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Abstract

We give a necessary and sufficient condition for the existence of a
quadratic exponential vector with test function in L2(R%) N L>(R9).
We prove the linear independence and totality, in the quadratic Fock
space, of these vectors. Using a technique different from the one used
in [B], we also extend, to a more general class of test functions, the
explicit form of the scalar product between two such vectors.

1 Introduction

Exponential vectors play a fundamental role in first order quantization. It is
therefore natural to expect that their quadratic analogues, first introduced
in [PH], will play such a role in the only example, up to now, of nonlinear
renormalized quantization whose structure is explicitly known: the quadratic
Fock functor.

The canonical nature of the objects involved justifies a detailed study of their
structure.

Let us emphasize that the nonlinearity introduces substantially new features
with respect to the linear case so that, contrarily to what happens in the
usual deformations of the commutation relations, quadratic quantization is
not a simple variant of the first order one, but interesting new phenomena
arise.

For example usual exponential vectors can be defined for any square inte-
grable test function, but this is by far not true for quadratic ones. This
poses the problem to characterise those test functions for which quadratic



exponential vectors can be defined. This is the first problem solved in the
present paper (see Theorem (f)).

Another problem is the linear independence of the quadratic exponential
vectors. This very useful property, in the first order case, is a simple conse-
quence of the linear independence of the complex exponential functions. In
the quadratic case the proof is more subtle. This is the second main result
of the present paper (see Theorem (f)).

For notations and terminology we refer to the papers cited in the bibliogra-
phy. We simply recall that the algebra of the renormalized square of white
noise (RSWN) with test function algebra

A= L*(RY) N L*(RY)
is the x-Lie-algebra, with self-adjoint central element denoted 1, generators
{Bf,By,Ny,1 : f.g,he L*(R)NL>R)}
involution
(B;[)*:Bf , Ni = Ny
and commutation relations
[By, B;] = 2¢(f,g) + 4Ny, [Na, B;[] = 2B;’f, c>0
[B;_>B;] = [Bf’ Bg] = [NmNa’] =0

foralla, d’, f, g € L*(RY)NL>®(RY). Such algebra admits a unique, up to uni-
tary isomorphism, s—representation (in the sense defined in [[f]) characterized
by the existence of a cyclic vector ® satisfying

By® = N,® =0 : g,h € L*(RY) N L= (R%)}

(see [B] for more detailed properties of this representation).

2 Factorisation properties of the quadratic

exponential vectors
Recall from that, if a quadratic exponential vector with test function
f € L3R N L=®(RY) exists, it is given by
+n
Bi"®

V() =D —

n>0
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where by definition
W(0) := Bf'® := @

(notice the absence of the square root in the denominator).

In this section, after proving some simple consequences of the commutation
relations, we give a direct proof for the factorization property of the expo-
nential vectors.

Lemma 1 For all f,g € L*(R%) N L>*°(R?), one has
[Ny, Bj" =2nB} """V B} | (1)

[By, Bf"] = 2ne(f, 9) B ") + 4nBf "V Np, + dn(n — 1)B; "I BT .. (2)

Proof. The mutual commutativity of the creators implies that

n—1
[Nf, B;—n] _ ZB;i[Nf,B;]B;(n_i_l)
=0
n—1
- S s — e,

=0

which is (). To prove (f]) consider the identity

n—1
[Bf, B;—n] _ ZB;i[Bf,B;]B;(n_i_l)
=0
n—1
= > Bf(2¢(f,g) +4N;,) B
=0
n—1
= 2nc(f,9)B; "V +4>  BI'N; Bf Y,
=0

From ([) it follows that

_ pt+n—i-1) _ p+n—i-1 _ . n—i—2) p+
N By = B =UNg 4 2(n —i = 1) By "2 B .

g



Therefore, one obtains

(B, B"] = 2nc(f,g)Bf "V +4nBf "V Ny,

+4Y Bf'(2(n—i—1))Bf"P B,

g g

= 2nc(f,g)Bf "V + 4nB "V Ny,
n(n —1) +(n—2) R+
+8 (n(n —-1)— T) B Bi,

= 2nc(f,g)Bf "V + 4nB VN,
+(n—2) p+
+4n(n —1)B; "B ,.

