (AN/2—1(tn)u(tn,A(tn)x),AN/2(tn)atu(tn,A(tn)x)) = (U, Uy).

n—oo

Note that we cannot have (Up,U;) = (0,0) (this would imply, by Claim P.J that v = 0). Let
U be the solution of ([.]]) with initial conditions (Up,U;). By the arguments of [KMO0g, Proof
of Theorem 7.1], we can show, as a consequence of the compactness of K and (p.q), that there
exists a continuous function X on (T_(U), T (U)), bounded on (T (U),0] and such that

K ={ (32w (1 X0)e) A2 000 (1 A02)) ¢ e (T-(U), T (0)) }

has compact closure in H' x L2. By Step 1, U is globally defined. By Step 2, as \ is bounded on
(—00,0], we get that E(Uy, Uy) = E(W,0). Thus by conservation of the energy of u, E(ug,u1) =
E(W,0) which concludes this step.

Step 4. Convergence in mean to W. By [DMO§, Theorem 2], ||Vu(t)||2, > [VW |2, for all ¢: if
not, u would scatter at least in one time direction, contradicting the compactness of K.

To show the that u = W, we will use the arguments of [DMO0Y, Section 3]ﬁ In this section,
it is shown in particular that a globally defined solution u of (l) of energy E(W,0), satisfying
[Vuoll3, < [[VW]3, and such that there exists A(t) with K compact must be equal to W
up to the symmetries of ([LT). We will quickly check here that the same proof works with a

%In the cited paper, the notation A(t) stands for the function 1/A(t) of the present paper
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slight modification in the case |[Vu(t)[[3, > [[VW||3.. As usual, we may assume that A(t) is a
continuous function of ¢. Let

d(t) :8/(8tu)2+4</]Vu\z—/\VW\2> > 0.

By the characterization of W ([[Aub7q], [Tal7q]), for any to, d(tg) = 0 if and only if u(ty) = W
up to the symmetries of the equation. In this case, by uniqueness of the Cauchy problem, u(t)
is a stationary solution identically equal to W up to the symmetries.

In this step we show that

) 1 +T
(6.7) Jim /_T d(t)dt = 0
Consider a function ¢ € C§° such that ¢ = 1 if |z| < 1, and denote by pr(z) = p(x/R). Let
gr(t) = 2 [udyupr and note that |gr(t)| < CyR, for a constant Cy > 0 depending only on
sup, ||0pu(t)| 2 + || Vu(t)||z2. Using that u is solution of ([[.1)), we get

(6.8) gr(t) = d(t) + Ar(t),

where

(6.9) Ap()] < / L2 4 [Vl + (B,
|z|>R ||

As in the case [|[Vu(t)| 2 < ||[VW]| 2 we will use that gr and g, vanish for u = W, and that
|9z | is larger than d(t) up to the remainder term Ag. In our case, the definition of g is slightly
different but it will not affect the proof.

Fix a small ¢ > 0. Using as in the proof of Lemma 3.3 of [DMO§] that A(t)/t — 0 as t — Fo0,
we get that there exists a constant C7, independent of ¢, and a time ¢; = ¢1(¢) such that

VT > 2h(6), VEE [1(0),T], glp(t) > d(t) — Cie,
integrating between ¢; and T we get that % fOT d(t)dt tends to 0. The same proof works for
negative time, yielding (6.7).

Step 5. In view of ([.§), and refining the bound on gg(t) and the estimate (6.9) on Ag(t)
by modulating the solution around W for small d(t), we get that there is a constant C' > 0
(depending only on the set K) such that

(6.10) Vo.r €R, o< —> / d(t)dt < C < sup /\(t)> (d(o) + d(r))

(see the proof of Lemma 3.8 in [DMO0§]). Using compactness and modulation arguments, we get
the following control on A(t) (see Lemma 3.10 in [DMO§] and its proof)

(6.11) o+ A0) < 7 = [A(0) — A(F)| < /Td(t)dt.

Consider two sequences o, — —oo and 7, — +o00 such that d(o,,) — 0 and d(7,,) — 0 as n — oc.
The existence of {0y}, and {7}, is given by (6-7) in Step 4. Let ng such that d(7,,) < 3. Let
us prove by contradiction that A is bounded. For large n, let t,, € [, 7n] such that

Atn) = max  A(f).

Tng <t<tn
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If A(t,,) — oo, then by continuity of A, ¢, — co. In particular for large n, 7,, + A(7n,) < tn, and

we can deduce from (p.10) and (f.11]) that
Ata) < Alrag) 4 A1) (5 +() )

a contradiction if \(¢,) — 4o00. Thus A is bounded on [0,+0c0) and a similar proof yields the
boundedness of X on (—o0,0]. As a consequence of (f.1I0), we get

/m«wwscwwm+«m»,

which implies that d(¢) = 0 for all ¢, concluding the sketch of the proof.

7. BOUNDED GLOBALLY DEFINED SOLUTIONS ARE NOT SELF-SIMILAR

This section is dedicated to the proof of the following proposition, which will be needed in
Section [§ and uses some of the material of Section [J:

Proposition 7.1. Assume that N = 3. There exists a constant n1 > 0 with the following
property. Let u be a spherically symmetric solution of ([L1) such that T™(u) = +oo, which does
not scatter for positive time and such that

(7.1) igglIVU(t)lliz + [ 0wu(t)72 < (IVW 72 +m.

Define

(7.2) u(1) :inf{,u : / (b)) + [Vu(t)? < %/wwﬁ}.
|z >4

Then there exists a sequence t,, — 0o such that

(7.3) lim Zn)

n—oo t,

=0.

Proof. We argue by contradiction. Assume that ([.J) does not hold. Taking into account the
finite speed of propagation, we deduce that there exist ¢y, Cjy such that
(7.4) VE>1, et < u(t) < Cot.

