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GAUSSIANIZATION AND EIGENVALUE STATISTICS FOR RANDOM
QUANTUM CHANNELS (III)

BENOIT COLLINS AND ION NECHITA

ABSTRACT. In this paper, we present applications of the calculus developed in @, and
obtain an exact formula for the moments of random quantum channels whose input is
a pure state thanks to gaussianization methods. Our main application is an in-depth
study of the random matrix model introduced by Hayden and Winter and used recently
by Brandao, Horodecki, Fukuda and King to refine the Hastings counterexample to the
additivity conjecture in Quantum Information Theory. This model is exotic from the
point of view of random matrix theory, as its eigenvalues obey to two different scalings
simultaneously. We study its asymptotic behavior and obtain an asymptotic expansion
for its von Neumann entropy.

1. INTRODUCTION

In the paper [J] we developed a calculus allowing to compute any moments of random
quantum channels. It already proved useful to understand the random matrix models
involved in the additivity violation theorems and to give improvements on lower bounds
of dimensions needed to obtain violation of the additivity of entropy estimates (developped
in [0, [l0]). In the present work, we study two more applications of our calculus, to new
random matrix models introduced for quantum information theoretic purposes.

The first application is of theoretical interest and of non asymptotic nature: we extend
our calculus to Gaussian matrices and show that it yields explicit formulas for the moments
of Wishart matrices and of outputs of quantum random channels. The formulae are of
purely combinatorial nature and allow to bypass Weingarten calculus, whose asymptotic
estimates can be involved. For this we use a ‘gaussianization’ method.

The second application is a study at length of the random matrix model that was
introduced by Hayden and Winter in [I9] and used recently in [[3, [[4, fl] to refine the
results of Hastings [[§]. As a motivation, let us recall the quantum information theoretic
context of this random matrix. A quantum channel is a linear completely positive trace
preserving map ¢ from M, (C) — My(C). A density matrix is a selfadjoint positive
matrix of trace 1. Let A, = {z € Rk | S % a; = 1} be the (k—1)-dimensional probability
simplex. The Shannon entropy of x is defined to be

k
H(z)=— le log ;.
i=1

These definitions are extended to density matrices by functional calculus:

H(p) = —Trplogp.
For a quantum channel ® : M,,(C) — My(C), its minimum output entropy is defined by
Hpjn(®) = min H(d .
@)= i H(®()

n

p=0,Tr p=1
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2 BENOIT COLLINS AND ION NECHITA

The additivity conjecture for minimum output entropies was arguably one of the most
important in quantum information theory, and it can be stated as follows:

Conjecture 1.1. For all quantum channels ®1 and ®o, one has
(1) Hupin(®1 ® ®2) = Hin(P1) + Hmin(P2).
This conjecture was disproved by Hastings in [[[§ as follows:
Theorem 1.2. There exists a counterexample to the conjecture for the choice ®; = ®,.

In the proof of [Ig], one reason why ®; = ®5 yields a counterexample is that it ensures
that the largest eigenvalue of outputs of well-chosen inputs —Bell states— is much bigger
than the others eigenvalues. The counterexamples to the additivity conjecture obtained
so far use a random matrix models which we redefine in Section p.d, and call Z,. The
main result of this paper is as follows:

Theorem 1.3. The eigenvalues \1 = --- = A\,2 of Z,, satisfy:

e In probability, cnA; — 1.

e Almost surely, ﬁ 2?222 dc2p2y, converges to a Marchenko-Pastur distribution of

parameter 2.

e Almost surely,

H(Z,) = 210gn—%+0(1) if c>1,
- 210g(cn)—§+0(1) if 0<e<1,

as n — 0o, where H is the von Neumann entropy.

The interest of this result is that it yields improvements to the results of L3, [[4, H, L],
as the only data that these papers were using was a lower bound on the largest eigenvalue
of Z,,, whereas the above theorem gives a full understanding of the eigenvalue behavior of
L.

In addition, the matrix model Z,, has the novel particularity that it has two different
regimes for its eigenvalues (one in n~! and one in n=2). As far as we know, it is the first
model in random matrix theory whose eigenvalues have two regimes simultaneously.

The proof of the main theorem uses a mix of moment methods and functional calculus
methods. It is very instructive, as the moment method is used to prove the convergence
in distribution of the eigenvalues of smaller decay, and this goes beyond the standard
intuition that moment methods rather give results about the larger eigenvalues. Actually,
our Theorem shows new kind of cancellation properties, going beyond those which are
usually expectable with standard ‘moments-cumulants’ and ‘connectedness’ arguments.

This paper is organized as follows. We first recall known things about Wick calculus,
Weingarten calculus and non commutative and free probability theory. We also recall our
graphical calculus introduced in [J] and extend it to Gaussian graphical calculus. We use
it to obtain new non-asymptotic results for the moments of some single random channels.
We obtain further asymptotic results in the single random channel setting, and then we
come back to the random matrix model introduced in the bi-channel setting by Hayden
and Winter, and compute the asymptotics of the subleading eigenvalues.

2. WICK CALCULUS AND WEINGARTEN CALCULUS

In this section we recall known results allowing to compute expectations against Gauss-
ian measures and Haar measures on unitary groups, as well as some standard facts in free
probability theory.
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2.1. Wick calculus. A Gaussian space V is a real vector space of random variables with
moments of all orders, such that each of these random variables are centered Gaussian
distributions. Such a Gaussian space comes up with a positive symmetric bilinear form
(z,y) — E[zy]. Gaussian spaces are in one-to-one correspondence with euclidean spaces,
and that isomorphism of Gaussian spaces corresponds to the notion of isomorphism of
euclidean spaces. In particular, the euclidean norm of a random variable determines it
fully (via its variance) and if two random variables are given, their joint distribution is
determined by their angle. The following is usually called the Wick Lemma:

Lemma 2.1. Let V be a Gaussian space and x1,...,x; be elements in V. If k =20+ 1
then Elxy ---zx] = 0 and if k = 21 then

(2) Elzy - xp)] = > I] Elei,,2;,]

p={{iv.j1},-.{t.i}t m=1
pairing of {1,...,k}

In particular it follows that if x1,...,2P are independent standard Gaussian random vari-
ables, then
P
Elzf' .. 2] = [] 2k
=1

For a proof, see for instance [P7]. It is possible to extend the notion of Gaussian space to
a complex Gaussian space. A complex valued vector space V is called a Gaussian space if
and only if, for any real structure on V, the pair (Re(V'),Im(V)) is a real valued Gaussian
space. One checks readily that in the case of a complex Gaussian space, the Wick lemma
.1 holds with the exact same statement.

We will usually denote by Gy, , (or G when there is no ambiguity) the standard complex
Gaussian random matrix n x m. It has the distribution exp(—NTr(GG*))dG where dG
is the Lebesgue measure on the n x m complex matrices properly rescaled, and G* = G
is the standard operator algebraic adjoint.

Since in this paper we shall mostly be concerned with traces of products of random
matrices, we need to introduce one last notation for generalized traces which we borrow
from [f]. For some matrices A1, A, ..., As € M, (C), some permutation ¢ € S, and some
function ¢t : {1,...,p} — {1,...,s} we define

Tra,t(Ala ce ,AS) = H Tr <]~;Ij€cAt(j)> .

ceC(o)

When s = p, we use the simplified notation Try¢(A1,...,A4p) = Trsia(A1,..., A4,). We
also put Try(A) = Tr, (A4, A, ..., A).

2.2. Weingarten calculus. In this section, we recall a few facts about Weingarten cal-
culus.

Definition 2.2. The unitary Weingarten function Wg(n, o) is a function of a dimension
parameter n and of a permutation o in the symmetric group Sp. It is the inverse of the
function o — n?? under the convolution for the symmetric group (#o denotes the number
of cycles of the permutation o).

Notice that the function o — n#? is invertible as n is large, as it behaves like nPd, as
n — oo. We refer to [[J] for historical references and further details. We shall use the
shorthand notation Wg (o) = Wg(n, o) when the dimension parameter n is obvious.

The function Wg is used to compute integrals with respect to the Haar measure on the
unitary group.
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Theorem 2.3. Letn be a positive integer and (iv, .. . ,ip), (11, -+, iy), (1, Jp), (155 Jp)
be p-tuples of positive integers from {1,2,...,n}. Then

®) /Ll(n) Uinju -+ Uipgy Uity -+ Uigy, dU =

—1
Z 61'”‘;(1) e 6ipi:7(p)6j1jf,—(1) e 6j1’j‘lr(p) Wg(n, TO )
0,TESy
If p # p' then
(4) /u(n) Uiii = Uiy3, Uy -+ Uiy v, dU = 0.

We are interested in the values of the Weingarten function in the limit n — oco. The
following result encloses all the data we need for our computations about the asymptotics
of the Wg function; see [§ for a proof.

Theorem 2.4. For a permutation o € Sy, let Cycles(o) denote the set of cycles of o.
Then

(5) We(n,0) = (=1)"#" [  Wa(n,o)1+0(n?)
c€Cycles(o)

and

(6) Wg(n, (1,...,d)) = (_1)dilcd*1 H (n_j)il
—d+1<j<d—1

!

where ¢; = % 1s the i-th Catalan number.

A shorthand for this theorem is the introduction of a function Mob on the symmetric
group, invariant under conjugation and multiplicative over the cycles, satisfying for any
permutation o € Sp:

(7) Wg(n,o) = n~ P (Mob (o) + O(n™2)).

where |o| = p — #0 is the length of o, i.e. the minimal number of transpositions that
multiply to 0. We refer to [[[Z] for details about the function Mob.