O
Lemma 2 Let fi,..., fr, g1,--.,gn € L>(R?) N L>®(RY). Then, one has
By, ...BpBj ... B ® =0 forallk > h>0.
Proof. It is sufficient to prove that
Bj,.,...BpB) ...B;®=0, VheN. (3)

Suppose by induction that, for A > 0, (B) is satisfied. Then, one has
By,.....ByBf .. .Bf® = B, ... B,[By, B} .. B®

1

1
=By,,,---Bp, Y B} ... B (2c(f1,9:) +4Np,,)
i=h

B ...Bl®

Gi—
1

= 2¢> (f1,9)(Byy,, - Bp)(By, ... B ... B )®

i=h



+4> (By,,,---Bp)(By, ... Nj, Bf ... B})®.

gn "

By the induction assumption

1

> (f1,9)(Byy,, - Bp)(By, ... Bj ... Bj )@ =0.

i=h
Therefore, one gets

thH ...B;B} .. .Bid®

_42 By, ...Bp)(By ...Bf Nj,Bf .. .B5)®

1
:4Z(th+1...3f2)<B;. MZB o INjn BT B;q)@
i=h

m=1—1
1
:4Zth+1...Bf2B;. : ( Z ...Bf B 1...3;) o
] m=i—1
gz Z By, ...BpBy, ...Bf  ...Bf ...BfBl &,

i=h m=i—1

which is equal to 0 by the induction assumption. O

Lemma 3 Let I, J C R? such that INJ = ¢ and let f1,..., fu, fl, -, fi,
Gy ooy Gy Ghy oy G € LARY) N L°(R?) such that

supp (fi) C I, supp (f{) C I, supp (9:) C J . supp (g;) C J
Then, for h £ h' or k # k', one has
(B}, ...B},B},...BL®, B}, ...BLB! .. Bi@)=0.

Proof. Lemma ([[) and the polarization identity imply that
[By, ... By, By ...B;,l] = 0. Therefore, it is sufficient to prove the result
k!

for h # h/. Taking eventually the complex conjugate, we can suppose that
h > h'. Under this assumption

+ + n+ + + + n+ +
(B}, ...B},B; ...B;,®.B}, ... BB} ...B}®)

= (By,...Bi®. B} ... B}(By, ... BB ... Bf)®)

b}



and the statement follows because, from Lemma [, one has

By, ... BpBf, ... Bj® =0,

For I ¢ R?, denote H; the closed linear span of the set
{Bf"®, neN, f e L*(R%) N L>(R?) such that supp (f) C I}
and H = Hga. The space H, denoted ['y(L*(R%) N L*(R%)), is called the
quadratic Fock space with test function algebra L?(R%) N L>(RY).

Lemma 4 Let I,J C R? such that INJ = ¢ and let fi,..., fn, [, f},
Gy s Gy Ghy -5 G € LARY) N L®(R?) such that

supp (f;) C I, supp (f!) C I, supp (g;) C J and supp (g}) C J.
Then, one has

+ + n+ + + + n+ +
(B} ...B},Bj,...Bj® B}, ...BLB} ... B}®)
= (B}, ... Bj, @1, Bf, ... By ®)(B}, ... Bi®,, B} ... BLd,). (4)

1

Proof. By induction on A. For h = 1, one has
(B},B,. ...B;®, BJT{B;?c . B;ZCI))
= (B, ... B;.®, B;;c . B;Z(Ble;E)CI))
=2c(fi, f{)(B;, ... Bj;®, B, ... B} ®)
= (B}, 1, B, ®/)(B;, ... B},®,, B} ... B},).
Let h > 1 and suppose that (f]) holds true. Then, one has
+ pt + - + ot + -
(B}, B}, ...BfBs...Bi®,Bf, B} .. BjBj .. B®)
= (B}, ... BB}, ... BL®, B, B}, B}, .. BiBLB} . . B0

T T
1
=) (B} ...BiB, ... Bj®.(By ... B})(B, ...[Bp...B},]...B)®)
m=h+1
1
=2c Z (fra1s fn)
m=h+1

(B},...B},B; ... B}, ® (B} ...B})(B] ...B},

1 f]l—L+1 f'r,n

.B})®)



1
+ + p+ +
+4 Y (B} ...B}B}..B]®,
m=h+1

+ +\( R+
(B}, ... B})(B

7
fh+1

B;”r;nHthﬂf;nBJr ... B})®).

fina 1
By the induction assumption

1
> (furrs ) (B}, ... BiBy ... Bj,®, B} ... B} B

— 91 f}/erl
m=h-+
1
- / + + + )+ +
- zh: 1<fh+1? fm><th te Bf1®1’3f1/1+1 e Bf'r,n t Bf{¢l>
m=h+

(B}, ... Bj;®), B} ... B} ®,).

