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Abstract

We address the problem of learning classifiers us-

ing several kernel functions. On the contrary to

many contributions in the field of learning from

different sources of information using kernels,

we here do not assume that the kernels used are

positive definite. The learning problem that we

are interested in involves a misclassification loss

term and a regularization term that is expressed

by means of a mixed norm. The use of a mixed

norm allows us to enforce some sparsity struc-

ture, a particular case of which is, for instance,

the Group Lasso. We solve the convex prob-

lem by employing proximal minimization algo-

rithms, which can be viewed as refined versions

of gradient descent procedures capable of natu-

rally dealing with nondifferentiability. A numer-

ical simulation on a UCI dataset shows the mod-

ularity of our approach.

1. Introduction

Lately, there has been much attention paid to the problem

of learning from multiple sources. This amount of work has

been mainly spurred by new problems stemming from, e.g.,

bioinformatics or multimedia processing. The main line of

approaches for this situation of learning is that of Multiple

Kernel Learning (MKL) first initiated by Lanckriet et al.

(2004), where the information provided by each data source

at hand is encoded by means of a Mercer kernel.

We address the problem of learning multiple indefinite ker-

nel classifiers, where the kernels used to learn are not nec-

essarily Mercer kernels. Our main motivation is that if Mer-

cer kernels exhibit many interesting mathematical proper-

ties that make them particularly suitable to work with, en-

coding knowledge in terms of a positive definite kernels is
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not always possible. The idea of making use of several ker-

nels is to take advantage of many sources of information,

hoping a reliable algorithm can single out the useful ones.

Being able to identify the relevant information in terms

of data or kernels is also very important. To achieve this

task, we propose a formulation of the learning problem that

makes use of mixed norms as a regularizing tool. Mixed

norms allow us to impose some kind of structure on the

data and the kernels that we use, and we enforce our objec-

tive of automatically selecting the relevant information by

using nondifferentiable – but still convex – mixed norms.

Another way of viewing our approach is that of formaliz-

ing the problem of learning kernel classifiers as learning a

representation of data based on (data-dependent) dictionar-

ies. This is a common approach in the signal processing

community, where efficient algorithms exist to handle non-

differentiable minimization problems as those we consider.

We note that learning with several kernels is also closely

related to the popular idea from signal processing to find

representations of data from unions of dictionaries.

The contributions of the present work are: a setting to learn

multiple kernel classifiers with mixed norm regularization,

a data-dependent bound on the generalization ability of the

classifiers learned, a learning algorithm that instantiates the

idea of proximal optimization methods, which provides a

framework to build refined versions of gradient descent al-

gorithms capable of dealing with nondifferentiability.

The paper is organized as follows. Section 2 introduces the

setting of learning multiple kernel classifiers with mixed

norm regularization; insights as to why classifiers learned

from the proposed setting should generalize well are given.

Section 3 recalls the proximal optimization framework and

derives the minimization algorithm to solve our learning

problem. In Section 4, numerical simulations carried out

on a dataset from the UCI repository show how the mixed

norms can indeed induce desired sparsity. Section 5 dis-

cusses how our approach is related to other MKL strategies.
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2. MIKL and Mixed Norms

2.1. Notational Conventions

We use the following notation. Bold letters will usu-

ally denote column vectors. Let L ∈ N and M ∈
N; for a doubly indexed set of real coefficients (αℓm),
with 1 ≤ ℓ ≤ L and 1 ≤ m ≤ M , α•m is the column

vector α•m = [α1m · · ·αLm]⊤, αℓ• the column vector

αℓ• = [αℓ1 · · ·αℓM ]⊤ and α is the column vector α =
[α⊤

•1 · · ·α⊤
•M ]⊤.

I(p) is such that I(p) = 1 if p is true and I(p) = 0
otherwise. The hinge function is denoted as |u|+ =
(max(u, 0)) and for any real vector u, JuK2+ stands for

JuK2+ =
∑

k |uk|2+.