2.3. Elementary reminder of non-commutative and free probability theory. A
non-commutative probability space is an algebra A with unit endowed with a tracial
state . An element of A is called a (non-commutative) random variable. In this pa-
per we shall be mostly concerned with the non-commutative probability space of ran-
dom matrices (M,,(L®~(Q,P)), E[n~! Tr(-)]) (we use the standard notation L>~(Q,P) =
mp21Lp(Q’ P))

Let (ai,...,ar) be a k -tuple of selfadjoint random variables and let C(X7y,..., X) be
the free x-algebra of non commutative polynomials on C generated by the k indeterminates
X1,..., Xg. The joint distribution of the family {a;}¥_, is the linear form

H(ay,...,ar) * C<AXV1, cee an> —C
P o(Plar. . ay).

Given a k-tuple (ay,...,ax) of free random variables such that the distribution of a;
iS flq;, the joint distribution fi(qg,, . q,) is uniquely determined by the pg,’s. A family
(af,...,a})n of k-tuples of random variables is said to converge in distribution towards
(a1,...,ax) iff for all P € C(Xq,..., Xk), p(a?7...7a2)(P) converges towards fi(q, ... q,)(P) as
n — oo.

The following result is contained in [B3] and is of crucial use for us.
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Lemma 2.5. The function d(o,7) = |o~'7| is an integer valued distance on S,. Besides,
it has the following properties:

the diameter of S, is p —1;

d(-,-) is left and right translation invariant;

for three permutations 1,02, 7 € Sy, the quantity d(7,01) + d(7,02) has the same
parity as d(o1,02);

the set of geodesic points between the identity permutation id and some permutation
o € S, is in bijection with the set of non-crossing partitions smaller than 7, where
the partition m encodes the cycle structure of o. Moreover, the preceding bijection
preserves the lattice structure.

We finish by gathering the bare minimum of free probability theory needed towards
the main results of this paper. We skip the definition of freeness, as we won’t need it.
Free cumulants are multilinear maps indexed by non-crossing partitions o € NC(p) on p
elements

Ko it AX-+xA—C
—_—

p times
such that
(8) Z Ke(Z1,...,2p) = Eglzr, ..., xp)
T<oeNC(p)

for all non-crossing partitions ¢ € NC(p), where E,[x1,...,2,] is the product over the
blocks {z;,,...,z;,} of o, of E[z;, ... x;;]. Cumulants are known to be multiplicative over
blocks, therefore a special role is played by the cumulant corresponding to the maximal
partition 1,, which we denote by (a1, ...,ap) == k1,(a1,...,ap).

We will need free cumulants for computational purposes, in order to identify free Poisson
distributions. Let us mention for the interested reader that the main property of the free
cumulants is that mixed cumulants of free variables vanish.

We recall that the free Poisson distribution of parameter ¢ is given by

Vie—(z—1—-1¢)?

2rx

7. = max(1 — ¢,0)dp +

1y o/c1veravq (z) du.

It is characterized by the fact that all its free cumulants are equal to c¢. Although we will
not need this fact, it is worth to mention that it has a semigroup structure with respect
to the additive free convolution of Voiculescu (see, e.g. [R3]). It is also sometimes called
Marchenko-Pastur distribution. One can compute (minus) the entropy of this probability
distribution

% +cloge ifec>1,

(9) K. = /xlogm dr.(z) = {cg

3. UNITARY AND (GAUSSIAN GRAPHICAL CALCULI

In this section we recall briefly the results of [[J] for the convenience of the reader and
in order to make the paper self contained. Then we introduce the Gaussian graphical
calculus and we present a first application of it to Wishart matrices.

3.1. Axioms of unitary graphical calculus. The purpose of the graphical calculus in-
troduced in [] is to yield an effective method to evaluate the expectation of random tensors
with respect to the Haar measure on a unitary group. The tensors under consideration can
be constructed from a few elementary tensors such as the Bell state, fixed kets and bras,
and random unitary matrices. In graphical language, a tensor corresponds to a box, and
an appropriate Hilbertian structure yields a correspondence between boxes and tensors.
However, the calculus yielding expectations only relies on diagrammatic operations.
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Each box B is represented as a rectangle with decorations on its boundary. The dec-
orations are either white or black, and belong to S(B) U S*(B). Figure depicts an

example of box.
O m
(c)

= |A®B

FIGURE 1. Basic diagrams and axioms

It is possible to construct new boxes out of old ones by formal algebraic operations such
as sums or products. We call diagram a picture consisting in boxes and wires according
to the following rule: a wire may link a white decoration in S(B) to its black counterpart
in S*(B). A diagram can be turned into a box by choosing an orientation and a starting
point.

Regarding the Hilbertian structure, wires correspond to tensor contractions. There
exists an involution for boxes and diagrams. It is antilinear and it turns a decoration in
S(B) into its counterpart in S*(B). Our conventions are close to those of [fi, B], and are
hoped to be familar to the reader acquainted with existing graphical calculus of various
types (planar algebra theory, Feynman diagrams theory, traced category theory). Our
notations are designed to fit well to the problem of computing expectations, as shown in the
next section. In Figure [[(b), [[(c)] and [[(d] we depict the trace of a matrix, multiplication
of tensors and the tensor product operation. For details, we refer to [J].

3.2. Planar expansion. In this subsection we describe the main application of our cal-
culus. For this, we need a concept of removal of boxes U and U. A removal r is a way
to pair decorations of the U and U boxes appearing in a diagram. It therefore consists in
a pairing a of the white decorations of U boxes with the white decorations of U boxes,
together with a pairing § between the black decorations of U boxes and the black deco-
rations of U boxes. Assuming that D contains p boxes of type U and that the boxes U
(resp. U) are labeled from 1 to p, then r = (o, 3) where «, 3 are permutations of S,.

Given a removal r € Rem(D), we construct a new diagram D, associated to r, which
has the important property that it no longer contains boxes of type U or U. One starts
by erasing the boxes U and U but keeps the decorations attached to them. Assuming that
one has labeled the erased boxes U and U with integers from {1,...,p}, one connects all
the (inner parts of the) white decorations of the i-th erased U box with the corresponding
(inner parts of the) white decorations of the a(i)-th erased U box. In a similar manner,
one uses the permutation  to connect black decorations.

In [fl], we proved the following result:

Theorem 3.1. The following holds true:

Ey(D) = Z D, Wg(n,a871).
r=(a,8)€Remy (D)
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paired boxes

FIGURE 2. Pairing of boxes in the Gaussian case

3.3. Gaussian planar expansion. Now, we consider the case where in our diagrams we
allow a new special box G corresponding to a Gaussian random matriz. We shall address
the same issue as in the unitary case: computing the expected value of a random diagram
with respect to the Gaussian probability measure.

To start, consider D a diagram which contains, amongst other constant tensors, blocks
corresponding to independent Gaussian random matrices of covariance one (identity).
One can deal with more general Gaussian matrices by multiplying the standard ones with
constant matrices. Note that a block can appear several times, adjoints of blocks are
allowed and the diagram may be disconnected. Also, Gaussian matrices need not to be
square.

The expectation value of such a random diagram D can be computed by a removal
procedure as in the unitary case. Without loss of generality, we assume that we do not
have in our diagram adjoints of Gaussian matrices, but instead their complex conjugate
blocks. This assumption allows for a more straightforward use of the Wick Lemma P.1].
As in the unitary case, we can assume that D contains only one type of random Gaussian
blocks G; the other independent random Gaussian matrices are assumed constant at this
stage as they shall be removed in the same manner afterwards.

A removal of the diagram D is a pairing between Gaussian blocks GG and their conjugates
G. The set of removals is denoted by Remg (D) and it may be empty: if the number of
G blocks is different from the number of G blocks, then Remg(D) = () (this is consistent
with the first case of the Wick formula (f])). Otherwise, a removal r can identified with
a permutation o € S, where p is the number of G' and G blocks. Let us stress here the
main difference between the notion of a removal in the Gaussian and the Haar unitary
case. In the Haar unitary (or the Weingarten) case, a removal was associated with a pair
of permutations: one had to pair white decorations of U and U boxes and, independently,
black decorations of conjugate blocks. On the other hand, in the Gaussian/Wick case, one
pairs conjugate blocks: white and black decorations are paired in an identical manner,
hence only one permutation is needed to encode the removal.

To each removal r associated to a permutation o € S, corresponds a removed diagram
D, constructed as follows. One starts by erasing the boxes G and G, but keeps the
decorations attached to these boxes. Then, the decorations (white and black) of the i-th
G block are paired with the decorations of the a(i)-th G block in a coherent manner, see
Figure J.

The graphical reformulation of the Wick Lemma P.1 becomes the following theorem,
which we state without proof.

Theorem 3.2. The following holds true:

Eq[D] = Z D,.

reRemg (D)
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GHG*%ZOGHG‘O

FIGURE 3. Diagram of a Wishart matrix

.
I
o)

q w

Wi

Wio-13iy)

FIGURE 4. Monomials of traces of Wishart matrices

3.4. Moments of Wishart matrices. As a first application of our Gaussian graphical
calculus, we compute the moments of traces of products of Wishart matrices. By definition,
a Wishart matriz of parameters (n, k) is a positive random matrix W € M,,(C) such that

W=0G-G",

where G € M,,»x(C) is a standard Gaussian random matrix. In our graphical formalism,
since we only consider Gaussian random matrices, the previous equation corresponds to
the graphical substitution in Figure ff; round decorations correspond to n-dimensional
complex Hilbert spaces C" and square-shaped labels correspond to CF.

The same problem of computing expected values of traces of Wishart matrices was
considered in [, I3, [7, and we shall re-derive Corollary 3 of Theorem 2 from [ff]. The
general covariance case (Theorem 2 in [[]) can be easily derived from the result below.

Proposition 3.3. Let W1, Ws, ..., Wy be independent Wishart matrices of unit covariance
and parameters (n, k1), (n,k2), ..., (n,ks) respectively. For a permutation o € S, and a
function t : {1,...,p} — {1,...,s}, the following holds true:
S
. —1
(10) E[Tros(Wi,.... W) = Y [kt
aeSp(t) j=1

where Sy(t) = {a € Sy, |t =t oa}. Every permutation o € Sy(t) leaves the level sets of t
invariant, and it induces on each set t=1(j) a permutation a;j (j=1,...,s).

