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Refined Instrumental Variable Methods for Identifying Hammerstein Models
Operating in Closed Loop

V. Laurain∗, M. Gilson∗, H. Garnier∗

Abstract— This article presents an instrumental variable
method dedicated to non-linear Hammerstein systems operating
in closed loop. The linear process is a Box–Jenkins model
and the non-linear part is a sum of known basis functions.
The performance of the proposed algorithm is illustrated by a
numerical example.

I. INTRODUCTION

The need for non-linear identification grows as the stud-
ied system complexity increases [14]. Many different ap-
proaches were developed to deal with open-loop black-
box model identification, whether they are non parametric,
using Volterra series approach [11], [15], semi-parametric
using neural network methods and support vector machine
classification [16], [3], or parametric such as state dependent
parameters [24] or refined instrumental variable [12]. Semi-
parametric approaches, even if performing efficiently, lack
the possibility of giving ana posteriori physical represen-
tation of the studied system. On the other hand, transfer
function models provide a generic approach to data-based
modelling of linear systems, encompass both discrete-time
and continuous-time applications and are in an ideal form
to interpret serial, parallel connections of sub-systems which
often have a physical significance.

Closed-loop systems are widely used in practice and
various attempts have been made to handle linear system
identification in the presence of feedback. Indeed, closed-
loop system identification leads to several difficulties due
to the correlation between the disturbances and the control
signal induced by the loop. Several methods have therefore
been developed to cope with this problem seee.g.[18], [20],
[5], [25]. An optimal refined instrumental variable method
has been presented for closed-loop linear systems in [7].

The problem of non-linear plants operating in closed loop
have not received a lot of attention so far. Indeed, this
problem is handled only in a few papers as ine.g [6],
[10], [2], and [21] but to the best of our knowledge no
instrumental variable (IV) method has been developed to deal
with this kind of issues. For closed-loop linear identification,
a basic IV estimator was first suggested in [22], assuming
the knowledge of the controller; the topic was later discussed
in more detail in [19]. The present paper extends the refined
IV technique theory developed for linear cases presented in
[7] to the identification of discrete-time Hammerstein models
operating in closed loop. This paper is organized as follows:
after the preliminaries, the proposed iterative IV method
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Fig. 1. Closed-loop system

is described in Section III. The detailed algorithm of the
method is given in Section IV. Finally, the performance of
the proposed algorithm is illustrated through a numerical
example in Section V.

II. PROBLEM DESCRIPTION

A. System considered

Consider the stable, SISO closed-loop non-linear system
represented in Figure 1 and assume that both command input
and output signals,u(tk) and y(tk) are uniformly sampled
at a constant sampling timeTs over N samples.

The controller is supposed to be known, the linear process
is Box-Jenkins model and the non-linear function is assumed
to be a sum of known basis functionsγ1, γ2, . . . , γl so that
it can be expressed:

ū(tk) =

l
∑

i=1

αo,iγi(u(tk)). (1)

Notice first that this system produces the same input-
output data for any pair(βf(u), Go(q)/β). Therefore, to get
a unique parametrization, one of the gains off(u) or Go(q)
has to be fixed [4], [1]. Hence, the first coefficient of the
function f(.) equals to1, i.e. α1 = 1 in (1).

Moreover, ū(tk) in (1) is an internal variable and is
not directly available from data. Using (1), the systemS
to be identified is described by the following input-output
relationships:

S











y(tk) = Go(q)ū(tk) + Ho(q)eo(tk),

ū(tk) =
∑l

i=1
αo,iγi(u(tk)),

u(tk) = r(tk) − Cc(q)y(tk),

(2)

whereGo(q) denotes the process andCc(q) the controller.
u(tk) describes the process input signal,y(tk) the process
output signal.Bo(q

−1) and Ao(q
−1) are polynomials in

the shift operatorq−1 (q−rx(tk) = x(tk−r)) with respective
degreenb andna. This non-linear system can be expressed



in the following form by combining the first two equations
in (2):

S











y(tk) =
l

∑

i=1

Go,i(q)γi(u(tk)) + Ho(q)eo(tk),

u(tk) = r(tk) − Cc(q)y(tk),

(3)

where

Go,i(q) =
Bo,i(q

−1)

Ao(q−1)
=

αo,iBo(q
−1)

Ao(q−1)
, (4)

and
r(tk) = r1(tk) + Cc(q)r2(tk). (5)

The method presented is based on the identification of a
Box–Jenkins model, where the linear and the noise mod-
els are not constrained to have common polynomials. The
coloured noise associated with the sampled output mea-
surementy(tk) has rational spectral density and can be
represented by a discrete-time autoregressive moving average
ARMA model:

