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IMPROVING M/EEG SOURCE LOCALIZATION WITH
AN INTER-CONDITION SPARSE PRIOR

Alexandre Gramfort Matthieu Kowalski

Odys®e Laboratory,

ENS Paris - INRIA, France LATP, CMI, Universie de Provence

ABSTRACT the neural currents(* that can explain the observed mea-
: . . ) . surements. However, this latter problem is strongly ils@a.
The inverse problem with distributed dipoles models inj implies thatX* can only be computed if priors are set on
M/EEG is strongly ill-posed requiring to set priors on the yhe solution. Standard priors assume that a weightetbrm
solution. Most common priors are based on a convenienys X*, denoted|| X *||w.r (Frobenius norm), is small. The

¢2 norm.  However such methods are known to smear thggtimated distribution of cortical curreni§* is obtained by
estimated distribution of cortical currents. In order toyide solving :

sparser solutions, other norms thénhave been proposed
in the literature, but they often do not pass the test of real
data. Here we propose to perform the inverse problem on
multiple experimental conditions simultaneously and to-co
strain the corresponding active regions to be differenijevh
preserving the robugt, prior over space and time. This ap-
proach is based on a mixed norm that sets prior between

X* = arg min |M — GX|[p + MIX|5p A E€R: ()

with | X5 = 3 Sy wiah, w = (wi); € RL .
Such priors are fast to compute and provide relatively accu-
o L . .~.__rate localizations, although they tend to smear the adbivat
conditions. The optimization is performed with an efﬂmentand therefore to over estimate the extent of the active nsgio

iterative algorithm able to handle highly sampled distréal

models. The method is evaluated on two synthetic datasets During an experiment, a subject is generally asked to per-
reproducing the organization of the primary somatosensor{Prm different cognitive tasks or to respond to various exte

cortex (S1) and the primary visual cortex (V1), and validate Nal stimulations. They are referred as different expertaien
with MEG somatosensory data. conditions. With a standaré, prior, it may occur, that the

estimated active cortical region in condition 1 overlapdbe
Index Terms— Magnetoencephalography, Electroen-tive region of condition 2, which may in practice be unrealis
cephalography, Inverse problem, Elitist-Lasso, Proxitea tic considering what is known about neuroanatomy. In order
ations to take into account this anatomical knowledge, and estimat
more accurate mappings of some brain functional organiza-
1. INTRODUCTION tions_, this contribl_Jtion proposes to use a prior on the imi_ut
that integrates this dependency between multiple exparime

Distributed source models in Magnetoencephalography ant("iII conditions.
Electroencephalography (collectively M/EEG) use the in-  With £, norms, a value of close tol induces'sparsity”,
dividual anatomy derived from high resolution anatomicali-€-, @ small number of non zero coefficients, while a value of
Magnetic Resonance Images (MRI) [1]. They consist in samp close to2 induces'diversity”, i.e., no non zero coefficients.
pling the automatically segmented cortical ribbon withghhi  Therefore, reducing the overlap of active regions, i.epds?
number of equivalent current dipoles (ECD). Each dipoldngd each source to explain a small number of conditions, can
adds linearly its contribution to the measured signal legdi Pe achieved by settingéa prior between conditions.
to a linear solution to the forward problem. The measure- The rest of this contribution consists of three parts. Sec-
mentsM € RY*T (N number of sensors arll number of  tion 2, introduces the mixed norm with/a norm between
time instants) are obtained by multiplying the current sear conditions and &, norm over space and time. The iterative
X € RXT (I number of dipoles) by a forward operator optimization procedure is also detailed. Section 3, prissen
G € RV called the lead field matrix, i.el/ = GX. some simulation results on two synthetic datasets reproduc
While solving the forward problem consists in comput-ing the organization of the primary somatosensory cortek an
ing G taking into account the electromagnetic properties othe primary visual cortex. Finally the method is validated o
the head, solving the inverse problem consists in estimatinMEG somatosensory data in Sect. 4.



2. METHOD with Ky, = Zg’;l w; k;, and the index; is the number
such that

In order to introduce inter-condition sparsity constrgjrtur-
rents corresponding to all conditions have to be estimated s
multaneously. Lef< denote the number of conditions. It is Z wi kg (Fig, = Tig) < T <A Z wik; (rik = TiK)
achieved by concatenating all measuremehfse RN *X7 ki=1 ki=1
Let X € RI*ET have its elements now indexed byk, t), i
indexes spacd; the condition and the time.

