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Abstract

An aperiodic tile set was first constructed by R. Berger wpitaving the undecidability of
the domino problem. It turned out that aperiodic tile sefsesp in many topics ranging from
logic (the Entscheidungsproblem) to physics (quasiclgsta

We present a new construction of an aperiodic tile set tHased on Kleene’s fixed-point
construction instead of geometric arguments. This cootstm is similar to J. von Neumann
self-reproducing automata; similar ideas were also useB.lyacs in the context of error-
correcting computations.

This construction it rather flexible, so it can be used in mamys: we show how it can
be used to implement substitution rules, to construct gtyoaperiodic tile sets (any tiling is
far from any periodic tiling), to give a new proof for the umitability of the domino problem
and related results, characterize effectively closed U3lsift it terms of 2D shifts of finite
type (improvement of a result by M. Hochman), to construdleaset which has only complex
tilings, and to construct a “robust” aperiodic tile set tdaes not have periodic (or close to
periodic) tilings even if we allow some (sparse enough)dilerrors. For the latter we develop
a hierarchical classification of points in random sets iatarids of different ranks.

Finally, we combine and modify our tools to prove our mairuiesthere exists a tile set
such that all tilings have high Kolmogorov complexity eve(sparse enough) tiling errors are
allowed.

Some of these results were included in the DLT extended att§B] and in the ICALP
extended abstradf][9].
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1 Introduction

In this paperitiles are unit squares with colored sides. Tiles are considerquastypes: we
may place translated copies of the same tile into differefis ©f a cell paper (rotations are not
allowed). Tiles in the neighbor cells should match (commide should have the same color in
both).

Formally speaking, we consider a finite §2bf colors. A tile is a quadruple of colors (left,
right, top and bottom ones), i.e., an elemertHf A tile setis a subset ¢ C*. A tiling of the plane
with tiles from 1 (1-tiling) is a mappindJ : Z? — T that respects the color matching condition. A
tiling U is periodicif it has aperiod, i.e., a non-zero vectdr € Z? such that) (x+T) = U (x) for
all x e Z2. Otherwise the tiling isperiodic The following classical result was proved by Berger
in a paper[[R] where he used this construction as a main tgobieBerger’s theoremthedomino
problem(to find out whether a given tile set has tilings or not) is undable.

Theorem 1. There exists a tile satsuch thatr-tilings exist and all of them are aperiodilf]

The first tile set of Berger was rather complicated. Laterynather constructions were sug-
gested. Some of them are simplified versions of the Bergersteuction ([26], see also the
expositions in[[IL[J6]_ 20]). Some others are based on polyigdings (including famous Penrose
and Ammann tilings, se¢ [13]). An ingenious constructioggasted in[[17] is based on the mul-
tiplication in a kind of positional number system and givesyall aperiodic set of 14 tiles (if][4]
an improved version with 13 tiles is presented). Anothee mienstruction with a short and simple
proof (based explicitly on ideas of self-similarity) waseatly proposed by N. Ollinge[ [R4].

In this paper we present yet another construction of apieritd set. It does not provide a
small tile set; however, we find it interesting because:

e The existence of an aperiodic tile set becomes a simplecgigin of a classical construc-
tion used in Kleene’s fixed point (recursion) theorem, in Weumann'’s self-reproducing
automata[[33] and, more recently, in Gacs’ reliable call@utomata[[10, 11]; we do not
use any geometric tricks. The construction of an aperidtiicset is not only an interest-
ing result but an important tool (recall that it was inventegrove that domino problem is
undecidable); our construction makes this tool easier ¢o us

e The construction is rather general, so it is flexible enowgichieve some additional proper-
ties of the tile set. We illustrate this flexibility providimew proof for several known results
and proving new results; these new results add robustnesisténce to sparse enough er-
rors) to known results about aperiodic tile sets and tile 8&it have only complex tilings.

It is not clear whether this kind of robustness can be acliéwepreviously known construc-
tions of tile sets; on the other hand, robustness propdd@simportant. For example, a math-
ematical model for processes like quasicrystals’ growtbNA-computation should take errors
into account. Note that our model (independent choice afgdavhere errors are allowed) has no
direct physical meaning; it is just a simple mathematicatlelahat can be used as a playground
to develop tools for estimating the consequences of tilmors.



The paper is organized as follows. In Sectjdn 2 we presenfitkd-point construction of
an aperiodic tile set (new proof of Berger's theorem). Thenillustrate the flexibility of this
construction by several examples:

¢ In SectionB we show that any ‘uniform’ substitution rule da@implemented by a tile set
(thus providing a new proof for this rather old result). TherSection[# we use substitu-
tions to show that there are strongly aperiodic tile seis (tteans that any tiling is strongly
aperiodic, i.e., any shift changes at least some fixed tradf tiles).

e Fixed-point construction of Sectidh 2 provides a self-tamtiling: blocks of sizen x n
(“macro-tiles”) behave exactly as individual tiles, so ba hext level we have? x n? blocks
made ofn x n macro-tiles that have the same behavior, etc. In Se€lion ake some
changes in our construction that allow us to get variablerzéaxtors (the numbers of tiles
in macro-tiles increases as the level increases).

Variable zoom factor tilings can be used for simulating catapons (higher levels per-
form more computation steps); we use them to give a simplefpybthe undecidability

of the domino problem (main technical difficulty in the standl proof was to synchronize
computations on different levels, now this is not neededllgt \we show also that other
undecidability results can be obtained in this way.

e This technique can be used to push the strong aperiodicity limits: the distance between
any tiling and any periodic one (or between any tiling andhiéstrivial shift) can be made
arbitrarily close to 1, not only separated from 0. This iselonSectiorj]6 using an additional
tool: error-correcting codes.

¢ In [H] a tile set was constructed such that every tiling hagimal Kolmogorov complexity
of fragments Q(n) for n x n squares); all tilings for this tile set are non-computable\{e
get a classical result of Harff][15] and Myelrs|[22] as a corg)laThe construction was rather
complicated and was based on a classical construction gbenodic tile set. In Sectiofj 7
we provide another proof of the same result that uses varidmm factors. It is simpler in
some respects and can be generalized to produce robugtsile/ish complex tiling, which
is our main result (Sectidn]13).

Further in Sectior{]8 we use the same technique to give a neof pfor some results
by S. Simpson[[28] and M. Hochmap J16] about effectively ebsubshifts: every 1-
dimensional effectively closed subshift can be obtainea@ g@sojection of configurations
of some 2-dimensional subshift of finite type (in an extendixhabet). Our construction
provides a solution of Problem 9.1 froifn [16].

e To prove the robustness of tile sets against sparse errouvs&va hierarchical classification
of the elements of random sets into islands of differentltef@ method that goes back to
Gacs [IL[]]2]). This method is described in Secfioh 9.1.

¢ In Sectio 92 we give definitions and establish some prdistibiresults about islands that
are used to prove robustness: we show that a sparse randam Zétwith probability 1
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(for Bernoulli ditribution) can be represented as a uniofisénds’ of different ranks. The
higher is the rank, the bigger is the size of an island; treni$lare well isolated from each
other (in some neighborhood of an island of rdnthere is no other islands of rank k).
Then in Section 9]3 we illustrate these tools using standemalts of percolation theory as a
model example. In Sectign]L1 we generalize results of SePi® and prove similar results
for weaker restrictions for the involved parameters. Taaahthis generalization, a more
technically advanced island classification is needed. ildlassification two islands of the
same rank can be close to each other (but not more than two).

¢ In Sectio I0 we use fixed-point construction to get an aperinle set that is robust in the
following sense: if a tiling has a “hole” of sizg then this hole can be patched by changing
only O(n)-size zone around it. Moreover, &{n) zone (with bigger constant i@-notation)
around the hole is enough for this (we don’t need to have thieeeplane covered). In
Section I]1 we explain how to get a robust aperiodic tile séts variable zoom factors.

¢ In Section[IR we combine the techniques developed to establie of our main results:
there exists a tile set such that every tiling of a plane exaegparse set of random points is
far from every periodic tiling.

¢ Finally, the Sectiof 13 contains our most technically difficesult: a robust tile set such that
all tilings, even with a sparsely placed errors, have lirmamplexity of fragments. To this
end we need all our techinque: fixed-point construction wéthable zoom factors, splitting
of a random set into doubled islands, and robustificatioh filiing of doubled holes.

