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Abstract

An aperiodic tile set was first constructed by R. Berger wpitaving the undecidability of
the domino problem. It turned out that aperiodic tile sefsesp in many topics ranging from
logic (the Entscheidungsproblem) to physics (quasiclgsta

We present a new construction of an aperiodic tile set tHased on Kleene’s fixed-point
construction instead of geometric arguments. This cootstm is similar to J. von Neumann
self-reproducing automata; similar ideas were also useB.lyacs in the context of error-
correcting computations.

This construction it rather flexible, so it can be used in mamys: we show how it can
be used to implement substitution rules, to construct gtyoaperiodic tile sets (any tiling is
far from any periodic tiling), to give a new proof for the umitkability of the domino problem
and related results, characterize effectively closed UIb3lsift it terms of 2D shifts of finite
type (improvement of a result by M. Hochman), to construdtesset which has only complex
tilings, and to construct a “robust” aperiodic tile set tdaes not have periodic (or close to
periodic) tilings even if we allow some (sparse enoughdilerrors. For the latter we develop
a hierarchical classification of points in random sets istanids of different ranks.

Finally, we combine and modify our tools to prove our mairuiesthere exists a tile set
such that all tilings have high Kolmogorov complexity eve(sparse enough) tiling errors are
allowed.

Some of these results were included in the DLT extendedadtqitd] and in the ICALP
extended abstradt [lL1].
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1 Introduction

In this paperitiles are unit squares with colored sides. Tiles are considerquastypes: we
may place translated copies of the same tile into differefis ©f a cell paper (rotations are not
allowed). Tiles in the neighbor cells should match (commide should have the same color in
both).

Formally speaking, we consider a finite §2bf colors. A tile is a quadruple of colors (left,
right, top and bottom ones), i.e., an elemerTHf A tile setis a subset c C*. A tiling of the plane
with tiles from 1 (1-tiling) is a mappindJ : Z? — T that respects the color matching condition. A
tiling U is periodicif it has aperiod, i.e., a non-zero vectdr € Z? such that) (x+T) = U (x) for
all x € Z2. Otherwise the tiling isperiodic The following classical result was proved by [ [3],
where this construction was used as a main tool to pBerger’'s theoremthe domino problem
(to find out whether a given tile set has tilings or not) is widable.

Theorem 1. There exists a tile satsuch thatr-tilings exist and all of them are aperiodi]

The first tile set of Berger was rather complicated. Laterynather constructions were sug-
gested. Some of them are simplified versions of the Bergersteuction ([20], see also the
expositions in[[L[J8 22]). Some others are based on polyigdings (including famous Penrose
and Ammann tilings, se¢ JlL5]). An ingenious constructioggasted in[[19] is based on the mul-
tiplication in a kind of positional number system and givesyall aperiodic set of 14 tiles (if][6]
an improved version with 13 tiles is presented). Anothee mionstruction with a short and simple
proof (based explicitly on ideas of self-similarity) waseatly proposed by N. Ollinge[ TR7].

In this paper we present yet another construction of apierited set. It does not provide a
small tile set; however, we find it interesting because:

e The existence of an aperiodic tile set becomes a simplecgigih of a classical construc-
tion used in Kleene’s fixed point (recursion) theorem, in Weumann'’s self-reproducing
automata[[26] and, more recently, in Gacs’ reliable catll@dutomata[[12, 13]; we do not
use any geometric tricks. The construction of an aperidtiicset is not only an interest-
ing result but an important tool (recall that it was inventegrove that domino problem is
undecidable); our construction makes this tool easier ¢o us

e The construction is rather general, so it is flexible enowgichieve some additional proper-
ties of the tile set. We illustrate this flexibility providimew proof for several known results
and proving new results; these new results add robustnesistance to sparse enough er-
rors) to known results about aperiodic tile sets and tile 8&it have only complex tilings.

It is not clear whether this kind of robustness can be acliéwepreviously known construc-
tions of tile sets; on the other hand, robustness propdd@simportant. For example, a math-
ematical model for processes like quasicrystals’ growtbNA-computation should take errors
into account. Note that our model (independent choice afgdavhere errors are allowed) has no
direct physical meaning; it is just a simple mathematicatlelahat can be used as a playground
to develop tools for estimating the consequences of tilmors.



The paper is organized as follows. In Sect[dn 2 we presenfitkd-point construction of
an aperiodic tile set (new proof of Berger's theorem). Thenillustrate the flexibility of this
construction by several examples:

e In Section[B we show that any ‘uniform’ substitution rule deimplemented by a tile set
(thus providing a new proof for this rather old result). TherSection[# we use substitu-
tions to show that there are strongly aperiodic tile sets (tteans that any tiling is strongly
aperiodic, i.e., any shift changes at least some fixed tradf tiles).

e Fixed-point construction of Sectidh 2 provides a self-amtiling: blocks of sizen x n
(“macro-tiles”) behave exactly as individual tiles, so be hext level we have? x n® blocks
made ofn x n macro-tiles that have the same behavior, etc. In Sefion fnake some
changes in our construction that allow us to get variablerzéaxctors (the numbers of tiles
in macro-tiles increase as the level increases).

Variable zoom factor tilings can be used for simulating camapons (higher levels per-
form more computation steps); we use them to give a simplefpybthe undecidability

of the domino problem (main technical difficulty in the standl proof was to synchronize
computations on different levels, now this is not neededlit \we show also that other
undecidability results can be obtained in this way.

e This technique can be used to push the strong aperiodicity limits: the distance between
any tiling and any periodic one (or between any tiling andhiéstrivial shift) can be made
arbitrarily close to 1, not only separated from 0. This iselonSectiorf]6 using an additional
tool: error-correcting codes.

¢ In [[]] a tile set was constructed such that every tiling hagimal Kolmogorov complexity
of fragments Q(n) for n x n squares); all tilings for this tile set are non-computakle it
implies a classical result of Har[f[[L 7] and Myefrs|[25] as atlary). The construction ir[]7]
was rather complicated and was based on a classical caimstro an aperiodic tile set. In
Section[J7 we provide another proof of the same result that uasable zoom factors. It
is simpler in some respects and can be generalized to pradbast tile sets with complex
tiling, which is our main result (Sectidn]13).

Further in Sectior}]8 we use the same technique to give a neof fonosome results by
S. Simpson[[32] and M. Hochmap]18] about effectively closalshifts: every 1-dimensional
effectively closed subshift can be obtained as a projeadiononfigurations of some 2-
dimensional subshift of finite type (in an extended alphab®ur construction provides a
solution of Problem 9.1 fron{]18]. (Another solution, basedthe classical Robinson-type
construction, was independently suggested by N. AubrurMarsablik, see[]2].)

e To prove the robustness of tile sets against sparse errouseva hierarchical classification
of the elements of random sets into islands of differentltef@ method that goes back to
Gacs [IB[T4]). This method is described in Secfioh 9.1.



¢ In Sectio 92 we give definitions and establish some prdistibiresults about islands that
are used to prove robustness: we show that a sparse randam Zétwith probability 1
(for Bernoulli distribution) can be represented as a uniorstands’ of different ranks. The
higher is the rank, the bigger is the size of an island; trenids$ are well isolated from each
other (in some neighborhood of an island of ranthere is no other islands of rank k).
Then in Sectior 9]3 we illustrate these tools using standemalts of percolation theory as a
model example. In Sectidn 9.4 we modify the definition of darid allowing two (but not
three!) islands of the same rank to be close to each othes.riibie complicated definition
IS necessary to obtain the most technically involved resfutie paper in Sectign JL3 but can
be skipped if the reader is interested in the other results.

¢ In Sectio I we use fixed-point construction to get an aparitle set that is robust in the
following sense: if a tiling has a “hole” of sizg then this hole can be patched by changing
only O(n)-size zone around it. Moreover, &{n) zone (with bigger constant i@-notation)
around the hole is enough for this (we don’'t need to have tlieeeplane covered). In
Section[I]L we explain how to get a robust aperiodic tile setis variable zoom factors.
Again, this material is used in Sectipn 13 only.

e In Section[IR we combine the developed techniques to estabiie of our main results:
there exists a tile set such that every tiling of a plane eixaegparse set of random points is
far from every periodic tiling.

e Finally, the Sectioj 13 contains our most technically dificesult: a robust tile set such
that all tilings, even with sparsely placed errors, havedincomplexity of fragments. To
this end we need to combine all our techniques: fixed-poinstaction with variable zoom
factors, splitting of a random set into doubled islands, ‘antustification” with filling of
doubled holes.

2 Fixed-point aperiodic tile set

2.1 Macro-tiles and simulation

Fix a tile sett and an integeN > 1 (zoom factoy. A macro-tileis anN x N square tiled byr-
tiles matching each other (i.e., a square blochldftiles with no color conflicts inside). We can
consider macro-tiles as “pre-assembled” blocks of tilastaad of tiling the plane with individual
tiles, we may use macro-tiles. To get a corredtling in this way, we need only to ensure that
neighbor macro-tiles have matchingcro-colors so there are no color mismatches on the borders
between macro-tiles. More formally, by macro-color we maaequence dfl colors on the side
of a macro-tile. Each macro-tile has four macro-colors (foreeach side). We always assume
that macro-tiles are placed side-to-side, so the planelitsisip N x N-squares by vertical and
horizontal lines.

In the sequel we are interested in the situation whd#itings can be split uniquely into macro-
tiles that behave like tiles from some other tile get Formally, let us define the notion of a



simulation.

Let T andp be two tile sets, and &Y > 1 be an integer. Bgimulation ofp by T with zoom
factor Nwe mean a mappingof p-tiles intoN x N 7-macro-tiles such that:

e Sis injective (different tiles are mapped into different madiles).

e Two tilesry andr, match if and only if their imageS(r1) andS(r,) match. This means that
the right color ofr; equals the left color of; if and only if the right macro-color o§(rq)
equals the left macro-color &), and the same is true in the vertical direction.

e Everyrt-tiling can be split by vertical and horizontal lines itiox N macro-tiles that belong
to the range o8&, and such a splitting in unique.

The second condition guarantees that eyeiyling can be transformed into &tiling by re-
placing each tile € p by its image, macro-til&(r). Taking into account other conditions, we
conclude that every-tiling can be obtained in this way, and the positions of dineés as well as
the corresponding-tiles can be reconstructed uniquely.

Example 1 (negative). Assume that consists of one tile with four white sides. Fix some
N > 1. There exists a single macro-tile of sidex N. Does it mean that simulates itself (when
its only tile is mapped to the only macro-tile)? No: the firstlaecond conditions are true, but the
third one is false: the placement of cutting lines is not ueiq

—
—
(B
~—

[ R N

0 I I S

Figure 1: Tiles and macro-tiles for Example 2

Example 2(positive). In this exampl@ consists of one tile with all white sides. The tile set
consists oN? tiles indexed by pair§i, j) of integers moduldN. A tile from t has colors on its sides
as shown on Fig] 1. The simulation map4ile to a macro-tile that has colo(s,0),...,(0,N—1)
and(0,0),...,(N—1,0) on its vertical and horizontal borders respectively (see[¥).

Definition. A self-similartile set is a tile set that simulates itself.

The idea of self-similarity is used (more or less expligiily most constructions of aperiodic

tile sets ([IP[J6] are exceptions). However not all of thesestructions provide literally self-
similar tile sets in our sense.

It is easy to see that self-similarity guarantees aperitydic

Proposition 1. A self-similar tile setr may have only aperiodic tilings.
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Proof. Let Sbe a simulation off by itself with zoom factoN. By definition, everyr-tiling
U can be uniquely cut intdl x N-macro-tiles from the range & So every period of U is a
multiple of N (since theT-shift of a cut is also a cut, the shift should respect bordetsveen
macro-tiles). Replacing each macro-tile by&preimage, we get a-tiling that has period /N.
Therefore, T /N is again a multiple oN. Iterating this argument, we conclude tffats divisible
by NK for everyk, soT = 0.

Note also that every self-similar tile set has arbitrardygle finite tilings: starting with some
tile, we applySiteratively and get a big tiled square. The standard conmgastargument guaran-
tees the existence of a tiling of the entire plane. So to ptiseexistence of aperiodic tile sets it is
enough to construct a self-similar tile set.

Theorem 2. There exists a self-similar tile set

TheorenfR was explicitly formulated and proven by N. Olling&]]; in his proof a self-similar
tile set is constructed explicitly (it consists of 104 tjle§ his tile set is then used to implement
substitution rules (cf. Theorefif 3 below). Another examgla self-similar tile set (with many
more tiles) is given in[]8]. (Note that the definition of selfnilarity used in[B] is a bit stronger.)

We prefer a less specific and more flexible argument, whiclaset on the fixed-point idea.
Our proof works for a vast class of tile sets (though we capnotide explicitly an aperiodic tile
set of a reasonably small size). The rest of this sectionystdd to our proof of Theorer 2.
Before we prove this result, we explain some technique usedi construction and show how to
simulate a given tile set by embedding computations.

2.2 Simulating a tile set

Let us start with some informal discussion. Assume that we baile sejp whose colors ark-bit
strings C = {0,1}%) and the set of tilep c C* is presented as a predica®écy, Cy,Cs,C4) With
four k-bit arguments. Assume that we have some Turing mac#itigat compute®. Let us show
how to simulatep using some other tile set

This construction extends Example 2, but simulates a tilp sigat contains not a single tile but
many tiles. We keep the coordinate system modiembedded into tiles af; these coordinates
guarantee that aft-tilings can be uniquely cut into blocks of sikéx N and every tile “knows”
its position in the block (as in Example 2). In addition to tte®rdinate system, now each tile in
T carries supplementary colors (from a finite set specifiedvipedn its sides. These colors form a
new “layer” superimposed with the old one, i.e., the set ¢biis now a Cartesian product of the
old one and the set of colors used in this layer.

On the border of a macro-tile (i.e., when one of the coor@is&t zero) only two supplementary
colors (say, 0 and 1) are allowed. So the macro-color enadesg ofN bits (whereN is the size
of macro-tiles). We assume thidtis much bigger thak and letk bits in the middle of macro-tile
sides represent colors frat All other bits on the sides are zeros (this is a restrictiotiles: each
tile “knows” its coordinates so it also knows whether nonezgupplementary colors are allowed).

Now we need additional restrictions on tilestithat guarantee that macro-colors on the sides
of each macro-tile satisfy relatidR To achieve this, we ensure that bits from the macro-tilesid
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are transferred to the central part of the tile where the kihgccomputation of% is simulated

(Fig.@).

Turing
machine

Figure 2: Wires and processing zones; wires appear quitemainceN > k

For that we need to fix which tiles in a macro-tile form “wirgs$his can be done in any rea-
sonable way; let us assume that wires do not cross each atithen require that each of these
tiles carries equal bits on two sides (so some bit propagébes) the entire wire); again it is easy
to arrange since each tile knows its coordinates.

Then we checlR by a local rule that guarantees that the central part of aor@errepresents
a time-space diagram of’s computation (the tape is horizontal, time goes up). Thiddne in a
standard way: the time-space diagram (tableau) of a Turexghime computation can be described
by local rules, and these rules can be embedded into a tilseete.g.,[J1, }15]). We require that
computation terminates in an accepting state: if not, fhmgtcannot be formed.

To make this construction work, the size of macro-tNg 6hould be large enough: we need
enough space fdebits to propagate and enough time and space (=height anb)\vadtall accept-
ing computations ofZ to terminate.