Step 1. Let A be the set of (g()) such that there exists t,, — 400 with
1

1/2 _
b ulln, tn) <U0> weakly in 1 x L2,
W COu(ty, tpr) | noteo \U

In this step we show that there is a (A, A1) € A with minimal energy, that is such that
(7.5) YUy, Uh) € A, E(Ap, A1) < E(Up,Uy).

We first show that A is sequentially closed in H' x L? for the weak topology. Indeed, let
(Uon, Urn) — (Uo,Uy), with (Upn, Urn) € A. Consider a countable family of smooth compactly
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supported functions (¢;,1;)jen which is dense in H~'x L2. Then for all k, there exists n such
that X
‘/(Uo,nk—Uo)soj <o i=0..k

Thus there exists t;, > k such that

Lﬂﬁ%wmm—%wj

+ ‘/(Ul,nk — Uy)v;

2
< — ) =0...k.
SR 0...k

4 ‘ / (2 Opulty, tex) — UL )b

This shows that (t,lg/2u(tk,tkzn),ti/z@tu(tk,th)) converges weakly to (Up,U;) and thus that
(Uo, U1) € A
We next construct the minimizing element (Ao, A1) of A. Let {(Uon,U1,n)},, be asequence in

A minimizing the energy. As {(Upn, Ui )}, is bounded in H'x L2, we can extract a subsequence
from {(Uo,n,U1n)},, such that

(Uo,ny Ul,n) —_ (A07A1) S -/4
n—oo
Denote by wg,, = Upn — Ao, W1, = Ui, — A1. Writing after extraction of a subsequence the
profile decomposition of the sequence (U, U ) and using the Pythagorean expansions (R.14),
(B-19) and (19), we get
(7.6) IVUonllZe + 1ULalZ2 = IV AolZ2 + A1l 72 + [V @onlZ2 + [[©1,0]l72 + 0n(1),
(77) E(U()m, Ul,n) = E(AQ, Al) + E(’&jo,n, ’&717”) + On(l).
By ([.§) and assumption (1), we obtain, for large n,
IV AollZ2 + Al + I VionllZz + IV@1allZ2 < VW2 + 201,
which shows by Claim R.3 that in (7.7), all the energies are positive. Thus

inf  FE(Vo, Vi) = lim E(Uyn,Ur,) > E(Ag, A1),
oo nf E(% 1) = lim B(Uon, Uin) 2 B(Ao, 41)

implying that (Ao, Ay) satisfies (.5).

Step 2. Profile decomposition.
Consider an arbitrary positive sequence {7, }, that tends to +oc and such that

(7.8) (T}/zu(m,Tnx),Tg/zatu(Tn,Tnaz)) (Ag, A1), weakly in H' x L?,

n—-+00

where (Ag, A1) is the minimal element of A defined in Step 1.
Extracting a subsequence from {7, },, we can assume that their exists a profile decomposition

{Ug}, {Ajn,tjn} associated to the sequence (u(7,), O (Ty))n-
Reordering the profiles, we may assume

(7.9) HWW@+WW@=$wW%MﬁWWﬁw
We remark that

2
(7.10) VT3 15 + U172 = SIVWIE..

If not, the result of [KMO§] would imply that all nonlinear profiles U’ scatter showing by
Proposition P.§ that u scatters for both positive and negative times, which contradicts our
assumption.
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As a consequence, we get from ([.T]) and again the result of [KMOg] that for all j > 2, the
nonlinear profile U7 scatters both for positive and negative time.
Extracting and time translating U! if necessary, we may distinguish three cases

—t
(a) lim Lt — 4o
n—oo A1
—t
(b) lim Lt — 0.
n—oo 17n

(c) Vn, t1,=0.
Case (f]) is clearly excluded, as it would imply by Proposition P.§ that u scatters for positive
time, contradicting our assumptions.

Assume that () holds. Then the nonlinear solution U scatters for negative time. Precisely,
by definition of U,

lim ||UL(t) — U't)|| g + [|0UL (1) — 08U (1)) 1o = 0.

t——o00

Furthermore, by Proposition R.§, denoting as usual by U2 the rescaled profiles (see Notation

B3,

J
1 —tn— T x .
11 = P 2 (=7 2 (=) 7 (=T
) u0) = iUt (SR ) U ) ) )
—tin
(712) atu() )\3/2atUl< 1}\1 , >+ZatU] —Tn, T +at’w ( Tn)+at’f'7{(_7'n)a

Let v, (t) = Sp(t) <)\}/3u (0, A\ n) ,/\i/ju (0, Al,nx)>. By orthogonality of the parameters {);,},
{t;n}, the developments (F.11]), (F.13) imply

¢ ¢ .
v [(BnETY g, ((Rn Tt Tn (UL, U} in H' x L2,
>\1,n >\1,n n—0oo
t1,n+Tn

since =" — 400 this would imply (U, U}) = (0,0), a contradiction.

Step 3. Compact main profile. It remains to consider case (). By (F.4),
(7.13) / IV, 2)2 + [yu(r, 2) 2dac
Comn<|z|
1 2 2 2
< 3 IVIV|* < IVu(ry, )| + |07, )| dz.
cotn <|z|
This shows by assumption ([.1),
1
/ [V, 2)]? + Beu(r, ) e < / VI 4,
|z|<coTn

and thus by (F.10) (using that tin =0), A1, = 7,. Extracting subsequences and rescaling U 1
we may assume that A, = 7,. Then by ([.9),

(7.14) Ul = Ay, Ui =4
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We will show that T~ (U') = —1 and that

- (142U (t, (1 + t)x)
(7.15) K= {((1 + 320,07 (1, (1 + t)a:)) A (_1’0]}

has compact closure H' x L?. This type of self-similar solution is excluded by [KMO0g, Section
6]. Let 0 € (T~ (U;),0). Then by Proposition P.§,

J
(7.16) u(ry, + o) = WUl < f ) + Ui (o1,) +w (om,) + 7 (o7),
n =2

X

J
(7.17) ou(ty + o1,) = 3 /2 ——=oU! < ) + 3 Ul (o7) 4 Oywl (om) + 01 (o7).
j=2

Tn

Let

J
> U
j=2
By Remark .10, we have for large J and n,

‘ , Ul HL2 + Hvtx UTn HL2 < Hvtxu(Tn"i_UTn)H[ﬁ + 1.
By assumption ([.1)) and using (7.10), we get

1
(7.18) |VeeZi (o7 Hm < —HVWH%Z + 2.

