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Refined Instrumental Variable Methods for Identifying Hammenshodels
Operating in Closed Loop

V. Laurain®, M. Gilson®, H. Garnief

Abstract—This article presents an instrumental variable eO(t—kZHo(q)
method dedicated to non-linear Hammerstein systems operating r1(tg)
in closed loop. The linear process is a Box-Jenkins model &(tk)
and the non-linear part is a sum of known basis functions. ro(tg C u(ty £0) u(ty) Go(q) y(tr)
The performance of the proposed algorithm is illustrated by a 20— Cela) ) o\q e

numerical example.

[. INTRODUCTION Fig. 1.

The need for non-linear identification grows as the stud-
ied system complexity increases [14]. Many different ap-
proaches were developed to deal with open-loop blacks described in Section Ill. The detailed algorithm of the
box model identification, whether they are non parametrienethod is given in Section IV. Finally, the performance of
using Volterra series approach [11], [15], semi-pararoetrithe proposed algorithm is illustrated through a numerical
using neural network methods and support vector machimxample in Section V.
classification [16], [3], or parametric such as state depahd
parameters [24] or refined instrumental variable [12]. Semi I[l. PROBLEM DESCRIPTION
parametric approaches, even if performing efficientlyklac
the possibility of giving ana posteriori physical represen-
tation of the studied system. On the other hand, transfer Consider the stable, SISO closed-loop non-linear system
function models provide a generic approach to data-baseepresented in Figure 1 and assume that both command input
modelling of linear systems, encompass both discrete-tinad output signalsy(t;) andy(tx) are uniformly sampled
and continuous-time applications and are in an ideal forrat a constant sampling ting; over N samples.
to interpret serial, parallel connections of sub-systerhihv The controller is supposed to be known, the linear process
often have a physical significance. is Box-Jenkins model and the non-linear function is assumed

Closed-loop systems are widely used in practice ang be a sum of known basis functions, 2, ..., so that
various attempts have been made to handle linear systéntan be expressed:
identification in the presence of feedback. Indeed, closed-
loop system identification leads to several difficulties due

Closed-loop system

A. System considered

l
to the correlation between the disturbances and the control a(ty) = Z%v”i(“(t’“))' @
signal induced by the loop. Several methods have therefore =t
been developed to cope with this problem seg[18], [20], Notice first that this system produces the same input-

[5], [25]. An optimal refined instrumental variable methodoutput data for any paif3f(v), G.(q)/3). Therefore, to get

has been presented for closed-loop linear systems in [7]. a unique parametrization, one of the gainsf¢#) or G,(q)
The problem of non-linear plants operating in closed loopas to be fixed [4], [1]. Hence, the first coefficient of the

have not received a lot of attention so far. Indeed, thifunction f(.) equals tol, i.e. a; = 1 in (1).

problem is handled only in a few papers as érg [6], Moreover, u(tx) in (1) is an internal variable and is

[10], [2], and [21] but to the best of our knowledge nonot directly available from data. Using (1), the systeéin

instrumental variable (V) method has been developed tb de@ be identified is described by the following input-output

with this kind of issues. For closed-loop linear identifioat  relationships:

a basic IV estimator was first suggested in [22], assuming

the knowledge of the controller; the topic was later disedss y(te) = Go(q)u(ty) + Ho(q)eo(tr),
in more detail in [19]. The present paper extends the refined S aty) = 22:1 o,y (u(ty)), (2)
IV technique theory developed for linear cases presented in u(ty) = rty) — Co(q)y(ts),

[7] to the identification of discrete-time Hammerstein misde
operating in closed loop. This paper is organized as followsvhere G, (¢) denotes the process aiid.(¢) the controller.
after the preliminaries, the proposed iterative IV method(t,) describes the process input signalt;) the process

output signal. B,(¢~') and A,(¢~!) are polynomials in
*Centre de Recherche en Automatique de Nancy (CRAN), Nancy; P 9 O(q ) O(q ) Poly