In this construction the number of supplementary colorseddp on the machin& (the more
states it has, the more colors are needed in the computatio#).z To avoid this dependency,
we replaceZ by a fixed universal Turing machir# that runs gprogramsimulating. Let us
agree that the tape of the universal Turing machine has atiadd read-only layer. Each cell
carries a bit that is not changed during the computatiorsethmts are used as a program for the
universal machin® (Fig. B). In terms of our simulation, the columns of the comapion zone
carry unchanged bits (considered as a prograntfiprand the tile set restrictions guarantee that
the central zone represents theord (time-space diagram) of an accepting computatida ¢fvith
this program). In this way we get a tile sethat simulateg with zoom factorN using O(N?)
tiles. (Again we need to be large enough, but the constan@©(N?) does not depend d.)

2.3 Simulating itself

We know how to simulate a given tile spt(represented as a program for the universal TM) by
another tile setr with a large enough zoom factdt. Now we wantr to be identical tqo (then
PropositioJL guarantees aperiodicity). For this we userstecoction that follows the proof of
Kleene’s recursion (fixed-point) theorem.



Universal
Turing

machine

program

Figure 3: Checking tiles with a universal TM

Warning: we cannot refer here to te&atemenof the theorem; we need to recall its proof and
adapt it to our framework. Kleene’s theorem|[20] says thatfery computable transformation
t of programs one can find a programsuch thatp and ri(p) are equivalent, i.e., produce the
same output (for simplicity we consider programs with nauitaput this restriction does not really
matter). In other terms, there is no guaranteed way to toams& given progranp into some
other progranvi(p) that produces different output. Proof sketch: first we nbhsg the statement
is language-independent since we may use translationstindo@ctions before and after. So
without loss of generality we may assume that the programitainguage has some special prop-
erties. First, we assume that it has a functienText () that returns the text of the program (or
a pointer to a memory address where the program text is kEpfond, we assume that the lan-
guage contains an interpreter functibwecute (string s) thatinterprets the content of its string
argumensas a program written in the same language. It is not difficuttevelop such a language
and write an interpreter for it. Indeed, the interpreter @acess the program text anyway, so it can
copy the text into some string variable. The interpreted a# recursively call itself with another
program as an argument when it seeskkecute call. If our language has these properties, it is
easy to construct the fixed point far just take the programxecute (1T(GetText ())).

This theorem shows that a kind of “vicious circle” when weterthe program as if its full text
is already given to us, is still acceptable. A classical guians a program that prints its own text.
The proof shows a way how to do this by using a computation meldere the immutable text of
the program is accessible to it.

Constructing a self-similar tiling, we have the same kinghafblems. We have already seen
how to construct a tile sat that simulates a given tile spt [Counterpart: it is easy to write a
program that prints any given text.] What we need is to cowsta tile set that simulatetself.
[Counterpart: what we need is to write a program that pitstewntext.]



Let us look again at our construction that transforms themjetson of p (a Turing machine
that computes the corresponding predicate) into a tile seat simulatep. Note that most rules
of T do not depend on the program fat, dealing with information transfer along the wires, the
vertical propagation of unchanged program bits, and theesieme diagram for the universal TM
in the computation zone. Making these rules a pap'stdefinition (we letk = 2logN + O(1) and
encodeD(N?) colors by 2lodN + O(1) bits), we get a program that checks that macro-tiles behave
like t-tiles in this respect. Macro-tiles of the second level (tmeamacro-tiles”) made of them
would have correct structure, wires that transmit bits efodbmputation zone and even the record
of some computation in this zone, but this computation ctel@rbitrary. So at the third level all
the structure is lost.

What do we need to add to our construction to close the cirdeet self-simulation? The only
remaining part of the rules far (not implemented yet at the level of macro-tiles) is the hared
program. We need to ensure that macro-tiles carry the saogggm ast-tiles do. For that our
program (for the universal TM) needs to access the bits afstext. As we have discussed, this
self-referential action is in fact quite legal: the progrsnwritten on the tape, and the machine can
read it. The program checks that if a macro-tile belongs ¢dfitist line of the computation zone,
this macro-tile carries the correct bit of the program.

How should we choosB (hardwired in the program)? We need it to be large enougheso th
computation described above (it deals wi2flogN) bits) can fit in the computation zone. Note
that the computation never deals with the list of tilesrjror a truth table of the corresponding
4-ary relation on bit strings; all these objects are represk by programs that describe them.
The computation needs to check simple things only: that rusin the 0..N — 1 range on four
sides are consistent with each other, that rules for wirdscamputation time-space diagram are
observed, that program bits on the next level coincide wittua program bits, etc. All these
computations are rather simple. They are polynomial in tipeiti size, i.e., iO(logN)), so for
largeN they easily fit inO(N) available time and space.

This finishes the construction of a self-similar aperiodeget.

Remark. Let us also make a remark that would be useful later. We defiteeset as a subset
of C* whereC is a set of colors. Using this definition, we do not allow diffet tiles to have the
same colors on their sides: the only information carriedHgyttle is kept on its sides. However,
sometimes a more general definition is preferable. We canalafiile set as a finite séttogether
with a mapping ofT into C*. Elements ofT are tiles, and the mapping tells for each tile which
colors it has on its four sides.

One can easily extend the notions of macro-tiles and simounlab this case. In fact, macro-
tiles are well suited to this definition since they alreadyyroarry some information that is not
reflected in the side macro-colors. The construction ofsetilar tile set also can be adapted. For
example, we can construct a self-similar tile sets wherh &bccarries an auxiliary bit, i.e., exists
in two copies having the same side colors. Since the tilesseti-similar, every macro-tile at every
level of the hierarchy also carries one auxiliary bit, ang biits at different levels and in different
macro-tiles are not related to each other. Note that thé detasity of information contained in
a tiling is still finite, since the density of information damed in auxiliary bits assigned to high
level macro-tiles decreases with level as a geometric segue
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3 Substitution rules implemented

The construction of a self-similar tiling is rather flexitd&d can be easily augmented to get a
self-similar tiling with additional properties. Our firdtustration is the simulation of substitution
rules.

Let A be some finite alphabet amd > 1 be an integer. Asubstitution ruleis a mapping
s: A— A™™M This mapping can be naturally extendedstoonfigurations. ByA-configurationve
mean an integer lattice filled with-letters, i.e., a mapping? — A considered modulo translations.
A substitution rules applied to a configuratioX produces another configuratigfX) where each
lettera € Ais replaced by am x m matrix s(a).

We say that a configuratioXd is compatiblewith substitution rules if there exists an infinite
sequence

S XD X S X S X,

whereX; are some configurations. This definition was proposefl ih. [ZFE classical definition
(used, in particular, iN[24]) is slightly different: contigationX : Z? — Alis said compatible with
a substitution rulsif every finite part ofX occurs inside of sorm'é”)(a) (for somen € N and some
ac A). We prefer the first approach since it looks more naturahédontext of tilings. However,
all our results can be reformulated and proven (with somienieal efforts) for the other version
of the definition; we do not go into details here.

Example 3 LetA={0,1},

5(0)=(23) s(1)=(25)

It is easy to see that the only configuration compatible siih the chess-board coloring where
zeros and ones alternate horizontally and vertically.
Example 4(Fig.B). LetA= {0, 1},

50)=(23). s()=(59-

One can check that all configurations that are compatiblle this substitution rule (calle@hue —
Morse configuration#n the sequel) are aperiodic. We will prove in Sectjpn 4 argjey version
of this fact, but it is not difficult anyway; one may note, foraenple, that every configuration
compatible with this substitution rule can be uniquely deposed into disjoint % 2 blocks(? %)
and((l) 2) by vertical and horizontal lines; since neighbor cells & §ame color should be sepa-
rated by one of those lines, the position of lines is uniqugentwe can apply the argument from
Propositiorf]L (withN = 2).

The following theorem goes back to Mozgs][24]. It says thatrgsubstitution rule can be
enforced by a tile set.

Theorem 3. Let A be an alphabet and let s be a substitution rule over AnThere exists a tile
sett and a mapping et — A such that

(a) e-image of any-tiling is an A-configuration compatible with s

(b) every A-configuration compatible with s can be obtained is\Way.
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Figure 4: Three steps of Thue—Morse substitution

A nice proof of this result for Z 2-substitutions is given ifi[R7], where an explicit constion
of a tile setr for every substitution ruleis provided. We prove this theorem using our fixed-point
argument, avoiding explicit construction of(the tile sets that can be extracted from our proof
contain a huge number of tiles).

Proof. Let us modify the construction of the tile set(with zoom factorN) taking s into
account. First consider a very special case when

¢ the substitution rule maps eagHetter into anN x N-matrix (i.e.,m= N).

e the substitution rule is easy to compute: given a laiterA and(i, j), we can compute the
(i, j)-th letter ofs(u) in time which is much less tha.

In this case we proceed as follows. In our basic construaiany tile knows its coordinates
in the macro-tile and some additional information needeattange “wires” and simulate calcula-
tions of the universal TN|.Now in addition to this basic structure each tile keeps twits ofA:
the first is the label of a tile itself, and the second is thelal theN x N-tile it belongs to. This
means that we keep additional 2|@g bits in each tile, i.e., multiply the number of tiles b2
(the restrictions will reduce the size of the tile set, seediscussion below). It remains to explain
how the local rules work. We add two requirements:

(i) The second letter is the same for neighbor t{lesless they are separated by a border of some
N x N macro-til§. This constraint can be easily enforced by colors on siddges. We
multiply the number of colors in our basic construction|BY; now each color of the new
construction is a pair: its 1st component is a color from thsi®construction and its 2nd
componentis a letter &. The second component of the new color guarantees that every
neighbor tiles keep the same “father” letter (unless thiése dre separated by a border and
do not belong to the same father macro-tile; we do not extfikitetter to those borders).

We use this “anthropomorphic” terminology in the hope it @sithe proof more intuitive. Saying “each tile
knows its coordinates”, we mean that the tile set is split aisjointN? groups; each of the groups corresponds to
tiles that appear in one of ti¢? positions in macro-tiles. The correct positioning of tHegiis ensured (as we have
seen) by side colors. The self-similarity guarantees thatsame is true for macro-tiles, where the group (i.e., the
coordinates in a macro-tile of next level) is determinedh®yd¢ontent of the computation zone and corresponding bits
(macro-colors) on sides.
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(ii) The first letter in a tile is determined by the second lettet Hie coordinates of the tile inside
the macro-tile, according to the substitution ruladeed, each tile “knows” its coordinates in
a macro-tile. So, its first letter must appeasfsecond letterat the corresponding position.
We do not need to extend the set of colors to enforce this piyppEhis requirement is only
a restriction on tiles: it explains which combinations

(coordinates in the father macro-tifest letter, second letter
can be combined in one tile of our tile get.

We want the new tile set to be self-similar. So we should guasthat the requirements above
hold also for macro-tiles. Fortunately, both requiremerts easy to integrate in our basic self-
referential construction. In each macro-tile, two letiefré\ are encoded by strings of bits in some
specially reserved locations on the tape of the Turing nmec{simulated in the computation zone
of this macro-tile). The requirement (i) is enforced by adpeéxtra logA| bits to macro-colors; to
achieve (ii), a macro-tile should check that its first letippears irs(second letterat the required
position. It is possible whesis easy to compute. (Knowing the coordinates and the seedtsd,|
the program computes the required value of the first lettdrthen compares it with the actual
value.)

The requirements (i) and (ii) ensure that if we take firstelettfromA assigned to each tile,
we get anA-configuration which is as-image of some other configuration. Also (due to self-
similarity) we have the same property on the level of madest But this is not enough: we
need to guarantee that the first letter on the level of mat@e-s identical to the second letter on
the level of tiles. This is also achievable: the first lettEaanacro-tile is encoded by bits in its
computation zone, and we can require that those bits ma&ckdbond letter of the tiles at that
place (recall that second letter is the same across thehigégsonstitute one macro-tile; note also
that each tile “knows” its coordinates and can determinetidrat is in the zone for the first letter
in the macro-tile and which bit should be there). By selfiknity, the same arguments work for
macro-tiles of all levels.

It is easy to see that now the tile sehas the required properties (each tiling projects into a
configuration compatible witlh and vice versa).

However, this construction assumes tNafthe zoom factor) is equal to the matrix size in the
substitution rule, which is usually not the casei$ given, and\N we have to choose, and it needs
to be large enough). To overcome this difficulty, weNebe equal tank for somek, and use the
substitution rulesX, i.e., thekth iteration ofs (a configuration is compatible witf if and only if
it is compatible withs). Now we do not need to be easily computed: for evesyif k is large
enough, the computation gf will fit into the available space (exponentialkh

2A natural question arises: what does it mean to add a lett¢righdetermined by other information? Adding a
letter means that we credt®| copies of the same tile (with different letters) — but thea tastriction prohibits all of
them except one, so is there any change at all? In fact, toaladtange is happening on higher levels: we want the
macro-tiles have both letters written on the tape as bintairnygs (in some pre-arranged places). This is important for
checking consistency between levels.

13



4 Thue—Morse lemma and strongly aperiodic tile sets

Let a > 0 be areal number. A configuratidh: Z? — Ais a-aperiodicif for every nonzero vector
T e Z? there existdN such that in every square whose side is at IBstste fraction of points such
thatU (x) # U (x+ T) exceeds.

Remark. If U is a-aperiodic, then Besicovitch distance betwékand any periodic pattern
is at leasta /2. (The Besicovitch distance between two configurationsefindd as limsugpdy
wheredy is the fraction of points where two configurations differ et x N centered square. It
is easy to see that the distance does not depend on the chtheecenter point.)

Theorem 4. There exists a tile sat such thatr-tilings exist and every-tiling is a-aperiodic for
everya < 1/4.

Proof. This is obtained by applying Theorgn 3 to the Thue—Morsstsuition ruleT (Exam-
ple 4). LetC be a configuration compatible with. We have to show that is a-aperiodic for
everya < 1/4. It is enough to prove that every configuration compatibih whe Thue—Morse
substitution rule isx-aperiodic.

Informally, we can reduce the statement to one-dimensicas#, since Thue—Morse substitu-
tion is a XOR-combination of two one-dimensional subsiitas. Here are the details.

Consider a one-dimensional substitution system with tviesrQ— 01 and 1— 10. Applying
these rulesto 0 and 1, we get

0—01—0110— 01101001 ...
1—- 10— 1001— 10010110- ...

Let a, andby, benth terms in these sequenceg £ 0,a; =01,...,bg=1,b; = 10, etc.); itis easy
to see that, 1 = apbn andby. 1 = bpan.

For somen we consider theor combination of these strings, wharg-th bit is xor of ith bit
in the first string andth bit in the second string. Sindw is a bitwise negation dod,,, we get only
two different combinations (one obtained from two copiegpbr two copies oby,, and the other
obtained from different strings) which are bitwise oppesilt is easy to see (e.g., by induction)
that these two square patterns are images of 0 and 1redteps of two-dimensional Thue—Morse
substitution.

To prove the statement for aperiodicity of Thue—Morse caméijon, we start with an estimate
for (one-dimensional) aperiodicity af, andby:

Lemma 1 (folklore). For any integer u> 0 and for any n such that & |a,|/4 the shift by u steps
to the right changes at leafdn| /4 positions in g and leaves unchanged at leaag| /4 positions.
(Formally, in the rangel...(2" — u) there exist at least1/4) - 2" positions i such that ith and
(i4+u)th bits in & coincide and at leastl/4)2" positions where these bits differ.

Proof of the Lemma:a, can be represented abbabaabwherea = a,_3 andb = b,_3. One
may assume without loss of generality that |a| (otherwise we apply Lemma separately to the
two halves ofa,). Note thatba appears in the sequence twice and once it is precededaoyg
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once byb. Sincea andb are opposite, the shifted bits match in one of the cases andtdnatch
in the other one. The same is true &rthat appears preceded bothdgndb.