) and the triangle inequality, we deduce for large J and n,

NE /|VW|2< / Veat((1 + 0)r, 2)[2da
co(1+0)m <|z|
T 2
< / =3 Vi, UL <O’, —) dz + /
co(140)m <|z| Tn Tn co(1+0)mT <|z|

Thus by ([7.1§), and if 7 is chosen small enough so that the left hand side inequality holds,

1
(1.19) (202 < \/ J1vwez- \/g / |VW|2+2771—771§\/ / VU (o)
co(1+0)<|z|

Using again assumption ([.1]), we obtain

Vo € (_170)7 / |vtxU1 / |VW|2 —n.
|z[<co(1+0)

In view of (B.4) in Theorem B.3, we must have T~ (U') < —1. We cannot have T~ (U') < —1 be-
cause ([[.16), (F.17) with ¢ = —1 would give a nontrivial profile decomposition for (u(0), 9;u(0)),
a contradiction. Thus T~ (U') = —

Next, note that by the development (7.16),([.17), we have
<7n1/2u((1 + U)TnyTn )7 2/2 ((1 + U)TnaTn')) — (U1(0)78tU1(J)) :

n—~0o0

2
ViaZ 2oTn, x)| dz+ 1.
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This shows that
(7.20) Vo e (—1,T(UY)), ((1 +0) 20N o, (14 0)),(1 +0)*?0,U (0, (1 + 0): )) €A

We next show that K defined by (F-19) has compact closure in H' x L?. Indeed, let t, be a
sequence that goes to —1 and assume after extraction that (weakly in H' x L?)

(7.21) (U4 6) 720" (s (14 £0)), (U 80200, (14 1)) 2225 (T, T )

Then by ([.20) and the fact that A is closed for the weak topology, (ﬁo, (71) € A . In particular,
using that (U, Ui) = (Ao, A1) has minimal energy in A,

(7.22) 0< E(ULUN<E ((70, ﬁ1> :

We must show that (7.21]) is (at least for a subsequence) a strong convergence. For this, consider,
after extraction, a profile decomposition for the sequence

<U o) = gy 15, ) 2V o) - s Ui 1y, ) )

Denote the profiles by VLj, the parameters by s;, and v;, and the remainders by w;. By the
Pythagorean expansion of the energy

J
E(US,UL) = B0, U1) + Y E (VLJ ( sﬂ") L0V <ﬂ>> + B (@, @ ) + 0n(1).
j=1

V]7n V.]7n

By Claim R.3, all the energies are positive in this expansion. By (F22), E(Uy,U,) = E (U, ui),
and thus using Claim P.J again, Vi/ = 0 for all j > 1 and vabj,num + Hwi{an tends to 0 as

n tends to infinity, concluding the proof of the compactness of K in H' x L? and yielding the
desired contradiction. Note that in this last argument, we only needed the profile decomposition,
for a fixed .J, to show that the weak convergence ([.21]) and the inequality ([:29) imply the strong
convergence. The proof of Proposition [/.]] is complete. O

8. PROOF OF THE MAIN RESULT

In this section we show Theorem [.
Assume that IV = 3 and that u is a spherically symmetric type I1 blow-up solution such that:

(8.1) sup || Vu(®)|[72 + [8u(t)|7: < VW72 + 10,
To<t<1

The proof of Theorem [ takes several steps. Consider the singular part a of u given by Definition
B.3 In §8.1, we show that a profile decomposition of a sequence (a(7,,), dra (7)), T — 1~ admits
a large profile which is compact up to scaling. In §B.2, we show that, at least for a time sequence,
the concentration is not self-similar, i.e that u satisfy the assumptions of Section f]. In §B.3, we
show that a(t) is compact in the energy space up to a scaling parameter. In §8.4 it is proven
that the only limit as ¢ tends to 1, of a(t) up to scaling is W. We then conclude the proof of
the theorem.
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8.1. Compactness of the main profile.

Lemma 8.1. Assume that N = 3 and that (B]) holds. Consider a sequence 7, — 17, a profile
decomposition {U7}, {\;n}, {tjn} associated to (a(r,),0pa(ty,)) and reorder the profiles (after
extraction) so that (B.11)) holds. Then all the profiles U7, j > 2 scatter. Furthermore U' does
not scatter for positive nor negative time,

(8.2) 106 15 + 101113, > 2 VW22,

-3

and the sequence {_;11'”} 18 bounded.
5T n

In other words, the largest profile is compact up to modulation and we may assume that
t1,n, = 0 for all n.

Proof. The inequality (B.3) follows from Lemma B.§ The assumption (B.1]) implies that for all
J =2, |U7|12: + VU |22 < 2IVW]2; 4 no. Thus all nonlinear profiles U7, j > 2, scatter both
forward and backward in time. To conclude the proof, it is sufficient to show that U! does not

tln

o } is bounded. Assume

scatter forward nor backward in time, which would imply that {

that U is globally defined and scatters forward in time. Then, by, Proposition B.§, u is globally
defined and scatters forward in time, a contradiction. It remains to exclude the case when U*
is globally defined and scatters backward in time. By Proposition P.§ again, we obtain that for
t <0,
J
w(ty +t,x) = v(T, +t, 1) + Z Ul (t,z) +wl(t,x) +r(tz),
j=1
where
lim_limsup |7 [lsoo0) +  sup (V71 (t)l|z2 + 10er;1 (1) £2) = 0.