2.2. Setting

We focus on the problem of supervised binary classifi-

cation. We are interested in learning classifiers from a

training sample S = {(xi, yi)}n
i=1 of n labeled pairs

(xi, yi) from the product space Z = X × Y , where

Y = {−1,+1} is the set of labels and X is the input

space. These pairs are the realizations of n independent

copies (X1, Y1), . . . , (Xn, Yn) of a random labeled vari-

able (X, Y ) distributed according to an unknown and fixed

distribution D on Z . With a slight abuse of notation S will

also denote the random sample {(Xi, Yi)}n
i=1.

The classifiers that we consider are multiple kernel clas-

sifiers where the kernels used are not necessarily posi-

tive definite kernels: we consider the largest possible def-

inition and a kernel k is merely an element of R
X×X .

Throughout the paper, we consider that we have at hand

a set K = {k1, . . . , kτ} of τ kernels and multiple ker-

nel classifiers are the signed versions of functions f from

the sample-dependent family FS defined for a training set

S = {(xi, yi)}n
i=1 as 1

FS =







x 7→
n,τ
∑

i,t=1

αitkt(xi,x) : α ∈ R
nτ , kt ∈ K







.

(1)

Thus, the output predicted for x by f ∈ FS is sign(f(x)).

With this setting, learning a classifier from S comes down

to the problem of finding a vector α that entails a low gen-

eralization error. To this end, we propose to set α as the

solution of the following penalized optimization problem:

min
α∈Rnκ

n
∑

i=1

∣

∣1 − yik
⊤
i α

∣

∣

2

+
+

λ

q
‖α‖q

pq;r (2)

for λ > 0, p, q ∈ {1, 2} and r ∈ {1, 2}. Here, α is the

1A bias term is taken into account by adding a constant kernel
k0 to K such that k0(x,x′) = 1, ∀x,x′ ∈ X .

column vector associated with the doubly indexed set of

coefficients (αit) 1≤i≤n

1≤t≤τ

and ki is the ith column of

K = [K1 . . . Kτ ]⊤ ∈ R
nτ×n, (3)

where Kt is the matrix Kt = (kt(xi,xj))1≤i,j≤n associ-

ated with kernel kt. Mixed norm ‖ · ‖pq;1 is such that:

‖α‖pq;1 =





n
∑

i=1

[

τ
∑

t=1

|αit|p
]q/p





1/q

, (4)

and ‖ · ‖pq;2 such that:

‖α‖pq;2 =





τ
∑

t=1

[

n
∑

i=1

|αit|p
]q/p





1/q

, (5)

(note that the order of summation has changed). As we

discuss below, the choice for the values of p and q, if one is

set to 1, induces different sparsity structures for the solution

α of (2).

The left-hand side of objective function (2) is the squared

hinge loss, which is used by the 2-norm Support Vector

Machines (Boser et al., 1992; Cortes & Vapnik, 1995). This

loss is differentiable everywhere, a feature that will render

some parts of the optimization procedure easy to derive.

In addition, it is straightforward to see that the loss part is

convex with respect to α.

The second term is a regularization part, which allows us

to control the capacity of the class of classifiers considered.

For the set of values that we consider for p and q, namely

p, q ∈ {1, 2}, the regularization part, i.e. the mixed norm

to the qth is a convex function of α; the resulting objec-

tive function is henceforth convex in α, since λ > 0. Note

however that this objective function becomes nondifferen-

tiable as soon as p or q is equal to 1, which is the situation

of interest to us since such a choice induces sparsity on the

optimal α. This nondifferentiability is nicely handled by

the proximal minimization algorithm that we derive.

2.3. Expected Sparsity Structure

The minimization problems (2) that we focus on will use

mixed norms such that p = 1 or q = 1, whichever r. The

reason why we retain this setting is because it may induce

sparsity on the optimal α. Such sparsity is useful from two

different points of view. On the one hand, it may help iden-

tify which of the different kernels used are indeed informa-

tive for the problem at hand by, e.g., setting all the coef-

ficients of α related to a specific kernel kt to 0, in which

case α•t = 0, or by setting all the coefficients of α related

to one xi to 0, which corresponds to αi• = 0. On the other
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Figure 1. Expected sparsity structure of α for different norms ‖·‖pq;r used, where white squares in α correspond to 0 coefficients. When

r = 1 ((a) and (b)), the sparseness is defined with respect to the αi• vectors, which are indicated with one color; the corresponding

column of K that are used by the resulting function are shown using the same colors. When r = 2 ((c) and (d)), the sparseness is defined

with respect to the kernels. See text for detailed explanations.

hand, sparseness, or more precisely, the use of a ℓ1-like pe-

nalization (which is the case if p or q is equal to 1) is useful

to draw generalization bounds as we show just below.