Proof. We consider the diagram D corresponding to the left hand side of equation ([L0).
It contains n Wishart boxes from the set {W7i,..., Wy} which are wired according to the
permutation o (see Figure [f). Computing the expectation of the diagram D is rather
straightforward using our graphical calculus. Since we are dealing with s independent
Gaussian matrices G4, ..., G (recall that W; = GjGj») one needs to apply Theorem B.9 s
times, once for each Gaussian matrix G;. Each box G, appears [¢t71(j)| number of times
and, using Theorem B.9, we get

E[D] = Z DOé17---,0437

where each permutation a; € Sj;-1(;) encodes the removal procedure for the G; boxes.

Diagrams obtained after the successive removal procedures Dy, .., are made of loops
of two types: loops associated to the n-dimensional space C" and loops associated to
“internal spaces” CF. In order to count the number of loops of each dimensionality, let
us first notice that the set of s-tuples of permutations (aq,...,as) is in bijection with the
set of permutations o € S,(t) defined in the statement of the theorem.

For such a permutation o € S,(t), let us count the number of loops corresponding
to traces over CFi. Initially, the pj decorations of the G; boxes are connected in the
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qPo(X) e = U U~

d oo

FIGURE 5. Diagram for a quantum channel

simplest manner: the k; decoration of the i-th G; box is connected to the corresponding
decoration of the G_] box with the same index ¢. The j-th removal procedure, encoded
by the permutation a; produces then a number of #(id*1 a;) = #a; loops. Hence, the
contribution of the C*i-type loops is k:j#aj .

The computation of the loops associated with C” is more involved, since the decorations
are already non-trivially linked by the permutation o. Since o may not respect the level
sets of the function ¢, one needs to consider the global action of «, the restrictions o
not being sufficient in this case. Since the boxes are initially connected by o and the
removal procedures add wires according to the permutation «, the total number of loops
is #(0c 'a). Adding all loop contributions, one obtains the announced formula (I(). O

Remark 3.4. One can consider in the graphical model more general covariances and
obtain Theorem 2 of in its full generality. All there is to be done is to add constant
tensors associated with covariance matrices in our diagrams. After the successive removal
procedures, one is left with loops and traces of monomials in these constant matrices. Since
our purpose in this section was to illustrate the Gaussian graphical calculus, we leave the
details of this more technical generalization to the interested reader.

4. APPLICATION OF (GAUSSIANIZATION: PURE STATES THROUGH RANDOM QUANTUM
CHANNELS

4.1. Random single channel model. In this section we present an important appli-
cation of the Gaussian diagrammatic calculus: we compute eigenvalue statistics for the
action of a random quantum channel on a pure quantum state. By definition, a quantum
channel ® : M,,(C) — M, (C) is a trace preserving, completely positive map. According
to Stinepsring theorem, such a linear application can be written as

d(X) =YY (X) =T, [UX @ YUY,

where U is a unitary matrix in U(nk) and Y is a k-dimensional rank-one projector. A
diagrammatic picture of the above formula is presented in Figure f]. The set of quantum
channels can be endowed with a natural probability measure by fixing the projection Y
and picking U uniformly, with respect to the Haar measure on the unitary group U(nk).
This is the model of randomness we refer to when we speak or random quantum channels
and it has received a lot of attention from the quantum information community [§, [9].
From the definition of @, one can see that the Weingarten calculus developed in [fJj may be
applied to this situation, since random unitary matrices are a key-element in the problem.
However, when random quantum channels are presented with rank-one inputs (or pure
states), we show that one can use the simpler Gaussian calculus. Using this approach, we
shall recover some exact formulas for the moments of the output from [, as well as some
asymptotic results from [p3].
We are interested in the output random matrix

(11) Z = 3" (x),
where X is a rank-one projector. The main result, obtained in [23], is as follows:

Proposition 4.1. Let W = G - G* € M,,(C) be a Wishart matriz of parameters (n,k).
Then
Z = ®(X) = W/ Te(W).
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o) [oif = dapdap -

FIGURE 6. An equivalent diagram for quantum channels with rank one X
and Y

Observe that this result does not depend on the choice of X,Y due to the invariance of
the Haar measure.

The main point is that one can show (see PJ]) that the eigenvalues of Z, that is the
normalized eigenvalues of W, are independent on the trace of W. This implies that we we
can apply the results on Wishart matrices developed in Section B.4 to this particular case.

4.2. Exact moments. We provide in this section exact formulas for the moments E[Tr(Z7)]
of the output of a random quantum channel. Other formulas for the same quantities (as
well as some recursion relations) have been obtained in [R2, 5, Rf].

Using the Gaussianization trick, we have that
E[Tr(W?)]
E[Te(W)]’
where W is a Wishart matrix of parameters (n, k). One uses Proposition .3 to compute
E[Tr(W?)] and E[Tr(W)P]:

E[Tr(Z7)] =

E[Tr(W?)] = Z k#an#(“/_la)’

a€cS)y
E[Te(W)’] = ) | (nk)*,
a€ES)y
where y = (pp—1 --- 2 1) € S, is the full cycle. In the second formula above, one

recognizes the generating polynomial of the number of cycles of permutation of p objects
evaluated at nk. This is known to be equal to nk(nk+1)(nk+2)---(nk+p—1), and one
gets the following theorem.

Theorem 4.2.
-1
p—1
(12) E[Tr(27)] = [ [[(k+5) | D ket
Jj=0 aES,

This is exactly as formula (10) from [§], which was obtained via Weingarten formula.
The approach followed here is more straightforward and does not use unitary integration.
It is based on the purely combinatorial Wick formula and the Gaussianization trick.

4.3. Asymptotics. We now look at the probability distribution of the output random
matrix Z when one (or both) of the parameters n and k grow to infinity. The asymptotic
behavior of random matrices has been one of the main objects of study in random matrix
theory; for instance, it is in this large dimension regime that the freeness phenomenon ap-
pears. In the particular case of random quantum channels under study here, this question
has an interesting physical motivation: large dimensional Hilbert spaces model physical
systems with a large number of degrees of freedom. This point of view has been discussed
in the quantum information theory literature (see [, R6, B3, B]). Although some of what
follows has already been treated in [RJ], the approach of this paper has the merit of be-
ing self-contained and illustrates perfectly the power and range of the Gaussian graphical
calculus.

We split the results according to three possible asymptotic regimes, depending on which
of the parameters n and/or k is large. Of special interest is the third regime, when both
parameters grow to infinity, but at a constant positive ratio ¢ > 0.
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Theorem 4.3. Let Z = <I>U’Y(X) the output of a random quantum channel ®, where X
and Y are rank-one projectors.

(I) In the regime n fized, k — oo, the limiting spectral distribution of Z is almost
surely 0y sy,
(IT) In the regime k fized, n — oo, Z tends almost surely to a variable that has eigen-
values 1/k with multiplicity k and 0 with multiplicity n — k.
(ITT) In the regime n,k — oo, k/n — ¢ > 0, enZ converges almost surely to a free
Poisson distribution of parameter c.

Proof. In the first regime,
k—oo 1 _ -1
E P 200 - P #o, #(y a)
[Tr(Z7)] n(nkz) g k7 %n
a€ES)y

Permutations o which give non vanishing contributions are those such that #«a = p, hence
a = id. At the end, we obtain

Jim E[Tr(Z7)] = n'=?,

hence the limiting spectral distribution of Z is 4y y,.
In order to prove the almost sure convergence, we show that the empirical measures

pk(Z) = - 3 N(2)
i=1

converge almost surely to the limit ¢, ,, (which is equivalent to the fact that almost surely,
every eigenvalue of Z converges to 1/n - recall that n is fixed). As usual, almost sure
convergence of moments suffices and we set our goal to prove that for all p

a.s. lim Tr(ZP) = n'~?.
k—o0
A standard application of Chebyshev’s inequality and Borel-Cantelli’s lemma shows that
it is enough to verify that for all integers p the series of variances is summable:

iE [(Tr(Zp) ~ETi(27))?| < .
k=1

Let us compute separately E[Tr(Z?)?] and E[Tr(ZP)]? using formula ([J). For the first
expectation, one needs to introduce the permutation

(13) Yo=@@-1)---21)2p2p—-1) --- (p+2) (p+1)) € Sy

One then has
-1

2p—1
E[Te(27)%) = | [[(nk+4) | Y w#onttee
Jj=0 Q’ESQP
2p—1 , -1
= II (HL) 3 klelphatel,
j=0 nk aESzp

The first contribution (of order &%) in the last sum is given by a = id and it is equal
to n?~2P (recall that 42 has 2 cycles). The second order in k is given by transpositions
a = (ij). In this case, |751a| = 2p — 3 if i and j belong to the same cycle of 9 and
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75 ta| = 2p — 1 otherwise. Hence, we obtain

1 1
=n?"% 4 Ep(p — el -1)4+0 <ﬁ> .