1

Moreover

+ + p+ + + + p+ + _ +
<th...Blegk...B‘gl@’Bg;C...BgiBf}/L+1...Bf’,/n+1th+1f;an7/n71
1
_ + + B+ +
= Y (B} ...B}B/ ..B],
i=m—1
B, ...B B,
g;ﬁ /

91 ff,H»l

2

B, . [Nj,.p, B}l B,

1

=2 Y (B} ...B}B] .. .B]®,

i=m—1

B} ...B}B%B} ...Bj ...B}...BjBf . .,®).
9L g1 m fi f

91 f}/1+1 1 fh+1f7lnfi,

Again by the induction assumption, this term is equal to

(2

1
+ + + -+ N+ + p+
2 Z <th...Bf1®1,Bf},lH...Bﬂn...BfZ,...Bf{thHﬁnfi,
=m-—1

(Bf ... Bj®), B} ... BLd,).

1

Hence, one obtains

(Bj,

St

+ + n+ + + + + n+ +
B}, ...BjB} ...Bj® B}, B}..B}B}. . B}o

f};+1 91

-+
...Bf,{”b.

.. B}®)

+
.. B}®)

;)



1
:{ 3 [2c(fh+1,f[n><Bﬁ...B}ECDI,B}:;H...B};...BE(DI)

m=h-+1
1
+ + + >+ 1+ + pt
+8 3 (B}, ...BjeL Bl ..Bf ..Bj. BB . o0}
i=m—1
(By,

[ 1

Bj®,, B}, ... B}®,).

Since the term between square brackets is equal to

+ + + +
(th+1 ... B}, @, Bf;’m .. .Bf{(I)I).
This completes the proof of the lemma. 0J

Lemma 5 Let I, J C R? such that I NJ = ¢. Then, the operator
Urys :Hiur— Hir @Hy
defined by

Urs(Bf ...BLB} ...Bf &)= (B} ...Bj®)) & (B ...B}®,)

17 9gm *

where supp (f;) C I, supp (g;) C J, is unitary.

Proof. It is sufficient to prove that for all f,,..., fi, fi,..., fi € Hr;
gm?"'vglvg;u"'vgi € HJ

(Bf,...BjB) ... By @y, B, ... BB} ... Bl 1)
=(By,...B}®, By ... By ) (B, ...Bj %, B, ... Bi®;). (5)

1 m " 1

Note that Lemma [ implies that (fl) holds if n # h or m # h. Moreover, if
n = k and m = h, then from Lemma [l], the identity ([j) is also satisfied. This
ends the proof. O

Theorem 1 Let Iy,..., I, CR? such that I; N I; = ¢ for all i # j. Let
U[lUmU[k717[k : HUleli — HU?;E I; X H[k
be the operator defined by Lemma . Then, the operator

I :HU?:111' - Hn,®...0H;,

-----

8



given by

L=Unn®l,®..01,)o(Unun,®l,®...®1;,)o...

-----

oo (Unu.vtnsgn @11,) o Unu.un, 1 1,

18 unitary.
Proof. Forall k € {2,...,n} (IU...Ul;_1)NI; = (). Therefore the operator
UflLJ...UIk,le : HU?:I I; - Huf;ll I; X ka

is unitary because of Lemma [ In particular Uy,
O

1, 18 a unitary operator.

.....

Theorem 2 (factorization property of the quadratic exponential vectors) Let
Ii,..., I, CRY such that I; N I; = ¢, for all i # j and let

,,,,, L Hye, 1, — ®?:1 H;, @ ... Hjy, be the unitary operator defined by
Theorem [1.

Then, for all f € L* (U, I) N L>® (U}, I;) such that U(f) exists, one has

Un,...,Y%(f) =¥(fn)®...0 ¥(f1,)

where fr, == fxi,.

Proof. Denote J, = Ule I, Then, Unu.ur,_ 1, = Uy .1, 15 a unitary
operator from H,;, to Hy,_, ® Hy,. Let f € L* (U, L) N L= (U;_, L) be
such that W(f) exists. Since

F=Y_fr.="frn.+/
=1

it follows that

+m _ + + \m _ k p+k +(m—k)
Bf™= (B}, +B})"=Y ChBI* Bi"
k=0
where |
m!
CcF = .
o (m—k)k!



Therefore, one obtains
+ \mg k (p+k +(n—k)
B =) Ch(BI @y, ) @B

+
UJnflvln(Bf n*
k=0

T

This gives
UJnflyIn\Il(f) = qj(fJnfl) ® \I](fln)

Now, one has

Uspsity @ 11,) 0 (U, 1)V (f) = (Usp1, Y (fi,-1) @ ¥ (f1,)-

In the same way, we prove that

UJn7271n71\Il<fJn71) = \I](f{hhz) ® qil(flnfl)'

Hence, the following identity holds

Uspsity ®11,) 0 (U, 1,)V(f) = V(1) @ V(f1,_,) @ V(f1,)

Iterating this procedure one finds
(UJImIk+1 ® ]‘Ik+2 ®...® ]‘In) o (UJk+1,Ik+2 ® 1Ik+3 ®... ]‘In)

0...0 UJn71,In\II(f) = \Il(ka) ® \Il(ffk+1) ... Q0 \Il(fln)

or equivalently
In\Il<f) = <U11,12 RlL,®...® 1[n) o (UJQ,IS ®1lL,®...Q 11n)

o...olUj 1, U(f) =¥(frn)®...0¥(f1,).