The structure of the sparsity of α, depends not only on

which of p or q is equal to 1 but also on the value of r. We

may summarize the expected pattern of sparsity as follows.

If p = q = 1 then ‖α‖pq;1 = ‖α‖pq;2, for all α. A large

number of coefficients αit are expected to be 0, as with the

Lasso (Tibshirani, 1996).

If r = 1, the sparseness is related to the xi’s. If p = 1 and

q = 2, each xi only uses a limited number of kernels, or in

other words, the αi•’s are sparse (see Figure 1(a)). If p = 2
and q = 1, then we may expect several αi• to be zero,

meaning that the kernel expansion of the decision function

is based on few training vectors xi only; these vectors may

be thought of as ’support vectors’ (see Figure 1(b)).

If r = 2, the sparseness is related to the kernels used. If p =
1 and q = 2, then the vectors α•t are expected to be sparse

and only few xi’s are activated per kernel (see Figure 1(c)).

If p = 2 and q = 1 then some kernels are expected to

be discarded and not used in the decision function learned:

some vectors α•t are expected to be 0 (see Figure 1(d)).

For r ∈ {1, 2}, ‖ · ‖12;r is related to the Elitist-Lasso of

Kowalski and Torrésani (2008) while ‖ · ‖21;r is related to

the Group-Lasso of (Yuan & Lin, 2006).

2.4. A Data-Dependent Generalization Bound

Here, we give insights as to why a classifier learned

by solving (2) may generalize and we provide a data-

dependent bound on the generalization error for such a clas-

sifier. This bound relies on a recent and elegant result about

the generalization ability of classifiers drawn from sample-

dependent classes presented by Ben-David et al. (2008), a

particular case of which focuses on a generalized notion of

Rademacher complexity that we recall here.

Definition 1 (Ben-David et al. (2008)). The Rademacher

complexity R∗
n(FS) of a sample-dependent hypothesis

class FS is defined as

R∗
n(FS) = sup

S={(xi,yi)}n
i=1

Eσ

[

sup
f∈FS

1

n

n
∑

i=1

σif(xi)

]

,

where σ is a vector of n independent Rademacher vari-

ables, i.e. P(σi = 1) = P(σi = −1) = 1
2 , i = 1, . . . , n.

Ben-David et al. (2008) provide the following result.

Theorem 1. Assume that ∀S, S′ ∈ ∪∞
i=1Zi, S ⊆ S′ ⇒

FS ⊆ FS′ . For all distributions D on Z , ∀n > 0, then

with probability at least 1 − δ over the random draw of

S = {(Xi, Yi)}n
i=1 the following holds: ∀f ∈ FS ,

PD(Y f(X) ≤ 0) ≤ Ênφ(Y f(X))+16R∗
2n(FS)+

r

log 1/δ

2n
,

where φ(γ) = min(|1 − γ|2+, 1) is the clipped squared

hinge loss and Ênφ(Y f(X)) = 1
n

∑n
i=1 φ(Y f(Xi)).

Note that we have slightly modified the result of Ben-David

et al. (2008) so that it takes into account the squared hinge

loss. To do that, we have used a structural result on the

Rademacher complexity of classes of composite functions

given by Bartlett and Mendelson (2002).

Let us now consider that p, q, r and τ are fixed. We define

the set An(κ) ⊆ R
nτ as

An(κ) = {α : α ∈ R
nτ , ‖α‖pq;r ≤ κ}

and the sample-dependent hypothesis class FS(κ) as, for

S = {(xi, yi)}n
i=1

FS(κ) =

(

x 7→

n,τ
X

i,t=1

αitkt(xi,x), α ∈ An(κ)

)

.

Theorem 1 applies as soon as an upper bound on the

sample-dependent Rademacher complexity of the hypothe-

sis class under consideration can be computed. A bound on

R∗
2n(FS(κ)) therefore suffices to bound the generalization

error of the classifier learned through (2). The following

proposition provides such a bound.
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Proposition 1. ∀κ > 0,∀n ∈ N,

R∗
2n(FS(κ)) ≤ κ sup

S={(xi,yi)}2n
i=1

Eσ

1

2n
‖KSσ‖p′q′;r ,

where KS is defined as in (3) with respect to the 2n-sample

S and 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1.