Now consider a larg®l x N square in two-dimensional Thue—Morse configuration, amdeso
shift vectorT. We assume thatl is much bigger than components Df(we are interested in the
limit behavior asN — o). Moreover, we may assume that some power of 2 (let us cal) is
small compared ttN and large compared . ThenN x N square consists of a large number of
mx m Thue—Morse blocks and some boundary part (which can beegrmyr changingr slightly).
Then we can consider eachx m block separately to estimate the fraction of positions Hrat
changed byf -shift. If T is horizontal or vertical, we can use the statement of therlardirectly:
at least one fourth of all positions are changed. If not {$taé two non-zero components), we are
interested in the probability of some event that is a xordom@tion of twoindependengvents with
probabilities in the intervall/4,3/4). It is easy to check that such an event also has probability in
(1/4,3/4) (in fact, even in(3/8,5/8), but we do not need this stronger bound).

Theoren{} is provedy

In fact, the bound 24 can be replaced by/3B if we use more professional analysis of Thue—
Morse sequence (see, e.§.][33]). But if we want to get a miasig result of this form and make
the bound close to 1, this substitution rule does not work.cefeuse some other rule (in a bigger
alphabet) as Pritykin and Ulyashkina have showh [28], bupveder to give another construction
with variable zoom factors, see Sect[pn 6.

5 Variable zoom factor

The fixed point construction of aperiodic tile set is flexiblgough and can be used in other con-
texts. For example, the “zoom factdW’could depend on the level. This means that instead of one
tile sett we have a sequence of tile segsty, T2, ..., and instead of one zoom factdrwe have a
sequence of zoom factoly, Ny, ... The tile setrg simulatesr; with zoom facto\p, the tile setr;
simulatesr, with zoom factoN;, etc.

In other termsyo-tilings can be uniquely split (by horizontal and verticalds) intoNg x No-
macro-tiles from some list, and the macro-tiles in thisdist in one-to-one correspondence (that
respects matching rules) with. Sotp-tilings are obtained fromn; -tilings by replacing eaciy-tile
by the correspondingy-macro-tile, and eacty-tiling has unique reconstruction.

Again, everyrs-tiling can be split into macro-tiles of sid¢; x N; that correspond ta,-tiles.

So after two steps of zooming out evagytiling looks like at,-tiling; only closer look reveals that
eachrty-tile is in fact at;-macro-tile of sizeN; x N1, and even closer look is needed to realize that
everyT;-tile in these macro-tiles is in fact@-macro-tile of sizéNg x No.

This is what we want to achieve (together with other thingedeel to get the tile set with
desired properties, see the discussion below). How do wealthis? Each macro-tile should
“know” its level: macro-tile that simulateg-tile and is made ofy_;-tiles, should havé in some
place on the tape of TM simulated in this macro-tile. To mdke information consistent between
neighborsk is exhibited as a part of macro-color at all four sides. THeeafk is used for the
computations: macro-colors on the sides of a macro-til@@athe coordinates of this macro-tile
inside its father, and the computation should check that #re consistent modully, 1 (the x-
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coordinate on the right side should be equax-mordinate on the left side plus 1 modNg, 1,
etc.). This means th&¥ . 1 should be computable frok) moreover, it should be computable fast
enough to fit into the computation zone (which carries dd({Nx) steps of computation). After
Nk, 1 is computed, there should be enough time to perform themaettic operations modulisy ., 1,
and so on.

Let us look at these restrictions more closely. We need tp ke¢hk and the coordinates
(modulo Nk 1) on the tape of levek macro-tiles, and log+ O(logNk. 1) bits are required for
that. Both logk and log\k. 1 should be much less tha\, so all the computations could fit in the
available time frame. This means thdt should not increase too fast or too slow. Sdy= logk
is too slow (in this casé& occupies almost all available space, and we do not have érnaoug
even for simple computations), am,; = 2™ is too fast (lod\i,1 is too large compared to
time and space available on the computation zone in a maeroftrank k). Also we need to
computeN, 1 whenk is known, so we assume that not only the sizé\pf; (i.e., logNk.1) but
also the time needed to compute it (givdnare small compared thl,. These restrictions still
allow many possibilities, sapk could be proportional ta/k, k, 2%, 229, ki etc. Note that we
say “proportional” sincéNkx needs to be reasonably large even for sikéle need some space in
macro-tile for wires, all our estimates for computationgiare not precise but only asymptotic, so
we need some reserve for smigletc.).

There is one more problem: it is not enough to ensure thatadhe\ofk is the same for neigh-
bor macro-tiles. We also need to ensure that this value recpri.e., is 1 for level 1 macro-tiles
made oftp-tiles, is 2 for level 2 macro-tiles made of-tiles, etc. To guarantee this, we need to
compare somehow the level information that is present in eroaile and its sons. Using the
anthropomorphic terminology, we say that each macro-kietWs” its level, since it is explicitly
written on its tape, and this is, so to say, a “conscious’nmfation processed by a computation in
the computation region of the macro-tile. One may say alabahmacro-tile of any level contains
“subconscious” information €xisting in the mind but not immediately available to coosst
nes$, as the dictionary say$ [B4]): this is the information tlatonscious for its sons, grandsons
and so on (all the way down to the ground level). The problethasthe macro-tile cannot check
consistency between conscious and subconscious infamsitice the latter is unavailable (the
problem studied by psychoanalysis in a different context).

The solution is to check consistency in the son, not in theefatEvery tile knows its level and
also knows its position in its father. So it knows whethes ini the place where father should keep
level bits, and can check whether indeed the level bit thhefkeeps in this place is consistent with
the level information the tile has. (In fact we used the satck tvhen we simulate a substitution
rule: a check that the father letter of a tile coincides wiité ketter of the father tile, is done in the
same way.) The careful reader will also note here that now#éighbor tiles will automatically
have the same level information, so there is no need to clmwsistency between neighbors.

This kind of a “self-similar” structure with variable zooradtors can be useful in some cases.
Though it is not a self-similar according to our definitiomeocan still easily prove that any tiling
is aperiodic. Note that now the computation time for the TMuliated in the central part increases
with level, and this can be used for a simple proof of undduldg of domino problem. The
problem in the standard proof (based on the self-similastantion with fixed zoom factor) is
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that we need to place computations of unbounded size irgcs#ti-similar structure, and for that
we need special geometric tricks (sge[]1, 3]). With our nemstiction, if we want to reduce an
instance of the halting problem (some machimeto the domino problem, we add to the program
embedded in our construction the parallel computatioMadn the empty tape; if it terminates,
this destroys the tiling.

In a similar way we can show that the existence of a periotiigtis an undecidable property
of a tile set, and, moreover, the tile sets that admit pecittings and tile sets that have no tilings
form two inseparable sets (this is another classical reseé [1p]). Recall that two sefsandB
are called (computablyhseparabléf there is no computable s€tsuch thatA ¢ CandBNC = 0.

Here is an example of a more exotic version of the latter t¢ghdt has probably no interest in
itself, just an illustration of the technique). We say thdilesett is m-periodicif 7-tilings exist
and for each of them the set of periods is the setllomultiples ofm, in other words, if the group
of periods is generated @, m) and(m,0). Let E [resp. O] be allm-periodic tile sets for all even
m[resp. oddm.

Theorem 5. The sets E and O are inseparable enumerable sets.

Proof. It is easy to see that the property “to berafperiodic tile set” is enumerable (both the
existence of am-periodic tiling and enforcing periodsn, 0) and (0,m) are enumerable proper-
ties).

It remains to reduce some standard pair of inseparablesstsrhachines that terminate with
output 0 and 1) tdE, O). It is easy to achieve using the technique explained abossuie that
the numberd\y increase being odd integers as long as the computation ofea gnachine does
not terminate. When and if it terminates with output O [rekpwe require periodicity with odd
[resp. even] period at the next levg].

Another application of a variable zoom factor is the prootha following result obtained by
Lafitte and Weiss (se¢ JR1]) using Turing machine simulaiimide Berger—Robinson construc-
tion.

Theorem 6. Let f be a total computable function whose arguments andegadive tile sets. Then
there exists a tile sat that simulates a tile set(f).

Here we assume that some computable encoding for tile sék®is Since there are no re-
strictions on the computation complexity bfthe choice of the encoding is not important.

Proof. Note that for identity functiorf this result provides a self-simulating tile set of Sec-
tion 2.3. To prove it we may use the same kind of a fixed-poicheue. However, there is
a problem: the computation resources inside a tile aredunfby its size) while time needed to
computef can be large (and, moreover, depends on the tile size).

The solution is to postpone the simulation to large levelsa iile setty simulatest; that
simulatesr, that simulates etc. up tg,, thenty simulatesry,, too. Therefore we may proceed as
follows.

We use the construction explained above with a variable ztamtor. Additionally, at each
level the computation starts with a preliminary step thay mecupy up to (say) half of the available
time. On this step we read the program that is on the tape anebtat into the tile set (recall that
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each program determines some tilegeguch thatrp-tilings can be uniquely splitinto macro-tiles,
and this program is written on a read-only part of the tapeaukited in the computation zone of all
macro-ties, as it was explained in Sectjorj 2.2). Then weyappd the obtained tile set.

This part of the computation checks also that it does not use ithhan half of the available
time and that the output is small enough compared to theitike df this time turns out to be
insufficient or the output is too big, this part is dropped avelstart a normal computation for
variable zoom factor, as explained above. In this case z@mtorf on the next level should be
greater than zoom factor on the current level (e.g., we msyyrasNy = Ck for some large enough
constantC). However, if the time is enough and result (the list of titeat corresponds td’s
output) is small compared to the tile size, we check that oyt (of the current level) belongs to
the tile set computed. The hierarchy of macro-tiles stopkiatievel. The behavior of macro-tiles
at this level depends oft they are isomorphic td(7)-tiles. Since the program is the same at all
levels and the computation dfshould be finite (though may be very long), at some (big enpugh
level the second possibility is activated, and we get a étésomorphic tof (1) wherert is the tile
set on the ground leveh

Another application of the variable zoom factor techniguéhie construction of tile sets with
any given computable density. Assume that a tile set is gareh) moreover, all tiles are divided
into two classes, say, A-tiles and B-tiles. We are intecksia fraction of A-tiles in a tiling of an
entire plane or its large region. If the tile set is flexibleegh, this fraction can vary. However,
for some tile sets this ratio tends to a limit value when tlze if a tiled region increases. This
phenomenon is captured in the following definition: we sat thie setr divided into A- and B-
tiles has a limit densityx if for every € > 0 there existdN such that for any > N the fraction of
A-tiles in any tiling of then x n square is betweem — € anda + ¢.

Theorem 7. (i)If a tile set has a density, thena is a computable real number {0, 1]. (i) Any
computable real numbex € [0,1] is a density of some tile set.

Proof. The first part is a direct corollary of the definitions. Foclea we can consider all
tilings of then x n square and look for the minimal and maximal fractions of lagin them. Let
us denote them bgn, andM,. It is easy to see that the limit frequency (if exists) is ia thterval
[mn, Mp]. Indeed, in a large square split into squares of sizen the fraction of A-tiles is between
m, and M, being at the same time arbitrarily closedo Therefore,a is computable (to get its
value with g-precision, we increase until the difference betweeNl, and m, becomes smaller
thane).

It remains to prove (ii). Sincer is computable, there exist two computable sequences of
rational numberg andr; that converge ta in such a way that

[|1,I’1] D [|2,r2] D [|3,I’3] ...

Our goal will be achieved if macro-tiles of the first level kalensity eithel;, orr;, macro-macro-
tiles of the second level have density eitlheor ro, and so on. Indeed, each large square can be
splitinto macro-tiles (and the border that does not chahgelénsity much), so in any large square
the fraction of A-tiles is (almost) ifl1,r1]. The same argument works for macro-macro-tiles, etc.

18



However, this plan cannot be implemented directly: the ndéficulty is that the computation
of I; andr; may require a lot of time while the computation abilities ohero-tiles of levei are
limited (we use variable zoom factors, e.g., we may definektheoom factor adNy = Ck, but
they cannot grow too fast).

The solution is to postpone the switch from densitjemndr; to densitied; . ; andr; to the
higher level of the hierarchy where the computation has ghdime to compute all these four
rational numbers and find out in which proportignandr;-tiles should be mixed if). 1- andrj ;-
tiles. (This proportion is restricted by our constructidime denominator should be the number of
i-level macro-tiles in(i + 1)-level macro-tile, but this restriction can be always Segtsby a slight
change inl; andr; which leavesx unchanged.) So, we allocate, say, the first half of the adaila
time for controlled computation of all these values; if tlmenputation does not finish in time, the
densities for the next level are the same as for the curreat. |& the computation terminates in
time, we use the result of the computation to have two typéseofiext level tiles: one with density
li.1 and one with density; 1. They are made by using prescribed amour{-aindr;-tiles (since
each tile knows its coordinates, it can find out whether itudthde of the first or second type).
This finishes the construction;

6 Strongly aperiodic tile sets revisited

In Section## we constructed a tile set such that every tibrag-aperiodic for everyr < 1/4. Now
we want to improve this result and construct a tile set suahetiery tiling is, say, @9-aperiodic
(here 099 can be replaced by any constant less than 1). It is easg thakthis cannot be achieved
by the same argument, with Thue—Morse substitutions, asaseVith any substitutions in a two-
letter alphabet; we need a large alphabet to make the camsbae to 1.

It is possible to achieve.99-aperiodicity with some carefully chosen substitutiarer(in a
bigger alphabet) recently proposed by Pritykin and Ulyash{28], just applying Theorerf] 3
(similarly to the argument with the Thue-Morse substitnfiwesented in Sectidh 4). In this section
we present an alternative proof of this result. We explolissitution rules with variable zoom
factor (and different substitutions on each level) and umsiglea of error correcting code.

Instead of one alphabei, we now consider a sequence of finite alphab&§sA;, Ag,. .. ; the
cardinality of Ax will grow ask grows. Then we consider a sequence of mappings:

. Nox N . N1 xN . Ny x N
St AL = AT i A AT s3t As AP L

whereNp, N1, No,. .. are some positive integers (zoom factokg)will increase ak increases.

Then we can compose this mappings. For example, a letteA, can be first replaced by a
N1 x N; squares,(z) filled by As-letters. Then each of these letters can be replacedNpy-a\o-
square filled byAg-letters according te; and we get &oN1 x NgN1-square filled byAp-letters; we
denote this square kg1(sy(2)) (slightly abusing the notation).

We call all this (i.e., the sequence Af, Nk, sc) a substitution family Such a family defines
a class ofAg-configurations compatible with it (in the same way as in ®ed8). Our plan is to
construct a substitution family such that:
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e every configuration compatible with this family iS9®-aperiodic;

e there exists a tile set and projection of it omg such that only compatible configurations
(and all compatible configurations) are projections ohgs.

In other words, we use the same argument as before (proviegréhi}#) but use a substitution
family instead of one substitution rule. This substitutiamily will have special properties:

A. Symbols used in different locations are different. Thisams tha®-letters that appear in a
given position of the squaresg, 1(z) for somez € A, 1, never appear in any other places of
these squares (for ay, thus, setd is split into Nk x N disjoint subsets used for different
positions inNg x Ng squares.

B. Different letters are mapped to squares that are far awBamming distance. This means that
if zw e A, are different, then the Hamming distance between imaga$z) ands,,1(w)
is large: the fraction of positions in thd x Nx square wherg;1(z) ands1(w) have equal
letters, does not exceeyl.

Hereg will be a sequence of positive reals such thiaty & < 0.01.

This implies that composite images of different lettersadse far apart. For example, the frac-
tion of positions in thépN; x NoN1 square whers; (S(z)) ands; (s(w)) coincide does not exceed
&+ €1 < 0.01. Indeed, irs;(z) ands;(w) we have at most;-fraction of matching letters; these
letters generate;-fraction of matchingAp-letters on the ground level; all other (non-matching)
pairs addep-fraction. In fact, we get even a stronger bound (L — &) (1— &1).