Using the same ideas, E[Tr(Z?))? is easily computed:

—2 2
2p—1
E[Te(27)2 = | [] (nk +j) S gt #ie)
j=0 aESp

N O

1 1
=02 4 Lplp — D (0~ 1) + 0 (k—> |

and one concludes that E[Tr(Z?)% — E[Tr(Z?)]?> = O(k~2) and thus the covariance series
converges, finishing the proof.
In the second regime,

E[Te(27)] "~ Y kel = el,
aESy

The non-vanishing contribution is given by a = =, and thus

lim E[Tr(Z7)] = k' 7.

n—oo
In other words, for large n, Z has the following eigenvalues:
e 1/k with multiplicity k;
e 0 with multiplicity n — k.
The proof of the almost sure convergence follows the same lines as in the previous case

and it is left to the reader.
In the third regime, after making the substitution k = cn, the asymptotics are

(14) E[TI’(ZP)] ~ n72pcfp Z C#an#a+#(,\/—1a)‘
aESp

Since

(15) #a+#(y ) =2 — (la| + vy tal) <p+1,

one should rescale the matrix Z by a factor of n. In fact, in order to avoid some unnecessary
complications, we shall rescale Z by cn. We get:
E[tr,((cnZ)P)] ~ nP~1 Z craptat#(rla),
aESy
Contributing permutations are those for which we have equality in equation ([[§), that is

la| + |y~ 'al = |y| = p— 1. These are permutations on the geodesic id — ~ and are knonw
to be in bijection with non-crossing partitions o € NC(p). Thus

Eltr,((cnZ)P)] ~ > .
ceNC(p)

One recognizes the moment-cumulant formula from free probability theory. Hence, the
limiting distribution of ¢nZ has cumulants of all order equal to ¢ and one identifies the
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free Poisson distribution of parameter c. Let us now show that almost sure convergence
holds:
lim E[tr,((cnZ)P)] = Z ¢ almost surely.
n—oo
ceNC(p)
Using the same classical technique as in the first regime, we show that the series

> (Elltra((en2)?)®)] = Eltra((cnZ)")?)
converges. We start by evaluating E[(tr,((cnZ)P)?)] up to the second order in n. Using
the permutation 5 defined in ([[3) and the Gaussian graphical calculus, we have

E[(tr,((cnZ)P)?)] ~ Z Aap2—2—(al+; 'al)

(1’682;7

Using similar ideas as before, |a| + |75 'al = |y2| = 2p — 2, with equality iff « is on the
geodesic between id and 3. Given the 2-cycle structure of ~o, geodesic permutations «
admit a decomposition @ = o/ +a”, where o/ € §{1,2,...,p} =S, and o € S{p+1,p+
2,...,2p} ~ S, are themselves geodesic permutations id — o’ — v and id — o — 7. Of
course, in this case, #a = #a’ + #a” and thus

2

E((tra((enZ)P))] ~ Y | R e
id—a’—~ id—a—ry
id—a/ —~
By a standard parity argument, the function Sa, > a + (Ja| + |75 'a|) mod 2 is constant
and thus there is no n~! term in the asymptotic development of E[(tr,((cnZ)P)?)]:
2

E(tr((cnZ)))] = [ DY | +0m™?).

id—a—ry
Similar ideas applied to the formula ([[4) yield the same conclusion:
Eftr,((cnZ)P)] = Y #*+0mn™).

id—a—7y

Taking the square of this last equation and comparing with the previous one, we conclude
that the general term of the covariance series behaves asymptotically as O(n~2). This
implies that the series is convergent and we conclude that the almost sure convergence

holds. O

Even though Gaussianization results are exact and do not require the detour through
Weingarten calculus, it is not clear how to apply them when the input is not one dimen-
sional. However it is natural to wonder about the asymptotics in this case as well. The
calculus that we introduced in [fl] is crucial for that and this is the object of the Section

il

4.4. Almost sure convergence for entropies. In this section, we improve the almost
sure convergence of moments into the almost sure convergence of any continuous function
with polynomial growth. Since the set of functions that it applies to is larger, this type
of convergence is stronger than the weak convergence. We deduce corollaries for quantum
information theory, and the techniques developed in this section will be useful towards the
end of the paper. The technique of proof of this result is inspired from [Ld].

Theorem 4.4. Let f be a continuous function on R with polynomial growth and let v,, be
a sequence of probability measures which converges in moments to a compactly supported

measure v. Then [ f dv, — [ f dv.
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Proof. Let K > 1 be a constant such that the interval [—(K — 1), K — 1] contains the
(compact) support of the limit measure v. It follows that, for all integer power s > 0,

(16) lim K% [ %2 du(x) = 0.
r—00

Moreover, since the measures v,, converge in moments to v, for all € > 0, there exists an
r large enough such that for all n large enough,

(17) K2 [ 2272 du,(z) < e.

For some fixed § > 0, the Weierstrass theorem produces a polynomial P such that |f(z) —
P(z)| < 6 for all x € [-K, K|. Then, we have

/fdun /fdu /|f P| dv, + /|f P|du+‘/Pd —)

Since the polynomial approximation holds on the support of v, the second term above is
less than 4. Using the convergence in moments of the probability measures v,, the last
term can be seen to be less than § for n large enough. We focus now on the first term above,
['|f = P| dv,,. By the polynomial approximation, [ |f — P|dv, < 4§+ foK f— P| dvy,.

Since f has polynomial growth, one can find a constant ¢ > 0 such that |f(z)— P(x)| < 227
for all |z| > K. Using the Chebyshev inequality on the last integral, we have for all r > 1

2r
x
If —P|< | =22 dy, = K2 [ 2%+ qu,,.
2| 2K r K*"
x|z

The convergence in moments together with equations ([[§) and ([7) imply that, for
and n large enough, the above expression can be made arbitrarily small, which allows to
conclude. O

Corollary 4.5. Almost surely, in the limit n — oo, the von Neumann entropy of the
matriz Z satisfies

(7) = logn — 5= + o(1) if c¢>1,
B log(cn) — §4+o0(1) if 0<c<l1.

Proof. Let us assume that ¢ > 1, the other case being similar. We use Theorem [.4 for
the function x — xzlogx which is continuous and of polynomial growth on the domain
R, and for the empirical spectral measures of the matrices cnZ. It follows that, almost
surely when n — oo,

1 n
- ch)\i log(cn;) = /tlog tdpe(t) + o(1),
i=1

where A\ > -+ > )\, are the eigenvalues of Z.
Simplifying this expression and using the value of the right-hand side integral from
equation (f]), we conclude:

- 1
H(Z) == Xlog\; =logn — 50 Ho(b).
i=1
U

A formula of Page [P4] states that the mean entropy of a random density matrix Z (n.k) ¢
M.,,(C) obtained by tracing out a k-dimensional environment is given by (here, n < k are

fixed):
nk

EH (nk Z__n—l

j= k+1
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One could obtain a weaker version of Corollary [L.5 from Page’s formula by letting n tend
to infinity and using the dominated convergence theorem.

5. ASYMPTOTICS OF A SINGLE RANDOM QUANTUM CHANNEL FOR GENERAL STATES

5.1. The model. We are interested in single random quantum channels, and study the
asymptotic behavior of the output of such channels for more general input states than
rank one projectors. The Gaussian planar expansion can not be used in the more general
cases, so we need Weingarten planar expansion. One may consider the following general
model:

(18) Tep(X) ~ (n°)*utPp(z),

where s, u € R are fixed parameters and z is a random variable in some non-commutative
probability space with trace ¢. In this section, we will deal only two special cases of
interest of the above formula. The first one is motivated by quantum information theory:
X is a rank r projector. This choice corresponds to s = 0, u = 7 and = r~!. The
second special case we consider will seem natural to the reader with a free probabilistic
background: X converges in moments to a non-commutative random variable x. To get
this particular case from formula ([1§) one has to put s = v = 1 (this amounts to taking
a normalized trace in the left hand side). Note however such an input matrix is not
normalized, and one has to take into account the trace one restriction for quantum state.

Let us recall here the formula for the moments of the output Z = ®(X) of a random
quantum channel (see [f]):

(19) E[Tr(Z7)] = Y k#on#07 ) Trg(X) We(ap ™),
a,B€Sy

where v is the full cycle permutation y = (pp—1 --- 21) € Sp.

5.2. Rank r projectors. Plugging, for all 5 € S,, Trg(X) = r#8p=p = =18l in the
previous equation, we obtain

(20) E[Te(Z7)] = > kten#0 )10l wg(ap).
a,B€Sy

We study, as usual, the three asymptotic regimes n fixed, k — oo, k fixed, n — oo and
n,k — oo, k/n — c.

Proposition 5.1. Depending on the asymptotical regime, the almost sure behavior of Z
s given by:
(I) When n is fixred and k — oo, the output density matriz Z converges almost surely
to the maximally mixed state

Px = l Ly;
n
(IT) When k is fixred and n — oo, the output density matrixz Z, restricted to its support
of dimension rk converges to 1/(rk) L.
(III) Finally, in the third regime k/n — ¢, the empirical spectral distribution of the
matriz rkZ converges to a free Poisson distribution of parameter rc.

Proof. Using the Weingarten asymptotic Wg(a8~1) ~ (nk)*p*‘aﬁfl‘, the exponent of k
in equation (R0) is given by #a — p — |aB~!|. This reaches its maximum of zero when
a = ( =id. Hence, to the first order in k, we have

E[Tr(ZP)] = n' P 4 o(1),

and the conclusion follows.
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The second regime is very similar, and one gets at the end (this time up to the first
order in n)

E[Tr(ZP)] = (k)P + o(1).
As for the third regime, making the substitution & = cn, we obtain the following
asymptotic relation:

E[Tr(ZP)] ~ Z r 18l = (al+laB) ) = (lal+y el +2lap 1)) Mob(a5™h).
o,BESy
The exponent of the large parameter n in the last formula is minimized when id — o =
B — 7 is a geodesic in S,. Hence,
E[Tr(Z7)] ~n' P Y (re) I Mob(ap™).
id—a—y
Thus, the normalized trace of the p-th power of the matrix rkZ converges to

Z (rc)#ﬁz Z (rc)#(’,

id—a—y oceNC(p)

and one recognizes easily the moment-cumulant formula for the Marchenko-Pastur distri-
bution of parameter rc (see the reminders of Section P.3).