H _1 — _ . .
universie, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, Franc€ shift operatoy .(q Tx(t]c) = z(tx—r)) With respective
vi ncent . | aur ai n@r an. uhp- nancy. fr degreen; andn,. This non-linear system can be expressed



in the following form by combining the first two equationswith n,= n, + n;l while the noise model is in discrete-time

in (2): form
! . _Clghn)  14ag '+ +eng ™
g dyltn) = Zl Go,i(@)vi(ultr)) + Ho(q)eo(tr), 3) M Higm) = D(g7tm)  1+dig™ 4+ dndq‘adl)
u(ty) = r(tr) — Ce(@)y(tr), where the associated model parameters are stacked column-
where - . wise in the parameter vector,
) - Bo,i q - ao.,iBo q- o T Ne+ng
Go,z(q) - Ao(q_l) - Ao(q_l) 3 (4) T] - [Cl Cnc dl dnd] S R (12)
and Consequently, the noise transfer function takes the usual
r(ty) = r1(tk) + Cola)ra(te). (5) ARMA model form:
-1
The method presented is based on the identification of a E(ty) = %e(tk). (13)
Box—Jenkins model, where the linear and the noise mod- (a=%m)

els are not constrained to have common polynomials. Thdore formally, there exists the following decomposition of
coloured noise associated with the sampled output meghe parameter vectd® for the whole model,
surementy(t,) has rational spectral density and can be

represented by a discrete-time autoregressive movinggeer 0— <P> (14)
ARMA model: n
Cy(q~t such that the model can be written in the form
€(t) = Holaelt) = S Deot) @ |
o 1 .
where C,(¢~*) and D,(¢~ ') are polynomials with respec- y(te) = Alq1, p) ZBi(q  P)viultr)) +&(t)
tive degreen. and ng. e,(tx) is a zero-mean, normally Clg~,m) =t
distributed, discrete-time white noise sequenegt;) ~ E(t) = D(q*l’n)e(tk)’
N(0,02). ,
i u(te) = rlts) - Cela)y(te)

Additionally, the controllerC.(q) is given by
Q™) _ dotag '+ +an, g™
Plg™t) po+pigt+- A pu,qg

with the pair(P, Q) assumed to be coprime. C. Identification problem

(15)

Celq) = . (1) with Bi(¢™',p) = a;B(q~ ', p), i = 1...L.

Under the following assumptions:

) ) Al: The degrees,, ny, n. andny are supposed to be
The model set to be estimated, denotedvésvith subsys-  nown a priori;

tems ;) and noisef{) models parameterized independentlya>: The controllerC, is supposed to ba priori known and
then takes the form, will not be estimated:;
i R A3: A,(¢7 ') and B,(¢ ') are coprime;
M {Gila p) Hgm)y, withi=1...1 ® A4: r(t;) is not correlated ta, (ty);
where p and ) are parameter vectors that characterise th&5: r(tx) andy(tx) are stationary signals;
system and noise model, respectively. In particular, thA6: The non-linear basic functiong as well as the degree
system model is formulated in discrete-time terms: [ area priori known and~; are pairwise orthogonal;

—1
Bi(q71,p)7 The identification problem can be formulated as follows:
Ala™,p) given N samples of datdr(t), u(tx), y(tx)} o, directly
_ai(bigt +bag 2+ 4 b g ™) (9) estimate the discrete time parameter ve@or
l+aig b+ ap,g " ’

B. Model considered

. . . IIl. | NSTRUMENTAL VARIABLE FOR CLOSED-LOOP
with s = 1...7 and the pairg A, B;) assumed to be coprime.