ξ(tk) = Ho(q)e(tk) =
Co(q

−1)

Do(q−1)
eo(tk) (6)

whereCo(q
−1) and Do(q

−1) are polynomials with respec-
tive degreenc and nd. eo(tk) is a zero-mean, normally
distributed, discrete-time white noise sequence:eo(tk) ∼
N (0, σ2

e).
Additionally, the controllerCc(q) is given by

Cc(q) =
Q(q−1)

P (q−1)
=

q0 + q1q
−1 + · · · + qnq

q−nq

p0 + p1q−1 + · · · + pnp
q−np

, (7)

with the pair(P,Q) assumed to be coprime.

B. Model considered

The model set to be estimated, denoted asM with subsys-
tems (Gi) and noise (H) models parameterized independently,
then takes the form,

M : {Gi(q,ρ),H(q,η)}, with i = 1 . . . l (8)

whereρ and η are parameter vectors that characterise the
system and noise model, respectively. In particular, the
system model is formulated in discrete-time terms:

G : Gi(q,ρ) =
Bi(q

−1,ρ)

A(q−1,ρ)
,

=
αi(b1q

−1 + b2q
−2 + · · · + bnb

q−nb)

1 + a1q−1 · · · + ana
q−na

, (9)

with i = 1 . . . l and the pairs(A,Bi) assumed to be coprime.
The associated model parameters are stacked columnwise in
the parameter vector,

ρ =











a
α1b

...
αlb











∈ R
nρ , a =











a1

a2

...
ana











∈ R
na , b =











b1

b2

...
bnb











∈ R
nb ,

(10)

with nρ= na +nbl while the noise model is in discrete-time
form

H : H(q,η) =
C(q−1,η)

D(q−1,η)
=

1 + c1q
−1 + · · · + cnc

q−nc

1 + d1q−1 + · · · + dnd
q−nd

(11)
where the associated model parameters are stacked column-
wise in the parameter vector,

η =
[

c1 · · · cnc
d1 · · · dnd

]T
∈ R

nc+nd (12)

Consequently, the noise transfer function takes the usual
ARMA model form:

ξ(tk) =
C(q−1,η)

D(q−1,η)
e(tk). (13)

More formally, there exists the following decomposition of
the parameter vectorθ for the whole model,

θ =

(

ρ

η

)

(14)

such that the model can be written in the form


























y(tk) =
1

A(q−1,ρ)

l
∑

i=1

Bi(q
−1,ρ)γi(u(tk)) + ξ(tk)

ξ(tk) =
C(q−1,η)

D(q−1,η)
e(tk),

u(tk) = r(tk) − Cc(q)y(tk)

(15)

with Bi(q
−1,ρ) = αiB(q−1,ρ), i = 1...l.

C. Identification problem

Under the following assumptions:
A1: The degreesna, nb, nc and nd are supposed to be

known a priori;
A2: The controllerCc is supposed to bea priori known and
will not be estimated;
A3: Ao(q

−1) andBo(q
−1) are coprime;

A4: r(tk) is not correlated toeo(tk);
A5: r(tk) andy(tk) are stationary signals;
A6: The non-linear basic functionsγi as well as the degree
l area priori known andγi are pairwise orthogonal;

The identification problem can be formulated as follows:
given N samples of data{r(tk), u(tk), y(tk)}N

k=1, directly
estimate the discrete time parameter vectorθ.

III. I NSTRUMENTAL VARIABLE FOR CLOSED-LOOP

SYSTEMS

A. The instrumental variable estimate

Consider the relationship between process input and output
signals which can be written under such a regression form:

y(tk) = ϕT (tk)ρ + v(tk) (16)

The well-known extended-IV estimate is given by [17]:



ρ̂xiv(N) = arg min
ρ

∥

∥

∥

∥

∥

[

1

N

N
∑

k=1

L(q)ζ(tk)L(q)ϕT (tk)

]

−

[

1

N

N
∑

t=1

L(q)ζ(tk)L(q)y(tk)

]∥

∥

∥

∥

∥

2

W

, (17)

where ζ(tk) is the instrumental vector,‖x‖2
W = xT Wx,

with W a positive definite weighting matrix andL(q) a
stable prefilter. By definition, whenGo ∈ G, the extended-IV
estimate provides a consistent estimate under the following
two conditions1

• ĒL(q)ζ(tk)L(q)ϕT (tk) is full column rank,
• ĒL(q)ζ(tk)L(q)v(tk) = 0.