J— —too n—+00 tE(—O0,0)
The solution U scatters backward, but not forward in time. By [KMOg], this implies that
EUL, UL > E(W,0). As a consequence, for all ¢ in the domain existence of U?,

2
(8:3) VU @72 + 10U Ol = 2E(Up, UT) 2 2B(W,0) = [V 7.

Let to € (70, 1), where 79 is defined in (B.1]). Taking t = tg — 7, < 0 in the preceding decompo-
sition, we obtain that for large n,

1 e (to—Tn—th T —Tin

u(to, ) = > + Ron(x),
)\1/2

I'n )\1,n )\1,n
—tipn T—T1p
Oru(t = —-0 U1 : : Ry, >
u(to, ) = )\3/2 3 ( /\Ln ) Ao > + i, (z)

1n

where by Pythagorean expansion, [|[VRo,||3: + [[Rinl?2: < 3[[VW|2: 4+ no. By (B3), we get
that {( atu(to)) }n, considered as a sequence in n, admits a nontrivial profile decomposition
(recall that )\1,” — 0), a contradiction. The proof is complete. O



46 T. DUYCKAERTS, C. KENIG, AND F. MERLE

8.2. Existence of a sequence avoiding self-similar blow-up.
Proposition 8.2. Assume N = 3 and let u be a radial solution satisfying (B]). Then there
exists {Tptn, {tin}n with
Tn— 17, 0<pu,<1l—17, asn— o0
such that

1
lim (Ora(Tn, @))% + |Va(rn, 2)]> + — (a(7m, 2))?dz = 0
Corollary 8.3.
lim E(a(t),dwa(t)) = E(W,0).

t—1—

Proof of Corollary B-3. The result of Proposition B.9 implies by Proposition f.] that (replacing
u by —u if necessary), there exists a sequence 7, — 17, a sequence \,, — 0 such that

1 T
(8.4) a(Ty,x) = WW </\—n> + won
(8.5) da(tyn,x) = o(1) in L? as n — oo,

where, denoting by w;, the solution of (R.])) with initial condition (wq,y,0),
e —
Step 1. We first show
(8.6) lim [|wo,, || ;1 = 0.
n—oo

Let us mention that this step still works, with a small refinement, replacing the assumption (B.]))
by the more general ([L.1)).

Assume that (B.6) does not hold. Extracting a subsequence in n, we can assume that there
exists €9 > 0 and, for all n, r,, > 0 such that

/ |Vwg,n(2)|? dz > eo.
lz|=rn
Then, arguing as in the proof of Proposition [L.4 (see (.40)), we get that for large n,
“+oo
£

/ 0 (ruo ) (1) dr > 2.

Tn
Next, the fact that wy,(t) = w,(—t) and Lemma [L.3 imply that for large n, for all T' > 0
(8.7) / IV, otn (T A, z)[2da > 2.

|2 >7n+TAn 4
By Proposition .8, we have
1 .
a(th —TAp) = <z W <£> + wy (=T Ap) 4 0, (1) in H?

(8.8) AY Ao
(T — TAp) = Opwn(—=TAy,) + 0,(1) in L2,
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Combining with (B.7) we get that there exists an increasing sequence {ny} such that 7,,, —k\,, >
0 and

€
/ |Viza(ry, — k'/\nk,m)|2 dx > -0
|x|27"nk+k‘)\nk 8

In view of (B.§), this contradicts Proposition [L.4 (here py, = A,). Step 1 is complete.

Step 2. By Step 1,
lim E(a(r,),0a(m,)) = E(W,0).

n—oo

Note that
E(u(t), du(t)) = E(u(t), 00(t)) + E(a(t), da(t)) + o(1) as t — 17,

which shows by conservation of the energy for u and v that E(a(t),d;a(t)) has a limit as t — 17,
concluding the proof of Corollary B.J. O

Proof of Proposition [8.3. We argue by contradiction. By Hardy’s inequality
1
/ —z(a(t,az))2da: <C \Va(t,z)|*dz,
jel>r || z[>R

so that we only need to show that there exist sequences pu,, and 7, as in the proposition such
that

lim (0va(Tn, 2))? + |Va(ry, ) 2dz = 0

=% Jiz>p,

If this does not hold, there exists o > 0 and g > 0 such that

(8.9) vt € (0,1), / uat, 2)2 + |Va(t, o) *dz > <.
el>a(1-1

Step 1. We first show that there exists # > 0 such thatﬁ

2
(8.10) liminf/ uat, 2) + Valt,o)dz > 2|V 2.
l2|>8(1—t) 3

t—1—

Indeed, assume that (B.1(]) does not hold, i.e. that there exists sequences 7, — 17, 8, — 07
such that

2
(8.11) / 100a(7, 2)[2 + [Va(rm, @) Pdz < 2|VW |22 — e1.
|@|> B (1=7n) 3

After extraction, consider a profile decomposition {U7}, {tjn, Ajn} for {(a(r,), 8ra(ry))},,- Re-
ordering the profiles, we assume (B.1])), i.e that U 1 is the largest profile in the energy space.
By Lemma B.1], we may assume that t1, = 0, and the norm of (U&, U}) in the energy space is
bounded from below (see (B.J)).

Let £2 > 0 to be specified later. By Proposition B§, there exists T € (0,74 (U')) such that

IVUND) |22 + |0,UHD) |22 > VW |22 — e

3we could replace 2[[VW |72 by [[VW |72 — Cno for some large positive constant C, where 7o is given by (a)
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Then by Proposition P.§

J
(8.12) (7o + MnT) =D UL MnT) 4wy (AaT) + 77 (A T)
]:1
(8.13) dra(n + M. T) = ZatU,{ (A T) + 0w, (Mo T) + Oyl (M. T).

The rescaled profiles Uj are defined as usual (see Notation P.4). Note that
VT Qan D2 + 100 Mn D72 = IVUL(TIIZz + 10U (Tl = VW72 — 2.
Combining with (B.1), (B.19), (B.13) and the orthogonality of the parameters, we get
2

J

M — g,
Z Vt,mUJ< L = )
j=2 Ajm L?