2 Fixed-point aperiodic tile set

2.1 Macro-tiles

Fix a tile sett and an integeN > 1 (zoom factoy. A macro-tileis anN x N square tiled by
matchingr-tiles (i.e., a square block & tiles). Every side of a macro-tile consists of a sequence
of N colors called anacro-color

Let p be a set of-macro-tiles. We say thatsimulates if (&) t-tilings exist, and (b) for every
T-tiling there exists a unique grid of vertical and horizdniaes that cuts this tiling intdN x N
macro-tiles fromp.

Example 1 Assume that we have only one (‘white’) color andonsists of a single tile with 4
white sides. Fix somBl. There exists a single macro-tile of sikex N. Let p be a singleton that
contains this macro-tile. Then everytiling can be cut into macro-tiles from. However,t does
not simulatep, since the placement of cutting lines is not unique.

Example 2 In this example a seqt that consists of exactly one macro-tile (that has the same
macro-colors on all four sides) is simulated by some tiletsefThe tile setr consists ofN?
tiles indexed by pairgi, j) of integers moduldN. A tile from 1 has colors on its sides as shown
on Fig.[]. This figure also shows the macro-tilemthat has color40,0),...,(0,N —1) and
(0,0),...,(N—1,0) onits borders.
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Figure 1: Tiles and macrotiles for Example 2

If a tile sett simulates some sgtof T-macro-tiles with zoom factd¥ > 1 andp is isomorphic
to 1, the setr is calledself-similar Here anisomorphismbetweent andp is a bijection that
respects the relations “one tile can be placed on the rigintother one” and “one tile can be placed
on the top of another one”. (An isomorphism induces two bipes: between horizontal/vertical
colors oft and horizontal/vertical macro-colors pf)

The idea of self-similarity is used (more or less expligiily most constructions of aperiodic
tile sets ([IJ7[}4] are exceptions). However not all of thesastructions provide literally self-
similar tile set. We find the following explicit formulatiamseful.

Proposition 1. All self-similar tile setst have only aperiodic tilings.

Proof. Everyt-tiling U can be uniquely cut inthl x N-macro-tiles fromp. So every period
of U is a multiple ofN (since theT -shift of a cut is also a cut). Theh/N is a period ofp-tiling,
which is isomorphic to a-tiling, so T /N is again a multiple oN. Iterating this argument, we
conclude thaT is divisible byNX for everyk, soT = 0.

So to prove the existence of aperiodic tile sets it is enoaglohstruct a self-similar tile set.

Theorem 2. There exists a self-similar tile sets

TheorenjR was explicitly formulated and proven by N. Olling#&}]; in his proof one particular
self-similar tile set is constructed (it consists of 104g)l. This tile set is used ifi [24] to embed in
tilings any substitution rule (we explain this in more dekalow, see Theorei 3). A very similar
statement was proven ifi] [6], though the definition of setfikirity was slightly stronger (it was
required there that one tile cannot occur at different pwsstof macro-tiles, i.e., for each tite
there exists one single positidn j) such that can occur at positiofi, j) of some macro-tiles).
We prefer a less specific and more flexible argument, whiclaseth on the fixed-point idea. Our
proof works for a vast class of tile sets (though we cannotigeexplicitly an aperiodic tile set
of a reasonably small size). The rest of this section is e/t our proof of Theorerfj 2. Before
we prove this result, we explain some technique used in awstoaction: how to simulate a given
tile set by embedding computations.

2.2 Simulating a tile set

For brevity we say that a tile setsimulates a tile sgp whent simulates some set of macro-tiles
p isomorphic top (e.g., we say that a self-similar tile set simulates itself)
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Let us start with some informal discussion. Assume that we lactile sefp whose colors are
k-bit strings C = {0, 1}) and the set of tilep C C* is presented as a predic&écy, Cp, €3, C4) Of
four k-bit arguments. Assume that we have some Turing mac#itigat compute®. Let us show
how to simulatep using some other tile set

This construction extends Example 2, but simulates a tilp sigat contains not a single tile but
many tiles. We keep the coordinate system modiilembedded into tiles of; these coordinates
guarantee that alt-tilings can be uniquely cut into blocks of sikéx N and every tile “knows”
its position in the block (as in Example 2). In addition to tte®rdinate system, now each tile in
T carries supplementary colors (from a finite set specifiedvipedn its sides. These colors form a
new “layer” superimposed with the old one, i.e., the set ¢biis now a Cartesian product of the
old one and the set of colors used in this layer.

On the border of a macro-tile (i.e., when one of the cooré®s & zero) only two supplementary
colors (say, 0 and 1) are allowed. So the macro-color encad#sng ofN bits (whereN is the
size of macro-tiles). We assume tivat> k and letk bits in the middle of macro-tile sides represent
colors fromC. All other bits on the sides are zeros (this is a restrictiotiles: each tile “knows”
its coordinates so it also knows whether non-zero suppleangeoolors are allowed).

Now we need additional restrictions on tilestithat guarantee that macro-colors on the sides
of each macro-tile satisfy the relatiéh To achieve this, we ensure that bits from the macro-tile
sides are transferred to the central part of the tile whexellecking computation o is simulated

(Fig. ).

Turing

machine

Figure 2: Wires and processing zones; wires appear quitewaainceN > k

For that we need to fix which tiles in a macro-tile form “wirgshis can be done in any rea-
sonable way; let us assume that wires do not cross each atithen require that each of these
tiles carries equal bits on two sides (so some bit propagdbes) the entire wire); again it is easy
to arrange since each tile knows its coordinates.

Then we checlR by a local rule that guarantees that the central part of aor@lerrepresents
a time-space diagram o#’s computation (the tape is horizontal, time goes up). Téidane in
a standard way. We require that computation terminates iacaepting state: if not, the tiling
cannot be formed.

To make this construction work, the size of macro-tNg 6hould be large enough: we need
enough space fdebits to propagate and enough time and space (=height ant)\iadtall accept-



ing computations ofZ to terminate.

In this construction the number of supplementary colorseddp on the machin@ (the more
states it has, the more colors are needed in the computatiog).z To avoid this dependency,
we replaceZ by a fixed universal Turing machir# that runs gprogramsimulating%. Let us
agree that the tape of the universal Turing machine has atiadd read-only layer. Each cell
carries a bit that is not changed during the computatiorsethmts are used as a program for the

Universal
Turing

machine

program

Figure 3: Checking tiles with a universal TM

universal machin® (Fig. B). In terms of our simulation, the columns of the comapion zone
carry unchanged bits (considered as a progranfgrand the tile set restrictions guarantee that
the central zone represents the protocol of an acceptinguetation ofU (with this program). In
this way we get a tile satthat simulateg with zoom factomN usingO(N?) tiles. (Again we need

N to be large enough, but the constan€ifN?) does not depend dx.)

2.3 Simulating itself

We know how to simulate a given tile spt(represented as a program for the universal TM) by
another tile setr with a large enough zoom fact®d. Now we wantt to be isomorphic tq
(then Propositiofi1 guarantees aperiodicity). For this seaiconstruction that follows Kleene’s
recursion (fixed-point) theordhfi[g].

1A reminder: Kleene’s theorem says that for every transféionar of programs one can find a progrgmsuch
that p andm(p) produce the same output. Proof sketch: since the statemkamguage-independent (use translations
in both directions before and afta), we may assume that the programming language has a fuetidrext () that
returns the text of the program and a functitxec (string s) that replaces the current process by execution of a
programs. (Think about an interpreter: surely it has an access to thgram text; it can also recursively call itself
with another program.) Then the fixed poinEisec (7T(GetText ())).



Note that most rules af do not depend on the program fat, dealing with information transfer
along the wires, the vertical propagation of unchangednaragoits, and the space-time diagram
for the universal TM in the computation zone. Making thedesa part ofo’s definition (we let
k= 2logN + O(1) and encod®©(N?) colors by 2lodN + O(1) bits), we get a program that checks
that macro-tiles behave liketiles in this respect.

The only remaining part of the rules faris the hardwired program. We need to ensure that
macro-tiles carry the same prograntasles do. For that our program (for the universal TM) needs
to access the bits of its own text. (This self-referentiaiaacis in fact quite legal: the program is
written on the tape, and the machine can read it.) The proghatks that if a macro-tile belongs
to the first line of the computation zone, this macro-tileiearthe correct bit of the program.