B. Optimal instrumental variable for linear systems in
closed loop

Concerning the latest advance in IV method for closed-
loop systems, a so-called “tailor-made IV algorithm” was
proposed in [8], where the closed-loop plant is parameterized
using the (open-loop) plant parameters. Then, an optimal
(minimal) variance result was developed in the linear closed-
loop extended IV identification case, revealing consequences
for the choice of weights, filters and instruments [9], [7].

Consider the relationship between the process input and
output signals in (2) foru(t) = ū(t) ,

y(tk) = Go(q)u(tk) + Ho(q)eo(tk). (18)

If the process to be identified belongs to the model set
previously defined, theny(tk) can be written under the
regression form:

y(tk) = ϕT (tk)ρ + v(tk) (19)

where,

ϕ(tk) =
[

−y(tk−1) . . . − y(tk−na
), u(tk−1) . . . u(tk−nb

)
]T

,
(20)

ρ =
[

a1, . . . , ana
, b1, . . . , bnb

]T
(21)

and

v(tk) = A(q−1,ρ)ξ(tk). (22)

It has been shown in that case that the minimum variance
estimator can be achieved by the following optimal choice
of design variables [9], [7]

W = I, (23)

ζ(tk) = ϕ̊(tk), (24)

L(q) = Lopt(q) =
1

Ao(q−1)Ho(q)
. (25)

whereϕ̊(tk) is the noise-free version ofϕ(tk).

1The notation Ē[.] = limN→∞

1

N

P

N

t=1
E[.] is adopted from the

prediction error framework of [13].

C. Instrumental variable for non-linear systems in closed
loop

Now consider the relationship between the process input
and output signals in (2),

y(tk) = Go(q)ū(tk) + Ho(q)eo(tk). (26)

If the process to be identified belongs to the model set
previously defined, theny(tk) can be written under the
regression form (withρ as defined in (10)) :

y(tk) = ϕT (tk)ρ + v(tk) (27)

where,

ϕ(tk) =











−y(tk)
γ1(u(tk))

...
γl(u(tk))











, y(tk) =











y(tk−1)
y(tk−2)

...
y(tk−na

)











, (28)

u(tk) =











u(tk−1)
u(tk−2)

...
u(tk−nb

)











, (29)

and
v(tk) = A(q−1,ρ)ξ(tk). (30)

By logically extending the IV presented in Section III-
B to non-linear systems, we propose to use the following
instrumental variable:

ζ(tk) =











−̊y(tk)
γ1(̊u(tk))

...
γl(̊u(tk))











, ẙ(tk) =











ẙ(tk − 1)
ẙ(tk − 2)

...
ẙ(tk − na)











,

ů(tk) =











ů(tk − 1)
ů(tk − 2)

...
ů(tk − nb)











, (31)

where the noise-free system can be described by:

S̊











ẙ(tk) =

l
∑

i=1

Go,i(q)γi(̊u(tk)),

ů(tk) = r(tk) − Cc(q)ẙ(tk)

(32)

Remark 1
It has to be noticed that for the non-linear case, choosing

L(q), ζ(tk) and W as optimally defined in the linear case
does not guarantee the statistical optimality of the estimate.
In the present context it can be seen thatnϕ and therefore
nζ over-parametrizes the system: The number of parameters
of the system which equalsna + nb + l − 1 is less than
the number of parameters to be estimated (na + nbl) in the
associated model.

Remark 2
None ofA(q−1,ρ), Bi(q

−1,ρ), C(q−1,η) or D(q−1,η)
is known and only their estimates are available. Therefore,



refined IV estimation normally involves an iterative (or re-
laxation) algorithm in which, at each iteration, the ‘auxiliary
model’ used to generate the instrumental variable, as well
as the associated prefilterL(q), are updated, based on the
parameter estimates obtained at the previous iteration [23].

IV. T HE REFINED INSTRUMENTAL VARIABLE ALGORITHM

Step 1. Initialisation: A simple least square method is
used to initialize the algorithm.

ρ̂0 =

[

N
∑

k=1

ϕ(tk)ϕT (tk)

]−1
N

∑

k=1

ϕ(tk)y(tk), (33)

whereϕ(tk) is given by (28). This yieldsBi(q
−1, ρ̂0) and

A(q−1, ρ̂0). Denote the corresponding transfer functions

Gi(q, ρ̂
0) =

Bi(q
−1, ρ̂0)

A(q−1, ρ̂0)
. (34)

Set the initial noise model estimatesC(q−1, η̂0) =
D(q−1, η̂0) = 1 and j = 1 .