Ki+1

Sketch of the proof: Done using [2, Theorem 3] which gives
PIOX\ [ [|y.00 (¥) @NAPTOX, 2 (y) O

Definition (Mixed norm) Letx € R/XT pe indexed by a ’

triple index (i, k,t) such thatx = (2;4,). Letp,q,r > 1  Remark.

andw € ]R{ff*T be a sequence of strictly positive weights T = 1, thenproxy 2 (v ) = proxy. e (y)
labelled by a triple indexXi, k, ¢). We call mixed norm o =

hich corresponds to the Elitist-Lasso roblem 3
the normdy,.,, 4. defined by whi p iti p [3].

o\ 2. The proximity operator is known analytically. It is sim-
T a/p\ "1 ply a shrinkage operator. It implies that the solution is
Xl wipgr = | Z (Z Wy ot | T3 1 t|”> . exact and relatively fast to compute.
i=1 \ k=1 \t=1

The steps of the iterative algorithm are :
The problem that is addressed here is :

) ) Algorithm.
X* = arg n}}n M = GX |7 + M X212 A €Ry (2)

e Initialize : ChooseX (*) ¢ R/*KT (for exampleD).
A ¢, prior is set over the indek corresponding to the con-

. . L . o lterate:
dition, while an/, prior is used over space and time. Each
dipole has an incentive to explain a small number of condi- XD = prox ALI2 (X(t) +uGT (M - GX(”)>
tions. The conditions are not supposed to change during the Az
time window. Note that|X|| 5., = [|X|[,,.r and that if where0 < 1 < |GTG||~.

K =1,i.e.,onlyone condmorj]XHw 019 = ||X\|W - Solv-
ing (2) is based on the notion of proximity operator, inten- e Stop if [ XD — X @ /]| X®|| is smaller than a
sively used in convex analysis. fixed tolerance criterion.

i . P _ o
Definition (Proximity operator) Let¢ : R* — R be alower  theorem. Algorithm 2 converges to a minimizer of Eq. 2, for
semi-continuous, convex function. The proximity operaﬂer any choice of: € [e, [GTG|| "} — ] ,¢ € R,

R ) ) Sk

sociated withp and X € R, denoted byrox, 4 : R” —

is given by Sketch of the proof: The convergence of this algorithm is
) 9 given by applying results of forward-backward proximal al-
prox,,(y) = arg Ry ly = x]l2 + A¢(x) . gorithm studied by Combettes et al. in [4] or by a Landwe-

ber iterative thresholding algorithm originally introcket by

The proximity operator associated with the mixed NOrMpy. ibechies et al. in [5] and used for mixed norms in {2].

[|-[[%:212 is analytically given by the following proposition.
We denotey; e = (Yi k1, Yik,2s - YioT)- Columns (G.;); of M/IEEG forward operators are not
normalized. The closer the dipolefrom the head surface,
the bigger||G.;||2. This implies that a naive inverse proce-
dure would favor dipoles close to the head surface. Using
a weighted norm is an alternative to cope with this prob-
= [Yix;]/wi 1, be ordered such  |em. With the mixed normj|.||w 212, it is done by setting

(y) Wik =w; =[Gl

Proposition. Lety € RIXT be indexed by a triple in-
dex (i, k,t). Letw a sequence of strictly positive weights
such thatvt, w; x+ = w; . For eachi, letw ., [y“c;] =

\/ Wi k! Zt ‘yz k!t 2
that, for a fixedi, Vkl,rt ki+1 < Tik/. Z = ProXy| |2

w;212
is given for each coordinaté, k, t) by
s + 3. SIMULATION STUDY
AWk kél[%‘,k;] By setting &, prior between conditions, the mixed norm pro-

Zikt =Ykt | 1 — posed penalizes overlap between active cortical regions. |
order to illustrate it, two synthetic datasets have been gen
erated. The first reproduces part of the organization of the
1Original Def. isarg min 3 |ly — x||3 + A¢(x) , but inour case the ~ primary somatosensory cortex (S1) [6]. Three, non overlap-

paper becomes more readable without $he ping, cortical regions with a similar area (cf. Fig. 2a),ttha