Proof. Assume that S is a fixed sample of size 2n and σ a

fixed vector of {−1,+1}2n. Then

sup
f∈FS(κ)

2n
X

i=1

σif(xi) = sup
α∈A2n(κ)

2n
X

j=1

τ
X

t=1

αjt

2n
X

i=1

σikt(xi,xj)

= sup
α∈A2n(κ)

α
⊤Kσ = sup

α:‖α‖pq;r≤κ/n

α
⊤(Kσ)

≤ κ‖Kσ‖p′q′;r,

where Holder’s inequality has been used twice to get the

last line. Taking the expectation with respect to σ and then

the supremum over S ends the proof.

This allows us to state the following theorem.

Theorem 2. For all distributions D on Z , ∀n > 0, ∀κ > 0,

with probability at least 1 − δ over the random draw of

S = {(Xi, Yi)}n
i=1, ∀f ∈ FS(κ),

PD(Y f(X) ≤ 0) ≤ Ênφ(Y f(X))

+ 16κ sup
S′
2n

Eσ

1

2n

‚

‚

‚

KS′
2n

σ

‚

‚

‚

p′q′;r
+

r

log 1/δ

2n
,

where S′
2n denotes a sample of size 2n.

Proof. Straightforward using Theorem 1, Proposition 1

and noting that S ⊆ S′ ⇒ FS(κ) ⊆ FS′(κ).

This theorem is useful as soon as the kernels used imply

supS′
2n

Eσ

1
2n

∥

∥KS′
2n

σ

∥

∥

p′q′;r
= O(n−β) for β > 0. The

following proposition gives an example of a simple con-

dition on the kernels used to be in that situation for some

values of p′, q′ and r.

Proposition 2. Let D be a distribution on Z . If ∃K∞ ∈ R

such that P(kt(X,X ′) ≤ K∞) = 1,∀t = 1, . . . , τ, then

sup
S2n

Eσ

1

2n
‖KS2n

σ‖p′q′;r ≤ τK∞

√

ln 4n

n
,

for (p′, q′, r) ∈ {(∞,∞, 1), (∞,∞, 2), (∞, 2, 1), (2,∞, 2)},

i.e., for (p, q, r) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 2)}.

Proof. We just give the proof for p′ = 2, q′ = ∞ and

r = 1, i.e., p = 2, q = 1 and r = 1. The other cases

can be obtained along the same lines.

Here, S2n denotes an i.i.d sample of size 2n. The di-

mensions of KS2n
and σ follow accordingly. Noting that

‖α‖pq;1 =
[
∑

i ‖αi•‖q
p

]1/q
for any vector α, we have,

dropping the 2n subscript for sake of clarity:

‖Kσ‖2,∞;1 = sup
1≤i≤2n

‖[Kσ]i•‖2

≤ sup
1≤i≤2n

‖[Kσ]i•‖1 (‖α‖2 ≤ ‖α‖1, ∀α)

= sup
1≤i≤2n

τ
X

t=1

|[Kσ]it|

= sup
1≤i≤2n

τ
X

t=1

˛

˛

˛

˛

˛

2n
X

j=1

kt(xi,xj)σj

˛

˛

˛

˛

˛

≤

τ
X

t=1

sup
1≤i≤2n

˛

˛

˛

˛

˛

2n
X

j=1

kt(xi,xj)σj

˛

˛

˛

˛

˛

.

Now, for fixed t, we can apply Massart’s finite class lemma

(see appendix) to the 2n 2n-dimensional vectors vi =
[kt(xi,x1) · · · kt(xi,x2n)]⊤ of length ‖vi‖ ≤ K∞

√
2n:

Eσ sup
i

˛

˛

˛

˛

˛

2n
X

j=1

kt(xi,xj)σj

˛

˛

˛

˛

˛

≤ K∞

r

ln 4n

n
,

which concludes the proof.