.....

O

3 Condition for the existence of the quadratic

exponential vectors

When both ¥(f) and W(g) exist, the explicit form of their scalar product
was determined in [RH], for step functions in R with bounded supports. We
further prove that the sufficient condition for the existence of a quadratic

exponential vector with a pre-assigned test function, given in [H], is also a

10



necessary conditon. Finally, using the factorization property of the quadratic
exponential vectors and an approximation argument, we extend the formula
for the scalar product to exponential vectors with arbitrary step functions.
Due to the nonlinearity involved in this form of the scalar product, the ap-
proximation argument is not as straightforward as in the first order case. A
different proof of this result was obtained in [P].

Lemma 6 For alln > 1 and all f, g, h € L*(R?) N L>(R%), one has

n—1
n— ni(n —1)! ko k+l
<B+( 1)®,BhB+n®> — ¢ 22k+1 <hf g + >
f 9 2 iy
(B; "V, pHok-g), (6)

Proof. Let us prove the above lemma by induction. For n = 1, it is clear
that identity () is satisfied.

Now, let n > 1 and suppose that (f]) holds true. Note that, from () it
follows that

BhB;(n+1)(I) =2(n+ 1)c(h, g>B;”q> +dn(n+ 1)3{923;@_1)@.
Then, one gets
(Bf"®, B, Bf" ™) = 2(n+ 1)c(h, g)(B}"®, Bj"®)
+4n(n + 1)(B;{")(I>, B}—fng;("—l)@
= 2(n+1)c(f, g)(Bf"®, B;"®)

Therefore, by induction assumption, one has

nt (n — 1) _
+(n—1) _ pn _ 2k—+1 nl(n )! 0k pk+1
<Bg (I>>BthBf (I)> = cC E 2 ((n—k— 1)'>2<(h'g )g >.f >

k=0
<B;-(n—k—l)q>’ B;—(n—k—l) CI>>

- o1 =DV
= c;2 7((75_]{;)!;2(9 Jhf")

(Bf" Mo, " M),

11



It follows that

((n = k)1
(Bf" Mo, Bf ), (8)

" (n 4 1)!
dn(n +1)(B; "0, BB "®) = cZ22k+1L+>2<hf’igk“>
k=1

Finally, identities ([]) and (§) imply that

nl(n+1)

= !
<B;—n(1>,BhB;(n+l)q)> _ 0222164-1 _ <hfk,gk+1>

— ((n —k)!)
+(n—k) n—k
(Bf"Mo, B M),

This ends the proof. O
From the above lemma, we prove the following.

Proposition 1 For alln > 1 and all f, g € L*(R%) N L>(RY), one has
nl(n —1)!
n—k—1)
+(n—k-1) n—k—1
(B} ®, B ) D).

n—1
<B]—|c_nq), B;—nq)> _ 022%—1—1(( - <fk+1,gk+1)
k=0

Proof. In order to prove the above proposition, it is sufficient to take f = h
in Lemma [q. O

As a consequence of the Proposition [, we give a necessary and sufficient
condition for the existence of an exponential vector with a given test function.

Theorem 3 Let f € L2(RY) N L2(RY). Then, the quadratic exponential vec-
tor W(f) exists if and only if || || < 3.

Proof. Sufficiency. Let f € L?*(R%) N L?(R?) be such that ||f||e < 3. From
the above proposition, one has

n—1
n n'(n — 1)' n—k—1
IBFrallt = e 2 IR B e
k=0 ’

n—1 '(n . 1)'
_ 222k+1 n: : k+1)2) g k=) 12

12



+2ne|| fII21B7 " Ve? + 2ne| £121 B7 "V @

- I(n — 1)! ne1)—k—
= e 2 n_nl(;l—k;)_1)!)2|||fk+2||3||3f(( e

< = DR P e
nﬁHMB;Wlkl@u] (9)

Note that

n—2
e (n—1)!(n—2)! 1)k
1BVl = e 32 Ty I BB e

This proves that
1B @I < |4n(n = 1)L FI2, + 20l £I3] 1BV o2 (10)

Finally, one gets

||B;_"(I)H2 _ [4n(n —DIIFI*% + QanH%] ’|B;-(n—1)q)“2
(n)2  — CEDEE

n2

B ®|?
Hence, it is clear that if 4] f[|%, < 1, then the series ), -, % converges.