L4+ Kw A [[yikell2




could correspond to the localization of 3 right hand fingers,
have been computed and used to generate synthetic measure-
ments corrupted with an additive gaussian random noise. The
amplitude of activation for the most temporal region (cetbr

in red in Fig. 2), that could correspond to the thumb, was set
twice bigger than the amplitudes of the two other regions. In
practice the source amplitudes differ between conditidhs.
inverse problem was then computed with a standali¢,.

norm and thé|.||w;212 mixed norm. Within the 3 neighboring ) ]
active regions, a label corresponding to the maximum of am- (a) Simulation data
plitude in each of the three conditions was assigned to each

dipole. Quantification of performance was done for multiple

values of signal-to-noise ratio (SNR) by counting the petce

age of dipoles that have been wrongly labeled. The SNR is : '
defined here a20 times the log of the ratio between the norm ¢
of the signal and the norm of the added noise. Results are also

presented in Fig. 1. Results with &nprior, referred akassq

has also been added (correspond§.iQ,.111, and the asso- (0) ||.||w: result (ROI) (©) ||. |lw:212 result (ROI)
ciated proximity operator is the well-known soft-threstiol ' '

operator). It can be observed that thé., .12 produces sys- Fig. 2. lllustration of result on the primary somatosensory
tematically the best result. THe is very rapidly affected by cortex (S1) (SNR = 20dB). Neighboring active regions repro-
the decrease of SNR, which is known in the M/EEG commuduce the organization of S1.

nity. In order to have a fair comparison between all methods,

the A was set in each case to hgi®/ — GX*| r equal to the

norm of the added noise, known in the simulations. 4. MEG STUDY

. Results are illustrated in F|g. 2b and 2c on a region OfResults of the proposed algorithm using MEG data from a so-
interest (ROI) around the left primary somatosensory gorte . i
matosensory experiment are now presented. The data acqui-
It can be observed that the extend of the most temporal re- :
: . . . . ) Sition was done using a CTF Systems Inc. Omega 151 system
gion, obtained with|.||w. , is overestimated while the result

obtained with thé|.||..212 mixed norm is relatively accurate. with & 1250 Hz sampling rate. The somatosensory stimula-

. . . . . . tion was an electrical square-wave pulse delivered rangoml
Similar simulations have been performed in the primary vi- q P vl

: . . to the thumb, index, middle and little finger of each hand of
sual cortex (V1), reproducing the well known retinotopie or . .
o - . a healthy right-handed subject. Evoked data were computed
ganization of V1. Results are presented in Fig. 3. Simula; . : ) . .
! . . by averaging 400 recordings of the same finger stimulation.
tions lead to the same conclusion about the superiorityef th

|| llw:212 mixed norm for the mapping of such brain functional To _produce_: precise Io_callzat|0n results, the triangutagioer
orgah i ations which cortical activations have been estimated was sampled

with a very high number of vertices (about 55 000). The for-
ward modeling was performed with a spherical head nfodel

100 using dipoles with fixed orientations given by the normals to
' the cortex [1].

80t .:: ::W=111 Prior to the current estimation, data were whitened using
[ hwzre the noise covariance matrix, estimated on the period be-

fore stimulation. Let = L7 L the Cholesky factorization

of ¥. Whitening consists in replacing by L~'G and M by

L~'M. With an additive gaussian noise model this implies

that the noise, given by/ — GX € RV*TK is assumed to

have a standard normal distribution. This provides a goed es

0 I R — timate of||M —GX*||r equal tov NT K. Therefore, the reg-
SNR (dB) ularization parametex was set in order foX * to be also the

solution of the constrained problemX* = arg minx || X||

Fig. 1. Evaluation of]|.|lw;r VS. ||.|lw;212 VS. ||-]lw;111 €Sti-  subjecttq|M — GX||r < VNTK.

mates on synthetic somatosensory data. The error repsesent Results obtained with the right hand fingers during the pe-

the percentage of wrongly labeled dipoles. riod betweent2 and46 ms are presented in Fig. 4. Knowing

Error (%)

2http://neuroimage.usc.edu/brainstorm/



(a) Simulation data

(a) Fingers color coded (@) [|-|lw,212 result
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w:212 result (ROI
212 (ROI) (b) ||-|lw.212 result (ROI) (©) ||. |w,r result (ROI)

Fig. 3. lllustration of result on the primary visual cortex (V1)
with SNR = 20dB. Neighboring active regions reproduce
the retinotopic organization of V1.

Fig. 4. Labeling results of the left primary somatosensory
cortex in MEG
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