Step 2. Estimate a model based proposed IV
Generate the filtered instruments according to the model
structure at thejth iteration:

• ComputeL(q, θ̂
j−1

) =
1

A(q−1, ρ̂j−1)H(q, η̂j−1)
,

• Compute the auxiliary model variables̊y(tk, ρ̂j−1) and
ů(tk, ρ̂j−1) by simulating the estimated auxiliary model
S̊(ρ̂j−1):










ẙ(tk, ρ̂j−1) =
l

∑

i=1

Go,i(q, ρ̂
j−1)(γi(̊u(tk, ρ̂j−1)),

ů(tk, ρ̂j−1) = r(tk) − Cc(q)ẙ(tk, ρ̂j−1),

(35)

• Generate the filtered instrument:
ζf (tk) = L(q, θ̂

j−1
)ϕ̊(tk, ρ̂j−1),

• Generate the filtered regressor and output
ϕf (tk) = L(q, θ̂

j−1
)ϕ(tk, ρ̂j−1), and

yf (tk) = L(q, θ̂
j−1

)y(tk)
• Compute the non-linear closed-loop refined instrumen-

tal variable (HCLRIV) estimate:

ρ̂
j(N) =

[

N
∑

k=1

ζ̂f (tk)ϕT
f (tk)

]−1
N

∑

k=1

ζ̂f (tk)yf (tk).

(36)

Step 3. Obtain an estimate of the noise model parameter
vector ηj based on the estimated noise sequence:

• Compute the estimated noise sequence:

v(tk) = y(tk) −
l

∑

i=1

Bi(q
−1, ρ̂j)

A(q−1, ρ̂j)
γi(u(tk)),

• Estimateη̂
i and thereforeC(q−1, η̂j) and D(q−1, η̂j)

with an ARMA method usingv(tk) as input. The

ARMA method from the MATLAB identification tool-
box is used here.

Step 4. repeat from step 2. Stop when A(q−1, ρ̂),
Bi(q

−1, ρ̂), H(q, η̂) have converged.

Step 5. Compute the estimatedα coefficients andB(q−1, ρ̂)
by using a constraint

At the end of the iterative process, the coefficients
α̂i can be deduced from the polynomial̂Bi(q

−1) since
Bi(q

−1,ρ) = αiB(q−1,ρ). In the present case we use a
straightforward constraint, which isα1 = 1 (guarantees that
B̂1(q

−1, ρ̂) = B̂(q−1, ρ̂)) to computeα̂i from:

α̂i =
1

nb + 1

nb
∑

k=0

b̂i,k

b̂1,k

, (37)

where b̂i,k is the kth coefficient of the polynomial term
Bi(q

−1, ρ̂).
Comments

• A simplified version of HCLRIV algorithm named
HCLSRIV follows the exact same theory for estima-
tion of Hammerstein models operating in closed-loop
with a linear output error process. It is mathemati-
cally described by,C(q−1,ηj) = Co(q

−1) = 1 and
D(q−1,ηj) = Do(q

−1) = 1. All previous steps remain
true except forstep 3which is not anymore required.

• Even if the proposed algorithm performs well, it is not
statistically optimal as illustrated in Section V. How-
ever, the estimated parameters can be used to initialise
a statistically optimal method (prediction error method
for example).

V. NUMERICAL EXAMPLE

This section presents numerical illustration of both sug-
gested HCLRIV and HCLSRIV methods. For all presented
examples, the non-linear block is a sum of sine functions,
i.e. γi(u(tk)) = sin(i.u(tk)),∀i ∈ N and the command input
ū considered here is:

ū(tk) = sin(u(tk))−0.5 sin(2u(tk))+0.4 sin(3u(tk)). (38)

r1(tk) follows a uniform distribution with values between
−2 and 2 while r2(tk) = 0 (N = 2000). The linear model
and controller assuming a zero order hold on the input are
given as:

Go(q) =
0.0997q−1 − 0.0902q−2

1 − 1.8858q−1 + 0.9048q−2
,

Ho(q) =
1 + 0.5q−1

1 − 0.85q−1
, (39)

Cc(q) =
10.75 − 9.25q−1

1 − q−1
.



The models considered for estimation are:

MHCLRIV



































G(q,ρ) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
,

H(q,η) =
1 + c1q

−1

1 + d1q−1
,

f(u(tk)) = sin(u(tk)) +

3
∑

i=2

αi sin(i.u(tk))

(40)

for the HCLRIV method and

MHCLSRIV



























G(q,ρ) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
,

H(q,η) = 1,

f(u(tk)) = sin(u(tk)) +
3

∑

i=2

αi sin(i.u(tk))

(41)

for the HCLSRIV method.
As pointed out in Section III the proposed estimator

is not optimal due to redundancy in the regressor. For
illustration purposes, the proposed methods are compared to
the parameters of the linear plant process identified using
a prediction error minimisation method (PEMlin, OElin)
assuming thatαi are known. The problem reduces therefore
to the identification of a linear model where the input is
ū(tk) and the output isy(tk).