In the same way, if we take two different lettersAp and then go down to the ground level
and obtain two squares of sidgNz...Nx_1 x NgNz...Ny_1 filled by Ag-letters, the fraction of
coincidences is at mosg+ ...+ &_1 < 0.01.

This property of the substitution family implies the dediggoperty:

Lemma 2. If an Ag-configuration U is compatible with a substitution familyirag propertiegA)
and(B), then U is0.99-aperiodic.

Proof. Consider a shift vectof. If T is not a multiple ofNg (one of the coordinates is not a
multiple of Np), then property (A) guarantees that the original configaraand itsT -shift differ
everywhere. Now assume thatis a multiple ofNp. ThenT induces aT /Np-shift of an A;-
configurationU; that is as;-preimage olJ. If T is not a multiple ofNgN;, thenT /Np is not a
multiple of N; and for the same reason tfigNp-shift changes all the letters . And different
letter inA; are mapped tdlp x Ng squares that coincide in at magtfraction of positions.

If T is a multiple ofNgN1 but notNgN; N, we get aT /(NpN;) shift of Ax-configurationU,
that changes all its letters, and different letters giveasesithat are + (&9 + £1) apart. The same
argument works for the higher levejs.

It remains to construct a substitution family that has proese (A) and (B), and can be enforced
by a tile set. The property (B) (large Hamming distance) andard for coding theory, and the
classical tool is the Reed—Solomon code.
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Let us remind the idea of the Reed-Solomon codes (for destadse.g. [J4]). The codewords of
the Reed—Solomon code are tables of (values of) polynomidleunded degree. More precisely,
we fix some finite field?q of sizeq and an integed > 0. Letp(x) = ag+ayx+ ... +ag 1x37*
be a polynomial oveF of degree less thad. Then the codeword correspondingx) (i.e.,
the encoding of the sequenag,...,aq_1) is a vector in(Fg)9 (i.e., a sequence af elements of
the field), which consists of the values of this polynomiahguited at all points € Fq. Thus, for
given parameters andg, the code consists of codewords. Since two polynomials of degree less
thand can coincide in at mosd — 1) points, the distance between any two codewords is at least
g—d-+ 1. Of course, this construction can be used even if the dergth of the codewords is
not a size of any finite field; we can choose a slightly larged B&d use only part of its elements.)

Now we embed these codes in a family of substitution rulesstFiet By be a finite field
(we specify its size below) andi be equal tdBy x {0,1,...,Ny —1} x {0,1,...,Nx —1}; let us
agree that we use lettetb,i, j) only in (i, j)-position of ans,1-image. This trivially implies
requirement (A).

Then we construct a code that encodes e8gh-letterw by a a string of Iengtthf made of
By-letters (arranged in a square); adding the coordinategetsg . ;-image ofw. Thus, we need a
sequence of codes:

s1 AL — BQOXNO, s.t.si(a), si(aj) coincide at most igp-fraction of all positions (if # j)

S A — BTlXNl, s.t.s(a), $2(aj) coincide at most iz -fraction of all positions (if # j)

To satisfy requirement (B), we need a code with the Hammistadce (between every two code-
words) at least1 — g)N2. The Reed—Solomon codes works well here. The size of thedéid
be equal to the length of the codeword, i.Idf,. Let us decide thal is a power of 2 and the
size of the fieldBy is exactIlef. (There are fields of sizée' Zor everyt = 1,2,3,...; we could
use alsdZ/pZ for prime p of an appropriate size.) To achieve the required code distame use
polynomials of degree less tha(Nkz. The number of codewords (polynomials of degree less than
skle) is at least &N (even if we use only polynomials with coefficients 0 and 1)isTik enough
if

[Apr] < 250

Recalling thatAx, 1| = |Bky1] - NR2+1 and thatBy 1 is a field of sizel\lél, we get the inequality

2
Ne, 1 < 25N or 4logNg. 1 < eNZ.

Now let N, = 2¥+¢ for some constant; we see that for large enougtthis inequality is satisfied
for g with sum less than.01 (or any other constant), since the left-hand side is timel while
the right-hand side is exponential.

Now it remains to implement all this scheme using tiling suléAs we have discussed, the
zoom factorN, = 24+ js OK for the construction. This factor leaves enough spadesep two
substitution letters (for the tile itself and its fatherjil since these letters require linear size (in
k). Moreover, we have enough time to perform the computatiortbe finite fields needed to
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construct the error correction code mappings. Indeedkitesel macro-tile we are allowed to use
exponential (in the bit size of the field element) time. Redhtimat one can operate with elements
in the field of size 2using polinomial (irr) time; to this end we need to construct some irreducible
polynomialp of degreea over the field of two elements and then perform arithmeticagpens (on
polynomials) modul@. All this operations can be done by deterministic algorghmpolynomial
time, see, e.9.[]23]. Thus, we can reuse here the constnuztithe proof of Theorefi 3.

Remark. We can also get an@9-aperiodic tile set as a corollary of the result of nextise¢
indeed, we construct there a tile set such that any tilingestala horizontal sequence with high
complexity substrings, and such a sequence cannot mag&thwisll after a shift (in fact, to get
0.99-aperiodicity we would need to replace a binary alphalgea barger finite alphabet in this
argument). We can superimpose this with a similgt-@@ated construction; then any non-zero
translation will shift either vertical or horizontal seaquee and therefore change most of the posi-
tions. Note that in this way we can also get a tile set that39-@ar from every periodic pattern (a
slightly different approach to define “strong aperioditity

However, we preferred to present in this section a more exfind simpler) construction that
does not refer to (rather complicated) arguments in Sefition

7 Tile set that has only complex tilings

In this section we provide a new proof of the following resudm [[7]:

Theorem 8. There exists a tile sat and constants,c> 0 and ¢ such thatr-tilings exist and in
everyt-tiling T every Nx N-square has Kolmogorov complexity at leagtle- c,.

Here Kolmogorov complexity of a tiled square is the lengttite shortest program that de-
scribes this square. We assume that programs are bit strirgsnally speaking, Kolmogorov
complexity of an object depends on the choice of programrtanguage (consul{]31] for the
definition and properties of Kolmogorov complexity). Howevin our case the choice of pro-
gramming language does not matter, and you may think of Kgbmav complexity of an object
as the length of the shortest program in your favorite prognéng language that prints out this
object. We need to keep in mind only two important propemiekolmogorov complexity. First,
the Kolmogorov complexity function is not computable, Bupper semicomputahl@his means
that there is an algorithm that for a givarenumerates all objects that have complexity less than
n. It can be done by the brute force search over all short gagmms: we cannot say in advance
which programs stop with some output and which do not; but areran all programs of length
less tham in parallel, and enumerate the list of their outputs, as sprograms stop. Second,
any computable transformation (e.g., the change of engdpdimanges Kolmogorov complexity at
most byO(1). We refer to [[[7] for the discussion of Theordin 8 (why it is opdi, why the exact
value ofc; does not matter etc.) and other related results.
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7.1 A biinfinite bit sequence

Proof. We start the proof in the same way as [ih [7]: we assume thdit glackeeps a bit that
propagates (unchanged) in the vertical direction. Thertiéing contains a biinfinite sequence of
bits ey (wherei € Z). Any N x N square contains ax-bit substring of this string, so if (for large
enoughN) everyN-bit substring oftw has complexity at leastN for some fixedc;, we are done.

We say that a sequencghasLevin’s propertyif every N-bit substringx of w has complexity
Q(N). Such a biinfinite sequence indeed exists (§ee [7]; anotioaf pan be obtained by using
Lovasz local lemma, sef J30]). So our goal is to formulateditules in such a way that a correct
tiling “ensures” that the biinfinite sequence embedded imdeed has this property.

The set of all “forbidden” binary strings, i.e., stringsuch thak (x) < c1|x| — ¢z (hereK(x)
stands for Kolmogorov complexity of and|x| stands for the length of) is enumerable: there is
an algorithm that generates the list of all forbidden suibgs. It would be nice to embed into the
tiling a computation that runs this algorithm and compatgsutput strings with the substrings of
w; such a computation blows up (creates a tiling error) if ®didden substring is found.

However, there are several difficulties.

e First of all, our self-similar tiling contains only finite agputations; the duration depends
on the zoom factor and may increase as the level increasggetbmacro-tiles keep longer
computations), but at any level the computations are fiffités is a problem since or a given
stringx we do not knowa priori how much time the shortest program fauses, so we never
can be sure that Kolmogorov complexity»ois large. Hence, each substringcofhould be
examined in computations somehow distributed over infiniteany macro-tiles.

e The computation at some level deals with bits encoded in éfie of that level, i.e., with
macro-tile states. So the computation cannot achieve th@bihe sequence (that are “deep
in the subconscious”) directly and some mechanism to digntbiet is needed.

Let us explain how to overcome these difficulties.

7.2 Bits delegation

A macro-tile of levelk is a square whose sidelig = Ng- N - ...-Nx_1, SO there aré&y bits of the
sequence that intersect this macro-tile. Let us delegate @ahese bits to one of the macro-tiles
it intersects. Note that macro-tile of the next level is mati®l, x N, macro-tiles of levek. We
assume thalg is much bigger thahy, (more about choice dflg later); this guarantees that there
are enough macro-tiles of levie(in the next level macro-tile) to serve all bits that intextsthem.
Let us decide thath (from bottom to top) macro-tile of levélin a (k+ 1)-level macro-tile serves
(consciously knows, so to saith bit (from the left) in its zone, see Fif] 5. Sinbg > Ly, we
have much more macro-tiles of leve{inside some macro-tile of levéh- 1) than needed to serve
all bits. So somé-level macro-tiles remain unused.

So each bit (each vertical line) has a representative ory égeel — a macro-tile that con-
sciously knows this bit. However, we need some mechanisaigtiarantee that this information
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N tiles of sizely x L

Figure 5: Bit delegation

is indeed true (i.e., consistent on different levels). QGnltbttom level it is easy, since the bits are
available on the same level.

To guarantee the consistency we use the same trick as iroS@ctiat each level macro-tile
keeps not only its own bit but also its father’s bit and makesassary consistency checks. Namely,
each macro-tile knows (has on its computation tape):

the bit delegated to this macro-tile;

the coordinates of this macro-tile in its father macro-iteat are already used in the fixed-
point construction); thg-coordinate at the same time is the position of the bit deéztj
this macro-tile (relative to the left boundary of the matte}.

the bit delegated to the father of this macro-tile;

the coordinates of the father macro-tile in the grandfathacro-tile.

This information is subject to consistency checks:

¢ the information about the father macro-tile should coiecwith the same information in
neighbor tiles (unless they have a different father, i.ee of the coordinates is zero).

o ifit happens that the bit delegated to the father macraditbe same bit as delegated for the
tile, these bits should match;

e it can happen that the macro-tile occupies a place in itefatiacro-tile where some bits of
father’s coordinates (inside grandfather macro-tilehertiit delegated to the father are kept;
then this partial information on the father level should beaked against the information
about father coordinates and bit.
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These tests guarantee that the information about fathkeisame in all brothers, and some of
these brothers (that are located on the father tape) cak dh&gainst actual father information;
at the same time some other brother (that has the same d=ldgatas the father) checks the
consistency of the delegated bits information.

Note that this scheme requires that not onlyNpdut also lod\Nk. 1 is much less thahly 1.
This requirement, together with the inequality = No- Nz -...Nx_1 < Nk (discussed earlier) is
satisfied ifNg = QCk whereQ is a large enough constant (this is needed also to make nikso-
of the first level large enough) amd> 2 (S0 14+ ¢+ + ...+ 1 < ).

Later, in Sectio 13, the choice ohas to be reconsidered: we need 2 < 3 to achieve error
correction, but for our current purposes this does not matte

7.3 Bit blocks checked

We explained how macro-tile of any level can have a true mfdion about one bit (delegated to
it). However, we need to check not bits, but substrings (anali a tiling error if a forbidden string
appears). Note that it is OK to test only very short substricmmpared to the macro-tile siZdj:

if this test is done on all levels, this restriction does n@vent us from detecting any violation.
(Recall that short forbidden substrings can appear veeyitathe generation process, so we need
computation at arbitrary high levels for this reason, t00.)

So we need to provide more information to macro-tiles. It bardone in the following way.
Let us require that a macro-tile contains not one bit but aigaf bits that starts at the delegated
bit and has length depending on the lek€hnd growing very slowly wittk, say, logloglod is
slow enough). If this group goes out of the region occupied byacro-tile, we truncate it.

Similarly, a macro-tile should have this information foettather macro-tile (even if the bits are
outside its own region), this information should be the sémndrothers and needs to be checked
against the delegated bits on the macro-tile level and pietmformation on the father level.

The computation in the computation zone runs the procesgémerates the list of all forbid-
den strings (strings that have too small Kolmogorov comptgand checks the forbidden strings
that appear against all the substrings of the group of bagaile to this macro-tile. This process
is time- and space-bounded, but this does not matter sirexy string is considered on a high
enough level.

Our construction has some kind of duplication: we first gotga the consistency of informa-
tion for individual bits, and then do the same for substringke first part of the construction is
still needed, since we need arbitrary long substrings toetegated to macro-tiles (of high enough
level), so delegation of substrings cannot start from tleeigd level where the tile size is limited,
so we need to deal with bits separately.

7.4 Last correction

The argument explained above still needs some correcti@cls¥n that every forbidden string
will be detected at some level where it is short enough coetpérthe level parameters. However,
there could be strings that never become a part of one méerotnagine that there is some
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Figure 6: Degenerate case: An infinite vertical line is a latzum between macro-tiles of all levels.

vertical line that is a boundary between macro-tiles ofealéls (so we have bigger and bigger tiles
on both sides, and this line is still the boundary betweemthsee Fig[]6). Then a substring that
crosses this line will be never checked and therefore weatajuarantee that it is not forbidden.

There are several ways to get around this problem. One caaedbat each macro-tile contains
information not only about blocks inside its father madte4but in a wider regions (say, three times
wider, including uncle macro-tiles); this information st be checked for consistency between
cousins, too. This trick (extension of zones of responigytlibr macro-tiles) will be used later in
Section[B.

But to prove Theoreif] 8 a simpler solution is enough. Notedhan if a string on the boundary
is never checked, its parts (on both sides of the boundagy)artheir complexity is proportional
to their length. And one of the parts has length at least Hati@original length, so we still have
a complexity bound, just the constant is twice smaller.

This finishes the proof of Theorejh 8.

8 Subshifts

The analysis of the proof in the previous section shows thegn be divided into two parts. We
definedforbiddenstrings as bit strings that are sufficiently long and have merity at most
a - (length. We started by showing that biinfinite strings without falien factors (substrings)
exist. Then we constructed a tile set that contains suchérbte string in any tiling.

The second part can be separated from the first one, and indkiiere get new proofs for some
results of S. Simpsorj [B2] and M. Hochm4n][18] about effetyivlosed subshifts.