How should we choosB (hardwired in the program)? We need it to be large enougheso th
computation described (which deals wili{logN) bits) can fit in the computation zone. The
computation is rather simple (polynomial in the input size., O(logN)), so for largeN it easily
fits in Q(N) available time.

This finishes the construction of a self-similar aperiodeget.

3 Substitution rules implemented

The construction of self-similar tiling is rather flexiblagican be easily augmented to get a self-
similar tiling with additional properties. Our first illusition is the simulation of substitution rules.

Let A be some finite alphabet amd > 1 be an integer. Asubstitution ruleis a mapping
s: A — A™M A substitution rules defines a mapping Arconfigurations. ByA-configuration
we mean an integer lattice filled with letters frokni.e., a mapping.? — A considered modulo
translations. A substitution rukeapplied to a configuratioX produces another configuratiefX)
where each lettea € Ais replaced by amx m matrix s(a).

We say that a configuratiod is compatiblewith substitution rules if there exists an infinite
sequence

DX DI X S X S X,

whereX; are some configurations. This definition was proposefl n. [Z#4E classical definition
(used, in particular, if[21]) is slightly different: conigationX : Z? — Ais said compatible with
a substitution rulsif every finite part ofX occurs inside of sorm'é”)(a) (for somen € N and some
ac A). We prefer the first approach since it looks more naturahéndontext of tiling. However,
all our results can reformulated and be proven (with miniteahnical efforts) for another version
of the definition.

Example 3 LetA={0,1},

5(0)=(23). s(1)=(25)

It is easy to see that the only configuration compatible withthe chess-board coloring.
Example 4(Fig.B). LetA={0,1},



One can check that all configurations that are compatible this substitution rule (calle@hue

— Morse configurationg the sequel) are aperiodic. One way to prove this fact (sepdRition 3

in [B4]) is to note that every configuration compatible witlistsubstitution rule can be uniquely
decomposed into disjoint 2 2 blocks((l’ ) and (3} 8). Then we can apply the argument from
Propositiorf]L (withN = 2).

Figure 4: Three steps of Thue—Morse substitution

The following theorem goes back to Mozds][21]. It says thargwsubstitution rule can be
enforced by a tile set.

Theorem 3. Let A be an alphabet and let s be a substitution rule over AnThere exists a tile
sett and a mapping et — A such that

(a) s-image of any-tiling is an A-configuration compatible with s

(b) every A-configuration compatible with s can be obtained is way.

A nice proof of this result for % 2-substitutions was given if [R4], where an explicit constr
tion of a tile setr for every substitution rules was provided. We prove this theorem using our
fixed-point argument, avoiding explicit constructionm(the tile sets that can be extracted from
our proof contain a huge number of tiles).

Proof. We modify the construction of the tile se{with zoom factomN) takingsinto account.
Let us first consider the very special case when

o the substitution rule maps eaéHetter into anN x N-matrix (i.e.,m= N).

e the substitution rule is easy to compute: given a laiterA and(i, j), we can compute the
(i, j)-th letter ofs(u) in time poly(log|A|) < N.

In this case we proceed as follows. In our basic construehi@my tile knows its coordinates
in the macro-tile and some additional information needeartange “wires” and simulate calcula-
tions of the universal TM. Now in addition to this basic sture each tile keeps two letters Af
the first is the label of a tile itself, and the second is thelalf theN x N-tile it belongs to. This
means that we keep additional 2@ bits in each tile, i.e., multiply the number of tiles b42.

It remains to explain how the local rules work. We add two regquents:
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(a) the second letter is the same for neighbor tiles (unkessdre separated by a border of some
N x N macro-tile);

(b) the first letter in a tile is determined by the second tedted the coordinates of the tile inside
the macro-tile, according to the substitution rule.

Both requirements are easy to integrate in our construcilibe requirement (a) can be easily
enforced; to achieve (b) a macro-tile should check thatri¢s letter appears is([second lettg)
at the required position. It is possible wheis easy to compute (knowing the coordinates and the
second letter, the program computes the required valueedirit letter and then compares it with
the actual value).

The requirements (a) and (b) ensure that configuration ssiarage of some other configura-
tion. Also (due the self-similarity) we have the same at gwel of macro-tiles. But this is not all:
we need to guarantee that the first letter on the level of male®is identical to the second letter
on the level of tiles. This is also achievable: the first letiea macro-tile is encoded by bits on its
border, and we can require that these bits match the sectiaddéthe tiles at that place (recall
that second letter is the same across the macro-tile). #9g ® see that now has the required
properties (each tiling projects into a configuration cotiipp@ with T and vice versa).

However, this construction assumes tNafthe zoom factor) is equal to the matrix size in the
substitution rule, which is usually not the casei$ given, and\N we have to choose, and it needs
to be large enough). To overcome this difficulty, weNebe equal tank for somek, and use the
substitution rules®, i.e., thekth iteration ofs (a configuration is compatible wit if and only if it
is compatible withs). Now we do not needto be easily computed: for largethe computation of
s< will fit into the space available (exponentialki

Remark. We use this “anthropomorphic” language (the tile “knowsirething etc.), because
the formal description would be too obscure (it would in@wdtiting a rather complicated program
for an explicitly described universal TM). When we say thidé*knows its coordinates”, we mean
that this coordinates are determined by the colors of itsss{dn the base level); when we say that
tile additionally knows twA-letters, it means that the set of tiles is the product of {deooe and
A x A. The condition (a) means that the second letter is also teflan the colors of tile sides
so that matching condition implies that neighbor tiles hegeal labels (unless they are separated
by a border). The condition (b) says which part of all combores of letters and coordinates is
allowed in tiles.

Of course, all these rules should be enforced on the next remacro-tiles. This means
that macro-tile, in addition to the bits that represent dsrdinates (and are sent to the borders
according to the scheme of Fig. 1), should have some othethzt represent twA-labels. The
bits of the second label should be sent to all borders hawngzero coordinates, since they should
match for neighbor macro-tiles. The bits of the first labeldd be also present in (a known place
of) the input of the computational zone, so the program cackkhe condition (b). Moreover, we
require that if a tile is in this place, then its first interalabel is consistent with the bit of the
A-label in a macro-tile (and this again is translated into egurart of the checking program) etc.
Note that the first interna-label is not reflected in macro-tile boundary colors disesince there
is no need to compare these labels for neighbor macro-tdes.fixed-point construction can be
easily adapted to such labels.
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4 Thue—Morse lemma and strongly aperiodic tile sets

Let a > 0 be a real number. A configuratidh: Z? — Ais a-aperiodicif for every nonzero vector
T e Z? there existdN such that in every square whose side is at IBstbte fraction of points such
thatU (x) # U (x+ T) exceeds.

Remark. If U is a-aperiodic, then Besicovitch distance betwekeand any periodic pattern is
at leastor /2. (The Besicovitch distance is defined as limgdp wheredy is the fraction of points
where two patterns differ in thid x N centered square. It is easy to see that it does not depend on
the choice of the center point.)

Theorem 4. There exists a tile sat such thatr-tilings exist and every-tiling is a-aperiodic for
everya < 1/4.

Proof. This is obtained by applying Theordin 3 to Thue—Morse suligin ruleT (Example
4). LetC be a configuration compatible with. We have to show tha& is a-aperiodic for every
a < 1/4. (In fact we use only Thue—Morse bits here.)

Big squares i€ obtained by iterating substitution rules can be represkagexor-sum of two
one-dimensional Thue—Morse sequences obtained usinglisétsition rules 6— 01 and 1— 10.
More formally,i- j-bit of such a square is®or of ith andjth bits ina, or b,, where we lebg = 0,
bp =1, anr1 = anbn, bnr1 = bran. (For exampleas = apb, = ajbi1bia; = 01101001.) Evidently,
la| = |bi| = 2" andb; is the bitwise negation d;. To prove the required bound, we start with an
estimate for (one-dimensional) aperiodicityaagfandby:

Lemma 1 (folklore). For any integer u> 0 and for any n such that & |a,|/4 the shift by u steps
to the right changes at leatd,| /4 positions in g and leaves unchanged at leaat| /4 positions.
(Formally, in the rangel...2" —u there is at least1/4)2" positions i such that ith and + u)th
bits in &, coincide and at leastl/4)2" positions where these bits differ.