The model considered for the PEM identification using
the PEM method from the MATLAB identification toolbox
is then:

MPEMlin































G(q,ρ) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
,

H(q,η) =
1 + c1q

−1

1 + d1q−1
,

f(u(tk)) = sin(u(tk)) − 0.5 sin(2u(tk))

+0.4 sin(3u(tk))

(42)

for the PEMlin method.
The model considered for the PEM identification using

the OE method from the MATLAB identification toolbox is
then:

MOElin



























G(q,ρ) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
,

H(q,η) = 1,

f(u(tk)) = sin(u(tk)) − 0.5 sin(2u(tk))

+0.4 sin(3u(tk))

(43)

for the OElin method.
A Monte-Carlo simulation of 100 runs (Nexp = 100) with

a new noise realization for each run is accomplished under
a signal to noise ratio (SNR) of 10dB with:

SNR= 10log

(

Pẙ

Pe

)

, (44)

Pg being the average power of signalg. The number of
samples isN = 2000. Table I exhibits the mean value of

the estimated parameters, their standard deviation and their
normalised root mean square error (RMSE) defined as:

RMSE(θ̂j) =

√

√

√

√

1

Nexp

Nexp
∑

i=1

(

θo
j − θ̂j(i)

θo
j

)2

, (45)

with θ̂j the jth component of the parameter vectorθ.
On the one hand it can be seen in Table I that even if the

noise model assumption is false, which is the case for the
HCLSRIV and OElin methods in this example, the refined
IV method gives a parameter estimation centered on the true
value with a correct estimated parameter variance (RMSE
remaining under16%), while the prediction error based
method OElin estimates are strongly biased and have RMSE
near 30%. This fact makes HCLSRIV a very interesting
method for practical applications where the noise dynamic
is not known: by modelling a white noise added to the
output, the number of parameters to estimate is reduced in
comparison to a Box–Jenkins model identification.

On the other hand, the presented HCLRIV method is not
optimal due to the redundancy in the regressor but exposes
RMSE in estimated parameters under 11 %. It can be noticed
however that the estimated parameter variances are close to
those from PEMlin estimates: this may therefore be seen
as an acceptable achievement since in the PEMlin case, the
non-linear part is supposed to be known.

VI. CONCLUSION

The theory of refined instrumental variable was applied to
a non-linear closed-loop model composed of a known linear
controller, a linear dynamic Box-Jenkins transfer function
and a non-linear function defined as the sum of known basis
functions. The proposed estimator is not statistically optimal
but it was shown on some given example that the variance of
estimated parameters is close to the one obtained from the
linear optimalPEM estimator. The proposed method can be
therefore used as a good starting point for some statistically
optimalPEM methods which are known to be sensitive to the
initialisation stage. In case the noise model assumed is false,
the proposed IV method still converges while the PEM based
methods do not. Some further work will be dedicated to blind
estimation problems, where the non-linear basic functionsγi

area priori not known.
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[19] T. Söderstr̈om, P. Stoica, and E. Trulsson. Instrumental variable
methods for closed-loop systems. In10th World IFAC Congress, pages
363–368, Munich - Germany, 1987.

[20] P. Van den Hof. Closed-loop issues in system identification. Annual
Reviews in Control, 22:173–186, 1998.

[21] H. Wang, K. Ju, and K. H. Chon. Closed-loop nonlinear system
identification via the vector optimal parameter search algorithm:
Application to heart rate baroreflex control.Medical Engineering &
Physics, 29, Issue 4:505–515, May 2007.

[22] P. C. Young. An instrumental variable method for real-timeidentifi-
cation of a noisy process.Automatica, 6:271–287, 1970.

[23] P. C Young.Recursive Estimation and Time-Series Analysis. Springer-
Verlag, Berlin, 1984.

[24] P. C. Young.Nonlinear Dynamics and Statistics, chapter The identifi-
cation and estimation of nonlinear stochastic systems, pages127–166.
Birkhauser: Boston, 2001.

[25] W. X. Zheng. Application of bels based methods in direct identification
of linear systems from closed loop data. In IEEE, editor,42nd IEEE
Conference on Decision and Control, pages 4539–4544, Hawaı̈ - USA,
December 2003.