The associated model parameters are stacked columnwise in SYSTEMS
the parameter vector, A. The instrumental variable estimate
a ay by Consider the relationship between process input and output
a1b as by signals which can be written under such a regression form:
p=| . | R a=|  |eR"™ b=|  |[€R™,
: ' 1 y(tk) = @* (tr)p + v(te) (16)
ab G, by,

(20) The well-known extended-IV estimate is given by [17]:



C. Instrumental variable for non-linear systems in closed
loop

Now consider the relationship between the process input
and output signals in (2),

an u(te) = Gol@)i(ts) + Hola)eolt)-  (26)

1% If the process to be identified belongs to the model set
previously defined, thery(t;) can be written under the
regression form (withp as defined in (10)) :

f)ziv( = arg HllIl

N

[N Z (@)e” (tr)
N a 2

[ Z (@)y(tx)

where ¢(t) is the instrumental vecto|z|%, = 2T Wz,
with W a positive definite weighting matrix and(q) a

stable prefilter. By definition, whe@, € G, the extended-1V y(tr) = @ (t)p + v(ty) 27
estimate provides a consistent estimate under the folpwin
two conditiond where,
o EL(q)¢(th)L(q)T (t) is full column rank, —y(ts) y(te—1)
« EL(q)¢(tx) L(q)v(tr) = 0. Y1 (U(tk)) y(ti—2)
Pp(ty) = : Y (k) : ) (28)
B. Optimal instrumental variable for linear systems in : '
closed loop Yi(u(ty)) Y(tk—n,)
Concerning the latest advance in IV method for closed- zgik‘lg
loop systems, a so-called “tailor-made IV algorithm” was u(ty) = b2 ’ (29)
proposed in [8], where the closed-loop plant is paramegdriz :
using the (open-loop) plant parameters. Then, an optimal U(tk—n,)
(minimal) variance result was developed in the linear dese d
loop extended IV identification case, revealing consegegnc an .
for the choice of weights, filters and instruments [9], [7]. v(te) = Ala™ p)E(tk)- (30)
Consider the relationship between the process input am; |ogically extending the IV presented in Section Ill-
output signals in (2) fow(t) = u(t) , B to non-linear systems, we propose to use the following
instrumental variable:
y(tk) = GO(Q)u(tk) + Ho(q)eo(tk)' (18) ) .
S —Y(tk) y(tr — 1)
If the process to be identified belongs to the model set y(Qlte)) | Yty —2)
previously defined, theny(¢;) can be written under the ¢(tr) = : Y(te) = : ;
regression form: L o
Y (U(tk)) Ytk — 1a)
y(tr) = ¢ (tr)p + v(ts) (19) a(ty — 1)
u(ty — 2)
where, a(ty) = . , (31)
. :
p(te) = [~y(te-1) .- = Y(to—n, ) ulte-1) ... ulti-n,)] " (ty — np)
20
- (20) where the noise-free system can be described by:
P = [ala'--7afnaab17--~7b’n,g,} (21 .
and gluttn) = > Goilg)vi(i(t)), (32)
v(ty) = Al Y, p)é(te). 22 . =1 .
(tx) = Alg, p)&(t) (22) at) = () — Col@)i(te)

It has been shown in that case that the minimum variance Remark 1
estimator can be achieved by the following optimal choice

of design variables [9], [7] It has to be noticed that for the non-linear case, choosing

L(q), ¢(tx) and W as optimally defined in the linear case

W =TI (23) does not guarantee the statistical optimality of the egéma
i o ’ 24 In the present context it can be seen thgt and therefore
Cte) = @), (24) n~ over-parametrizes the system: The number of parameters
L(q) = L (q) = # (25) og the system which equals, + n, + l—1is Ies_s than
olg™ 1) Ho(q) the number of parameters to be estimategl £ n,!) in the
where (1) is the noise-free version @b(ty,). as;omatelfzmodel.
emar
The notationE[] = limy_o & Sr; E[] is adopted from the None of A(¢~", p), Bi(q~",p), C(g~",m) or D(g~",m)

prediction error framework of [13]. is known and only their estimates are available. Therefore,



refined IV estimation normally involves an iterative (or re-

laxation) algorithm in which, at each iteration, the ‘aieadiy

ARMA method from the MATLAB identification tool-
box is used here.

model’ used to generate the instrumental variable, as well

as the associated prefiltdr(¢), are updated, based on theStep 4 repeat from step 2 Stop when A(q~
parameter estimates obtained at the previous iteratiop [23B;(

IV. THE REFINED INSTRUMENTAL VARIABLE ALGORITHM

Step 1 Initialisation: A simple least square method is
used to initialize the algorithm.