Necessity. Let f € L*(R?) N L?(R%) be such that || f]|o > 3. Put

—_

J={z eR’, |f(x)] > 5}.

DO

It is clear that |J| > 0 In fact, if [J| = 0, this implies that a.e x € R,
|f(z)] < % and ||f|l~ < 5 , against our hypothesis. It follows that

F@)] > xs@)| @) > Hxo(a), (1)

for almost all z € R% Note that from Proposition [, it is easy to show by
induction that if
|h(@)] = |g(z)], a.e

13



then
|B"®|* > || B . (12)

Hence, identities ([[1]) and ([3) imply that

1 1
+n 2 +n 2

n>0 n>0

But, from Proposition [l], one has
+n (2 +(n=1) 12 +(n=1) 512
HB%XJ(I)H _ <C|J\ +n—1>||B%XJ ol S n—lHB%XJ ol N
(n!)? 2n n (n=1H% = n ((n=1H% —

n—1n—2 1
> .=
n n—1 2

1 1
IBL, 01 = 2By, 0l = 1R
which proves that the series Y ., ﬁHB;’;(EHQ diverges. It follows that
>0 (ah)Z 121y,

also the series ), - ﬁHB;{"(I)Hz diverges. O
Theorem P implies that, whenever the quadratic exponential vectors are
well defined, their scalar product

(W(f), ¥ (9))

exists. More precisely the following results hold.

Theorem 4 For all f, g € L*(R%) N L>®(R?) such that
1flloo < 3 and ||glloc < 5, then the integral

[ w1 = 47s)g()ds
R4
exists. Moreover, one has
(W(£), 8(g)) = e & s MO, (13)

Proof. Proposition [[] implies that, for any pair of step functions f = py,
g = oxr, where |p| < %, lo| < % and I C R? such that its Lebesgue measure
|I| < oo, one has

n—2 '(n

n
<B+nq>’B+n(I)> = ¢ 22k+3
0 D (=Y

14

1)!
k—1))2

<fk+2 ’ gk+2>



+((n—1)—k-1) n—1)—k—1
(Bf P, B;(( ) )q)>
+2nc(f,9)(B;"V®, B V)
n—2
_ (n—1)!(n—2)!
= dn(n—1)po [c 92+l
D (O :

+((n=1)—k—1) +((n=1)—k—1
(Bf ®, B ((n—=1) )q>>]

<Jck+17 gk+1>

+2ncﬁa|[‘ <B;‘(n—1)q)7 B;—(n—l)q)>
= [4n(n —1)po + anﬁam] (B;[("—l)q), B;—(n—l)q)>.

This gives

(14)

<B}i—nq)7B;-n(I)> e [CW N — 1} <B;-(n—1)q)’ B;("_l)q>>
(n!)? ((n—1)1)?

On the other hand, if I, J C R? such that |I| < oo, |.J| < oo and I N.J = 0,
then by factorization property (see Theorem [[), one has

PXIUJT? \IIO'XIUJ> = <\I]pxn \DUX1><\IIpra \IIUXJ>' (15)

Therefore, if we put

2n n

(U

F(p,o,[1]) == <\IIPX17 \IIUXI>'
then from ([[4), it follows that
F(p,o,|I|+|J]) = <\IIPX1qu \IIUXIUJ>'

for all I, J C R? such that |I| < oo, |J| < oo and I NJ = (). Moreover,
identity ([[3) implies that

F(p, 0,11 +[J]) = F(p, o, ) F(p,0,]J])
Thus, there must exists £ € R such that
F(p,o,|1]) = el

Put ¢t = |I|. The number ¢ is obtained by differentiating at ¢ = 0. Using
relation ([[4) one finds

d| (Bf"®, Bf"®) 4
dtl=o  (n!)? T dt

c n-—1

<4ﬁa(%+ (450—)".

c
2 n

y”@d%ﬁw:

t=0

15



Hence, one gets

_d B _c (4po)” ¢ -
=) Flpot=I)=53" = —5In(1 = 40).

[\

This proves that the identity ([[3) holds true for any step functions

f, g € L*(RY) N L>®(R?) such that || f]|o < 3 and ||g]|e < 3.

By the factorization property (see Theorem P), it is easy to show that, if
f =2 aPaXier 9 = 2gPaX15 € L*(RY) N L>®(RY), where I, N Iy = ( for
all @ # o' and |pa| < 3, |ps| < 3 for all a, 3, then the equality ([3) is also
satisfied.