This proposition establishes a (simple) condition so that the

bound of Theorem 2 displays a 1/
√

n factor only for spe-

cific values of p, q and r. Finding a more general condition

for such a factor to be present in the bound for any com-

bination of p, q and r is the subject of ongoing research on

our part; Besov spaces are a possible direction.

3. Algorithms

3.1. Proximal algorithms

This section synthetically describes the proximal frame-

work used to solve problem (2). Proximal algorithms deal

with general problems taking the form of

min
α

f1(α) + f2(α) , (6)

where f1 and f2 are convex and lower semicontinuous

functions. Resolving such kind of problem relies on prox-

imity operators, introduced by Moreau (1965). More de-

tails on the proximal framework can be found in the work

of Combettes and Pesquet (2007).

Definition 2 (Proximity operator). Let ϕ : R
P → R be

a lower semicontinuous, convex function. The proximity

operator proxϕ : R
P → R

P associated with ϕ is given by

proxϕ(u) = argmin
α∈RP

1

2
‖u − α‖2

2 + ϕ(α) .
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Algorithm 1 Forward-backward proximal algorithm

input Ky , γ, with γ < 2/β

initialize α
(0) ∈ R

nτ (for instance 0)
repeat

α
(s+1) = proxγf1

“

α
(s) − γ∇αf2(α)

”

until convergence

When f1 is convex lower semicontinuous, and f2 is dif-

ferentiable with ∇f2 β-Lipschitz, then Problem (6) can be

solved with Algorithm 1. Combettes and Wajs (2005), and

more recently Combettes and Pesquet (2007), show that

this algorithm converges to a minimum of Problem (6).

3.2. Proximity operators

Here, we are interested in proximity operators related to

mixed norms (Kowalski, 2008). In Problem (6), the mixed

norm penalty f2(α) = q−1λ‖α‖q
pq, with p, q ≥ 1, is a

convex lower semicontinuous function, nondifferentiable

in 0. Furthermore, ∇αf2(α) is only β-Lipschtiz when

p, q ∈ {1, 2}. We thus limit the study of proximity op-

erators for the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖12, ‖ · ‖21.

Proposition 3 (Proximity operators for mixed norms). Let

u ∈ R
P be indexed by (ℓ, m) and λ > 0. The proximity

operators for λ‖ · ‖pq, with p, q ∈ {1, 2}, defined by

α̂ = proxλ‖.‖q
p,q

(u) = argmin
α∈RP

1

2
‖u − α‖2

2 +
λ

q
‖α‖q

p,q ,

are given coordinate-wise for each (ℓ, m) by:

• when p = q = 1,

α̂ℓ,m = sign(uℓ,m) ||uℓ,m| − λ|+ ,

which is the well-known soft-thresholding operator;

• when p = 2 and q = 2,

α̂ℓ,m =
1

1 + λ
uℓ,m ;

• when p = 2 and q = 1,

α̂ℓ,m = uℓ,m

∣

∣

∣

∣

1 − λ

‖uℓ•‖2

∣

∣

∣

∣

+

;

• when p = 1 and q = 2,

α̂ℓ,m = sign(uℓ,m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

|uℓ,m| −
λ

Mℓ
∑

mℓ=1
ǔℓ,mℓ

(1 + λMℓ)‖uℓ•‖2

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

,

Algorithm 2 Forward-backward for squared hinge loss

input Ky , λ, γ, with γ < 2/‖KT
y Ky‖

initialize α
(0) ∈ R

nτ

repeat

α
(s+1) = proxγλ‖.‖

q
pq

“

α
(s) + γKT

y [1 − Kyα]+

”

until convergence

where ǔℓ,mℓ
denotes the |uℓ,mℓ

| ordered by descend-

ing order for fixed ℓ, and the quantity Mℓ is the num-

ber such that

ǔℓ,Mℓ+1 ≤ λ

Mℓ+1
∑

mℓ=1

(ǔℓ,mℓ
− ǔℓ,Mℓ+1) ,

and

ǔℓ,Mℓ
> λ

Mℓ
∑

mℓ=1

(ǔℓ,mℓ
− ǔk,Mℓ

) .