N - N
Dol )| Y eltylte),  (33)
k=1 k=1

where p(t;) is given by (28). This yieldsB;(¢~*, 5) and

A(q~1, p°). Denote the corresponding transfer functlons

Bi(q~", p")

P°)
A(g=, p°)

Set the initial noise model estimate€'(q—!,17°)
D(g Y7’y =1andj=1.

Gi(Q)ﬁO) = (34)

Step 2 Estimate a model based proposed IV

Generate the filtered instruments according to the model

structure at thg” iteration:
1

-1
) =
Alg,p" " H (g, 7))
Compute the auxiliary model variablgst, p p'~1) and
u(ty, p’~1) by simulating the estimated auxiliary model
S

ComputeL(q, &’

l
gt P’ = ZGo,i(q, P (ilalte, 7)),

),

i=1
Wty 1) = r(te) — Co@)ii(te, P

(35)
Generate the filtered instrument:

Cltn) = L(q, 0" Nty '),

Generate the fiI_teged regressor and output
@;(tr) = L(q,0’ elt /1), and
yr(te) = L(g,0" y(ts)

tal variable (HCLRIV) estimate:

N

Z

k=1

(th)yy (tr)-
(36)

N
p'(N) = lZ&f@k)so?(tk)
k=1

L p),
q~ ', p), H(q,7) have converged.
Step 5 Compute the estimated coefficients andB (¢!, p)
by using a constraint

At the end of the iterative process, the coefficients
&; can be deduced from the ponnomiﬁ?i(qfl) since
Bi(¢7',p) = a;B(q~!, p). In the present case we use a
straightforward constraint, which is; = 1 (guarantees that
Bi(q7', p) = B(q~', p)) to computed; from:

1
ny+ 1

-
bik

>

Y
k=0 bl,k

(37)

where BM is the kth coefficient of the polynomial term
Bi (q_la p)

Comments

o A simplified version of HCLRIV algorithm named
HCLSRIV follows the exact same theory for estima-
tion of Hammerstein models operating in closed-loop
with a linear output error process. It is mathemati-
cally described byC(q~',n7) = Co,(¢7') = 1 and
D(q¢ ', n’) = D,(q~ ') = 1. All previous steps remain
true except forstep 3which is not anymore required.
Even if the proposed algorithm performs well, it is not
statistically optimal as illustrated in Section V. How-
ever, the estimated parameters can be used to initialise
a statistically optimal method (prediction error method
for example).

V. NUMERICAL EXAMPLE

This section presents numerical illustration of both sug-
gested HCLRIV and HCLSRIV methods. For all presented
examples, the non-linear block is a sum of sine functions,
i.e.v;(u(ty)) = sin(i.u(tx)), Vi € N and the command input

Compute the non-linear closed-loop refined instrumeng considered here is:

a(ty) = sin(u(ty))—0.5sin(2u(ty))+0.4 sin(3u(ty)). (38)

r1(tx) follows a uniform distribution with values between
—2 and 2 while ry(tx) = 0 (N = 2000). The linear model
and controller assuming a zero order hold on the input are

Step 3 Obtain an estimate of the noise model parametergiven as:

vectorn’ based on the estimated noise sequence:

« Compute the estimated noise sequence:

) ;
Bz(q7 7’3 )
v(te) = y(te) = ) —— 5 vilulte)),
| ; Alg1 )
« Estimates;’ and thereforeC'(¢~*,7’) and D(¢~*, %’)
with an ARMA method usmgv(tk) as mput. The