And thus using the conservation of the energy

J .
> B, U})
j=2

Take 79 and 5 so small that 3(no + e2) < 167, where & = 6,(2|[VW||2,) is given by Corollary
53 Then U! is the only one large profile, i.e., With the notations of §fL.9, Jy = 1. Assume that
AMn = 0n(1 — 7). Then by Proposition [f.4 we would obtain

+ | Veaw] AaT) |2 < o + 22

(no + €2).

l\’)l}—t

lim lim sup / (Wa(r)|? + Bra(ra))?) de = 0.
|z|>RA1,n

R—+400 n—4o0
a contradiction with (B.9). Thus
(1—7,) ~ Aip.
Consider a sequence {f3,} such that
B < P < 1
Let x € C®(R?) such that x(z) = 1 if |z| > 2 and x(z) = 0 is |z| < 1. By Remark

X

Va(r,,x 24104 T,y T 2> _-— Va(r,,x 24 |0a T, 2
/ngnu_m’ (7 )2 + [a(m, @) >/x<ﬂn(1_7n)>(! (7 ) + [Bra(r ) )
ALy 1/ N2 1782
Z/X (m) (’VUO(?J)’ + UL (9)]?) dy

2
— | (VU W) + U1 @)") dy = S[VWIIZz.

n—oo

This contradicts (B.11]) and concludes Step 1.
Step 2. End of the argument. Let, for t € [0,1),

(8.14) p(t) Zin{u : /|| |Ora(t) | + [Va(t)]* > %/IVWIZ}-
z|<p
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By Step 1 and assumption (B.J)),
(8.15) B(1—t) < p(t) <1—t.

Take any sequence 7, — 17 such that (a(7,),0wa(7,)) admits a profile decomposition. By
Lemma @ and Step 1, we may assume, after extraction,

2
HVU(}HiQ + “Ué“iQ > gHVWH%% tin = 0, >\1,n = ,U(Tn) ~1—T7,.

wﬁ,

Furthermore, the solution U! does not scatter forward nor backward in time. Let e3 = where
f3 is given by (B-I§). By Proposition [[]] (if 7 (U') = —oc) or Section [ (if 7_(U?!) € ( 00, 0)),
there exists —0 € (T_(U*'),0) such that

(8.16) / 0, U (—0) > + VU (— /\VWP
|z|<es6

Let us show that for large n

(8.17) (T — 0u(ry)) < e30u(ry).

If this holds, we would get by (B.17)

2
620(1 - Tn) < Beﬂ(Tn) < 6(1 —Tn + Hﬂ(Tn)) <p (Tn - Hﬂ(Tn)) < 536M(Tn) < %9(1 - Tn)a

a contradiction. The inequality (B.17) is equivalent to the following

(8.18) / Vi aa(rn — Opu(7)) /|VW|2
|| <e30p(mn)

We have, denoting by 6, = —0u(7,) — tjn,

Tn — o)) = v(Th — T : S
(i = 8p(ra)) = vl = Oulra)) + =5 U < 0’#(%))

* w? (—=0u(t, rd (—0u(t,
*2% (32055 ) + ot + (- Ou(r)

u(tn — Ou(ry)) = O (T — Ol ;t L(—p, 2
O = ) = B = ) + =0 (=0, )

J
1 (i
T Z \3/2 O U’ ()\jf ’)\L%' > + Owi (=0p(mn)) + Byry) (—Op(Tn)),
=2 A Jjm Ajn

where 7/ satisfies

lim hmsup HVT Ou(ma)|lr2 + Haﬂ’ (Op(m)|| 2 = 0.

J—400 n—+too

Let Jy such that for all J > Jy, for large n, H@mmr;{H < LS |VW|2. Let ¢ € C§°(R3) with
Y(z) =1 for |z| <1 and ¥(z) = 0 for |z| > 2. Then by Remark

/«ﬁ(ﬁmﬁ IV wa(m — Bu(r))2 > /¢< >|vtxU1 /|VW|2

hence (B.17). The proof is complete. O
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8.3. Compactness of the singular part.

Proposition 8.4. Under the assumptions of Theorem [} (in particular N = 3 and u is spherically
symmetric), a is compact in the energy space up to a scaling parameter: there exists a continuous
function A\(t), t € (0,1) such that the closure of

K= {(Al/z(t)a (t, A\(£)z) , N2 (1)da (¢, /\(t):n)> L te (0, 1)}

is compact in H' x L?.

Proof. Tt is sufficient to show that for any time sequence 7, — 1, there exists a subsequence of

T» and a sequence A\, such that ()\n/za (Trs An) , Ay 3/2 oa (Tp, )\naz)> converges in H! x L2.

Let 7, = 1. After extraction of a subsequence (in n), assume that (a(7,), dia(7,)) as a profile
decomposition with profiles U7 and parameters \;,, tj,. Let U I be the largest profile. By
Lemma B, VU | z2 + Utz > 2|[VW|2,. By (B)) and the Pythagorean expansions (R-14)
and (R.1), we get

IV (m)l3s < SIVWIE: + 0
and
Vi>2 VUS| + U717 <

1
S IVWIL: + 0.

This implies that the energies of U7, j > 2 and of w; are all positive (see Claim R3).
distinguish three cases:

o If E(U,0,U') > E(W,0), then by Corollary B.J and the Pythagorean expansion of the
energy (using that all energy are positive), we obtain immediately that E(U', 0,U"') =
E(W,0), that there are no nonzero other profile and that (w‘ojm, w‘ljn) tends to 0 as n — oo,
hence the compactness property.

o If E(U',0,U") < E(W,0), and VU3, + U3, < [[VW||3., the profile U' scatters
yielding immediately a contradiction.

o If E(U',0,U") < E(W,0), and ||[VU; |12, + ||U} |72 > [[VW||32. The nonlinear solution
U blows up in both time directions. By Proposition P.§, U is a type II blow-up solution
of ([L.1)) such that E(U',0,U") < E(W,0). Furthermore, as (a,d;a) converges weakly to
0 and (v, 0yv) converges strongly in H' x L? as t — 1, we have