3.3. Solving Problem (2) with Proximal Optimization

The squared hinge loss can be restated in matrix form as

J1 − KyαK2+, where Ky = diag([y1, . . . , yn])K⊤. In the

previous section, we have shown how to compute the prox-

imity operators for ‖ · ‖pq;r norms. Let us remind that

f1(α) = J1 − KyαK2+, is differentiable with gradient β-

Lipschitz, while f2(α) = q−1λ‖α‖q
pq, with p, q ∈ {1, 2},

is a convex lower semicontinuous functions, nondifferen-

tiable in 0. Thus, we can use the forward-backward strat-

egy given in Algorithm 1 to solve Problem (2). To do so, it

suffices to compute ∇J1 − KyαK2+ = −KT
y J1 − KyαK+,

which is β-Lipschitz with β = ‖KT
y Ky‖. The resulting

procedure for Problem (6) is given in Algorithm 2.

4. The Good, the Bad, and the Ugly: a

Numerical Illustration

In this section, our aim is to exhibit the effects of regular-

ization when using a structure on kernels or data. The struc-

ture is introduced in Problem (2) by mixed norms ‖ · ‖pq;r,

with p, q ∈ {1, 2} as explained in section 2. An in-depth

study concerning the predictive performances using actual

indefinite kernels will be adressed in a longer version of

this paper.

Here, we compare Algorithm 2 for different regularization

terms, with regard to the sparsity behavior. The comparison

is done on the Titanic dataset, provided by Gunnar Rätsch. 2

This binary classification problem consists of 150 training

and 2051 test examples.

We have designed a global kernel matrix, composed of

three kernels, chosen so that a classifier obtains Good, Bad,

2
http://ida.first.fraunhofer.de/projects/bench/
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and Ugly performances, according to the state of the art.

More precisely, we have K = [KG, KB , KU ], where:

• KG, a linear kernel, is the Good guy;

• KB , a Gaussian kernel of width 0.1, is the Bad guy;

• KU , a Gaussian kernel of width 100, is the Ugly guy.

As baseline performances, the lowest test errors achieved

with Algorithm 2, using the ‖ · ‖2 norm, with kernels KG,

KB and KU taken separately, are respectively 21.84%,

25.89% and 32.57%

In Figure 2, we compare the influence of the different regu-

larizations, with K = [KG, KB , KU ]. Here, the parameter

λ has been chosen by a 5-fold cross-validation procedure,

between logarithmically spaced values varying from 1 to

105. The classification error rate, which is 22.92% for the

‖ · ‖21;1 norm, and 21.84% for the other norms, was com-

puted on the test set.

• The use of the norm ‖ · ‖2 does not single out either

of KG or KB . Ugly’s coefficients are all smoothed

towards zero. According to the nature of the ‖ · ‖2

penalization, there is no sparsity induced.

• Contrary to the ‖ · ‖2 regularization, the ‖ · ‖1 norm

introduces sparsity everywhere. The most influent co-

efficients belong to KG, and only few of them are

nonzero. Even if many coefficients related to the Ugly

kernel are nonzero, they still remain small in magni-

tude.

• The ‖ · ‖21;2 norm, which focuses on the kernel struc-

ture, identifies quite well the Good kernel, giving to

the corresponding coefficients values close to one.

Even though it is not discarded, an insignificant rel-

evance is assigned to the Ugly kernel.

• The ‖·‖12;2 penalization behaves similarly as the ‖·‖1

norm. However, one can see in the Bad kernel that

some coefficients have a higher importance, which is

consistent with the nature of the norm. Indeed, it is ex-

pected that within each relevant kernel, the penaliza-

tion puts more weight on the most relevant elements.

• The ‖·‖21;1 regularization is supposed to put emphasis

on the most relevant observations, whatever the ker-

nel, and to eliminate the others. In that sense, the

remaining coefficients can be envisioned as support

vectors. This is quite well illustrated on Figure 2.

• Finally, for all data, the ‖ · ‖12;1 norm identifies the

most significant kernels for the classification task. It

is worth noting that there are few contiguous lines: for

numerous observations, only one kernel is selected.

One can note that the Ugly kernel is involved in the solu-

tions related to the ‖ · ‖1 and ‖ · ‖21;2 norms, which could

appear inconsistent. An insight concerning the presence

of the Ugly kernel is that λ was chosen through cross-

validation based on the generalization error. As Leng et al.