Golg) = 0.0997¢— ' — 0.0902¢~2
M = T T1.8858¢—1 + 0.9048¢—2
1+0.5¢7!
Ho(q) = T 085¢ 1 (39)
10.75 — 9.25¢"
Celq) = B



The models considered for estimation are:

the estimated parameters, their standard deviation arid the

big=t + byg2 normalised root mean square error (RMSE) defined as:

G(Q? p) = 71 72 )
11+a1q 1+a2q N ; é() 5

+eig 5 1N~ (900

H(g,n) = ———, N — 29 N
Mucrrryv { @) = 7757 3 RMSE(0;) N ; ( 7 ) , (45
t)) = si tr)) + isin(z.u(t A

fulte)) = sin(u(t)) ;a in(iu(t)) with ¢; the jth component of the parameter vecthr

(40)
for the HCLRIV method and
b1g~ ! + bag?
G b) - b
(a.p) 1+a1qg !+ axqg2
H(q,m) =1,
3

Flu(ty)) = sin(u(ty)) + > a;sin(i.u(ty))

1=2

Mucrsriv

(41)
for the HCLSRIV method.

On the one hand it can be seen in Table | that even if the
noise model assumption is false, which is the case for the
HCLSRIV and OElin methods in this example, the refined
IV method gives a parameter estimation centered on the true
value with a correct estimated parameter variance (RMSE
remaining under16%), while the prediction error based
method OElin estimates are strongly biased and have RMSE
near 30%. This fact makes HCLSRIV a very interesting
method for practical applications where the noise dynamic
is not known: by modelling a white noise added to the
output, the number of parameters to estimate is reduced in

As pointed out in Section Il the proposed estimatog,mnarison to a Box—Jenkins model identification.

?S not .optimal due to redundancy in the regressor. For On the other hand, the presented HCLRIV method is not
illustration purposes, thg proposed methods are cp_mpareqo timal due to the redundancy in the regressor but exposes
the parameters of the linear plant process identified usi

o MR ) . SE in estimated parameters under 11 %. It can be noticed
a pred_|ct|on error minimisation method (PEMIin, OEIIn)however that the estimated parameter variances are close to
assuming th_a.t” are known_. The problem reduces therefo_r‘?hose from PEMIin estimates: this may therefore be seen

to the identification of a linear model where the input 'S3s an acceptable achievement since in the PEMIin case, the

u(ty) and the output ig/(ty,). non-linear part is supposed to be known
The model considered for the PEM identification using I partIs stpp wn-

the PEM method from the MATLAB identification toolbox VI. CONCLUSION

is then:
big~ + bog2 The theory of refined instrumental variable was applied to
G(g,p) = Tt arqg ! +axq2 a non-linear closed-loop model composed of a known linear
1+cgt controller, a linear dynamic Box-Jenkins transfer funetio
Mppiin { H@m) = 1+dg 1 and a non-linear function defined as the sum of known basis
fu(ty)) =sin(u(ty)) —0.5sin(2u(ty)) funqtions. The proposed est_imator is not statisticallyrppt
+0.4sin(3u(ty)) but it was shown on some given example that the variance of

estimated parameters is close to the one obtained from the
linear optimalPEM estimator. The proposed method can be
for the PEMIin method. therefore used as a good starting point for some statistical

The model considered for the PEM identification usingptimal PEMmethods which are known to be sensitive to the
the CE method from the MATLAB identification toolbox is initialisation stage. In case the noise model assumedss fal

(42)

then: the proposed IV method still converges while the PEM based
big ! +byg? methods do not. Some further work will be dedicated to blind
Gla,p) = 1+ajg-1t 2 estimation problems, where the non-linear basic functigns
a1q™1 4+ azq p , 0
Mogin d Hlam) =1, area priori not known.
flu(ty)) =sin(u(ty)) — 0.5sin(2u(ty))
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