The above results have been proved to hold for the convergence in moments. Borel-
Cantelli techniques (see [ for a sample) can be easily used to show that the stronger
almost sure convergence holds in all three cases. O

5.3. Normalized macroscopic inputs. We now consider matrices X which have a
macroscopic scaling Tr(XP) ~ n - p(2P), where = is some non-commutative random vari-
able. One has of course to normalize such input matrices, and we shall consider
~ X
X = .
Tr X
With this normalization, the moments of the output matrix Z = <I>()~( ) are given by

M S\PY] Q(X)P 1 E[Tr(®(X)P)]
E[Tx(27)] = E[Tr(®(X)?)] = E [Tr o X)p} Xy

As in the previous section, we consider different asymptotic regimes for the integer
parameters n and k. However, it turns out that the regime k fixed, n — oo is more
involved, and its understanding requires some more advanced free probabilistic tools. To
an integer k and a probability measure u, we associate the measure p ;) defined by

1 1
iy = (1= 5 ) o+ 2p

Proposition 5.2. The almost sure behavior of the output matriz Z = ®(X) is given by:

(I) When n is fivzed and k — oo, Z converges almost surely to the mazimally mized

state
1

pr=—1,.
n

(II) When k is fized and n — oo, the empirical spectral distribution of pknZ con-
verges to the probability measure v = [,u(k)]EERQ, where B denotes the free addi-
tive convolution operation,  is the probability distribution of x with respect to p:
o(aP) = [tP du(t) and [ is the mean of u, i = ¢(x).

(III) When n,k — oo and k/n — c, the empirical spectral distribution of the matriz nZ
converges to the Dirac mass d1.
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Proof. We start with the simplest asymptotic regime, n fixed and k¥ — oco. Plugging in
the scaling for Trg(X) in formula (ILg), we get

E[Te(ZP)] ~ n"Pp(x Z k#on# la)n#ﬁapﬁ(x)(nk)*p*‘aﬁiwMob(aﬁfl).
«o,BESy

In order to find the leading term in the preceding sum, one has to minimize the exponent
of k, |a| + |37 Y. This expression attains its minimum 0 at a = 8 = id. At the end,
one finds E[Tr(ZP)] ~ n'~P and concludes that the output matrix Z converges to the
maximally mixed state p. =1, /n.

Let us look now at the second regime, k fixed and n — co. The asymptotic moments
of Z are given by

E[Tr(ZP)] Z L= (lel+laB™t) —(Iﬁ\+|aﬁ_1\+|V‘1a\)gpﬁ(x) Mob(ag™1).
a,BES,
The dominating terms in the preceding sum are given by permutations such that |G| 4+
o~ + |y ta| is minimal. Permutations («, 3) which saturate the triangle inequality
18| + B~ + |y 'al = |y| = p—1 are elements of the geodesic id — 3 — a — 7 and can
be put in bijection with non-crossing partitions o < 7 € NC(p) using Lemma R.§. We
obtain
LETe((akn2)) ~ S K70, (@) Mob(o, 7).
o<TeENC(p)

Using the fact that k~#7p,(2) = ¢o (1(x)) and applying the moment-cumulant formula
([@] pp. 175), we get

CE[Te((pkn2)?) ~ YR YT o) Mob(o,7) = Y B TR (),
TeNC(p) 0€N<C(p) TENC(p)

where x denotes the free cumulant. We conclude that the random matrix gknZ converges
in distribution to a probability measure v which has free cumulants k() = k2 (1)),
and the conclusion follows.

We turn now to the third regime, where both n and k grow to infinity at a constant
ratio ¢ > 0. After making the substitution & = c¢n, one obtains the following equivalent:

E[Tr(ZP)] ~ p(z)? Z n*(la\+|v’1a\+lﬁ\+2\aﬁ”\)c*(\alJr\aB*l\)(pB(x) Mob(a371).
a,B€Sy

The expression to minimize in this case is || + [y ta| + |B] + 2|aB7!]. By the triangle
inequality, (cf Lemma P.J), the sum of the first two terms is at least |y| = p — 1 and the
other terms are positive; hence, the (negative) exponent of n is at least p — 1, and the
bound is reached for « = § = id. To the first order in n, the asymptotic moments of Z
are
E[Te(Z7)] ~ 017, Vp> 1,

which is equivalent to say that

lim Eftr,((nZ2)P)] =1, Vp>1

n—oo

In all the cases treated above, we leave the proof of the almost sure convergence to the
reader. O

Remark 5.3. Let us notice that for the regimes (I) and (III) studied above, the limit
distribution of the output does not depend on the limit of the input distribution. The result
obtained in the second regime could have been obtained in a more direct manner, using the
powerful tools of free probability. For simplicity, let us forget about the normalization of
the input matriz and notice that the limit distribution of X @Y is pyy, if p is the limit
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distribution of X and Y is a k x k rank one projector. The partial trace of the randomly
rotated input matriz is equal to the sum of its k n X n diagonal blocks. Fach block is a
free compression of parameter 1/k (which accounts for a free additive convolution power
of k) and the blocks are free. Taking the sum of the free blocks explains the other factor k
appearing as an exponent for the free additive convolution.

6. TENSOR PRODUCTS OF QUANTUM CHANNELS

6.1. Motivation and existing results. When studying the question of the additivity of
minimal output entropies, it is natural to consider products of random quantum channels.

Before looking in detail at some specific models, let us observe that if one chooses an
input state which factorizes X192 = X7 ® X5, then

(@1 ® Po)(X12) = P1(X1) ® P2(X2),

and there is no correlation (classical or quantum) between the channels. In order to avoid
such trivial situations, one has to choose an input state which is entangled. An obvious
choice (given that ny = ny = n) is to take X195 = FE,,, the n-dimensional Bell state, and
we shall use this state in what follows.

A. Winter and P. Hayden observed that it is relevant in this framework to introduce
the further symmetry Us = Uy, as it ensures that at least one eigenvalue is always big. In
[] the random matrix inspired by the ideas of Hayden and Winter it was proved that the
bounds on the eigenvalues could be improved as follows:

Theorem 6.1. In the regime of k fixed, n — oo, the eigenvalues of the matriz Z converge
almost surely towards:

° % + k—12 — k—13, with multiplicity one;

o 75 — 73, with multiplicity k* — 1;

e 0, with multiplicity n®> — k2.

In the asymptotic regime where n is fized and k — oo, the random matrix Z converges
to the chaotic state

If one looks for optimal bounds for the minimum output entropy of ® ® ®, there is no
mathematical proof that U, = U; is the best choice. Actually, this choice of probability
measure on U(n) x U(n) does not have full support and one can not rule out that the
maximum for the minimum output entropy is outside of the support of the probability
measure. This is what motivates the introduction of the example where U; and U, are
independent unitary matrices. As we will see, this does not yield improvements on the
example of Winter with high probability. More strikingly, in the regimes that we consider,
we will see that the constraint Us = U; yields no significant improvement to the asymptotic
behavior of the von Neumann entropies, and this suggests that the simpler random model
where U; and Us are independent could be a candidate for additivity violation with high
probability.

In the forthcoming subsections we analyze both models (independent and conjugate
unitaries) in a different asymptotic regime, where both parameters n and k grow to infinity
at a constant ratio k/n — ¢. The model where the quantum channels are independent has
received less attention from the quantum information community; here, we show that it is
intimately connected to the (more interesting) case of conjugate channels, by comparing
eigenvalue profiles for outputs of channels from the two families.
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FIGURE 7. Z = oY @ ®V(E,)

6.2. Independent interaction unitaries. Here we consider two independent realiza-
tions U; = U and Uy = V of Haar-distributed unitary random matrices on U(nk). For
both channels the state of the environment is a rank-one projector and we are interested
in the n? x n? random matrix

zZ =@V @ ®V|(E,),

where FE,, is the maximal entangled Bell state

1 n
Ba= = 3 leides] el
ij=1

The diagram associated with the (2,2) tensor Z is drawn in the Figure [

We compute the moments E[Tr(Z?)] for all p > 1 using the graphical method. We
start, as depicted in Figure [], by replacing U* (resp. V*) blocks by U (resp. V) blocks.
Notice that there are two type of blocks corresponding to the independent random unitary
matrices U and V' (when computing the p-th moment of Z, there are p blocks of each type).
This has two important consequences: when expanding the diagram in order to compute
the expectation of the trace, one can only pair U blocks with U blocks and V blocks
with V blocks; “cross-pairings” between “U” blocks and “V” blocks are not allowed by
the expansion algorithm. In addition, one has to index the Weingarten sum by 2 pairs of
permutations, one for each type of blocks (we shall denote them by oy, By, ay, By € Sp).
The 4 permutations are responsible for pairing blocks in the following way (1 < i < p):

(1) the inputs of the i-th U-block are paired with the inputs of the ag (i)-th U block;

(2) the outputs of the i-th U-block are paired with the outputs of the Gy (i)-th U
block;

(3) the inputs of the i-th V-block are paired with the inputs of the oy (i)-th V block;

(4) the outputs of the i-th V-block are paired with the outputs of the [y (i)-th V
block.

Since our diagram is made only of unitary matrices (there are no constant non-trivial ten-
sors), the result of the graph expansion is a (sum over a) collection of loops, multiplied by
some scalar factor. The different contributions of a general quadruple (ay, Sy, ay, Byv) €
S;} are given by (recall that circles correspond to n-dimensional spaces and squares corre-
spond to k-dimensional spaces):

loops from oU and Uo:_ n#0tev),
loops from UM and BU: none;

loops from oV and Vo: n#Otay)
normalization factors 1/n from the Bell matrices E,: n™?;

8) Weingarten weights for the U-matrices: Wg(aUﬁgl);

?

)
(2)
3)
(4) /
(5) loops from OV and VI: k#v;
(6)
(7)
(8)
(9)
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Adding all these contributions, we obtain the exact closed-form expression:
Proposition 6.2. The moments of the random variable Z can be computed as follows:
(21)
E[Tr(ZP)] = Z k#aU+#aVn#(“/_laU)+#(’Y‘1av)+#(ﬁ51ﬁv)*pWg(aUﬂil)Wg(avﬁal)_
ay,Bu,av,BvESp

Here we study the asymptotic regime n, k — oo, k/n — ¢ > 0. Our main theorem is as
follows:

Theorem 6.3. Almost surely, the distribution of the output matriz ¢>n’Z converges to-

wards a free Poisson law of parameter ¢2.