Fix some alphabei. LetF be a set oA-strings. Consider a s& of all biinfinite A-sequences
that have no factors (substrings) fn This is aclosed1-dimensional subshifover A, i.e., a
closed shift-invariant subset of the space of all biinfidtsequences. If the sEtis (computably)
enumerableS: is called areffectively closed-dimensional subshiftver A. If F is finite, S is
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called asubshift of finite type

We can define 2-dimensional subshifts in a similar way. Maexigely, letF be a set of
two-dimensional patterns (squares filled witHetters). Then we can consider a §etof all A-
configurations (= mappingé? — A) that do not contain any pattern frafn This is a closed shift-
invariant set ofA-configurations (= 2-dimensional closed subshift a&gr If F is (computably)
enumerableS: is calleda 2-dimensional effectively closed subsluifer A. If F is finite, S is
calleda 2-dimensional subshift of finite type

All (non-empty) 1-dimensional subshifts of finite type alacontain periodic sequences.
Berger’s theorem says that for two-dimensional subsHifts mot the case. Indeed, a tile set can
be transformed into a subshift since color matching coowlits local, and there exist aperiodic
tile sets. Moreover, 2-dimensional subshifts of finite tygse powerful enough to simulate any
effectively closed 1-dimensional subshift in the follogisense:

Theorem 9. Let A be some alphabet and let S bedimensional effectively closed subshift over A.
Then there exists an alphabet B, a mapping@r— A, and a2-dimensional subshift 8f finite type
over B such that r-images of configurations ina®e (exactly elements of S extended vertically
(vertically aligned cells contain the same A-lejter

(As we have mentioned, this result was independetly obdanyeAubrun and Sablik using
Robinson-style aperiodic tiling§l[2].)

Proof. The proof uses the same argument as in Thedjem 8. Each celtomains arA-letter
that propagates vertically. Computation zones in mades-fjenerate (in available space and time)
elements of the enumerable set of forbidéesubstrings and compare them waksubstrings that
are made available to them. It remains to note that tilingiregnents (matching colors) are local,
i.e., they define a finite type 2-dimensional subshift.

Note that now the remark of Sectipn]7.4 (the trick of extensibzones of responsibility for
macro-tiles) becomes crucial, since otherwise the image afnfiguration may be a concatenation
of two sequences (a left-infinite one and a right-infinite Jpreach sequence does not contain
forbidden patterns but forbidden patterns may appear heaneeting point. O

A similar argument shows that every 2-dimensional effetdyivclosed subshift can be repre-
sented as an image of a 3-dimensional subshift of finite tgfter(a natural extension along the
third dimension), any 3-dimensional effectively closedshift is an image of a 4-dimensional
subshift of finite type, etc.

This result is an improvement of a similar one proved by M. ktoan (Theorem 1.4 i 18],
where the dimension increases by 2), thus providing a swwf Problem 9.1 in this paper. Note
also that it implies the result of S. Simpsdn][32] where lehsional sequences are embedded
into 2-dimensional tilings but in some weaker sense (defineégrms of Medvedev degrees).

One can ask whether a dimension reduction is essential Rere@xample, is it true that every
2-dimensional effectively closed subshiftis an image ois@-dimensional subshift of finite type?
The answer for this question (and related questions in hidingensions) is negative. This follows
from an upper bound if]7] saying that every tile set (unlebas no tilings at all) has a tiling such
that alln x n squares in it have complexi®(n) (this result immediately translates for subshifts of
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finite type) and a result fronj JBO] that shows that some nopigmeffectively closed 2-dimensional
subshift has x n squares of complexit®(n?). Therefore the latter cannot be an image of the first
one (complexity can only decrease when we apply an alphadepimg).

9 Random errors

9.1 Motivation and discussion

In what follows we discuss tilings with faults. This meanattthere are some places (faults) where
colors of neighbor tiles do not match. We are interestedabust” tile sets which maintain some
structure (for example, can be converted into an errordifewy by changing a small fraction of
tiles) if faults are sparse.

There are two almost equivalent ways to define faulty tilingye can speak aboatrors(places
where two neighbor tiles do not match) looles(places without tiles). Indeed, we can convert a
tiling error into a hole (by deleting one of two non-matchiilgs) or convert a 1-tile hole (one
missing tile) into a small number (at most 4) errors by plgan arbitrary tile there. Holes look
more naturally if we start with a set of holes and then try te the rest; on the other hand, if
we imagine some process similar to crystallization whetiragtiries to become correct by some
trial-and-error procedure, it is more natural to considerg errors. Since it does not make serious
difference from the mathematical point of view, we use bo#taphors.

We use a hierarchical approach to hole patching that goéstb& Gacs who used it in a much
more complicated situatiof JIL3]. This means that first wedrpatch small holes that are not too
close to each other (by changing small neighborhoods artinamd). This (if we are lucky enough)
makes larger (and still unpatched) holes more isolatedesihere are less small holes around.
Some of these larger holes (that are not too large and notdse to each other) can be patched
again. Then the same procedure can be repeated again faxhevel. Of course, we need some
conditions (that guarantee that holes are not too denseake ithis procedure successful. These
conditions are described later in full details, but the imi@ot question is: How do we ensure that
these conditions are reasonable (i.e., general enough)2r@wer is: we prove that if holes are
generated at random (each position becomes a hole indegndeother positions with small
enough probabilitg) then the generated set satisfies these conditions wittapiidly 1.

From the physics viewpoint, this argument sounds rathekwegave imagine some crystal-
lization process, errors in different positions are noepehdent at all. However, this approach
could be a first approximation until a more adequate one isdou

Note that patching holes in a tiling could be considered asreerglization of the percolation
theory. Indeed, let us consider a simple tile set made of ii&s: tone has all black sides and the
other has all white sides. Then the tiling conditions redodée following simple condition: each
connected component of the complement to the holes seher@bmpletely black or completely
white. We want to make small corrections in the tiling thatchahe holes (and therefore make
the entire plane black or white). This means that initialther we have small black “islands” in
a white ocean or vice versa, which is exactly what percatatiory says (it guarantees that if
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holes are generated at random independently with smalbpitity, the rest consists of one large
connected component and many small islands.)

This example shows also that simple conditions like smaidbdg (in Besicovitch sense) of the
holes set are not enough: a regular grid of thin lines can @&l density but still splits the plane
into non-connected squares; if half of these squares ack blad the others are white, no small
correction can patch the holes.

One can define an appropriate notion of a sparse set in thedvark of algorithmic random-
ness (Martin-Lof definition of randomness) considerindividual random sets (with respect to
Bernoulli distributionB) and their subsets as “sparse”. Then we can prove that amgespat
(in this sense) satisfies the conditions that are needed ke the iterative patching procedure
works. This algorithmic notion of “sparseness” is discualsise]g]. However, in the current paper
we do not assume that reader is familiar with algorithmicmamness and restrict ourselves to the
classical probability theory.

So our statements become quite lengthy and use probabijisntifiers “for almost all” (=with
probability 1). The order of quantifiers (existential, ugmsal and probabilistic) is important here.
For example, the statement “a tile gas robust” means thdhere existsomee > 0 such thafor
almost all E (with probability 1 with respect to the distribution wheracé point independently
belongs toE with probability €) the following is true:for every(t,E)-tiling U there existsa 1-
tiling U’ (of the entire plane) that is “close” td. Here by(t, E)-tiling we mean a tiling ofZ?\ E
(where existing pairs of neighbor tiles match).

9.2 Islands of errors

In this section we develop the notion of “sparsity” based lom iterative grouping of errors (or
holes) and prove its properties.

Let E C Z2 be a set of points; points i are calledirty; other points arelean Let3 > a >0
be integers. A non-empty sktC E is an(a, 3)-islandin E if:

(1) the diameter oK does not exceed,;

(2) in theB-neighborhood oK there is no other point frork.

(Diameter of a set is a maximal distance between its elem@naslistancel is defined as.,
i.e., the maximum of distances along both coordingBesgighborhood oK is a set of all points
y such thatd(y,x) < 3 for somex € X.)

It is easy to see that two (different) islands are disjointd(¢he distance between their points
is greater thar).

Let (a1,B1), (a2,B2),...be a sequence of pairs of integers and< G for all i. Consider
the following iterative “cleaning” procedure. At the firgep we find all(as, B1)-islands fank 1
islandg and remove all their elements frol (thus getting a smaller s&;). Then we find all
(ag, B2)-islands inE; (rank 2 islandg; removing them, we g, C E;, etc. Cleaning process is
successfuf every dirty point is removed at some stage.

At the ith step we also keep track of tifieneighborhoods of islands deleted during this step.
A point x € Z? is affectedduring theith step ifx belongs to one of these neighborhoods.

The setE is calledsparse(for a given sequence;, 5) if the cleaning process is successful,
and, moreover, every poirte Z? is affected at finitely many steps only (i.&.is far from islands
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Figure 7: Explanation tree; vertical lines connect difféneames for the same points.

of sufficiently large ranks).

The values ofrj and5; should be chosen in such a way that for sufficiently smaall 0 aBe-
random set is sparse with probability 1. (As we have saig,jttstifies that our notion of sparsity
is not unreasonably restrictive.) The sufficient condsiane provided by the following statement:

Lemma 3. Assume that

SZBk<an§Bn for every n and Zlog—iﬁi<oo
|

k<n

Then for all sufficiently smalt > 0 a B;-random set is sparse with probability

Proof of Lemma[B. Let us estimate the probability of the evenis“not cleaned aftem steps”
for a given pointx (this probability does not depend ajh If x € Ej,, thenx belongs toE,_; and
is not cleaned during theth step (when ay, Bn)-islands inE,_1 are removed). Ther € E,_1
and, moreover, there exists some other painE E,_; such thatd(x,x;) is greater tharoy,/2
but not greater thap, + a,/2 < 2f,. Indeed, if there were no such in E,_1, then theay/2-
neighborhood ok in E,_1 is an(ap, Bn)-island inE,_1 andx would be removed.

Each of the pointx; andx (that we denote alsgy to make the notation uniform) belongs to
En_1 because it belongs t,_, together with some other point (at the distance greaterdhayy/ 2
but not exceedingf2,_1). In this way we get a tree (Figufg 7) that “explains” whigelongs tdy,.

The distance betwee andx; in this tree is at least, /2 while the diameter of the subtrees
starting atxg andx; does not exceel;_,23. Therefore, the Lemma’s assumption guarantees that
these subtrees cannot intersect and, moreover, that adldaties of the tree are different. Note that
all 2" leaves of the tree belong = Ep. As every point appears i independently from other
points, such an “explanation tree” is valid with probapils'rtz". It remains to estimate the number
of possible explanation trees for a given point

To specifyx; we need to specify horizontal and vertical distance betwgesind x;. Both
distances do not excee@ therefore we need about 21@g,) bits to specify them (including
the sign bits). Then we need to specify the distances betwgeand xp1 as well as distances
betweerx;g andxss; this requires at most 41¢43,-1) bits. To specify the entire tree we therefore
need

210g(4Bn) +4109(4Bn_1) + 810g(4Bn2) + ...+ 2"l0g(4B1)
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bits, and that is (reversing the sum and taking out the f&X}arqual to 2(log(481) +109(483z2) /2+
...). Since the serie§ logfB,/2" converges by assumption, the total number of explanateestr
for a given point (and given) does not exceed®?", so the probability for a given pointto be in
En, for aBg-randomE does not exceee? 2°(2") which tends to 0 (even super-exponentially fast)
asn — o, assuming that is small enough.

We conclude that the evenx is not cleaned” (for a given poinf) has zero probability; the
countable additivity guarantees that with probability paiints inZ? are cleaned.

It remains to show that every point with probability 1 is afied by finitely many steps only.
Indeed, ifx is affected by stem, then some point in it§,-neighborhood belongs 16,, and the
probability of this event is at most

O<an>82”20(2“) _ 22|Ogﬁn+0(2”)flog(l/s)2”;

the convergence conditions guarantees thaBieg o(2"), so the first term is negligible compared
to others, the probability series converges (for small gh@) and the Borel-Cantelli lemma gives
the desired resultm

Our next step: by definition a sparse set is split into a unibrslands of different ranks;
now we prove that these islands together occupy only a sradllgs the plane. To make this
statement formal, we use the notion of Besicovitch sizegiighof a sefE ¢ Z2. Let us recall the
definition. Fix some poinO of the plane and consider squares of increasing size ceni(@
For each square consider the fraction of points in this st belong t&. The limsup of these
frequencies is calleBesicovitch densitgf E. (Note that the choice of the center podtloes not
matter, since for any two point3; andO, large squares of the same size centerefiaand O»
share most of their points.)

By definition the distance between two rakkslands is at leasBc. Therefore theB/2-
neighborhoods of these islands are disjoint. Each of tleds contains at mostf points (it
can be placed in a rectangle that has sides at mgstEach neighborhood has at Ie%tpoints
(since it contains @ x Px-square centered at any point of the island). Therefore tinenwof all
rankk islands has Besicovitch density at mést/Bx)?. Indeed, for a large square the islands near
its border can be ignored, and all other islands are sureibg disjoint neighborhoods where
their density is bounded b /B« )?.

One would like to conclude that the overall density of akhigds (of all ranks) does not exceed
Zk(OIk/Bk)Z- However, the Besicovitch density is in general not coulgtabmi-additive (for ex-
ample, the union of finite sets having density 0 may have tiet¥i But in our case the second
condition of the definition of a sparse set (each point is éy only finitely many neighbor-
hoods of islands) helps.

Lemma 4. Let E be a sparse set for a given familyogfand . Then Besicovitch density of E is

O(3 (a/B)?).

Proof of Lemmal#. LetO be a center point used in the definition of Besicovitch dgn8iy
definition of sparsity, this point is not covered By-neighborhoods of rankislands ifk is greater
than someK. Now we split the seE into two parts: oneK<) is formed by islands of rank at
mostK and other E-) is formed by all islands of bigger ranks. As we have just s@ea large
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Figure 8: Rankk islands form a set of a small density. (In this picture eatdnidis shown as a
rectangle, which is not always the case.)

square the share & is bounded byzkgK(ork/Bk)2 up to negligible (as the size goes to infinity)
boundary effects (we consider separately daghK and then sum over al < K). The similar
bound is valid for rank islands withk > K, though the argument is different and a constant factor
appears. Indeed, such an isldndas c-neighborhood that does not contain the center pOint
Therefore, any squai®centered a0 that intersects the island, contains also a significantgiart
its Bx/2-neighborhood\: the intersection ol andScontains at leasiB/2)? elements.

part of thefc/2-neighborhood
of anisland

part of thef/2-neighborhood

of the island that is guaranteed
to be insideS

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 9: Together with a point in a raklksland, a squarg& contains at Ieas(iﬁk/z)Z points of its
(Bx/2)-neighborhood.

Therefore, the share &. in Sis bounded by & .« (ak/Bx)?. [

Remark. It is easy to choosey and B¢ satisfying the conditions of Lemmfa 3 and having
arbitrarily smallz(ork/ﬁk)2 (take geometric sequences that grow fast enough). Thereferget
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the following well known result as a corollary of Lemnids 3 ghdor everya > 0 there exists
€ > 0 such that with probability 1 8.-random set has Besicovitch density less thar(In fact,

a much stronger result is well known: by the law of large nuraBg-random set has Besicovitch
densitye with probability 1.)

In fact we will need a slightly more complicated version oinbma[$#. We are interested not
only in the Besicovitch density of a sparse Bdiut also in the Besicovitch density of a larger set:
the union ofy-neighborhoods of rank islands inE. Herey are some numbers (in most appli-
cationsy, = cay for some constant). The same argument gives the bourigl(4ay + 2%/ B)?.
Assuming thaty > ax, we can rewrite this bound &(5 (y/B«)?). So we arrive at the following
statement:

Lemma 5. Let E be a sparse set for a given familyogfand B« and lety, > ayx be some integers.
Then the union ofk-neighborhoods of level k islandsver all k and all islandshas Besicovitch

density @5 (w/B)?)-

9.3 Islands as atool in percolation theory

Let us show how some basic results of percolation theory egrdved using the island technique.

Theorem 10. For someay and f satisfying Lemmg] 3 the complement of any sparse set E con-
tains exactly one infinite connected component C; the camgaié of C has Besicovitch density

O(an/B)?.