/]Vtxut x) /]Vtxat z)|* + /]Vtxvtw 2+ o(1).
t—1-

Thus U' also satisfies (B.1)), which shows that U! contradicts Corollary B.3.
The proof if complete. O
8.4. Convergence to the stationary solution up to the scaling. In this section we con-

clude the proof of Theorem [Il. Consider a solution u of ([[.1) satisfying the assumptions of
Theorem [I. By Corollary B3,

(8.19) lim E(a(t), dyal(t)) = E(W,0).

t—1—
By Proposition B.4, there exists A(t) such that the closure of

K = {(Al/z(t)a(t,)\(t)x) ,)\3/2(t)8ta(t,)\(t)w)> L te (0, 1)}
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is compact in H' x L2. The following result is classical in this setting.

Lemma 8.5. Let 7, be a sequence that tends to 1, and such that

()‘1/2(7—”)@ (Tm )‘(Tn)x) ) )‘3/2 (Tn)ata (Tna )‘(Tn)x)) - (U07 Ul)

n—~0o0

in H' x 2. Consider the solution U of (1)) such that
Up=o = Uy,  OUy=o = Us.
Then there exists a continuous function \ defined on (T_(U), Ty (U)) such that

o { ( AO)V2U (t,X(t)x)

R X(t)?’/?atU(t,X(t);U))’ tG(T(U),T+(U))}

has compact closure in H' x L?.

Sketch of proof. We have
1 T
et (3
1 T
et (3t
Let T € (T-(U),T+(U)). By Proposition P.§,

w(tp, ) = v(Th, z) + > + o, (1) in '

Ou(Ty, x) = O (T, ) +

> + 0,(1) in L2,

u(ty + N1)T, ) = (1 + A1) T, x) + WU (T, %) + on(1) in A

Ou(mn + A1) T, ) = Opv(Ty + N7 T, ) + #@U (T,

()32 > to(l) %

x
A7)
Letting 0, = 7, + A(7,)T', we get

Ao)2a(om, Mow)z) = <§((Z:)) >1/2 U (T, i((Z:)) a:) + on(1) in [
Aow)?20a(0n, z) = <§((i:))>3/2 aU (T, i((i:)) :s> + on(1) in L2,

Extracting subsequences, we obtain by compactness of K that there exists (Vp, V1) € K such
that

i [ (M) (g Maw) N (Mow) ) Aow) VY _ o T L2
nh_)ngo ((A(Tn)> U\T, )\(Tn)x A\ 3 U (T, )\(Tn)x = (Vo,V1) in H* x L*.
This shows that i\\(((;:)) has a limit A\(T) € (0,+oc) (by conservation of the energy (0,0) ¢ K)

and that

(X(T)l/ 2y <T, X(T)a;) NT)320,U (T, X(T)a;)) e

The proof is complete, up to the proof of the known fact that the function 7"+ S\(T) may be
taken continuous for which we refer to [KMO0f, Remark 5.4]. O
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We next prove Theorem [I.

Step 1. Convergence to W for sequences. Let {t, }, be a sequence in (0, 1) such that ¢, — 1 and
lim (AY2(t,)a(tn, Atn)x), A(tn)> 20altn, Mt,)x)) = (Uo, Up) in H' x L2,

In this step we show that for some Ao > 0 and some sign + or —, (Up,U;) = £ (A(l)/zVV()\O'), 0).

Let U be the solution of ([[.]) with initial condition (U, U;). By Lemma B3, U is compact
up to scaling. By Theorem P, U = W up to the symmetries, concluding step 1.

Step 2. Estimate on the scaling parameter. Let

M@ﬁﬂﬁ{u>0:/ ]VM@@—VMmM%xE/ \vwﬁm}.
lz|<p

|z|>1

By Step 1, [ |Va(t,z)*dz — [|[VW|* as t — 1, which shows that A (t) is well-defined for ¢ < 1,

close to 1. Consider a sequence t, — 1. By Step 1, for ;) = —1 or +1 and some sequence of
positive numbers {\, },,

1 .
a(ty, ) = L01—/2W <£> +0,(1) in H'.
An

An
T
v ()

lim An
n— oo /\l(tn)

Thus if © > 0,

1
Valty, z)2dz = / L
/wéu z|<p Ao,

which shows that

2
on(1) = / YW () 2dy + oa(1),
[y|<m/An

=1.

Thus

1

(8.20) a(tn,x) = 1o WOSLE w <)\1?:tn)> +0,(1) in H.

Step 3. Choice of the sign. Let

f(t) = /Va(t,x) . )\1(751)1/2 14 <>\132t)> dx.

Then by Step 2, for each sequence t, — 1, there exists a subsequence such that f (tn) —
+ [[VW/|?. As f is a continuous function, the intermediate value theorem implies that the
value must be the same for all the sequences {t,}. Changing u into —u if necessary, we can
assume

1mf@:/wwﬁ

t—1—
By Step 2, we get that for all sequences {t,},

1 z
u(ty,x) = v(tn,x) + Al(tn)1/2W (M(%)) + on(1),

which concludes the proof of the development ([L.§).
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Step 4. Estimate on \;. Recalling that u — v is supported in the cone {|z| < 1 —t}, we get, for
t close to 1

1 x 2
0:/ Vut—Vvtzdﬂ;:/ —‘VW< ) dx + o(1
|m|21—t| ©) ) 21— AF(t) A1 (t) t_(>12
= [ WPy + o).
‘y|2 All?:) t—1—
which shows that /\1—(5) — +00, concluding the proof of Theorem [I. O

APPENDIX A. PROPERTIES OF PROFILES
In this appendix we prove a pseudo-orthogonality property (Claim [A.T]) and Claim R.11].