Proof. We start by replacing k by cn in equation (RI]) and we obtain
E[Tr(ZP)] ~ > n~"ncPe Mob(ay8;) Mob(ay 81,
ay,Bu,av,Bv ESp

where

1

P = lau| + |av| + [y tau| + v rav] + 185 Bv] + 2lauBgt| + 2lav By,

and
Pe = |au| + |av|+ lau Byt + |av By,

Since we are interested in the asymptotic n — oo (c is a constant), we want to minimize
Py.. The following inequalities are standard (cf Lemma P.5):

(22) lav| + 1y ey = p -1
(23) lav]+ ]y ray| = p -1
(24) 185 By |, 2low By, 2lew Byt | = 0,

and thus P, > 2p — 2 with equality iff ay = By = ay = By = a and « is on a geodesic
between id and 7. By choosing the obvious n? rescaling, we get

1
lim E[ﬁTr((cznzZ)p)}: Z 2p=2al — Z At = Z e,

n,k—oco . s
a geodesic a geodesic ceNC(p)

and one recognizes in the last sum the p-th moment of the Free Poisson distribution of
parameter ¢?. This shows that the the matrix Z converges in moments to the limiting
Marchenko-Pastur distribution. The argument for the almost sure convergence relies on
the Borel-Cantelli lemma and can be found in the Appendix. O

The von Neumann entropy of the output can be calculated in a fashion simillar to

Corollary [.3.

Proposition 6.4. Almost surely, in the limit n — oo, the von Neumann entropy of the
matriz Z satisfies

(Z) = 2logn — 5 + o(1) if c>1,
210g(cn)—§+0(1) if 0<ce<l

Let us now consider a slightly generalized model of random quantum channels. We
introduce channels ¢ : M4(C) — M,,(C) which have a different tensor product structure
at their input and output. Here, d is an integer parameter, and we shall always suppose
that d | nk. The diagram associated to such a channel is depicted in Figure f§, where
diamond-shaped labels correspond to d-dimensional vector spaces and triangle-shaped
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decorations denote spaces of dimension d’ = nk/d. The above analysis for a product of
independent channels is easily adapted to this more general situation:

E[Trv(ZP)] ~ Z n~Prd=PacPe Mob(ay 85 ") Mob(ay 8;,1),
ay,Bu,av,ByESp

where

1 1

P = lau| + lav|+ v au| + v av| + 2lauv 85| + 2lav 8y,

Pa=0;"0v| and Pe=|ay|+ |av|+|avByt] + |av Byt

FIGURE 8. A quantum channel with asymmetric input and output tensor structure

Remark 6.5. If d = d(n) is a function of n such that lim, . d(n) = oo, then the
considerations in Theorem carry out to this case and we obtain the exact same limit,
a free Poisson distribution of parameter c2. The function d = d(n) does not play any role
in this situation.

On the other hand, if the parameter d is constant (inputs of fixed dimension), then the
limiting behavior changes. Indeed, the minimizing constraint | Bljl By | = 0 disappears, and
the contributing quadruples of permutations become uncoupled: id — ay = By — 7 and
id — ay = By — 7. In conclusion, the asymptotic moments in this case are given by the
formula, which we summarize in the following proposition

Proposition 6.6. If d is constant, the limiting distribution of ¢>n>Z also exists and its
limit moments are given by:

1 2 _2r\p H#ay+#Ha 7\017101
SE[T(n*2)P)] ~ Y crevtHtavglogev]
id—ay=Bu—~
id—ay =By —v
Question 6.7. We are not able to identify this distribution even though its properties look
new. We wonder whether this distribution could be related to generalized convolutions of
Bozejko and coworkers, cf [{].

6.3. Conjugate interaction unitaries. To finish, we consider the tensor product of
two conjugate random quantum channels. As it was emphasized in Section [.I], product
channels &y ® @7 have very interesting eigenvalues statistics and have received a lot of
attention in the last years because of their usefulness in providing counter examples to
different additivity conjectures. The purpose of this section is to obtain a description of
the behavior of such channels in the regime where both n and k grow to infinity at a
constant ratio ¢ € (0, 00).

Hayden and Winter remarked in [[[9], that such a conjugate product channel has a very
important property: the output of the maximally entangled state over the input space has
a “large” eigenvalue, of size at least 1/(cn). The results of [[J] show that one expects for
this model a large eigenvalue A\; = 1/(cn) + o(1/n) and (n? — 1) smaller eigenvalues. The
purpose of this section is to show that this is indeed the case. Actually, we can prove that
the random matrix under study has eigenvalues on two scalings: 1/n and 1/n2. In the
next theorem, we compute the moments of the output matrix Z up to the first order in n.
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Theorem 6.8. Fiz some scaling constant ¢ > 0 and consider a sequence of random
quantum channels ®,, , where n,k — oo and k/n — c. The asymptotic moments of the
output matriz Z = ® @ ®(E,) are given by:

Tr(Z) =1,
E Tr ((an)Q) =2+ +0(n™Y),
ETr ((cnZ)?) =1+ 0(n"t), Vp=3.

Remark 6.9. Before we prove this result, we would like to draw the attention of the
reader aware of random matriz theory and matriz integrals, that the symbol O(n~1) is
actually optimal. One can check by inspection that there are terms of order n=' in the
expansion of the quantities of the theorem. This observation stresses the fact that the
matriz model Z does not behave like a usual unitarily invariant matriz model, but rather
like an orthogonal matrix model, even though the underlying invariance group is the unitary
group. This technicality explains why we can only obtain convergence in probability of the
rescaled largest eigenvalue, and not the almost sure convergence.

Proof of Theorem [6.§. We start from the exact expression at fixed n and k for the moments
of Z (see [):

(25) E[Tr(Z7)] = Z fetep# e ) #B0)-p Wo (o).
0[,,868217
Dropping the number-of-cycles statistics #(-) in favor of permutation lengths |-|, replacing

k ~ cn and using the standard asymptotic expansion for the Weingarten function, we have

E[Tr(ZP)] ~ Z e~ (el+laB™ ) p—(lal+lay = +86]+2]aB 1) Mob(a8™h).
0766821)
In order to find the first order asymptotic (in n) of this expression, one has to minimize
the quantity
laf + |y~ + 88| + 2|af ™|
over all permutations «, 3 € Sz,. We start by simplifying this optimization problem over
two permutations by using the following two inequalities:

(26) laf +[as™" = 18],
(27) oy +as™H > |8y

Note that these inequalities can be simultaneously saturated by choosing, for example
a = 3. So, one is left with the following minimization problem over 8 € Sa):

(28) minimize  S1(8) = |8 + |8y + |35

The main ingredient in tackling this problem is the fact that both permutations  and
v lie on the geodesic between the identity permutation id and the full-cycle permutation
=l 21111828 ... pP).
This follows from the saturated triangle inequalities |§| + |67 = p+p—1=2p -1
and |y + [y = 2(p — 1) + 1 = 2p — 1. If fact, one has 7 = (p? 1%) - 4. Under Biane’s
isomorphism, (cf .5), the permutations § and + correspond to the non-crossing partitions
in Figure .

=1 ] 1T

T 2T 1T 1B QB pB pT 2T 1T 1B QB pB

F1GURE 9. Non-crossing partitions associated to permutations ¢ and ~
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We start by looking at the following simplified minimization problem:
minimize  S3(8) = |6] + 186~ +|677|-

Obviously, |8] + |87t = 2p — 1, with equality iff 3 lies in the geodesic between id and 7.
It follows from a parity argument that if 8 is not an element of the geodesic set id — 7,
then |8 + |87~ = 2p + 1 and hence, since in this case one has 8 # d, So(8) = 2p + 2. If
B is a geodesic element, then S3(5) > 2p — 1, with equality iff 5 = 0.

Since the permutations v and 7 are at distance one, the same holds for 3y~! and 35~

Byt =571 (pT15).

We have |3y~ !| = |37~ £ 1 and, even more precisely,

1y 13771 —1 if p” and 17 are in the same block of 377!,
5yl = |67~ +1 otherwise.

Note that the condition appearing in the first case can be restated in the following, simpler
way. It is known that since 3 is a geodesic element, 57 !4 is also on the geodesic, and
the non-crossing partition associated to 3714 is the Kreweras complement of the partition
associated to 3. The condition that p” and 17 belong to the same block of K(3) it is
depicted in Figure [[(] and it is easily seen to be equivalent to 3 < 7 (the permutations are
compared here via their associated partitions).

FiGurk 10. Kreweras complement of 3

It follows that Si(8) = S2(f) £ 1 and, in order to conclude, one needs to look at the
position of the permutation § with respect to the geodesic id — 7. If § is not an element
of id — 4, then S1(8) > S2(8) —1 > 2p +2 — 1 = 2p + 1 which is enough to conclude.
We assume from now on that (3 is a geodesic element. If |3y~ = |377!| + 1, then
S1(8) = S2(B) +1 = 2p, with equality if and only if § = § and the conclusion follows. The
most difficult case is when |3y~!| = |37~ !| — 1 which is equivalent to the fact that p” and
12 are in different blocks of f7~1. We get S1(3) = 2p — 2+ |36~1|. We claim that for any
geodesic 3 such that 8 < 7, |86~!| > p. This follows from the fact that the permutation
B6~1 = 36 has no fixed points: any index 27 is mapped by 6 to 2 which is then mapped
by 3 to some y? # 2T (the same holds for bottom indices). Since it has no fixed points,
each cycle of 86~! has cardinality at least 2 and thus 46! has at most p cycles which
implies |86~ = 2p — #(B5~1) = p. We conclude that, if a geodesic permutation 3 verifies
1By~ =877 — 1, then S1(B) = 2p—2+p>2p+1 for p > 3.

So far, we have shown that the inequality S1() > 2p holds for all § and p. Moreover,
for p > 3, we have shown that equality holds if and only if § = §. For p = 2, using
an exhaustive search in S4, one identifies the permutations which saturate the equality:
g € {id,d,~}.