Proof of the Lemma:a, can be represented abbabaabwherea = a,_3 andb = b,_3. One
may assume without loss of generality that |a| (otherwise we apply Lemma separately to the
two halves ofa,). Note thatba appears in the sequence twice and once it is precededalyg
once byb. Sincea andb are opposite, the shifted bits match in one of the cases andtduath in
the other one. The same is true &drthat appears preceded bothdgndb.

Now let a be one-dimensional Thue—Morse infinite sequence; our twiasional configu-
rationC is defined byCij = a; ® aj. Let T be any shift. IfT is horizontal, theraj is unchanged
and the Lemma is enough (the lemma is stated for the inteo¥alsme special form, but for large
enough squares the boundary effects are compensated bijfénercte between M anda). The
same argument works for vertical shifts. If both coordisatéa shift are non-zero integers, the
the fraction is questions is the probability of an event thah xor-combination of two events with
probabilities in(1/4,3/4). It is easy to check that such an event also has probability/it, 3/4)

(in fact, in(3/8,5/8), but this stronger bound is not needed).

Theoren{} is proved;

In fact, the bound 24 can be replaced by/3B if we use more professional analysis of Thue—
Morse sequence (see, e.{].][29]). But if we want to get a miamig result of this form and make
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the bound close to 1, this substitution rule does not work.cefeuse some other rule (in a bigger
alphabet) as Pritykin and Ulyashkina have showh [25], bupreder to give another construction
with variable zoom factors, see Sect[$n 6.

5 Variable zoom factor

The fixed point construction of aperiodic tile set is flexibleough and can be used in other con-
texts. For example, the “zoom factoN could depend (recursively) on the lede(number of
grouping steps). For this each macro-tile should hesecoded at its sides; this labeling should be
consistent when switching to the next level. Using the apbmorphic terminology, we say that
each macro-tile “knows” its level, i.e., the sequence dof thiat form a binary representation of this
level, is transferred from the sides to the tape and the ctatipn checks that all these numbers
(level bits for all four sides) are the same. This is, so tqg adgonscious” information processed
by a computation in the computation region of the macro-tdee may say also that a macro-tile
of any level contains “subconscious” information (“exigtiin mind but not immediately available
to consciousness”, as the dictionary says): this is thenmdtion that is conscious for the sub-tiles
that form a macro-tile, and their sub-tiles (all the way ddethe ground level).

Using this terminology, we can say that each macro-tile ks coordinates in the macro-
tile of the next level: for a tile of levek these coordinates are integers modiiQ;, so in total
logk+ O(logNk. 1) bits are required for keeping both the level and these coatds. Note thatl,
steps should be enough to perform increment operation raddul;; we assume that both lég
and log\k. 1 are much less thaNy. This means thalk should not increase too fast or too slow
(say,N¢ = logk is too slow andNy, 1 = 2" is too fast). Also we need to comput&, 1 whenk
is known, so we assume that not only the siz&lpf; (i.e., logNk. 1) but also the time needed to
compute this givelk are small compared tk. These restrictions still allow many possibilities,
say,Ng = vk, N = k, N = 2K, Ny = 2%, N, = k! etc.

There is one more important point that needs to be covered.déonve guarantee that the bits
representing the levél(on the tape of a macro-tile) are correct? In other terms, ®esino ensure
that the levels known to a macro-tile and to one of its tilédkedby one. (In psychoanalytic terms
we need to check that conscious and subconscious informiatetile match each other.) This is
done as follows. The tile knows its level and also knows itstoan in the macro-tile it belongs (its
father). So it knows whether it is in the place where fatheudth keep level bits, and can check
whether indeed the level bit that father keeps in this plaa®nsistent with the level information
the tile has. (In fact we have the same problem when simgjatistitution rule: a check that the
father letter of a tile coincides with the letter of the fathike, is done in the same way.)

This “self-similar” structure with variable zoom factorrcae useful in some cases. Though it
is not a self-similar according to our definition, one cah s#isily prove that any tiling is aperiodic.
Note that now the computation time for the TM simulated inc¢katral part increases with level,
and this can be used for a simple proof of undecidability ohotm problem. The problem in the
standard proof (based on the self-similar constructiom Wited zoom factor) is that we need to
place computations of unbounded size into this self-sinsiiaicture, and for that we need special
geometric tricks (sed][Z] 1]). With our new constructionwé want to reduce an instance of the
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halting problem (some machirM) to the domino problem, we add to the program embedded in
our construction the parallel computationMfon the empty tape; if it terminates, this destroys the
tiling.

In a similar way we can show that the existence of a periotligtis an undecidable property
of a tile set, and, moreover, the tile sets that admit pecittings and tile sets that have no tilings
form two inseparable sets (another classical result,[sHe [1

Here is an example of a more exotic version of the latter t¢thdt has probably no interest in
itself, just an illustration of the technique). We say thatesett is m-periodicif 7-tilings exist
and for each of them the set of periods is the sellofmultiples ofm (this is equivalent to the fact
that both vectorg0, m) and(m,0) are periods). LeE [resp. O] be all m-periodic tile sets for all
evenm [resp. oddn).

Theorem 5. The sets E and O are inseparable enumerable sets.

Proof. It is easy to see that the property “to berasperiodic tile set” is enumerable (both the
existence of tiling and enforcing perio@, 0) and(0, m) are enumerable properties).

It remains to reduce some standard pair of inseparables®stsrhachines that terminate with
output 0 and 1) tdE,O). It is easy to achieve using the technique explained. Asdhatethe
numberdN, increase being odd integers as long as the computation ofea giachine does not
terminate. When and if it terminates with output O [1], weuieg periodicity with odd [resp. even]
period at the next level;

Another application of a variable zoom factor is the proothad following result obtained by
Lafitte and Weiss (se¢ J119]) using Turing machine simulaiiside Berger—Robinson construc-
tion.

Theorem 6. Let f be a total computable function whose arguments andegadive tile sets. Then
there exists a tile sat that implements a tile set(f).

Here we assume that some computable encoding for tile sék®is Since there are no re-
strictions on the computation complexity bfthe choice of the encoding is not important.

Proof. Note that for identity functiorf this result provides a self-simulating tile set of Sec-
tion 2.3. To prove it we may use the same kind of a fixed-poichnégue. However, there is
a problem: the computation resources inside a tile aredunfby its size) while time needed to
computef can be large (and, moreover, depends on the tile size).

The solution is to postpone the simulation to large levelsa iile setty simulatest; that
simulatesr, that simulates etc. up t,, thenty simulatesry,, too. Therefore we may proceed as
follows.

We use the construction explained above with a variable ztamtor. Additionally, at each
level the computation starts with a preliminary step thay mecupy up to (say) half of the available
time. This step involves:

e interpreting a program that it is on the tape and unfoldingeaset that is implemented by
this program on the ground level; this set should be thenexbes into a form used by

e applyingf to this tile set;
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e converting the output of into a list of tiles written down in some straightforward edng.

This part of the computation checks also that it does not uwe that half of the available time
and that the output is small enough compared to the tile Hitds time turns out to be insufficient
or the output is too big, this part is dropped and we start amabcomputation for variable zoom
factor (as explained above). However, if the time is enoughrasult (list of tiles that corresponds
to f’s output) is small compared to the tile size, we check thatroile (of the current level)
belongs to the tile set computed.

Since the program is the same at all level and the computafidnshould be finite (though
may be very long), at some (big enough) level the second Ipibgsstarts to play, and we get a
tile set isomorphic td (1) wherer is the tile set on the ground level.

Another application is the construction of tile sets witly given computable density. Assume
that a tile set is given and, moreover, all tiles are divided two classes, say, A-tiles and B-tiles.
We are interested in a fraction of A-tiles in a tiling of aniemplane or its large region. If the
tile set is flexible enough, this fraction can vary. However,some tile sets this ratio tends to a
limit value when the size of a tiled region increases. Thisq@menon is captured in the following
definition: we say that tile satdivided into A- and B-tilehas a limit density if for everye > 0
there existsN such that for anyr > N the fraction of A-tiles in any tiling of thean x n square is
betweena — € anda + €.

Theorem 7. (i)If a tile set has a density, thena is a computable real number {0,1]. (i) Any
computable real number € [0,1] is a density of some tile set.