Claim A.1. Assume that N > 3 is odd. Let {w,} be a sequence of finite energy solutions of
the linear wave equation (P.]), bounded in the energy space and U be a finite energy solution of
(R). Consider real sequences {\,}, {tn}, {tn}, {On} with Ay >0, w, > 0. Assume that

(A1) AN, w0 (tny An ) ——0in L2(RN+,

Then, if ¢ = 1, or if ¢ is a radial, continuous, compactly supported function on RN and such
that o(r) =1 if r is small, there exist subsequences such that

. |z| 0, —t, x
(A2) n1—1>I—|r—loo (IU, Vt an(Gn, ;L') )\N/2 Vt xU )\n 5 )\—n dxr = 0,
and
(A.3) I 1 TN @, (0, 2) - — w0 (Pt Y gy 0
. n—1>I-‘,r-loo - ,U_n t,xWn\Un, T )\N/2 t,x T,/\_n T =U.
Proof. We start to show ([A.9) when ¢ = 1. By conservation of the energy for solutions of (21)),

1 0, —t, = 1 x
/Vt,an(Hn,x)WVt,xU ( )\n 5 )\_n> dr = /Vt,an(tnalﬁ) )\N/_2 Vt,mU <0, )\_n> dx.

By the change of variable A,y = z, we see that ([A.1]) implies (A.2) for ¢ = 1.

We next consider the case when ¢ € C°(RY) is compactly supported and satisfies p = 1
around 0. Because of the case ¢ = 1, one of the estimates (A.2) or (A.J) implies the other. By
the change of variable u,y = x,

|| 0, —tn, x
/ <M Vtan(enax) )\N/2VtxU Tu)\_n dx

_ 1 0, —1,
= N/2V xWn nena ny) "’ —i VY xU n~ = N d )
/so(!y\)un t.2Wn (Hinbn, finy) R T A y
where 6,, = /%’ An = 2”, tn = :‘L Replacing w,, by the solution (t,y) +— m]y/zwn(unt,,uny) of

®1), 6, by 6,, t, by i, and A, by \,, we will assume in the sequel, in addition to (A.]), that
tn =1 for all n.
Extracting subsequences, we distinguish two cases.
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Case 1. Assume

(A.4) lim oo

n—-4o0o /\n

= +o00.

Then, by Lemma [L1], the energy of ATl/QU (G”A;t”, %) concentrates in sets of the form

{\en o] = CAn < || < [0y — ] + an}

Recalling that y, = 1, we deduce that if |6,, — t,| — +oo, (A.) holds, and if |0,, — t,,| — 0,
(A-3) holds. In both cases, the proof is complete.
We next assume, after extraction, that

(A.5) lim 6, —t, =T € R*.

n—-+00

Let € > 0, and R (given by Lemma [£.1) such that

1 O0p —tn,
limsup/ — V@U( “ na_>
n—oo JCC,(R) )‘712[ t An An
where C,,(R) = {z € RY, s.t 6, — t,,| — R\, < |2] < |6, — tn| + RN} and CC,(R) is its com-
plement in RY. Using the boundedness of VizWy, in (L2)N*1 we get for large n

2
dr < 52,

<

1 0,—t, x
' ] )= 2l — D) Fen00,2) 1y Vel (Pt ) o

Cxé%f@) {‘@(az) — (|0, — tnm} L Ce

where the constant C' depends only on the energy of U and the bound of V; ,w,, in (L2)N+L,

As ¢ is uniformly continuous, and ), — 0, we get by (A.4) and (A.§)

lim sup < Ce,

n—-+00

A A

1 0, —t, =x
[ @)= o180 = ) 0, Or.0) 750 (P o

and hence (using the case n = 1),

lim sup
n—-+o0o

The proof is complete if (A.4) holds.

Case 2. Assume

1 0, —t, =z
/(70 (x) vt,an(en,lﬂ)wvt@U (T’ A_n> dII}‘

(A.6) lim = n 4 eR.

n

Then by Lemma the L? norm of ﬁVMU (9"/\;;", %) is localized in sets of the form
{0—1An < |z| < an}.

If A\, — +o0 or A\, — 0, the argument of Case 1 yields (A.9) and (A.d). Let us assume
lim A\, = Ax € (0,400).

n—-4o0o
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Then

1 0, —t, =x 1 T . N+1
Wvl‘/@U <T, )\—> - WVt’xU (t(),)\—> —|—On(1) m (L2 (RN)) - .

(e}

Thus we must show

. 1 x
(A7) nkar_loo © (z) Vi gwn (0n, ;U)@VMU (to, E) dxr = 0.

First notice that if ® € (L2)N+1,
/Vt,mwn(tm 33) : q)(l’)dl‘ = /Agﬂvt,an(tm /\ny) : )\fl\[/2¢ (/\ny) dy
= /Avjy/zvt,an(tm /\ny) : Aﬁ/2¢ (/\ooy) dy + On(l)'

At the last line we used that \)/%® (Any) converges strongly to A2 (Aooy) in (L2)NF1, Thus
by (B.1)

(AS) vt,an(tn7x) ——0in (L2)N+1'

n—oo

Next, consider the solution v of (B]) with initial data (vg,v;) € H* x L? such that
1 . €T 1 €T
A'U()(I’) = @ le <Q0($)VxU <t0, E)) s 'Ul(.Z') = @(‘D(Z')at(] <t0, E)

Write 0,, = Aooto + tn + €pn, with g, — 0F. Then by conservation of the energy
1 x

/go(:n) Vi zwn (0n, ) N7z ViU <t0,—> dx = /Vmwn(ﬁn,x)vmv(O,:E)dw
Ao A

(oe]

= /Vt,wwn(tn,$)vt7mv(—Aooto —ep,x)dr = /Vt,an(tn,:E)va(—/\ooto,:n)dw + on(1),

which shows (A7) in view of (A.9). O
We next prove Claim R.11].