Now that we have completely solved the minimization problem for g, let us go back to
equations (PGR7) and find, for each minimizing 3, the values of o which saturate both
inequalities. For 8 = 9§, the geodesic id — ¢ has a very simple expression, since ¢ is a
product of transpositions with disjoint support (see the proof of Theorem 6.3 in [ff]):

d—-a—9¢6 & 3IJOCACA{L2,...,p} st. a:H(iTiB).
icA
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Obviously, one has ad~1 = = [Liga(i"i i7'iB), and thus formula (P7) reads |ay ! +p—|A| =

Writing explicitly ay~!, one can show that

#(ay ™) = {

Obviously, A = () does not verify the equality, so one is left with 2p — |A| = |A| = |A| =p
and hence o« = § = 3. The other two cases for p = 2 (f = id and [ = ) are trivial and
yield the same result « = 3. In conclusion, we obtain for p > 3:

E[Tr(ZP)] = cPn"P +o(n™P)

1 ifA=0,
|A| otherwise.

and for p = 2,
E[Tr(Z?)] = (14 2¢3)n "2 + o(n™?)
which completes the proof. O

At this point, the description of the random matrix Z is not complete: the moment
information of the preceding theorem allows us to infer that here are at least some eigen-
values on the scale of 1/n and that the rest of the spectrum is distributed on lower scales,
such as 1/n?. Hayden and Winter’s proof of the existence of a large eigenvalue contains, as
a byproduct, some information on the eigenvector for this particular eigenvalue. Indeed,
they use the projection on the Bell state to obtain a lower bound for the largest eigenvalue
of Z, so one can use this projector to obtain more precise information on the eigenvalue
distribution of Z.

In order to obtain information on the rest of the spectrum, we introduce the orthogonal
projection @Q = I —F, where E is the maximally entangled state. Using the (rank n? — 1)
projector @, we shall obtain some information on the smallest n? — 1 eigenvalues of the
output matrix Z.

Theorem 6.10. Almost surely, the matriz ¢*n’QZQ converges in distribution, to a

Marchenko-Pastur law of parameter ¢2.

Proof. We compute the moments of the random matrix ¢?n2QZ@Q and show that they
converge to the corresponding moments of the limit law:

le —ETr( n?QZQ)P = /xpdﬂ'cz(x).

We start by replacing @ = I —F and expanding the product:
1
mETr( n*QZQ) = Pn** PETr(1-FE)Z(1-E)Z---(1-E)Z
— (2P 202 Z LA LB, I E IET f()Zf(2)Z--- f(p)Z
ferp

where F is a set of the 2P choice functions f : {1,2,...,p} — {I, E}. Notice that in the
last formula, each Bell projector E is multiplied by a factor —1/n.

—¥

U

o—
D—

S|
S|

U

—

FIGURE 11. Developing Tr(n?QZQ)?
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The moment ETr f(1)Zf(2)Z--- f(p)Z is computed with our graphical calculus, and
the computation is similar to the ones in Theorem p.J:

ETf()ZfQZ - f(p)Z= Y Kron#el r#00rwe(as),
o,BE€S2,

where f € Sy is the permutation associated to the choice function f € F, describing the

way f connects the different instances of the channel. The exact action of f can be easily
computed:

o f A=D1 A f) =1
i if f(i)=FE,
L DT it 1) =1
il if fi+1)=EFE,

where the arithmetic operations of indices ¢ should be understood modulo p.

When trying to compute the leading order terms in the expression of ETr(n?QZQ)P,
one has to understand the possible cancellations of high powers in n. When writing the
exact formula for the p-th moment and separating the («, 3) and the f parts, we get

1 - - -
SET(n?QZQ)P = ) | w2 IRl wg(ap™t) (-1 HE) (1 B e )
0476682;7 feFp

Note that the sum over f € F, depends only on the permutation . We show next, that
for a large class of permutations a (the ones which are responsible for the large eigenvalue
of size 1/(cn) of Theorem B.§), this sum is zero. Let us introduce the set of “vertical line
permutations”

V={0€S8y|Fic{l,...,p}st. ai’) =i" or o(i®) ="}
= {0 € Sy, | 06 has at least one fixed point}.

Fix a permutation o € V and some index i such that a(i’) = i® or a(i®) = i”. Consider

the “flip at position 4" involution T; : F, — F, which maps a choice function f to the
function

I if j =4 and f(j) = E,
Tf:j—{E  ifj=iand f(j)=1,
fG) ity #i

‘We shall show that
S () Bl @ ) - § (_1)|<Tif>*1<E>|n—<\(nf)*l(E)\H@?)*l\)
feEFp feEFp

)

which will imply that for all & € V, both sums are zero. Since the cardinalities of the sets
f7YE) and (T;f)"}(E) differ by exactly one, all one needs to show is that, for all f € F,,

——1

FTHE) + af T = (T TN E) + Tif) |

To this end, notice that (the order in which one multiplies the transpositions in not
important)
f= 11 G-v"i")4
JfOG)=E
——1 N
and hence (T3 f) = af ' ((i —1)T i#). From this, we find that
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Let us now suppose that a(i’) = i?, the other case a(i®) = i’ being similar. If f(i) =1,
then f(i7) = (i—1)7, af1((i—1)T = ¥ and thus |af | — ]a(Tj?) 1] = 1. On the other
hand, f(i) =1 = (T;f)(i) = F and then |f~Y(E)| — |(T;f)"'(F)| = —1 and one sees that
the differences compensate. The case f(i) = E is treated in a similar manner.

We have proved that for all permutations o € V, the sum over all choices f € F,
is exactly zero; notice that the computations we have done until this point are non-
asymptotic, they are true at fixed matrix sizes n and k. We now interchange the sums over
(o, B) and f, we replace k = cn and we use the first order asymptotic for the Weingarten
function:

1 - .
EETr(canQZQ)pN Z p3p= 2= (1831 +lal+2laf 1) 2p=(lal+eB7M) NMob (a1
a,ﬁ652p7a¢v
. Z (_1)\f‘l(E)\n—(lf_l(E)HlOéf_l\)_
feFp

To obtain the dominant power of n, one has to minimize the following quantity over

(a,B,f) € (S2p \ V) x Sop x Fp:
S(ev, B, f) = |83 + || + 2|7 + [fHE)| + |af 7.

Since a ¢ V, ad has no fixed point, and hence || > p. Using the facts that a8~ |+|3d] >
|ad], |87t = 0 and |a| + |af 7t > | f], we obtain that

S(e, B, f) = p+fHE)| +|f],

with equality if and only if § = «, |ad| = p and « is on the geodesic between id and f .
On the other hand, one can easily compute the number of cycles of f:

;)2 if f=1,
#f= {|f_1(E)| otherwise.

Hence, S(«, 3, f) > 3p — 2, with equality if and only if f =1, § = «, || = p and «
is a permutation on the geodesic id — I = ~. Since v = 77 @ P is a disjoint union
of the two cycles 47 = (p---2T17) and +# = (1B28...pB) = (47)~1, the condition
that a should be a geodesic permutations amounts to o = o! @ o, where o"F ¢ Sp
are geodesic permutations with respect to the cycles v/°B. One can easily show that
#((aT®aP)s) = #(a’aP), where the first permutation is an element of Sy, and the second
one is an element of S,. Using this equality, the condition |ad| = p implies alal = id,.
When putting all these considerations together, one obtains the final formula for the
dominant term of the p-th moment of QZQ:

1 2.2 D 2p—2|aT| . 24#aT
EE Tr(c*n*QZQ)? ~ Z c Mob(id) = Z c .
id—aT —~T id—aT —~T
Following the proof of Theorem p.3, the moments of the Marchenko-Pastur distribution
of parameter ¢? are easily recognized and the converges in moments is settled. The proof
of the almost sure convergence is more involved and can be found in the Appendix. [

From this we deduce the following theorem, which summarizes as the results obtained
so far in this section

Theorem 6.11. The eigenvalues A1 = --- = A2 of Z satisfy:
e In probability, cnA\; — 1
2
o Almost surely, ﬁ Yoo 022y, converges to a free Poisson distribution of param-

eter 2.
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Proof. Let Ay > --- > An2_1 be the eigenvalues of QZQ), seen as a matrix in M,2_;(C).
By Cauchy’s interlacing theorem ([f[], Corollary II1.1.5), the eigenvalues of QZQ and those
of Z are intertwined and satisfy

MZMZA> > e > Ao > A

Therefore, the second statement follows immediately from Theorem [.10.
For the first statement, we have

1 <en) < cgng)\:{’ < cgng)\:{’ + ... cgng)\flg
so the inequality pertains if one takes expectations. In addition, we know from Theorem
6.8 that E[3n3Z3] = 1 + O(n~!) therefore
E[lecnA\i] =14+ 0(n™ 1)

and this proves the first statement.

An important result for quantum information theoretic purposes is as follows.

Proposition 6.12. Almost surely, in the limit n — oo, the von Neumann entropy of the
matriz Z satisfies

(7) = 210gn—%+0(1) if c>1,
- 210g(cn)—§+0(1) if 0<ce<l

Proof. We use the fact that ecnA; > 1. Since zlogz < 22 — 1 for any x > 1, we have

n2

enAp log(eny) < (enp)® —1 < Z(cn)\i)?’ -1
=1
Taking the expectation and using Theorem B.§, we get
E[enA; log(en)y)] = O(n™Y)
Similarly, we know by Theorem [6.§ that
E[\] = O(n™h).

Putting this together, we obtain

E[—A1log A1] = o(1).

We are now left with evaluating
E[-A2log Ag — ... — A2 log A2].