Note that the set v of functions f = ) paX1., is a dense subset in

L2(R?%) N L= (R%) equipped with the norm || - || = - |l + 1| - |2
Consider now two functions f, g in L2(R%) N L>(RY) such that

1 flloos [l9]loo < 3. Then, there exist (f;);, (g9;); C v and jo € N such that

T [lf; = /=0, lm llg;—gll =0

1 1 S
1fillee < 5 llglle <55 forall j 2 o

- First step: Let us prove that, under the assumptions of the theorem, the
integral )

o5 Joa n(1-17()g(5))ds
exists and

lim =5 S =175 (5)g5(6)ds — =5 Joa I(1=47(s)g(s))ds (16)

Jj—00
For z,2' € C such that |z| < 1, [2/| < 1, we put
h(t) =In(1 —4(tz + (1 — ¢)2")), t € [0,1].

It is clear that h is a derivable function on [0, 1]. Hence, one has
1
B(1) — h(0) = / W (t)dt.
0

This gives

In(1— 42) — In(1 — 42') = (/01 i :l(l_t)z,)dt)(z—z').
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It follows that
4

In(1 —42) —In(1 —42")] < sup z—2
| In( ) — In( )] S T i+ 1=07) | |
- 22!
z—z
1 —dsupeq) [tz + (1 —t)2]
4
|z — 2| (17)

1 —4sup (|2, ]2'])

Note that if we take z = f(s)g(s) and 2/ = 0, it is clear that |2| < 1 and
2’| < 1. Hence, identity ([7) implies that

(1 = 4/(9)a(s))] < e ()
4 B
S T
This yields
[ w0 =4i@aonds]| < g [ eaolds
el

<
1= 4][fllcollglloe

Then, under the assumptions of the above theorem, the right hand side term
of equality ([[3) exists.

Now, take z = f(s)g(s) and 2’ = f;(s)g;(s);, for j > jo. Then, it is easy to
show that |z| < 1 and |2/| < 1. Moreover, from ([7), one has

In(1 —4f(s)g(s)) — In(1 — 4f;(s)g;(s))

e (T Ty 9 ~ )
S T T AT 9 = 5950
T T T 900 ~ Felao)
S T T oA 9~ )
< KIF(s)9(s) ~ F(3)a,(5)

17



for all 5 > jg, where

4
1= 4sup (|| fllocl|gllos: suPjs o (1 fillocl1g5110))

K —

Therefore, for all j > jg, one obtains
| In(1 = 4f(s)g(5)) = (1 = 4f;()g5(5))|
K1F(8)9(5)) = F(8)95(5)) + F(8)95(5)) = Ji(5)g5(5)
< K(IF$)l 1(9()) = g5(5)| + 1F() = Fils)] g (s)]).

—
—_
|
N
S
—
(V)
S—
&
V)
S~—
=

IA

This implies that
| [ (= 47(5)g()) = In(1 = 45y s)gy )|
<K [ VO o) = itolds+ 1 [ 176) = £ ay(0)1ds
< K (If11zllg = gille + llgsll2l £ = £ll2) (18)

for all 5 > jo. Note that it is clear that the term on the right hand side of
(I]) converges to 0, when j tends to co. Thus, one gets

lim [ In(1—4f;(s)g;(s))ds = / In(1 —4f(s)g(s))ds.
J—00 JRd Rd
This proves that

lim e~ 5 Jea In(1=45;(s)g;())ds _ =5 Joa In(1=4f(s)g(s))ds

j—00
- Second step: The following identity holds.
lim (U (f;), ¥(g;)) = (¥ (f), ¥(g))- (19)

J—00

In fact

(V@) = Y

(B}"®, B"®)

for all 7 > jo. Therefore, in order to prove ([[J) it suffices to prove that

lim (B{"®, B;"®) = (B{"®, B;"®), (20)

J—00

18



for all n € N. Let us prove (P{) by induction.
- For n =1, one has
(B}, ®, By @) = c(fj, ;)
This implies that
(B}, ®, B, ®) — (Bf®,B;®)| = c[(f;,9;) — (f,9)]
= ({5950 = {fr9:0) + ((F. 950 — (f. 9))]
< clf = fillzllgsllz + cllg = g;ll=ll 12

which converges to 0, when j tends to oco.
- Let n > 1, suppose that

lim (B}"®, B}"®) = (Bf"®, B"®).