Proof. Let y = 2ay. (The choice ofay and B will be discussed later.) For evekyand for
every rankk island fix a point in this island and consider teneighborhood of this point. Itis a
square containing the entire island plus an additionalritgczone of widthay and contained in
the y-neighborhood of the island.

| M( | M( |
P
ayg

Figure 10: A point in a rank island, itsy-neighborhood and the security zone of widih
It is enough to prove the following three statements:

e The unionU of all these squaréer all ranks) contains the set E and has Besicovitch density

O(3 (aw/B)?).

e The complement of U is connected
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e There are no other infinite connected component in the camgaiéof E

The first statement is a direct corollary of Lemfipa 5 above.

To prove the second statement consider two poiaisdy that lie outsidéJ. We need to prove
thatx andy can be connected by a path that is entirely outsidéet us conneck andy by some
path (say, one of the shortest paths) and then push this patild. Consider squares of maximal
rank that intersect this path. For each of them consideritstanioment when the path gets into the
square and the last moment when the path goes out, and cohesetwo points by a path outside
the square:

,,,,,

Figure 11: Pushing a path out of the square.

Let us assume thai; > 2y; then the new path iag-separated from rankislands. Note also
that the shift (the distance between the original path aedlifted one) does not exceeg.3

Then we can do the same for islands of riarkl (pushing the path out of surrounding squares).
Note that since the shift is bounded by 3;, we will not bump into islands of rank assuming
that 341 is less than the width of the security zowe,

Repeating this process for decreaskygve finally get a path that connectsandy and goes
entirely outsidéJ. For this we need only that the total shift on the smallerlgwee sum J;_y i
is less tharag. (This is easy to achieve @y, Bx andy, are suitable geometric sequences.)

It remains to show that every infinite connected set intéssine complement df. To show
this, let us take a big circle centered at the origin and theshpt out ofU as described above.
Since the center is outsigg-neighborhoods of islands for large enougtwe may assume that
the size of islands that intersect this circle are small caneqb to its radius (say, less than 1% of it;
this can be guaranteed if the geometric sequeageBc andy, grow fast enough). Then after the
change the circle will still encircle a large neighborhoddhe origin, so any infinite connected
component should cross such a circle.

9.4 Bi-islands of errors

In the proof of our main result (Sectign]13) we need a morecdtdiversion of the definition of
islands. In fact we need such a definition that some countespeemma[B could be applied even
if the sequence lof, grows much faster thar'Ze.g., forB, = c¢29"). In this section we define
bi-islands (that generalize the notion of islands from ®ad®.2) and prove bi-islands versions of
LemmdB, Lemmf 4, and Lemmija 5. The reader can safely skipdtti®s for now and return here
before reading Sectidn]13.
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Let E C Z? be a set of points. As in Sectign P.2, we call point&inlirty, and the other points
areclean Letf3 > a > 0 be integers. A non-empty s¥tC E is an(a, 3)-bi-islandin E if X can
be covered by the union of some sEgs X; such that:

(1) the diameters okp andX; do not exceed;

(2) in theB3-neighborhood oKq U X; there are no points frof \ (XoU Xz).

(3) the distance betweefy andX; does not exceefl.

(See Fig[T1R2.) In particular, afu, B)-island is a special case of o, 3)-bi-island (letX; be

Figure 12: Bi-island is a union of two “islands” that are @ds each other.

empty).

Note that one may split the same bi-island iXgoandX; in different ways.

Obviously, every two different bi-islands are disjoint. Mover, the distance between them is
greater tharB. The diameter of a bi-island is at md2o + ).

Let (a1,B1), (a2,B2),...be a sequence of pairs of integers anc B for all i. We define
an iterative cleaning procedure for bi-islands. At the fitefp we find all a, 81)-bi-islands and
remove all their elements fro (getting a smaller seE;). Then we find inE; all (az, 32)-bi-
islands; removing them, we gBp C E;, etc. Cleaning process ssiccessfulf every dirty point is
removed at some stage.

Similarly to the case of islands, we say that a paiatZ? is affectedduring step if x belongs
to thefi-neighborhood of one of bi-islands of rank

The seiE is calledbi-sparse(for a given sequence;, 3) if the cleaning process defined above
is successful, and, moreover, every poirt Z is affected at finitely many steps only (that means
thatx is far from bi-islands of sufficiently large ranks).

We choose the values af and; in such a way that for sufficiently smadl> 0 aBc-random
set is bi-sparse with probability 1. The main achievemen fethat the convergence condition is
now weaker than in the corresponding statement for islapeimmalB):

Lemma 6. Assume that
12kz Bk < an < B, for every n, and Z Iog_iﬁ. < o
<n |
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Then for all sufficiently smalt > 0 a B-random set is bi-sparse with probability

Proof of Lemma[§ is very similar to the proof of Lemrfja 3. At first weigstte the probability
of the event X is not cleaned aftar steps” for a given point. If x € Ej,, thenx belongs tdE,_; and
is not cleaned during theth step (wher{ap, Bn)-bi-islands inE,_; are removed). There€ E,_1.
Moreover, we show that there existo otherpointsx;, x> € E,_1 such that the three distances
d(x,x1), d(x,x2), d(x1,X%2) are all greater thaoy,/2 but not greater than3 + 2(an/2) < 3Bn.

Let X be thean/2-neighborhood ok in E. If Xy were an island, it would be removed. Since
it does not happen, there is a poxatoutsideXy but in thef,-neighborhood oK.

Let X; be thea,/2-neighborhood ok; in E. Again Xo andX; do not form a bi-island. Both
setsXp andX; have diameter at most,, and the distance between them is at nfiystSo the only
reason why they are not a bi-island is that there exists at ppia E outsideXoU X; but in the
Bn-neighborhood of it. The pointg, andx, have the required properties (the distandesx; ),
d(x,x2), d(X1,X2) are greater thaoy,/2 but not greater than3).

To make the notation uniform, we denotby xo. Each of the pointsgg, x;,x2 belongs tdE, 1.
This means that each of them belong&to, together with a pair of other points (at the distance
greater tham,_1/2 but not exceeding[®,_1). In this way we get a 3-ary tree that “explains” why
x belongs tdE,.

The distance between every two points amggdi, andx, in this tree is at least, /2 while
the diameters of the subtrees startinggtx;, andx, do not exceed;_,36. Thus, the Lemma’s
assumption guarantees that these subtrees cannot intensethat all the leaves of the tree are
different. The number of leaves in this 3-ary tree'isand they all belong t& = Ey. Every point
appears irE independently from other points; hence, one such an “egpi@mtree” is valid with
probabilitye3”. It remains to count the number of all explanation trees fgivan pointx.

To specifyx; andx, we need to specify horizontal and vertical distance betwgeamdx;, xo.
These distances do not excegsh,3therefore we need about 41@&g,) bits to specify them (in-
cluding the sign bits). Then we need to specify the distathet®eenxyy and Xg1, Xp2 as well
as the distances betweaiy and x;1,X12, and betweerxpg and X21,X22.  This requires at most
12log6f3,-_1) bits. To specify the entire tree we therefore need

4log(6Bn) + 12109 6B-1) +36l0g(6Bn_2) + ... +4-3"Llog(6B),

which is equal to 43"~1(log(6B;) +10g(6B2)/3+...). The seriesy logB,/3" converges by as-
sumption; so, the total number of explanation trees for argpoint (and givem) does not exceed
209G3") | Hence, the probability for a given poirtto be inE, for a B¢-randomE does not exceed
£3'203" which tends to 0 aB — » (assuming that is small enough).

We conclude that the evert fs not cleaned” (for a given poinx) has zero probability; hence,
with probability 1all points inZ? are cleaned.

It remains to show that every point with probability 1 is atied by finitely many steps only.
Indeed, ifx is affected by stem, then some point in it§,-neighborhood belongs 16,, and the
probability of this event is at most

of an> £3"00(8") __ 92loga+0(3")—log(1/€)3"
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From the convergence conditions we haveflpg- o(3"), so the first term is negligible compared
to others. The probability series converges (for small ghat) and the Borel-Cantelli lemma
gives the result;

By definition, a bi-sparse set is splitinto a union of bi-igla of different ranks. Such bi-islands
occupy only a small part of the plane:

Lemma 7. Let E be a bi-sparse set for a given familyogfand . Then Besicovitch density of E

is O3 (aw/By)?).

Proof of Lemma[J repeats the proofs of Lemfpa#.
Recalling Lemmd]5, we may consider a sequence of numpensch thaty, > ax. Then the
Besicovitch density of the union gf-neighborhoods of rank bi-islands (for allk and for all

islands) is bounded b(s (y/Bx)?).
However, this statement is not enough for us. In Segtipn 1@iNeeed a kind of “closure” of

y-neighborhood of a bi-island:

Definition. Let S be an k-level bi-island. We say thaty) € Z? belongs to theextendedy-
neighborhood of S if there exist two poititsy ), (x,y”) € Z? (with the same first coordinatsuch

thatdist(S, (x,y)) <y, dist(S (x,y")) <y,andy <y <Yy’ see Fig[13.

9
[

Figure 13: An extended neighborhood of a bi-island consifstise neighborhoods of its two parts
and a zone between them.

The meaning of the last definition is quite simple: we takeamy the points that are close to
Shbut also those points that are placed somehow between thleboehoods o0& andS;.

Lemma 8. Let E be a bi-sparse set for a given familyaf and By satisfying the conditions of
Lemmg. Letk be a sequence of numbers such thigk i, and the serie§ (y/Bk) converges.
Then the Besicovitch density of the union of extenglateighborhoods of rank k bi-islands in E

is bounded by Oy (W/Bk))-

Proof: Arguments are similar to the proof of Lemrfla 5. An extengiedeighborhood of a
k-level island can be covered by a rectangle of widily,) and heightO(B« + w); So its area is
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O(WBk) (sincey < Bx)). The distance between any two bi-islands of r&n& at leas{3x. Hence,
the fraction ofextendedx-neighborhoods of islands &(3 w/B«) (we get it instead of the bound
O(S (¥/Bk)?), which holds for simplgn-neighborhoods)p

Lemmas[BH8 will be used in Sectipn] 13. (The arguments of @esfflpLIR do not refer to
bi-islands.) These lemmas will be used fog; B« such that logy, ~ o for g > 2, B ~ a1, and
W = O(ay) or y = O(alf). Note that we cannot apply Lemmids 3 dhd 4 (ahsland9 for these
parameters because IBggrows faster than’2 So there we need to deal with bi-islands.

10 Robusttile sets

In this section we construct an aperiodic tile set whereateal defects can be healed.

,,,,,,,,,,,,,,,
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Figure 14: Patching holes

Let c; < ¢ be positive integers. We say that a tile seis (c;,Cy)-robustif the following
holds: For evenA and for everyr-tiling U of the c,A-neighborhood of a squarex A excluding
the square itself there exists a tiliNgof the entirecoA-neighborhood of the square (including the
square itself) that coincides with outside of thec;A-neighborhood of the square (see Fig. 14).

Theorem 11. There exists a self-similar tile set that(is, c2)-robust for some £and ¢.

Proof. For every tile selu it is easy to construct a “robustified” versiqn of p, i.e., a tile
setu’ and a mappin@: y’ — p such that: (ap-images ofu’-tilings are exactlyu-tilings; (b) p’
is “5-robust”: everyp’-tiling of a 5x 5 square minus 3 3 hole (see Fig[ 15) can be uniquely
extended to the tiling of the entirex65 square. (One can replace 5 by 4 in our argument using
more careful estimates.)

Indeed, it is enough to keep in ope-tile the information about, say,65 square inu-tiling
and use the colors on the borders to ensure that this infamiatconsistent in neighbor tiles.

This robustification can be easily combined with the fixethpoonstruction. In this way we
can get a 5-robust self-similar tile setf the zoom factoiN (which is considered to be fixed in this
argument) is large enough. Let us show that this set is(also,)-robust for some; andc; (that
depend o\, butN is fixed.)
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Figure 15: Filling a 3x 3-hole

Indeed, assume that a tiling of a large enough neighborhomehd anA x A hole is given.
Denote byk the minimal integer such th&tX > A (so thek-level macro-tiles are greater than the
hole under consideration). Note that the siz&tével macro-tiles is linear itk sinceNK < N - A.

In the tiling around the hole, axd x N block structure is correct except for tNeneighborhood
of the centralA x A hole. Indeed, the colors encode coordinates, so in everysmbed tiled region
coordinates are consistent. For similar reagéfis N2-structure is correct except for tie+ N2-
neighborhood of the hole, etc. Hence, for the chds&re get ak-level structure that is correct
except for (at most) & 3 x 3 squares of levet, so we can delete everything in these squares and
use 5-robustness to replace them with macro-tiles thaéspand to replacement tiles.

To start this procedure (and fill the hole), we need a coritigtonly in the O(NK)-neigh-
borhood of the hole (technically, we need to have a corréngtin the (3N")-neighborhood of
the hole; as RK < 3NA, we letc, = 3N). The correction procedure involves changes in another
O(NK)-neighborhood of the hole (technically, changes to(®@M) of the hole; Nk < 2NA, so we
letc; = 2N).

11 Robusttile sets with variable zoom factors

The construction from the previous Section works only fdf-sinilar tilings with a fixed zoom
factor. It is enough for simple applications, as we see béfo@Bection[IR. However, in the proof
of our main result in Sectiojp JL3 we need variable zoom faGorere we develop some technique
suitable for this case. This Section can be skipped now Istioitild be read before Sectipr 13.
Now we explain how to get “robust” fixed-point tilings with iable zoom factord\;, No,. ..
As well as in the case of a fixed zoom factor, the idea iskHatel macro-tiles are “responsible”
for healing holes of size comparable with this macro-tiles.
Let Ap < A1 <Ay < ... be asequence of integers. lat< ¢, be positive integers. We say
that a tile setr is (¢, c)-robust against holes of siz®), A, .. ., if the following holds: For every
n and for everyr-tiling U of c,Ag-neighborhood of a squads x A excluding the square itself
there exists a tilingy of the entirec,Ax-neighborhood of the square (including the square itself)
that coincides withJ outside of thec;Ax-neighborhood of the square. The difference with the
definition from Sectiof 30 is that we take only valdes {Ag, A1, ...} instead of holes of arbitrary
size.

Proposition 2. Assume a sequence of zoom factoyghbws not too fast and not too slofit is
enough to assume thai ¥ Clogk and CogNg 1 < Nk for a large enough C, cf. discussions in
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Sectior{P. Then there exists a tile set with variable zoom factgrgkNevel macro-tiles are of size
Lk =Np-...-Nx_1) thatis(cy, co)-robust(for some ¢ and @) against holes of sizegl Ly, ...

Proof. First, we apply the fixed-point construction from Sectiparfsl get a tile set which is
“self-similar” with variable zoom factorBl;, Ny, ... Denote by the family ofk-level macro-tiles
corresponding to this tile set.

Further we make a “robustified” version of this tile set. Testend we basically repeat the
arguments from Sectidn]10 (the proof of Theoifein 11). Thefice in the argument is that now
we deal with variable zoom factors, and sizes of holes aentélom the sequende), Ly, .. ..

Denote bypy the family of k-level macro-tiles for the new tiling. We need that theresei
a mappingd: py, — L such that: (a)-images ofpy-tilings are exactlyu-tilings; (b) py, is “5-
robust”: everypy-tiling of a 5x 5 square minus 3 3 hole (see again Fi§.-]15) can be uniquely
extended to the tiling of the entirex65 square.

To get such a robustification, it is enough to keep in eygrynacro-tile the information about
5x 5 square inug-tiling and use the colors on the borders to ensure thatrifosmation is coherent
in neighbor macro-tiles.

As usual, this robustification can be combined with the fipedit construction. We get a
5-robust macro-tiles for all levels of our construction.elfSsimilarity” guarantees that the same
property holds for macro-tiles of all ranks, which implidgetrequired property of generalized
robustness.