This can be done exactly in the same way as in Corollary [.§, and one then obtains the

desired formula. O

Remark 6.13. Here it is important to remark that the estimate of Propositions and
6.1 are the same asymptotically. This implies that in this scaling, the choice Uy = Us is
wrrelevant in the construction of counterexamples to the additivity problem. However it
remains to be checked whether this scaling indeed yields counterezamples with high proba-
bility, and this is not clear from our first order asymptotics.
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APPENDIX

In this appendix we present the complete proofs of the almost sure convergence state-

ments in Theorems and p.10.

Proof of Theorem [6-3, continued (almost sure convergence). We have already proved the
convergence in moments. To prove the almost sure convergence, it is sufficient to show that
for each p the series of covariance of the p moments is convergent. A classical application
of the Borel-Cantelli lemma suffices then to conclude.

We start with the simplest term, E[tr,2((c?>n?Z)P]2. Since we need to compute its first
two terms in the asymptotic expansion in n, we look at the sub-leading term (n~!) of
E[tr,2((c>n?Z)P]. Such terms come from permutations for which the exponent P, has
value 2(p — 1) + 1 = 2p — 1. Analyzing equations (R3-R4), one sees that the permutations
which “almost” saturate the bound are those which verify id — ay = 8y — v, id —» ay =
By — v and |B(}1BV| = |a51av| = 1. In conclusion, we have

E[tr,2((*n%Z)P] ~ > Prau
id—ay=py=ay=Fy—y

+ n*l Z C#CVU+#CVV + O('I’L72).

id—ay=Bu—vy
id—ay =By —v

185! Bv|=1
Taking the square gives
(29)
2
E[tr,2((*n?2)P)? = > Ftev
id—ay=Bu=ay=Fy—7
+n712 Z FArau | Z croavt#av | L O(n=2).
id—ay=Fu=av=0v—" id—ay=Bu—~
id—ay=py—vy
185 By =1 J

In order to compute the asymptotic expansion of E [(trnz ((canZ)p)Q} , one has to consider
two copies of the diagram corresponding to the p-th power of ¢?n?Z. The boxes are
originally connected by the permutation
Yo=@p—1---21)2p2p—1--- p+2p+1) € Syp.
After counting the loops, one finds an analogous formula for the mean trace
E [(trnz((canZ)p)Q} ~ Z nAP=4=Pn2 Ap=Pe2 Mob(aUB(}I) Mob(avﬁ‘}l),

ay,Bu,av,Byv €S2p

where
Puz = lav| + lav] + by tav| + g tav| + 165 By + 2lau By + 2lav By,
and
Pe = lav| + lav] + lav Byt | + lav By

Using the same inequalities and arguments as above, we find that Py, o > 2|vys| = 4p — 4,
with equality iff id ay = By = ay = By — 72 is a geodesic. Since 2 contains two p-cycles,
the preceding condition is equivalent to ay = By = ay = fy = a ® o/, where o € S,
and o € S{p+1,p+2,---,2p} ~ S, are such that id - o — v and id — o — 7 are
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geodesics. Since Mobius functions vanish, this dominating term is equal to the first term
in the asymptotic expansion (R9) of E[tr,2((c>n?Z)P]2. The term responsible for the n~1
contribution comes from permutations oy, B, oy, By € Sgp such that id — ay = By —
Y9, id — ay = Py — 2 and |ﬂ(}1ﬂv| = |a51av| = 1. Since, from the geodesic condition,
ay = ay @ af; and ay = of, @ o, the condition |a51av| = 1 is equivalent to either

oy =ay and [(ag) " ay] =1,

or

() tal, =1 and af, = af.

Summing these contributions, one finds the term in n~! from equation (9). Hence,
the dominating (n") and the sub dominating (n~!) terms from E[tr,2((c*n?Z)P]? and
E {(trng((02n2Z )p)z} are equal, which implies that the general term of the series of co-

variances has order n~2. The series is thus summable and a Borel-Cantelli-type argument
finishes the proof of the almost sure convergence from Theorem 6.3 O

Proof of Theorem [6.10, continued (almost sure convergence). We now prove the almost
sure convergence statement of Theorem [.10. We use the same technique as before, show-
ing that the covariance series converges. The first step is to analyze the sub-leading terms
(n~1) in the expression of the p-th moment for one copy of the channel. Recall that the
exponent of n was given by the expression

S(e, B, f) = 180] + |e| + 2[aB7 + | fHE)| + |af 7.

Using the triangle inequality |a| + |« f 1> f |, we split this minimization task into two
independent problems:

minimize  |30] + 237!,
and

minimize  |f~Y(E)| + |f].
The 2p — 2 minimum in the second problem is reached for f = I; if f is different from I, it
follows from the above analysis that |f~1(E)| + |f] > 2p and thus only f = I contributes
to the sub leading n~' term. Moreover, a parity argument for the geodesic inequality
la| 4 |af 1| > | f| implies that the permutation o must lie on the geodesic between id and
I = ~. Let us now describe the couples (o, 8) € SQQP such that |36] + 2|af8~!| = p+ 1.
Since |33| + |aB71| = |ad| = p, one needs to consider two cases.

In the first case, we assume that |ad| = p+ 1 and @ = (3. Since « is a geodesic

permutation, a = a’ @ o and the condition |ad| = p + 1 is equivalent to |aTa?| = 1. In
conclusion, this case gives a contribution of

1 S craTa®

n
id—aT —~T
id—aB —~B
laTaB|=1
In the second case, |ad| = p and |aB~!| = 1. This corresponds to o = (af)7!,
laB~1| = 1 and |36| = p. Since B is at distance one from a, 3 = «a(i* j') for some
i,j € {1,...,p} and s,t € T,B. If s = ¢, then 8 ¢ V and thus |34| > p which is
impossible. We can assume now that 3 = (i’ j?) for some 4,j. In order to have

|30| < p, the permutation 36 has to have at least two fixed points. Using

(T (k)T if ki

[aT & (aT)fl . (Z'T jB)] (kT) = {((QT)—l(j))B if k=1,
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and
T Ty-1. (T iBY] (kB (@")7H (k)P itk #
k
we conclude that, in order to get an n~! contribution, we must have o (i) = j. Hence,

for each geodesic permutation o we can find p permutations 3 such that |a8~!| =1 and
|d] = p — 1. We obtain a total contribution of (use Mob(transposition) = —1)

_% Z 2#aT -1

id—aT—~yT

1

Putting the first and the second order contributions together, we obtain the asymptotic
expansion for the square of the expected normalized trace:

(30)

Eltr, (Pn?QzQy )P = | Y &' 4

id—aT—~T

2 T T B T _
“ § : C2#a . § : c#a +#Ha —p § : cQ#a 1
n
id—aT —~T id—aT—~T id—al —~T
id—af—+P
| laTaB|=1

Let us now analyze the second term in the expression of the covariance, E[(tr,2 (c>n?QZQ)P)?].
The exponent one wants to minimize in this situation is

SP(a, B, f) = 1857 | + |al +2lap™! |+ [fTHE)] + |af ],

where «, § are permutations in Ssp, and the choice function f: {1,...,p,p+1,...,2p} —
{I, E'} encodes the way the Z blocks are connected. Note however that in this case, the
diagram under consideration has at least two connected components, since we are dealing
with a product of traces. Considerations similar to the ones in the proof of the convergence
in moments lead to the conclusion that permutations o € V) do not contribute, so we can
restrain our minimization problem to the set (Syp \ V) x Sup X Fop. Using the triangular
inequality || + |« f 1> f |, we split again our problem in two independent parts: one
minimization problem for the choice function f and another for the couple (o, 3). The
minimization problem for f is the same as in the single channel case, with the difference
that f is defined now on a set of cardinality 2p. The quantity |f~1(E)| 4 |f| is minimized
for f =1 and the minimum is equal to 4p — 4. Notice that in this case, the corresponding
permutation I has the following cycle structure: I= ATl @ AT2 @ 4Bl @ B2 where

WT’I = (p" (p—l)T 1T),
= ()" 2p—-1" - (p+ 1)),
(1323... )7
=(p+1 (p+2) - (2p)P).

Geodesic permutations id4p — «a — I share the same cyclic decompositions, and one can
easily find the dominating term in this case:

E[(tr,2(c*n*QZQ)")?) = > el o(1),

idp—aT 1oy TilanT

id—aT2 sy T20nT
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which is the same as the first term in equation (B(). Let us now move on to the sub-leading
term in the asymptotic expansion of E[(tr,2(c?*n?QZQ)P)?]. As in the previous case, f =1
and contributing couples (c, 3) are of two types: permutations such that [ad®| = 2p+ 1
and o = 3 or couples such that |36(?)| = 2p — 1 and |af~ ! = 1.

The analysis of the first situation is simpler: the cycle structure of the geodesic permu-
tation a implies that |ad®| = 2p + |aT1aP 1| + |aT2aP2|. Hence, only one of [aT aB|
or |aT2aB2| is equal to one, the other one being zero. This corresponds to a contribution
of (we use the symmetry 1 < 2 of the problem)

2 z#aT,l #Q’T’2+#Q’B’2
— C . C
n
id—aT l—AT1 id—aT2—~T2
idHaB’2~>fyB72
‘aT,2 B,2 |:1

The second contribution is calculated in a similar manner to the case of a single trace.
Permutations 8 at distance one from geodesic a = o' @ a’? @ o' & P2 such that
aBl = (o)~ and alpha®? = (a’2)7! are of the form 8 = a(i® j'). The condition
36| = 2p — 1 implies that we can choose the transposition (i jZ) and that [’ @
a2](i) = j. This last condition implies that i and j have to be in the same half of the set
{1,...,p,p+1,...,2p} and, using again the symmetry between the first and the second
trace, we can write the final contribution:

_ % Z Cz#aT’l ) Z CQ#aT’Q -1

id—»aTvl—vyTvl id—»aT’Q—wT’Q

Summing the leading (n°) and the sub-leading (n~!) contributions and comparing to
equation (B(), we find that

E|(tr,2 (*n*QZQ)P)*] — Eltr, (*nQZQ))* = O(n™?),

and the convergence of the covariance series follows, ending the proof. O
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