Jj—oo
From Proposition [l, one has
n+1 n n+1 n
(B Ve, ity — (B Ve, B )

S 1)In!
_ 92++1 (n+
3 (n— k)]

k=0
(FE g B0, B Re) — (4 gy (B Ve, B R))]

Note that
‘ <f]k+17 gk+1> (B;;(n_k)q), B;—j(n—k)q)> o <Jck—|—17 gk+1> <B;-(n—k)q)7 B;—(n—k)q)> ‘

J

<f](c+1’g;c+1> [(B;;( )CID, B;;_( M) — <B;‘( )CID, B;r( k)(b)}

(B, B (i gt — (R g

n—k n— n—k n—
§|(ff+1,gf“)|)<Bij( ', B M) — (B g, B k)@))

FIBF PR, BRI |(E, ghH) — (£, g (21)
and from the induction assumption it follows that
Jim (B Mo, B Pe) = (B Mo, B P e) (22)
for all k =0,1,...,n. Now, let us prove that
Tim (£, gH41) = (7441, g0, (23
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One has

<.fjl'€+1ag§€+l> - <fk+1agk+l> = <.fjl'€+1 - fk+1ag;'€+l> + <.fk+1ag;'€+l - gk+1>‘

This gives
(FL g = (P )] < g Bl A = £ o 17 g+ =g o
Notice that

S = M = (f = Py

where v; € L*(R?) is a function on R?, which depends on f and f; such that

sup [|vj][ee < 00
J

It follows that
LA — R4 < sup [loslloollfy — fll2
J

which converges to 0, when j goes to oco. Thus, the relation (P3) holds true.
Using all together (B]), (P2) and (£3), we have proved that
lim(B};”Q, B;;"(I)) = <B;["(I>, B;"@

=0

for all n € N. This implies that there exists j; € N such that for all n € N

(B, B"®) — (Bf"®, B{"9)| <

-

V5 > j1. Hence, for all ;7 > max (jo, j1), one obtains

(W), Wg)) = (U(f), ¥ < D (n1!>4|<B,Tj"<I>, B;"®) — (B"®, B/ )|

1 1
< G2y

n>0

which converges to 0, when j tends to oo.
In conclusion, from ([[@) and ([[9), one deduces that

lim =% Jea MO—4fi()gj(s)ds o5 fpa In(1=4f(s)g(s))ds
j—o0
Tim (U(), ¥(g)) = ((F), ¥(g)).

20



But, for all j > jg

(T(f;), T(g;)) = e & Jea MO—4F5(5)9;(s))ds.
This implies that

<\Il(f), \If(g» — 6_% Jra 1“(1—4f(8)g(s))ds.

O

4 Linear independence of the quadratic ex-
ponential vectors
The following lemma is an immediate consequence of the Schur Lemma.

Lemma 7 If A = (a;j)1<ij<n be a positive matriz. Then, for all n € N,
the matriz ((a; ;)" )1<ij<n S also positive. In particular, (€%7)i1<; j<n 1S @
positive matriz.

Now, we prove the following.

Lemma 8 Let fi, ..., fx be functions in L*(R?) N L>®°(RY). Suppose that
for all i,j = 1,...,N, there exists a subset I;; of R? such that |I, ;] > 0
and fi(x) # fi(x) for all x € I;;. Suppose that |supp(f;)| > 0, for all
1=1,...,N. Then, the identity

A(fi(@)" +. .+ Av(fa(@)" =0 (24)
for all n € N and for almost any x € R?, implies that \; = ... = Ay = 0.
Proof. By induction. If N = 2, then one has
M (fr(x)" 4+ Aa(fo(x)" =0 s a.ex € R (25)

Suppose that \; # 0. We can assume that there exists xy € R? such that
|f1(z0)| > |f2(x0)|. From (B7), it is clear that Ay # 0 and fo(xo) # 0. Hence,

one gets
Al . (fa(mo)\"
— =— lim =0
>\2 n— o0 <f1 (.]}'0))
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This yields that A\; = 0, which is impossible by assumption.

Let N > 2. Let f1, ..., fy in L2(RY) N L>(R?), which satisfy the hypotheses
of the lemma. Suppose that if identity (24) holds, then A\ = ... = Ay =0.
Now, consider fi, ..., fn, fv41 in L*(R?) N L>®(R?), which satisfy the hy-
potheses of the lemma and assume that

A(fi(@)" + .+ A (v (@) + Ava (favea(2)" =0 (26)
for all n € N and for almost any = € R?. Because the hypotheses satisfied by
fi, .-, fn, fn41, there exists zy € RY such that for some ig € {1,..., N+1},

one has

| fio(@)| > [ fi(2o)|
foralli e {1,..., N+ 1} and i # 5. Without loss of generality suppose that
io = N + 1. So, identity (Bf) implies that

Avir = — lim [Al(ﬂo)))"+...+AN(L‘%))>"] —0.