Indeed, assume that a tiling of a large enough neighborhanahd aA x A hole is given, and
A < Ly for somek. In the tiling around the hole, afi.; x L1) block structure is correct except
only for theL;-neighborhood of the hole. For similar reas@hs x Ly)-structure is correct except
for the (L1 + Ly)-neighborhood, etc. So we getkdevel structure that is correct except for (at
most) 9= 3 x 3 squares of sizex x Lx. Due to 5-robustness, this hole can be filled wkitlevel
macro-tiles. Note that reconstruction of ground levektileside a high-level macro-tile is unique
after we know its “conscious” memory (this memory is recamstied from the conscious memory
of the neighbor macro-tiles). [For the maximal complexily set (Sectiof]7) it is not the case, and
the absence of this property will become a problem in Seffwhere we robustify it. To solve
this problem, we will need to use error correcting codes.]

To implement the patching procedure (and fill the hole) wedneehave a correct tiling
in the O(Lk)-neighborhood of the hole. The correction procedure ir®lghanges in another
O(Lk)-neighborhood of the hole. More technically, we need to heweerrect tiling in the3L)-
neighborhood of a hole of size,, so we letc, = 3. Since the correction procedure involves
changes in Py-neighborhood of the hole, we lef = 2.

We can robustify tiling not only against holes, but agaipairs of holes To this end we
slightly modify our definition of robustness. LAy < A; <A < ... be an increasing sequence
of integers, andt; < ¢ be positive integers. We say that a tile seis (c1,cp)-robust against
pairs of holes of siz&g,As,..., if the following holds: Let us have two sek,H, C Z?, each
of them of diameter at mogy (for somek > 0). For everyt-tiling U of coAg-neighborhood of
the union(H; UH>) excludingH; andH, themselves there exists a tiling of the entirecAg-
neighborhood ofH1 UH2) (includingH; andH; themselves) that coincides with outside of the
c1Ax-neighborhood ofH1 UH>).
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A robustification against pairs of holes can be done in theesamy as the robustification
against a single isolated hole above. Indeed, if these tWestare far apart from each other, we
can “correct” them independently; if they are rather closedach other, we correct them as one
hole of (roughly) doubled size. So we can employ the samestdlmation technique as above;
we need only to take a large enough “radius of multiplicatibn(and useD-robustness instead of
5-robustness). So we get the following generalization opBsition[2:

Proposition 3. Assume a sequence of zoom factgrgghdws not too fast and not too slo§s.g.,
Nk > Clogk and CogNk.1 < N for a large enough & Then there exists a tile set with zoom
factors N (k-level macro-tiles should be of size£ Np- ... Nk_1) that is(cy, cz)-robust(for some

c1 and @) against pairs of holes of sizgll,,... for some ¢ and &.

Of course, similar propositions can be also proven forésptjuadruples and any other sets of
holes of bounded cardinality. But in this paper we considgy pairs of holes; this is enough for
our argument in SectignL.3.

12 Strongly aperiodic robust tile set

Now we are ready to apply islands technique to construct astatirongly aperiodic tile set. We
start with a formal definition of a tiling with errors (see rvation and discussion in Sectipn9.1).

Definition. For a subset E- Z2 and a tile setr we call by(t, E)-tiling any mapping
T:(Z°\E)—1

such that for every two neighbor cellsyxc Z?\ E, tiles T(x) and T(y) satisfy the tiling rules
(colors on adjacent sides mafctWe may say that T is &tiling of the plane with errors at points
of E.

Theorem 12. There exists a tile satwith the following properties(1) t-tilings of Z? exist; (2) for
all sufficiently smalk for almost everywith respect to B) subset EC Z? every(t,E)-tiling is at
least1/10 Besicovitch-apart from every periodic mappiAg — T.

Remark 1. Since the tiling contains holes, we need to specify how wattthe holes when
defining Besicovitch distance. We a@ot count points inE as points where two mappings differ;
this makes our statement stronger.

Remark 2. The constant 110 is not optimal and can be replaced by any other constant.

Proof. Consider a tile set such that (a) alt-tilings area-aperiodic for everyr < 1/4; (b) T is
(c1,C2)-robust for some; andc,. Such a tile set can be constructed by combining the argument
used for Theorerp 11 (p-B8) and Theorgm 4 (p. 14).

Our plan is to choose sonmg andfk such that:

¢ the conditions of Lemmp 3 (p.]30) are satisfied, and therefoesmdom error set with prob-
ability 1 is sparse with respect to thesgand B;
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o for every sparse s& C Z? every(t,E)-tiling can be iteratively corrected (by changing itin
the neighborhoods of islands of all ranks) into-&ling of the entire plane;

¢ the Besicovitch distance between the tilings before aret afirrection is small.

Then we conclude that the origin@l, E)-tiling is strongly aperiodic since the corrected tiling
is strongly aperiodic and close to the original one.
To implement this plan, we use the following lemma that déssrthe error correction process.

Lemma 9. Assume that a tile satis (cy, cp)-robust, B > 4cay for every k and a set E Z? is
sparse(with parametersy, Bx). Then everyt, E)-tiling can be transformed into a-tiling of the
entire plane by changing it in the union @c; ay)-neighborhoods of rank k islandfor all islands
of all ranks).

Proof. Note thaif/2-neighborhoods of rarikislands are disjoint and large enough to perform
the error correction of rank islands, sincg > 4coay. The definition of a sparse set guarantees
also that every point is changed only finitely many times (solimit tiling is well defined) and
that the limit tiling has no errors;

The Besicovitch density of the changed part of a tiling caestéenated using Lemni& 4: here
W = 2c10y is proportional toay, so the Besicovitch distance between the original and ctade
tilings (in Lemma[P) does not exce@ S (ak/B«)?). (Note that the constant iB-notation de-
pends orc;.)

It remains to chosey andB«. We have to satisfy all the inequalities in Lemnjias 3, Lenfijna 4
and Lemmd]9. To satisfy Lemnja 4 and Lemjha 9, we maglet ckay for large enougtt. To
satisfy Lemm4g]3, we may lety,1 = 8(B1+ ...+ Bx) +1. Thenay and By grow faster than any
geometric sequence (likdé multiplied by some exponent ik), but still logfx is bounded by a
polynomial ink and the series in Lemnjf 3 converges.

With these parameters (takiegarge enough) we guarantee that Besicovitch distance leetwe
the original(t, E)-tiling and the corrected-tiling does not exceed, say 100. Since the corrected
tiling is 1/5-aperiodic and 110+ 2- (1/100) < 1/5, we get the desired resyt.

13 Robusttile set that enforces complex tilings

In this section we prove the main result of the paper. We coaotsa tile set that guarantees large
Kolmogorov complexity of every tiling, and which is robusitvrespect to random errors.

Theorem 13. There exists a tile satand constantsicc, > 0 with the following properties:

(1) a 1-tiling of Z? exists;

(2) for everyt-tiling T of the plane, every N N-square of T has Kolmogorov complexity at
least gN — Cy;

(3) for all sufficiently smalle for almost everywith respect to the Bernoulli distribution.B
subset EC Z? every(T, E)-tiling is at mostl/10 Besicovitch-apart from sonetiling of the entire
planeZ?;

(4) for all sufficiently smalk for aimost every Brandom subset E Z?, for every(T, E)-tiling
T Kolmogorov complexity of centered squares of T of sizeN\Nis Q(N).
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The rest of the section is devoted to the proof of this theodlenombines almost all technique
developed in this paper: self-similar tile sets with valgaboom factors, embedding a sequence
with Levin’s property (i.e., with linear Kolmogorov compiigy of all factors) into tilings, bi-sparse
sets, incremental error correcting and robustness agiongtied holes.

In this section the basic idea of incremental error comeggcis applied in a slightly modified
form. Here we cannot apply directly the techniquéaf c,)-robustness from Sectidn]10. Instead
we use the idea of robustness against holes of some sequeimesig, Aq, Ay, . . ., as explainedin
Section I]L.. More precisely, we do it as follows: we split teeaf random errors into bi-islands of
different ranks. Then we eliminate them one by one, staftioigp lower ranks. When we correct
an isolated bi-island of rank we need a pre-condition (similarly to the argument in Sedfi():
in a large enough neighborhood of this bi-island there istheroerrors. Elimination of &-level
bi-island involves corrections in itextended Q\x)-neighborhood (all parameters are specified
below).

13.1 The main difficulties and ways to get around them

We want to combine the construction from Sectipn 7 with ecamrecting methods based on the
idea of “islands” of errors. There are two main difficultiesthis plan: fast growing zoom factors
and gaps in vertical columns. Let us discuss these two prabie some detalil.

The first problem is that our construction of tiling with higtolmogorov complexity from
SectionJ requiresariable zoom factorsWhat is even worse, zoom factdsg must increase very
fast (their logarithms grow faster thal)2Hence, we cannot apply directly the technique of islands
from Sectior] 9]2 since it works only wh§n'°g—kﬁk < oo (heref is the parameter from the definition
of islands; in our construction it must be of the same orde¢hasize ofk-level macro-tiles). To
overcome this obstacle, we replace islands by bi-islamstéchnique developed in Sectjon 9.4).

The second problem is that now it is not enough to know thescmus” memory of a macro-
tile to reconstruct it. The missing information is the sewee of bits assigned to the vertical
columns (each vertical column of tiles carries one bit ofghhtomplexity sequena®). Random
errors make gaps in vertical columns, so now the columnsitergo parts, which a priori can
carry different bits. To overcome this problem we organidditonal information flows between
macro-tiles to guarantee that each infinite vertical colwamies in most of its tiles one and the
same bit value.

13.2 General scheme

Here we explain the general ideas of our proof. First of afl,use macro-tiles with variable zoom
factorsNy = QL2~5kJ for a large enough integ€) > 0. This means that eveky¢level macro-tile is
an (Nx_1 x Nx_1)-array of (k— 1)-level macro-tiles. So the size (the number of columns ard th
number of rows) of &-level macro-tile ik = Np-...-Nx_1, andLg < Nx. (The constant 3 in
our construction can be replaced by any rational numberdzt2 and 3.)

To get tilings with high Kolmogorov complexity, we re-useethonstruction from Sectio} 7
with the zoom factors defined above. Let us remind the ideaaifconstruction (proof of The-
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orem[8). In a correct tiling, in thih column all tiles keep some hig, and we want that in the
corresponding biinfinite sequenaeeveryN-bits substring has Kolmogorov complexi®(N). To
enforce this property we organize some computation on m@esoof all levels. The crucial point
of the construction is propagation of big to the computation zones of macro-tiles of high levels.
Let us remind the main points of this construction (follog/ithe argument from Secti¢h 7):

e We say that for each (infinite) column of tiles in a tiling thas anassignedit «, which
is “known” to each tile in the column (in other words, theraisnapping that attributes to
each tile the corresponding lij; vertically neighboring tiles must keep the same value of
the bit).

e For ak-level macro-tile (of sizé x Ly) its zone of responsibilitis the sequence dfy bits
w assigned to all columns of this macro-tile. Vertically akgl macro-tiles of the same level
have the same zone of responsibility.

e For some Kevel macro-tilesM there is onadelegated bit this is a bitwy from the zone
of responsibility of this macro-tile. This bit must be knowmthe “consciousness” of the
macro-tile, i.e., it must be presented explicitly on theetapthe computation zone of this
macro-tile. For technical reasons, we decide that theiposilf the delegated by in the
zone of responsibility oM (this position is an integer between 0 ahd— 1) is equal to
the position (vertical coordinate) &l in its father macro-tile, see Fif] 5. The father is a
macro-tile of levek+ 1, which consists ok x Nx macro-tiles of levek (thus, the vertical
coordinate of &-level macro-tile in its father ranges over.ONy — 1). In our settings,
Nk > Lx_1. So, if ak-level macro-tilesM has vertical coordinate in its father grater thé
thenM does not have a delegated bit.

¢ If a k-level macro-tileM has a delegated bit in its computation zone, it containsaggoup
of bits to checkhat starts at the delegated bit and has rather small lesgyh lpgloglok).
If this group of bits goes out of the responsibility zone, wentate it. The Turing machine
simulated in the computation zone bf enumerates the forbidden strings of “too small
Kolmogorov complexity” and verifies that tlelmecked group of bitdoes not contain any of
them. This process is bounded by time and space allocateki-keval macro-tile.

The last item requires more comments. Technically, we fixstamtsa € (0,1) andc and check
that for every string in zones of responsibility of all macro-tiké(x) > a|x| —c. To check this
property, a macro-tile enumerates all strixgsf complexity less thawr |x| — c. This enumeration
requires infinite time, though computations in each maiecate time-bounded. But this is not a
problem since every suchis checked in macro-tiles of arbitrarily high levels Xifs covered by
a macro-tile of rank, then it is also covered by macro-tiles of all ranks gredtank). Thus, we
guarantee the following property:

for every k-level macro-tile Mk = 1,2,...), and for every substring
x of w that is contained in M’s zone of responsibil{iys horizontal (*)
projection) it holds that K(x) > a|x| —c.
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Notice that thaK (x) > a|x| — ¢ holds only for string covered by some macro-tile (i.e., strings
that belong to some macro-tile’s zone of responsibilitp)‘degenerate” tilings there can exist an
infinite vertical line that is a border line for macro-tilekall levels (see Fig[]6). A string that
intersects this line is not covered by any macro-tile of amkr Hence,«) does not guarantee for
such a string that its Kolmogorov complexity is greater thamx| — c. However, as we noticed in
Section 7 B, the parts afon both sides of the boundary are covered by some macrd+ece, it
follows from () thatK (x) > §|x| — O(1) = Q(|x]) for all factorsx of the bi-infinite stringw.

Thus, we re-use the argument from Sectipn 7, and it works Otefe is no errors. But
when we introduce random errors, the old construction i&dmo Indeed, vertical columns can
be damaged by islands of errors. Now we need to do some eftodsforce that copies afy
consciously kept by different macro-tiles are coherene@dt for macro-tiles that are not seriously
damaged by local errors). To this end we will use some cheskswhich guarantee that neighbor
macro-tiles have coherent conscious and subconscious mevkie discuss it in next section.

To deal with random errors we use the technique of bi-islgseks Sectiof 9.4). Our arguments
work if diameters ok-level bi-islands are comparable with the sizekdével macro-tiles. Tech-
nically we setay = 13L_; and B¢ = L. Remind that, = Q125 andL, = N -...-N¢_;. Note
that Lemmag]€] 7 can be used with these values of parameterailVdlso employ Lemm§ 8 with
Y = O(a).

13.3 The new construction of the tile set

We take the construction from Sectifjn 7 as a starting poidtsaqperimpose some new structures
on k-level macro-tiles. We introduce these supplementarycsiras in several steps.

First step (introducing checksums): Everyk-level macro-tileM (in a correct tiling) consists
of anNy_1 x Nx_z-array of(k— 1)-level macro-tiles; each of thegk — 1)-level macro-tiles may
keep one delegated bit. We take in this 2-dimensional arfayze Nx_; x Nx_1 one horizontal
row (bits assigned tdly_1 macro-tiles of levek — 1). Denote the corresponding sequence of bits
by n1,...,Nn.,- We introduce a sort adrasure codéor this string of bits. In other words, we will
calculate some checksums for this sequence. These cheslsfuuald be suitable to reconstruct
all bits ny,...,nn,_, if at most D of these bits are erasgde., if we know values); for only
Nk_1 — D positions); herédd > 0 is a constant (to be fixed later). We want the checksums to be
easily computable. Here we use again the checksums of th&eRBemon code (discussed in
Sectionp).