Proof. We prove the result when IV is odd, although it should also hold when NV is even. Rescaling
if necessary, we will assume

(A.9) Vn, Ap =1
Note that the assumption (R.26) implies that for any sequence {\,}, {t,},
1 —t, - 1 —t, - o
(A.10) ——5 W, <—, —> , — Oy, (—, —> ——(0,0) weakly in H' x L.

Indeed if (A.10) does not hold, the sequence {w,, } would have a nontrivial profile decomposition,
contradicting (R.24).
Conversely, we claim that (R.27) holds as soon as for all sequences {\,}, {t,},

1 —tn - 1 . [ty - L
(A.11) (W@n <)\—7 )\—> , —x Orwn, <)\—7 )\—>) —— (0,0) weakly in H' x L*.
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Again, if (R.27) does not hold, then the sequence (w,(0),d,w,(0)) has a profile decomposition
with at least one nonzero profile, which contradicts ([A.11).

Let us show ([A17). Let (Zo,V1) € H™' x L? and Vy € H' such that AVy = Zy. Let V be
the solution of (R.1]) with initial conditions (Vp, V1). We have

1 1, 1 [t
(A.12) /Wfﬁn <—t i) Zo()dx + / = Byibn <—t i) Vi()dz
N N
- / Vi (0,2) - A2 VoV (b Apar)dar + / Byt (0, 2) NZ B,V (b, At)

N N
- /vx (@("T‘)wo,n (LE)) : )\nz V:cv(tna )‘n‘r)d‘r + /(P(‘x’)wl,n (‘T) )‘r? 8tv(tna )‘nx)
Thus it suffices to show
N N
(A13) lim / H|2) Voo n () - AZ VoV (s M) + / ()W () NE OV (£, An) = 0

N
(A.14) lim [ (Vae(|z]) won (2) - M ViV (tn, Anx)dr = 0.

n—oo

The first limit, (A1), follows immediately from Claim [AJ]. To show (A1), we use that there
exists C' > 0 such that Ve is supported in {1/C < |z| < C}, and distinguish several cases.

If ¢,, is bounded, then one can assume after extraction that ¢, has a limit 7' € [0, 4+00). If
Ap — 0 or A\, — 400 then by Lemma @,

(A.15) lim MV (b, Anz)|? da = 0,
n—+0 J1/0<|z|<C

N
and ([A.1I4) follows. If A\, has a limit Ay € (0, +00), then \;7 VV (¢,,, A\p,x) converges strongly to
N
AEVV (T, Aooz), and we are reduced to show

N
lim (Vap(|z]) wop () - AEVV (T, Aoz )dx = 0,
n—oo Ji/c<L|z|<0
which follows from the fact that by (A.10), wo,, tends to 0 weakly in H' (and thus, by Hardy’s
inequality, that |71|w0’” tends to 0 weakly in L?).

We next treat the case when t,, is not bounded. Extracting, we will assume that t,, — +oo (the
case t,, — —o0 is analoguous). If t,,/\, — 0 or t,/\, — 400, Lemma [L.] implies again ([A.17),
and ([A-14) follows. It remains to consider the case when (after extraction), t,,/A, — £ € (0, +00).
By Lemma [L.]), for all € > 0 there exists R. such that for all R > R,

n—~0o0

limsup/ MYV (b, Anz)|P da < &
llz| > %

As a consequence,

n—00 1

VAn

(A.16) lim sup/ AV VY (b, M) |? daz = 0.
||z —¢>
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It remains to show that

N
(A.17) lim / Do) w0 () NZ B,V (1, An)daz| = 0.
1= | fjg} 1<
We have
(A.18) / el () A O,V (b, M)
Hx‘_Z‘STn

1 N
= / L0, p(0)—wo pn () M OrV (tn, Apz)dx + 0,(1)
[ ||
1 N
— 1B(0) / L o () AZ OV by M)z + 0n(1).
RN ||

At the third line, we have used that 70, is continuous and thus

lim  sup |royp(r) — Lo.p(£)| = 0.

n—oo 1

\T—Z\Sﬁ
At the last line we have used (A.I§). By Hardy’s inequality and assumption (A.I(), |71|w0’"
converges weakly to 0 in L2, and thus (K1) implies (JA.17), which concludes the proof of Claim
i) 0
APPENDIX B. FAMILY OF SEQUENCES OF POSITIVE NUMBERS

Claim B.1. Let {\,}n, {vn}n and for j € N, {pjn}n, be sequences of positive numbers and
assume

(B.1) An <K Up.

Then, after extraction of subsequences in n, there exists a sequence {jp,}n such that
(B.2) Ay K i < U,

(B.3) Vk,  pn < prn OT Pryp <K fin-

Proof. Let for s € (0,1),
fon(5) = N0,

Note that for any s € (0,1), A\, < pn(s) < vy. Let j € N. Then, extracting subsequences in n
if necessary, we are in one of the three following cases:

Vs € (0,1) pn(s) < pjn or
(B.4) Vs € (0,1) pjn < pn(s) or
ds; € (0,1), Vs € (0,s5), pn(s) < pjn and Vs € (s;,1), pjn < pin(s).
Indeed let
sj = inf {s €[0,1] | {pjn/pn(s)}, is bounded.}.

Note that p,(s) < pn(s’) is s < s’. As a consequence, if s; = 0, then p;,/un(s) — 0 for
all s € (0,1). Similarly if s; = 1, then {p;,/pn(s)}, is never bounded for s € (0,1) and by

n



58

T. DUYCKAERTS, C. KENIG, AND F. MERLE

diagonal extraction we can find a subsequence such that p;,/pn,(s) — +oo for any s € (0,1).
Finally if s; € (0,1), then p;,/pn(s) — 0 for all s € (s5,1), and {p;,/pn(s)}, is not bounded
for s € (0,s;). Using diagonal extraction again we can assume that p;,/pu,(s) — +oo for all
s € (0,s;). Hence (B9).

After another diagonal extraction, we can assume that (B-4) holds for all j € N. Chosing
s € (0,1) distinet from all s;, and letting p, = pn(s) we get the desired properties (B-2) and

B3
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