Proof. The first part is a direct corollary of the definitions. Foclea we can consider all
tilings of then x n square and look for the minimal and maximal fractions of lagin them. Let
us denote them by, andM,,. It is easy to see that the limit frequency (if exists) is ia thterval
[mn, Mp]. Indeed, in a large square split into squares of sizen the fraction of A-tiles is between
m, and M, being at the same time arbitrarily closedo Therefore,a is computable (to get its
value with g-precision, we increase until the difference betweehl, andm, becomes smaller
thane).

It remains to prove (ii). Since& is computable, there exist two computable sequences of
rational numbers andr; that converge tar in such a way that

[|1,I’1] D [|2,r2] D [|3,I’3] ...

Our goal will be achieved if macro-tiles of the first level kalensity eithel, orr;, macro-macro-
tiles have density eithép or rp, and so on. Indeed, each large square can be split into ntiseso-
(and the border that does not change the density much), soyitagge square the fraction of
A-tiles is (almost) inl1,r1]. The same argument works for macro-macro-tiles, etc.

However, this plan cannot be implemented directly: the ndéirculty is that the computation
of [ andr; may require a lot of time while the computational abilitiésmacro-tiles of level are
limited (we use variable zoom factors, but they cannot gi@wfast).

The solution is to postpone the switch from densitjendr; to densitiedj 1 andr;,1 to the
higher level of the hierarchy where the computation has ghdime to compute all these four
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rational numbers and find out in which proportignandr;-tiles should be mixed if), 1- andrj1-
tiles. (This proportion is restricted by our constructidime denominator should be the number of
i-level macro-tiles ir(i + 1)-level macro-tile, but this restriction can be always degikby a slight
change inl; andr; which leavesx unchanged.) So, we allocate, say, the first half of the adaila
time for controlled computation of all these values; if tlmerputation does not finish in time, the
densities for the next level are the same as for the curreat. |& the computation terminates in
time, we use the result of the computation to have two typ#seofiext level tiles: one with density
li-1 and one with density;, 1. They are made by using prescribed amourii-adindr;-tiles (since
each tile knows its coordinates, it can find out whether itudthde of the first or second type).
This finishes the construction;

6 Strongly aperiodic tile sets revisited

In Sectio# we constructed a tile set such that every tibmgaperiodic (for everyr < 1/4). Now
we want to improve this result and construct a tile set suahetery tiling is, say, @9-aperiodic
(here 099 can be replaced by any constant less than 1). It is easg thakthis cannot be achieved
by the same argument, with Thue—Morse substitutions, asaselith any substitutions in a two-
letter alphabet; we need a large alphabet to make the camsbae to 1.

May be it is possible to achieve this result with some othdasstution rule just applying
Theorem[B, but we do not know how to construct a substitutide that gives ®9-aperiodic
configurations. Instead, we will modify the constructiomarse substitution rules with variable
zoom factor (and different substitutions on each level).

Instead of one alphabei, we now consider a sequence of finite alphab&§sAz, Ay,. .. ; the
cardinality of A; will grow asi grows. Then we consider a sequence of mappings:

S AL — A8'°XN°, S Ay — ATlXNl, S3: Az — Aglszz’ ..
whereNy, N1, Np,. . . are some positive integers (zoom factors); they wslbahcrease a@sncreases.
Then we can compose this mappings. For example, a leiteA, can be first replaced by a
N1 x N; squares,(z) filled by As-letters. Then each of these letters can be replacedNpy-a\op-
square filled byAq-letters according te; and we get &gN; x NgNz-square filled byAq-letters; we
denote this square I8{(s(2)) (slightly abusing the notation).
All this (the sequence di;, Ni, 5) is called asubstitution family Such a family defines a class
of Ag-configurations compatible with it (in the same way as in ®@d8). Our plan is to construct
a substitution family such that:

e every configuration compatible with this family is99-aperiodic;

¢ there exists a tile set and projection of itAg such that only compatible configurations (and
all compatible configurations) are projections of tilings.

In other words, we use the same argument as before (proviegré&hi#) but use a substitution
family instead of one substitution rule. This substitutiamily will have special properties:
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A. Symbols used in different locations are different. Thisams tha®-letters that appear in a
given position of the squares, 1(z) for z€ A1, never appear in any other places of these
squares; the set§ is split intoN; x N; disjoint subset used for different positionsNinx N;
square.

B. Different letters are mapped to squares that are far awdamming distance. This means
that if z,w € A1 are different, the images, 1(z) ands1(w) are far away in the Hamming
distance: the fraction of positions M x N; squares wherg.,(z) ands_1(w) have equal
equal letters, does not excegd

Hereg; is a sequence of positive reals such thigty & < 0.01.

This implies that composite images of different lettersadse far apart. For example, the frac-
tion of positions iNNgN; x NoN; square whers; (s(2(z)) ands; (sp(w)) coincide does not exceed
&+ €1 < 0.01. (Indeed, irsy(z) ands;(w) we have at most;-fraction of matching letters; these
letters generate;-fraction of matchingAp-letters on the ground level; all other, non-matching,
pairs adcep-fraction. In fact, we get a stronger bound-11— &) (1—€1).)

In the same way, if we take two different lettersAnand then go down to the ground level
and obtain two squares of sidgN;...Ni_1 x NoNz...Ni_1 filled by Ag-letters, the fraction of
coincidencesis at mosg+...+¢&_1 <0.1.

This property of the substitution family implies the dedigroperty:

Lemma 2. Any Ay-configuration U compatible with such a tiling family@999-aperiodic.

Proof. Consider a shift vectof. If T is not a multiple ofNg (one of the coordinates is not
a multiple of Ng), then property A guarantees that original configuratiod @s T-shift differ
everywhere. Now assume thatis a multiple ofNp. ThenT induces aT /Np-shift of an A;-
configurationU; that is as;-pre-image olU. If T is not a multiple ofNgN;, thenT /Ny is not a
multiple of N; and for the same reason tfigNp-shift changes all the letters Wy. And different
letter inA; are mapped tdl x Ng squares that coincide in (at mosgfraction of positions.

If T is a multiple ofNgN1 but notNgN; N, we get aT /(NpNyp) shift of Ax-configurationU,
that changes all its letters, and different letters giveasgsi that are X (& + €1) apart. The same
argument works for the higher levejs.

Now we have to construct a substitution family that has priogeA and B and can be enforced
by a tile set. The requirement of large Hamming distanceasdsrd for coding theory, and the
classical tool is the Reed—Solomon code.

First, letA; be equal tdB; x {0,1,...,Ni} x{0,1,...,N;}; let us agree that we use lettebsi, )
only in (i, j)-position of the square. This ensures the requirement A.

Then we construct a code that encodes é&clirletterw by a a string of lengtiN? made ofB;-
letters (arranged in a square); adding the coordinates ei&.g-image ofw. We use a sequence
of codes:

S; : A;=B1 xN;xN; — BB")XNO, & coincidences betweesni(a), si(aj) (i # J)
S1 i Ao=ByxNoxNp — BTlXNl, &1 coincidences between(a), sp(aj) (i # j)
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To satisfy requirement B, we need to have a code with distéhees;)N2. The standard construc-

tion uses polynomials of small degree over some finite fielde 3ize of the field should be (at

least) the length of the codeword, i.el,-?. Let us decide thaly; is a power of 2 and the size of

the field is exactlyxliz. (We can use als@/ pZ for prime p of an appropriate size.) To achieve the
required code distance, we have to use polynomials of dégge¢harg; Ni2. Using (for simplicity)

only coefficients 0 and 1, we gefi'ﬁ2 polynomials of this type, it is enough if
A < 25

Recalling thatAj 1 = Bj11 x Nj;1 x Nj11 and that we agreed thB{ ; is a field of sizeNiZH, we
get the inequality
.\
N%, < 28N or 4logNi; 1 < &NZ.

Now letN; = 2'*¢ for some constart; we see that for large enougtthis inequality is satisfied for
& with sum less than.01 (or any other constant), since the left-hand side is timeawhile the
right-hand side is exponential.

Now it remains to implement all this using tiling rules. As Wave discussed, the zoom factor
N; = 2"*¢ is OK for the construction. This factor leaves enough spadeeep two substitution
letters (for the tile itself and its father tile), since thdstters require linear size (in Moreover,
we have enough time (exponential time) to perform the coatprts in the finite fields needed
to construct the error correction code mappings, so theteat®n used to prove Theorerh 3 still
works.