Let us explain this solution in more detail. We take a finitédfig, of large enough size (the
size of Fx should be greater thax,_1 + D). Now we calculate a polynomial of degree less than
Nk_1 that takes valuesy,. .., NN, at someNy_1 points of the field. Then take as checksums the
values of this polynomial at some othBrpoints fromFy (all (Nx_; + D) points of the field are
fixed in advance). Two polynomials of degree less tNam can coincide in at mosiN,_1 — 1)
points. Hence, iD bits from the sequenagy, ..., NN, , are erased, we can reconstruct them given
the other (the non-erased) bifg and the checksums defined above.

These checksums conta®ilogNy_1) bits of information. Further we discuss how to compute
them.
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Second step (calculating checksumskirst of all, we explain how to compute the checksums,
going from the left to the write along the sequenge...,nn, ,. This can be done in a rather
standard way as follows.

Let n1,...,nn., be the values of a polynomigl(x) (of degree less thahl_;) at points
X1,..., XN, ;- Assume we want to reconstruct all coefficients of this potyral. We can do it
by the following iterative procedure. Foe= 1,...,Nx_1 we calculate polynomialg;(x) andg;(x)

(of degree< (i — 1) andi respectively) such that

pi(xj)=n; for j=1,...,i

and

gi(X) = (X—X1)...(X=X)
It is easy to see that for eaclpolynomialsp;, 1 andg;.1 can be calculated from polynomigts,
gi, and values; 1 andnj 1.

If we do not need to know the resulting polynomied= pn,_, (X) but want to get only the value
p(a) at some particular poird, then we can do all these calculations mod{¥e-a). Thus, to
obtain the value op(x) atD different points, we run in parall& copies of this process. At each
step of the calculation we need to keep in memory @1l¥) elements ofy, which isO(logNk_1)
bits of temporary data (the multiplicative constant in €9{s)-notation depends on the valueDy.

These calculation can be simulated by a tiling. We embed tpéamed above procedure
into the computation zones ¢k — 1)-level macro-tiles. The partial results of the calculataoe
transfered from onék — 1)-level macro-tile to another one, from the left to the rightéach row
of lengthNy_1 in a k-level macro-tile). The final result (for each row) is keptthe conscious
memory of the rightmogtk — 1)-level macro-tile of the row.

To organize this calculations, we need to include into camsomemory ofk— 1)-level macro-
tiles additionalO(logNk_1) bits and add the same number of bits to their macro-colorss fith
well our fixed-point construction since zoom factdig grow fast, and we have enough room in
the computation zone.

Third step (consistency of checksums between macro-tileso far, everyk-level macro-
tile containsO(Nk_110gNk_1) bits of checksumsD(logNk_1) bits for every row. We want these
checksums to be the same for every two vertical neighbor oridles. It is inconvenient to keep
the checksums for all rows only in the rightmost column (sirtovould create too much traffic
in this column if we try to transmit the checksums to the nbmhmacro-tiles of levek). So
we propagate the checksums of ikbierow in ak-level macro-tileM (i = 1,...,Nx_1) along the
entireith row and along the entirgh column ofM. In other words, these checksums must be
“consciously” known to allk — 1)-level macro-tiles in théh row and in theéth column ofM. On
Fig.[16 we show the area of propagation of checksums for tws (theith and thejth rows).

On the border of two neighbdlevel macro-tiles (one above another) we check that in each
columni =1,...,N¢_; all the corresponding checksums calculated in both mal@®-¢oincide.
This check is redundant if there is no errors in the tilinge tthecksums are calculated from
delegated bits (which come from the sequence of disncoded into tiles of the ground level),
so the corresponding values for all vertically aligned mades must be equal to each other.
However, this redundancy is useful to resist errors, as we $inthe sequel.
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Figure 16: Propagation of checksums inside of a macro-tiles

Fourth step (robustification): The explained above features organized in ekdgvel macro-
tile (bits delegation, calculating and propagating chaeoks, and all calculations simulated in the
computation zone of a macro-tile) are simulated by meandtsfkept in “conscious” memory
(computation zone) afk — 1)-level macro-tiles. Now we fix some const&hand “robustify” this
construction in the following sense: eagh— 1)-level macro-tileM keeps in its consciousness
not only “its own” data but also the bits previously assigtedk — 1)-level macro-tiles from its
(C- Lk_1)-neighborhood (i.e., th€2C + 1) x (2C+ 1) array of(k— 1)-level macro-tiles centered
atM). So, the content of the conscious memory of each macrdastitaultiplied by some constant
factor. Neighbor macro-tiles check that the data in thefirscoiousness are coherent.

We choose the consta@tso that anyk-level bi-island (that consist of two parts of siag) and
even they, = O(ak)-neighborhood of ani¢-level bi-island (we specify, below) can involve only
a small part of théCLy_1)-neighborhood of angk — 1)-level macro-tile. (Note that we speak here
about neighborhoods, not abaxtended neighborhood$ bi-islands defined in Sectidn 9.4.)

This robustification allows to reconstruct the consciousnoy of ak-level macro-tile and of
its (k— 1)-level sons when this macro-tile is damaged by k#evel bi-island (assuming there is
no other errors).

The last remark (the number of bits in the conscious memory)The construction explained
above requires that we put into the computation zonegkoef 1)-level macro-tiles additional
poly(logNx_1) bits of data (the most substantial part is the data used fouleging the check-
sums). Again, this fits our fixed-point construction becaadg(logNy_1) is much less thah_»,
so we have enough room to keep and process all these data.

The tile setr is defined. Since there exigtwith Levin’s property, it follows that-tiling exist,
and everyN x N-square of such a tiling has Kolmogorov complex@yN). Further we prove that
this T satisfies also statement (3) of Theorerh 13.

13.4 Error correcting procedure

Denote byr the tile set described in Sectipn 13.3. leet 0 be small enough. Lemnja]12 says that
Be-random set with probability 1 is bi-sparse. Now we assuraeEhc Z?2 is a bi-sparse set (for
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the chosen values af; and ), andT is a t-tiling of Z?\ E. Further we explain how to correct
errors and conveft into a tiling T’ of the entire planeT should be close t@).

We follow the usual strategy. The sEtis bi-sparse, i.e., it can be represented as a union
of isolated bi-islands of different ranks. We correct thene doy one, starting from bi-islands
of low rank. We need only to explain how to correct bi-isla®@f rank k assuming that it is
well isolated, i.e., in thg-neighborhood of this bi-island there are no other (stilh+oorrected)
errors. Eliminating of an isolatekilevel bi-island will involve corrections only in the extded
y-neighborhood of this bi-island.

Let us recall that &-level bi-islandS is a union of two “clusters’Sy, S;; diameters of both
S andS; are at moso, = O(Ly_1). Hence the cluster§ andS; touch onlyO(1) macro-tiles
of level (k—1). The distance betwee® and$S; is at mostfy, and thefx-neighborhood oS is
free of other bi-islands of rank and higher (so we can assume that flseneighborhood ofS
is already cleaned of errors). Our correction procedurarat® will involve only points in the
extendedy-neighborhood of5, wherey, = 2ay. Since the size of the extended neighborhood of
ak-level bi-island is much less thah. the correction procedure can involve points of o@iy)
macro-tiles of levek (maximum four, if it happens near the corner of a macro-tile)

Let M be one ofk-level macro-tiles intersecting the extendgeheighborhood ok-level bi-
islandS. Basically, we need to reconstruct 8l— 1)-level macro-tiles irM destroyed bys. First
we will reconstruct the conscious memory of @l 1)-level macro-tiles irM. This is enough to
get all bits ofw from the “zone of responsibility” oM. Then we will reconstruct in a consistent
way all n-level macro-tiles insid& for all n < k.

Thus, we start with reconstructing the conscious memoryl dka- 1)-level macro-tilesV’ in
M. First of all we remind that the conscious memory (the cargéthe computation zone) of every
(k—1)-level macro-tileM’ consists of several groups of bits (cf. the outline of thestarction on

p.E3):

[A] the binary representation of the numkié&r 1) and coordinates dfl’ in the father macro-tile
M (these coordinates are integers from the rangeNy_1 — 1);

[B] the bits used to simulate a Turing machine on the compriatone ofM; the bits used to
implement “wires” ofM;

[C] the bit (from the sequenaw) delegated tdv’;
[D] the bit (from w) delegated tdv;

[E] bits used to calculate and communicate the checksunthéarorresponding row gk — 1)-
level macro-tiles irM;

[F] a “group of bits to check” from the zone of responsibildf/M’ (these bits are checked by
the macro-tileM’ checks on its computation zone that this “group of bits tackhdoes not
contain factors of low Kolmogorov complexity).

Bits of field [A] in a small isolated group aofk — 1)-level macro-tiles are trivially reconstructed
from the surrounding macro-tiles of the same level. FieRI€[D,E] can be reconstructed because
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of the robustification on the level ¢k — 1)-level macro-tiles (we organized the robustification on
the level of(k — 1)-level macro-tiles in such a way that we are able to recoosthese fields for
anyC x C group of missing or corruptk — 1)-level macro-tiles). So far the correcting procedure
goes absolutely in the same way as in Sedtign 11.

To reconstruct fields [F] ofk — 1)-level macro-tiles inM, we need to reconstruct all bits
of w from the zone of responsibility dl. We can extract these bits from neighbetevel
tiles above/belowM (recall that bi-islandS touches onlyO(1) k-level macro-tiles, and there is
a “healthy” zone ofk-level macro-tiles around them). However, the problem riesmaince we
are not sure thad-bit aboveM, belowM, and insideM are consistent. Now we show that this
consistency is guaranteed by checksums.

Denote byM, andMy thek-level macro-tiles just above and bel&that are free of errors, see
Fig. [T (our explanations refer to Fig,] 17, where bi-isl&tduches only on&-level macro-tile;
if Stouches severd-level macro-tiles, substantially the same arguments jvdtks enough to
prove that the bitsg assigned to corresponding columnawhf and inMgy are equal to each other.

macro-tileM, without errors

m macro-tileM with an error bi-island

macro-tileMy without errors

Figure 17: Bi-island of errors in a macro-tile

The macro-tilesvl, andMq are error-free; so, the sequences pbits w corresponding to the
vertical lines intersecting theselevel macro-tiles are well defined. Since there is no eyribrs
conscious information (including checksums) in all matikes of all the levels insid#, andMy
is consistent with these bit sequences. Solihats assigned to the vertical columns are correctly
delegated to the correspondiig— 1)-level macro-tiles insidéVl, and Myq. However, it is not
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evident that the sequenceslgfbits embedded iM, andMy are equal to each other.

In fact, it is easy to see that bit sequencesNrand My coincide with each other at most
positions: they must be equal for all columns (from the rabdgelLy — 1) that do not intersect bi-
islandS (in non-damaged columns of tiles on the ground level thegassl bitscy correctly spread
though macro-tiled1,, M andMq). Hence, the bits delegated to the corresponding 1)-level
macro-tiles inMy andMq are equal to each other, except for oy 1)-level macro-tiles in the
“grey zone” on Fig[]7, which contains tlile— 1)-level macro-tiles involved in the correction §f
and all vertical stripes touching the involved sites (thdtiiof this grey stripe is onl®(1) macro-
tiles of level(k—1)). Hence, fori =0,...,(Nx_1 — 1), in theith rows of (k— 1)-level macro-tiles
in My andMq, the sequences of delegated bits are equal to each oth@t @ossibly for onlyO(1)
bits (delegated t¢gk — 1)-level macro-tiles in the “grey zone”).

Robustness property guarantees that all checksums aeettptransmitted throughl. Hence,
checksums for corresponding rowshh, and inMyq must be equal to each other.

Thus, for every two corresponding rows (@&f— 1)-level macro-tiles irM, and inMyq we know
that (a) all except foO(1) delegated bits in the corresponding positions are equadc¢h ether;
and (b) the checksums are equal to each other. From the pragesur erasure code it follows
that in factall delegated bits in these rows are equal to each othert(ifot in My is equal to the
ith bit in Mg). Therefore, all bitsy in My andMy are the same (on the ground level). We can use
these bits to reconstruct subconsciousnedd,adnd get a consistent tiling M.

We are almost done: bi-islarflis corrected, we reconstructed conscious memorkderel
macro-tileM and for all its(k — 1)-level sons. Now we can reconstruct fields [F] in the damaged
(k— 1)-level macro-tiles insid®. It is trivial: we just take the corresponding bids from the
zone of reponsibility (shared iy, My andMgy). It remains to explain why the checking does not
fail for these groups of bits (i.e(k— 1)-level macro-tiles do not discover in these bit strings any
factors of low Kolmogorov complexity). This is true becausacro-tiles of levelgk — 1) (and
also below(k — 1)) insideM apply exactly all the same checks to exactly the sameupitss the
macro-tiles in the corresponding positionsMiy andMy. Since there is no errors My, andMg,
these computations do not come to the contradiction.

Let us observe which tiles are involved in the error corregprocess around bi-islar@l In
(k— 1)-level macro-tiles outside the “grey zone” we change nahiMoreover, not all the grey
zone needs to be changed: only the part between two clu$tSignd their small neighborhoods)
is affected. Indeed, in all tiles d¥l that are abové& the assigned bitey are the same as in the
corresponding columns ®f; in the tiles ofM that are belows the assigned bitgy are the same
as in the corresponding columnsid§.. Hence, there is no need to correct “subconscious memory
of (k— 1)-level macro-tiles that are above or bel@v Only the area between two clusters®f
requires corrections. More precisely, the area involvethencorrecting procedure is inside the
extended neighborhood 6&f (In fact, this argument is the motivation of our definitidreatended
neighborhood.)

Thus, we have proven that step-by-step correcting proeegliminates all bi-islands of errors,
and only extendeg-neighborhoods dk-level bi-islands are involved in this process. Now Theo-
rem[IB (part 3) follows from Lemm{a 8. It remains only to proeetp! of the theorem. We do itin
next section.
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13.5 Levin’s property for w embedded into a(t, E)-tiling

It remains to prove part (4) of Theordm] 13. In the previougiseave proved that if the set of
errorsE is bi-sparce, then ér, E)-tiling T can be converted into &tiling T’ of the entire plane,
and the difference betweeh and T’ is covered by extendeg-neighbors ofk-level bi-islands
fromE (k=0,1,...). We want to show that also in the initial tilinj Kolmogorov complexity of
centered squares of sikex N wasQ(N).

Fix a pointO. SinceE is bi-sparseQ is covered byGk-neighborhoods of only finitely many
bi-islands. Hence, for large enoudh the A x A-squareQa centered aD intersects extended
¥-neighborhoods ok-level bi-islands only ifx < A. (If the extendeds-neighborhood of some
bi-island intersect®x andf > A, thenfBx— y > A/2 andO is covered bySc-neighborhood of this
bi-island.) Therefore, to reconstruttin Q, it is enough to correct there all bi-islands of bounded
levels (such thaBy < A).

To reconstrucll’ in Qa we need to know the original tilin@ in Qx and some neighborhood
around it (i.e., in some center@|A) x O(A)-squareQ,, which is only constant time greater than
Qa). Indeed, given the tiling restricted orQu, we can locally correct there bi-islands of level
1,2,...,k(such thap < A) one by one. Correcting a bi-island of errorQp we obtain the same
results as in error correcting procedure on the entire plnenless this bi-islands is too close
to the boarder o, (and the local correction procedure should involve infaroraoutsideQp).
Thus, we can reconstru€t-tiling not in all Q' but in points that are far enough from the boarder
of this square. I\ = cA for large enouglt, thenQ, provides enough information to reconstruct
T in Qa.

We know that Kolmogorov complexity of error-free tilinf in Qp is Q(A). Therefore, the
Kolmogorov complexity of the origindl -tiliing in the greater squar®@, is alsoQ(A). Sincel’ is
only constant times greater thAnwe get that Kolmogorov complexity ¢f, E)-tiling T restricted
to the centered?’ x A')-square iQ(4).
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