(2004) showed for the Lasso, this might be not optimal in

terms of kernel selection. A slight increase of λ allowed us

to discard the Ugly kernel (when using the ‖ · ‖21;2 norm),

or to significantly reduce its influence (when using the ‖·‖1

norm).

5. Discussion

The formulation of the MKL problem by Bach et al. (2004)

may be seen as the kernelization of the Group-Lasso, con-

sidering penalties on elements ft from several RKHS Ht ,

in a standard SVM problem.Rakotomamonjy et al. (2007)

tackled the dual formulation. It consists of explicitly opti-

mizing a convex combination of kernels, which defines the

actual SVM kernel K(x,x′) =
∑τ

t=1 σtKt(x,x′), where

Kt is the reproducing kernel of Ht, and σt the coefficients

to be learned under a ℓ1 constraint.

MKL involves a kernel which is a convex combination of

candidate kernels, where the coefficients of the less rele-

vant ones are shrinked towards zero. In that sense, using

‖ · ‖21;2 in Problem (2) is closely related to MKL, as it in-

duces sparsity in the kernels. We may note that MKL not

only enforces sparsity in kernels but also with respect to

data, since it essentially is a SVM problem and thus pro-

duces (few) support vectors. To achieve such a joint spar-

sity in our framework, we would have to sacrifice the con-

vexity of ‖ · ‖pq;r, by choosing p, q ≤ 1.

Another difference with MKL is that we do not have any

notion of ‘norm’ of f ; instead we control the (mixed) norm

of synthesis coefficients αℓm in the frame generated by the

kernels. This perspective is closely related with the idea

of expansion with respect to a dictionary of ⋆-lets (such as

wavelets) in signal processing.

6. Conclusion and Further Work

We have proposed a mixed norm setting to learn multiple

kernel classifiers. On the contrary to a common assumption

on kernel positive definiteness, our framework is still valid

when using indefinite kernels. The learning problem that

tackle can be formulated as a convex optimization prob-

lem and the desired sparsity structure can be enforced by

the choice of the mixed norm used, at the price of render-

ing the optimization problem nondifferentiable. To cope

with this nondifferentiability, we derive an optimization al-

gorithm stemming from the proximal framework. Simula-

tions showing the modularity of our approach are provided.
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This work raises several open problems. First, we would

like to provide more extensive numerical simulations, es-

pecially with indefinite or nonsymmetric kernels. The pri-

mary application we have in mind is image categorization,

where the kernels are based on Kullback Leibler diver-

gences between probability density functions derived from

wavelet decompositions (Piro et al., 2008). We also plan

to investigate the possibility of analytically computing the

regularization path for λ. Finally, we have been working

on two extensions of our optimization procedure, namely

(a) a chunking strategy (Osuna & Girosi, 1997) to make a

better use of the resulting sparseness and (b) the adapta-

tion of latest advances in convex optimization introduced

by Nesterov (2007) to our learning problem.

Acknowledgments

MS and LR are partially supported by the IST Program of

the European Community, under the FP7 Pascal 2 Network

of Excellence ICT-216886-NOE.

Appendix

Theorem 3 (Holder’s Inequality). Let p, q ≥ 1 and n ∈ N.

If 1
p + 1

q = 1 then

∀u,v ∈ R
n,

n
∑

i=1

|uivi| ≤
[

n
∑

i=1

|ui|p
]

1
p

[

n
∑

i=1

|vi|q
]

1
q

.

Lemma 1 (Massart’s finite class lemma). Let A be a finite

subset of R
n with each vector x = [x1 · · ·xn]⊤ in A having

norm bounded by r = max ‖x‖2. If σ is an n-dimensional

vector of independent Rademacher variables, then

Eσ

"

sup
x∈A

1

n

˛

˛

˛

˛

˛

n
X

i=1

xiσi

˛

˛

˛

˛

˛

#

≤
r
p

2 ln 2|A|

n
.

(We have slightly changed the statement from its original

form to take the absolute value into account.)
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Figure 2. Relevance maps of α•t, with t ∈ {G, B, U}, for different norms. The coefficients have been normalized, so that αit ∈ [0, 1].
Top: no structure defined. Middle: structure defined with respect to the kernels. Bottom: structure defined with respect to the data.