Remark. We can also get an@9-aperiodic tile set as a corollary of the result of nextisec
indeed, we construct there a tile set such that any tilingeztala horizontal sequence with high
complexity substrings, and such a sequence cannot magéthwisll after a shift (in fact, we need
to replace a binary alphabet by a larger finite alphabet sxdigument). Then we can superimpose
this with a 90-rotated construction; then any non-zero translation shiift either vertical or hori-
zontal sequence and therefore change most of the posititwis.that in this way we can also get
a tile set that is ®9-far from every periodic pattern (a slightly differentpapach to define strong
aperiodicity).

However, we prefer to present a more explicit (and simplenjstruction in this section that
does not refer to (rather complicated) arguments in Sefftion

7 Tile set that has only complex tilings

In this section we provide a new proof of the following redutm [H]:

Theorem 8. There exists a tile sat and constants,c> 0 and ¢ such thatr-tilings exist and in
everyt-tiling T every Nx N-square has Kolmogorov complexity at leagtle- c».

We refer to [p] for the discussion of this result (why it is impal, why the exact value af;
does not matter etc.) and other related results.
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7.1 A biinfinite bit sequence

Proof. We start the proof in the same way as [ih [5]: we assume thdit lackeeps a bit that
propagates (unchanged) in the vertical direction. Thertiéing contains a biinfinite sequence of
bits y (wherei € Z). Any N x N square contains B-bit substring of this string, so if (for large
enoughN) everyN-bit substring oftw has complexity at leastN for some fixedc;, we are done.

We say that a sequencghasLevin’s propertyif every N-bit substringx of w has complexity
Q(N). Such a biinfinite sequence indeed exists (§ee [5]; anotioaf pan be obtained by using
Lovasz local lemma, seg [27]). So our goal is to formulateds rules in such a way that a correct
tiling “ensures” that the biinfinite sequence embedded imdeed has this property.

The set of all “forbidden” binary strings, i.e., stringsuch thak (x) < c1|x| — ¢z (hereK(x)
stands for Kolmogorov complexity of and |x| stands for the length of) is enumerable: there
is a program that generates all forbidden substrings. Itldvba nice to embed into the tiling a
computation that runs this program and compares its outpogs with the substrings ab; such
a computation may blow up (create a tiling error) if a forl@ddsubstring is found.

However, this is not easy. There are several difficulties.

e First of all, our self-similar tiling contains only finite atputations; the duration depends
on the zoom factor and may increase as the level increagggetbinacro-tiles keep longer
computations), but at any level the computations are finite.

e The computation at some level deals with bits encoded in éfie of that level, i.e., with
macro-tile states. So the computation cannot achieve th@bihe sequence (that are “deep
in the subconscious”) directly and some mechanism to digntbiet is needed.

Let us explain how to overcome these difficulties.

7.2 Bits delegation

Macro-tile of levelk is a square whose sidelig = Ng- Nz -...-Nk_1, so there ardy bits of the
sequence that intersect this macro-tile. Let us delegate @ahese bits to one of the macro-tiles
it intersects. Note that macro-tile of the next level is mati®l, x Ny macro-tiles of levek. We
assume thall, is much bigger thah, (more about choice dfl; later); this guarantees that there
is enough macro-tiles of levél(in the next level macro-tile) to serve all bits that intetsidaem.
Let us decide thath macro-tile of levek (from bottom to top) in dk+ 1)-level macro-tile serves
(consciously knows, so to saith bit (from the left) in its zone. (In this way we have several
macro-tiles of levek in each macro-tile of levet+ 1 that are “responsible” for the same bit, but
this does not create any problems.)

So each bit (each vertical line) has a representative ory égeel — a macro-tile that con-
sciously knows this bit. However, we need some mechanisatgtharantee that this information
is indeed true (consistent on different levels). On thedmottevel it is easy, since the bits are
available on the same level.

To guarantee the consistency we use the same trick as iro8gctat each level we keep the
information not only for this level but also for its fatherdamade necessary consistency checks.
Namely, each macro-tile knows (has on its computation tape)
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N tiles of sizely x Lk

Figure 5: Bit delegation

the bit delegated to this macro-tile;

the coordinates of this macro-tile in its father macro-titleat are already used in the fixed-
point construction); the-coordinate determines the position of the bit delegatethit®
macro-tile (relative to the left boundary of the macrojtile

the bit delegated to the father of this macro-tile;

the coordinates of the father macro-tile in the grandfathacro-tile
This information is subject to consistency checks:

e the information about the father macro-tile should coircidth the same information in
neighbor tiles (unless they have a different father, iee of the coordinates is zero).

e if it happens that the bit delegated to the father macraditee same bit as delegated for the
tile, these bits should match;

¢ it can happen that the macro-tile occupies a place in itfattacro-tile where some bits of
its coordinates (inside grandfather macro-tile) or thelblegated to the father are kept; then
this partial information on the father level should be cleztlgainst the information about
father coordinates and bit.

These tests guarantee that the information about fathkee isame in all brothers, and some of
these brothers (that are located on the father tape) cak adh&gainst actual father information;
at the same time some other brother (that has the same d=ldgatas the father) checks the
consistency of the delegated bits information.

Note that this scheme requires that not onlyNpdut also lod\y, 1 is much less thaily 1.
This requirement, together with the inequality = Np- Ny -...Nx_1 < Nk (discussed earlier) is
satisfied ifNg = QCk whereQ is a large enough constant (this is needed also to make nisso-
of the first level large enough) amd> 2 (s0 14-c+c2+ ... + k1 < k).

Later, in Sectiorj 13, the choice ofhas to be reconsidered: we neeet 3 to achieve error
correction.
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7.3 Bit blocks checked

We explained how macro-tile of any level can have a true matron about one bit (delegated to
it). However, we need to check not bits, but substrings (aedte a tiling error if a forbidden
string appears). Note that it is OK to test only very shortssubgs compared to the macro-tile
size (Ni): if this test is done on all levels, this short substringdrees long enough to detect any
violation. (Also note the short forbidden substrings capesy very late in the generation process,
so we need computation in arbitrary high levels for this o@asoo.)

So we need to provide more information to tiles. It can be dartbe following way. Let us
assume that a tile contains not one bit but a group of bitsdfaats at the delegated bit and has
length depending on the levie{and growing very slowly witlk, say, logloglod is slow enough).

If this group goes out of the region occupied by a tile, we ¢tata it.

Similarly, a macro-tile should have this information foetlather macro-tile (even if the bits are
outside its own region), this information should be the sémndrothers and needs to be checked
against the delegated bits on the macro-tile level and pietmformation on the father level.

Then the computation in the computation zone can start thergéng process and checking
the forbidden strings that appear against all the substrighe group of bits available to this
computation. This process is time- and space-boundedhisuldes not matter since every string
is considered on a high enough level.

7.4 Last correction

The argument explained above still needs some correcti@ncls¥n that every forbidden string
will be detected at some level where it is short enough coatpirthe level parameters. However,
there could be strings that never become a part of one maerotimagine that there is some
vertical line that is a boundary between macro-tiles ofealéls (so we have bigger and bigger tiles
on both sides, and this line is still the boundary betweemj)h& hen a substring that crosses this
line will be never checked and therefore we cannot guarahtdet is not forbidden.

There are several ways to get around this problem. One casedbat each macro-tile contains
information not only about blocks inside its father maate4ut in a wider regions (say, three times
wider including uncle macro-tiles); this information slaie checked for consistency between
cousins, too.

But there is a simpler solution. Note that even if a stringlmtioundary is never checked, its
parts (on both sides of the boundary) are, so their compléxproportional to their length. And
one of the parts has length at least half of the original lenga we still have a complexity bound,
just the constant is twice smaller.

This finishes the proof of Theorejh 8.

8 Subshifts

The analysis of the proof in the previous section shows thedn be divided into two parts. We
definedforbiddenstrings as bit strings that are sufficiently long and have gewity at mosta -
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(length. We started by showing that biinfinite strings without falthén factors (substrings) exist.
Then we constructed a tile set that contains such a biinftiteg in any tiling.

The second part can be separated from the first one, and indkiiere get new proofs for some
results of S. Simpsor [28] and M. Hochm4n][16] about effedyiclosed subshifts.