00 I (o I (o
Hence, one gets Ay11 = 0 and, by the induction assumption, one can conclude
that)\lz...:)\NZO. ]

As a consequence of Lemmas [1, §, we prove the following theorem.

Theorem 5 Let fi, ..., fn be functions in L>(RY)NL®(R?) such that || filleo <
% forallt=1,...,N. Suppose that for alli,7 =1,..., N, there exists a sub-
set I; j of RY such that |I; j| > 0 and f;(x) # f;(z) for all x € I, ;. Then, the

quadratic exponential vectors V(f1),...,¥(fy) are linearly independents.
Proof. Let A = (a;;)};_,, where

0 = —/Rd In(1 = fi(2)f;(x))de.

Then, one has

N N
Z j\i)\jam = — Z )\z>\]/ 11'1(1 — ﬁ(x)f](x))dx
ij=1 ij=1 Re

:Aixﬂi&Mmmwmwwx

n>1 ij=1

1
—Lga

MA@ + ..+ AN(fN(:c))"‘de > 0. (27)
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Thus A is positive definite. Now, let A1, ..., Ay be scalars such that
U(fi)+...+\Y(fy) =0. (28)
Then, identity (B§) holds if and only if

IMT(f1) + ...+ AvT(fa)]* = 0.

That is
N N
D ANCR() W) = Y didbiy =0, (29)
i,j=1 i,j=1
where
by = s = ¢ PR (), W ).
Note that idendity (B9) implies that
17 <
> Y Ahila)| =0, (30)
n>0 ' ij=1

Recall that A is a positive matrix. Then, Lemma []] implies that for all n € N,
the matrix ((a;;)")1<i j<n is also positive. So, from (BJ), one has

N
2 Aoy =0

for all n € N. In particular,

N p—
Z )\i)\jai,j = 0
i,j=1

Therefore, from (B7), one gets

A (f1(@)" + .+ Av (v ()" =0, (31)

for all n € N and for almost everywhere x € RY.
- First case: For all 7,5 = 1,..., N, there exists a subset I, ; of R? such
that |1, ;| > 0, fi(z) # f;j(z) for all x € I;; and |supp(f;)| > 0, for all
i=1,...,N. Then, identity (Bl) and Lemma { imply that \; = ... Ay = 0.

23



- Second case: There exists ig € {1,..., N} such that f;, =0, a.e. From
the assumptions of the above theorem, it is clear that |supp(f;)| > 0 for all
i # ip. Without loss of generality, suppose that igc = N. Then, identity (BI])
becomes

M(fi(@)" + o+ Avaa(fvaa(2)" =0

for all n € N and for almost everywhere 2z € R?. Moreover, the functions
fi,. .., fn-1 satisfy the hypotheses of Lemma [, which implies that A\, =
... An_1 = 0. Now, taking account of (B§), one obtains that \; = ... Ay = 0.
This ends the proof. 0J

5 Property of the family set of quadratic ex-
ponential vectors

In this section, we prove that the set of the quadratic exponential vectors is
a total set in the quadratic Fock space.

Theorem 6 The set of the quadratic exponential vectors is a total set in the
quadratic Fock space. Moreover, one has
Bi"® = 4 U(tf) (32)
! dt™ lt=0
for all f € L*(R?) N L>®(RY).
Proof. If ||f|loc = 0 then (BY) is clearly verified. Therefore we can assume
that f € L2(RY) N L>®(RY) such that || f]|o > 0. Consider 0 <t < § with

1
201 flloe

Recall that for all 0 <t < 4, one has

o<

U(tf) =) %B;%.

m>0

Then, for all m > n, one has
tm—n

dn otm
— | — m@) = ——B"®
dt"(m! f (m —n)!" 7
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It is obvious that for all 0 < ¢ < § the quadratic exponential exists and one

has
tm—n m—n

— _BMo < —
H(m—n)! f H_(m—n)!

But, from identity ([[7]), one has

|Bf™®| =: U

1B @I < [4m(m = 1)|IF2% + 2m] 73] 187"V @

This proves

b < VAm(m = 1) f[12, + 2m| 113 0 Up_1.

m-—-n

This yields

Un
li < 2| fllsd < 1.
im " < 2] flld <

m—0o0 m—1

Then, the series ) U, converges. Therefore, one gets

< —B+“<I>> _ —(—B+mq>) N _ping,
dt"(Z:m! ! Zdt" mlf Z(m—n)! !
m>0 m>n m>n
Finally, by taking ¢t = 0 the result of the above theorem holds. 0J
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