Fix some alphabei. LetF be a set oA-strings. Consider a s& of all biinfinite A-sequences
that have no factors (substrings) fn This is aclosed1-dimensional subshifover A, i.e., a
closed shift-invariant subset of the space of all biinfiditeequences. If the sEtis (computably)
enumerableS: is called areffectively closed-dimensional subshiftver A. If F is finite, S is
called asubshift of finite type

In one dimension (non-empty) subshifts of finite type alwagstain periodic sequences.
Berger’s theorem says that for two-dimensional subshifts not the case. More precisely, let
F be a set of two-dimensional patterns (squares filled Withtters). Then we can consider a set
S of all A-configurations (= mappingg? — A) that do not contain any pattern frofh This is
a closed shift-invariant set &-configurations (= 2-dimensional closed subshift o&gr If F is
(computably) enumerabl&: is calleda 2-dimensional effectively closed subsloverA. If F is
finite, S¢ is calleda 2-dimensional subshift of finite type

Let X andY be two alphabets and let X — Y be a mapping. Then evedy-configuration
can be mapped to‘é-configuration by applying to every letter. It is easy to see that an image
of a closed subshift is a closed subshift (compactness agtym An effective version of this
compactness argument shows that an image of an effectiwslga subshift is again an effectively
closed subshift.

The following theorem shows that for 2-dimensional sulishof finite type it is not the case
(an image of a finite type subshift is not necessarily of fityfee).

Theorem 9. Let A be some alphabet and let S bedimensional effectively closed subshift over A.
Then there exists an alphabet B, a mappin®r— A, and a2-dimensional subshift 8f finite type
over B such that r-images of configurations inafe (exactly elements of S extended vertically
(vertically aligned cells contain the same A-lejter

Proof. The proof uses the same argument as in The@fem 8. Each cetlowdwins arA-letter that
propagates vertically. Computational zones in macra-tjenerate (in available space and time)
elements of the enumerable set of forbiddesubstrings and compare them wiksubstrings that
are made available to them. It remains to note that tilingliregnents (matching colors) are local,
i.e., they define a finite type 2-dimensional subshift.

Note that now the remark of Sectifn]7.4 becomes crucial esotherwise the image @&-
configuration may be a concatenation of two sequences (@nfefite one and a right-infinite
one); each sequence does not contain forbidden patternbdyuimay appear near the meeting
point. (This makes a fixed-point construction essentiahangroof: the argument fronfi][5] does
not work here.) O

A similar argument shows that every 2-dimensional effetyivclosed subshift can be repre-
sented as an image of a 3-dimensional subshift of finite tgfter(a natural extension along the
third dimension), any 3-dimensional effectively closedshift is an image of a 4-dimensional
subshift of finite type, etc.
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This result is an improvement of a similar one proved by M. ktnan (Theorem 1.4 i T16],
where the dimension increases by 2), thus providing a soluti Problem 9.1 in this paper. Note
also that it implies the result of S. Simpsdn][28] where l-alisional sequences are embedded
into 2-dimensional tilings but in some weaker sense (definégrms of Medvedev degrees).

One can ask whether a dimension reduction is essential Rere&xample, is it true that every
2-dimensional effectively closed subshift is an image ahed-dimensional subshift of finite
type? The answer for this question (and related questiohgher dimensions) is negative. This
follows from an upper bound in][5] saying that every tile sasta tiling wheren x n squares
have complexityO(n) (this result immediately translates for subshifts of firitpe) and a result
from [21] that shows that some non-empty effectively clo&edimensional subshift hasx n
squares of complexit@(n?). Therefore the latter cannot be an image of the first one (t@xitp
can only decrease when we apply an alphabet mapping).

9 Random errors

9.1 Motivation and discussion

The result of Sectiof 10 states that an isolated hole inmgtitian be patched, if the tile set is
constructed in a special way. Moreover, it implies that miaolgs of bounded size can be patched
simultaneously if the distance between the holes is largegmcompared to their size (since the
corrected neighborhoods of holes are disjoint). HoweWwes,is a rather special case of holes set,
and we are interested in more general results: we woulddikedve that for a “robust” tile set any
tiling with “sparse enough” errors or holes can be patchgdacfianging a small fraction of tiles).

Note that it does not matter much whether we speak aboutsgptaces where two neighbor
tiles do not match) or holes (places without tiles). Indesd,can convert a tiling error into a
hole (by deleting one of the two non-matching tiles) and esha hole into a small number(at
most 4) errors by placing an arbitrary tile there. (Holeklowore naturally if we start with a set
of holes and then try to tile the rest; on the other hand, if magine some process similar to
crystallization when a tiling tries to become correct by samml-and-error procedure, it is more
natural to consider tiling errors. Since it does not makessrdifference from the mathematical
point of view, we use both metaphors.)

We use a hierarchical approach to hole patching that goéstb& Gacs who used it in a much
more complicated situatiof [[L1]. This means that first weadrpatch small holes that are not too
close to each other (by changing small neighborhoods artinamd). This (if we are lucky enough)
makes larger (and still unpatched) holes more isolatedesihere are less small holes around.
Some of these larger holes (that are not too large and not@se to each other) can be patched
again. Then the same procedure can be repeated again faxtevel. Of course, we need some
conditions (that guarantee that holes are not too denseake ithis procedure successful. These
conditions are described later in full details, but the im@ot question is: How do we ensure that
these conditions are reasonable (i.e., general enough)2r@wer is: we prove that if holes are
generated at random (each position becomes a hole indegndeother positions with small
enough probabilitg) then the generated set satisfies these conditions wittapiidly 1.
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From the physics viewpoint, this argument sounds rathekwiave imagine some crystal-
lization process, errors in different positions are noejpehdent at all. However, this approach
could be a first approximation until a more adequate one isdou

Note that patching holes in a tiling could be considered asreelization of the percolation
theory. Indeed, let us consider a simple tile set made of t&s: tone has all black sides and the
other has all white sides. Then the tiling conditions redodée following simple condition: each
connected component of the complement to the holes seher@bmpletely black or completely
white. We want to make small corrections in the tiling thatcpathe holes (and therefore make
the entire plane black or white). This means that initialther we have small black “islands” in
a white ocean or vice versa, which is exactly what percatati@ory says (it guarantees that if
holes are generated at random independently with smalbpitily, the rest consists of one large
connected component and many small islands.)

This example shows also that simple conditions like smaibdg (in Besicovitch sense) of the
holes set are not enough: a regular grid of thin lines can siaadl density but still splits the plane
into non-connected squares; if half of these squares aok blad the others are white, no small
correction can patch the holes.

One can define an appropriate notion of a sparse set in thevdvark of algorithmic random-
ness (Martin-Lof definition of randomness) considerindividual random sets (with respect to
Bernoulli distributionB;) and their subsets as “sparse”. Then we can prove that amyssp
set satisfies the conditions that are needed to make thévieepmtching procedure work. This
algorithmic notion of “sparseness” is discussed[in [3]. ldwer, in the current paper we do not
assume that reader is familiar with algorithmic randomragssrestrict ourselves to the classical
probability theory.

So our statements become quite lengthy and use probabijisntifiers “for almost all” (=with
probability 1). The order of quantifiers (existential, ugmsal and probabilistic) is important here.
For example, the statement “a tile gas robust” means thdhere existsomee > 0 such thator
almost all H (with probability 1 with respect to the distribution wherach point independently
belongs toH with probability €) the following is true:for every(t,H)-tiling U there existsa 1-
tiling U’ (of the entire plane) that is “close” td. Here by(1, H)-tiling we mean a tiling ofZ?\ H
(where existing pairs of neighbor tiles match).

9.2 Islands of errors

In this section we develop the notion of sparsity based oitéhative grouping of errors (or holes)
and prove its properties.

Let E C Z2 be a set of points; points i are calledirty; other points arelean Let3 > a >0
be integers. A non-empty sitC E is an(a, 3)-islandin E if:

(1) the diameter oK does not exceed;

(2) in theB-neighborhood oK there is no other point frork.

(Diameter of a set is a maximal distance between its elem#@glistancel is defined a$;,
i.e., the maximum of distances along both coordingBesgighborhood oK is a set of all points
y such thad(y,x) < 8 for somex € X.)
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N tiles of sizely x Li

Figure 6: Explanation tree; vertical lines connect difféaneames for the same points.

It is easy to see that two (different) islands are disjointd(¢he distance between their points
is greater thar).

Let (a1,B1), (02,B2),...be a sequence of pairs of integers and< G; for all i. Consider
the following iterative “cleaning” procedure. At the firdep we find all(a1, B1)-islands fank 1
islandg and remove all their elements frob (thus getting a smaller s&;). Then we find all
(az, B2)-islands inE; (rank 2 islandg; removing them, we gdE, C E;, etc. Cleaning process is
successfuf every dirty point is removed at some stage.

At the ith step we also keep track of tifieneighborhoods of islands deleted during this step.
A point x € Z? is affectedduring a step if x belongs to one of these neighborhoods.

The setE is calledsparse(for a given sequence;, 5) if the cleaning process is successful,
and, moreover, every poirte Z? is affected at finitely many steps only (i.&.is far from islands
of sufficiently large ranks).

The values ofr; and; should be chosen in such a way that for sufficiently srmall 0 aB,-
random set is sparse with probability 1. (As we have said,jttgtifies that our notion of sparsity
is not unreasonably restrictive.) The sufficient condsiane provided by the following statement:

Lemma 3. Assume that

log i <o

8 Bk<an<p[B, foreverynand —
) >

k<n

Then for all sufficiently smalt > 0 a B;-random set is sparse with probability

Proof of Lemma[B. Let us estimate the probability of the evenis“not cleaned aftem steps”
for a given pointx (this probability does not depend ajh If x € Ej,, thenx belongs tdE,_; and
is not cleaned during theth step (when ay, Bn)-islands inE,_1 are removed). Ther € Ey_1
and, moreover, there exists some other paint E,_; such thatd(x,x;) is greater tharoy,/2
but not greater thap, + a,/2 < 2f,. Indeed, if there were no such in E,_1, then theay/2-
neighborhood ok in E,_1 is an(ap, Bn)-island inE,_1 andx would be removed.

Each of the pointx; andx (that we denote alsgy to make the notation uniform) belongs to
En—1 because it belongs t,_, together with some other point (at the distance greaterdhayy/ 2
but not exceedingf2,_1). In this way we get a tree (Figu[g 6) that “explains” whigelongs tdE,.
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The distance betweey andx; in this tree is at leastr, /2 while the diameter of the subtrees
starting atxp andx; does not exceey;_, 2. Therefore, the Lemma’s assumption guarantees that
these subtrees cannot intersect and, moreover, that adldaties of the tree are different. Note that
all 2" leaves of the tree belong 6= Eg. As every point appears i independently from other
points, such an “explanation tree” is valid with probailif". It remains to estimate the number
of possible explanation trees for a given point

To specifyx; we need to specify horizontal and vertical distance betweesnd x;. Both
distances do not excee@ therefore we need about 21@g,) bits to specify them (including
the sign bits). Then we need to specify the distances betwgeand xp1 as well as distances
betweerx;g andxy1; this requires at most 41¢4f3,_1) bits. To specify the entire tree we therefore
need

2log(4Bn) +4109(4Bn-1) +8log(4Bn-2) + ...+ 2"log(4B1)

bits, and that is (reversing the sum and taking out the f&%aqual to 2(log(4B1) +109(4832) /2+
...). Since the serie§ logfB,/2" converges by assumption, the total number of explanateestr
for a given point (and given) does not exceed®?", so the probability for a given poimtto be in
En for aBg-randomE does not exceee?' 2°(2") which tends to 0 (even super-exponentially fast)
asn — oo, assuming that is small enough.

We conclude that the evenx s not cleaned” (for a given poird) has zero probability; the
countable additivity guarantees that with probability ipalints inZ? are cleaned.

It remains to show that every point with probability 1 is afied by finitely many steps only.
Indeed, ifx is affected by stem, then some point in it§,-neighborhood belongs 16,, and the
probability of this event is at most

O<an>82”20(2“) _ 22|Ogﬁn+0(2”)flog(l/s)2”;

the convergence conditions guarantees thaBieg o(2"), so the first term is negligible compared
to others, the probability series converges (for small gh@) and the Borel-Cantelli lemma gives
the desired result

Our next step: by definition a sparse set is split into a unibrslands of different ranks;
now we prove that these islands together occupy only a sradllqs the plane. To make this
statement formal, we use the notion of Besicovich size (tersf a setE C Z2. Let us recall the
definition. Fix some poinO of the plane and consider squares of increasing size ceni¢(@
For each square consider the fraction of points in this sgtieat belong t&. The limsup of these
frequencies is calleBesicovitch densitgf E. (Note that the choice of the center poitioes not
matter, since for any two point3; and O large squares of the same size centered,aand O,
share most of their points.)

By definition the distance between two rakkslands is at leasBc. Therefore theB/2-
neighborhoods of these islands are disjoint. Each of ttadas contains at mostlf points (it
can be placed in a rectangle that has sides at mgstEach neighborhood has at Ieﬂﬁtpoints
(since it contains # x Bx-square centered at any point of the island). Therefore tinenwof all
rankk islands has Besicovitch density at mésk/Bx)2. Indeed, for a large square the islands near
its border can be ignored, and all other islands are sureibg disjoint neighborhoods where
their density is bounded b/ Bx)?.
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Figure 7: Rankk islands form a set of a small density. (In this picture eatdnidis shown as a
rectangle, which is not always the case.)

One would like to conclude that the overall density of akhigds (of all ranks) does not exceed
sk(ak/Bx)?. However, the Besicovitch density is in general not coulgtabmi-additive (for ex-
ample, the union of finite sets having density 0 may have tiet¥i But in our case the second
condition of the definition of a sparse set (each point is ey only finitely many neighbor-
hoods of islands) helps.

Lemma 4. Let E be a sparse set for a given familyogfand . Then Besicovitch density of E is

O(3 (ax/B)?).

Proof of Lemma[#. LetO be a center point used in the definition of Besicovitch dgn8iy
definition of sparsity, this point is not covered By-neighborhoods of rankislands ifk is greater
than someK. Now we split the seE into two parts: oneK<) is formed by islands of rank at
mostK and other E-.) is formed by all islands of bigger ranks. As we have just séea large
square the share &- is bounded b){kgK(ak/Bk)z up to negligible (as the size goes to infinity)
boundary effects (we consider separately daghK and then sum over al < K). The similar
bound is valid for rank islands withk > K, though the argument is different and a constant factor
appears. Indeed, such an isldndas x-neighborhood that does not contain the center pDint
Therefore, any squai®centered aO that intersects the island, contains also a significantgiart
its Bx/2-neighborhoodN: the intersection oN andScontains at leastB/2)? elements.
Therefore, the share &. in Sis bounded by & .« (ak/Bx)?.

Remark. It is easy to choosey and B¢ satisfying the conditions of Lemma 3 and having
arbitrarily smallz(ork/ﬁk)2 (take geometric sequences that grow fast enough). Thereferget
the following well known result as a corollary of Lemniads 3 ghdor everya > 0 there exists
€ > 0 such that with probability 1 B.-random set has Besicovitch density less tbhan

In fact we will need a slightly more complicated version oinima[4. We are interested not
only in the Besicovitch density of a sparse Bdiut also in the Besicovitch density of a larger set:
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part of thefc/2-neighborhood
of anisland

part of thef/2-neighborhood

of the island that is guaranteed
to be insideS
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Figure 8: Together with a point in a rakksland, a squarg contains at leagB¢/2)? points of its
(B«/2)-neighborhood.

the union ofy-neighborhoods of rank islands inE. Herey are some numbers (in most appli-
cationsyk = cay for some constant). The same argument gives the bourfgl(4ak -+ 2y)/ Bc)?.
Assuming that > ax, we can rewrite this bound &(5 (y/B«)?). So we arrive at the following
statement:

Lemma 5. Let E be a sparse set of a given familyogfand B¢ and lety, > ax be some integers.
Then the union ofk-neighborhoods of level k islandsver all k and all islandshas Besicovitch

density @5 (w/B)?)-

9.3 Islands as atool in percolation theory

Let us show how some basic results of percolation theory egrdved using the island technique.

Theorem 10. For someay and S satisfying Lemmg] 3 the complement of any sparse set E con-
tains exactly one infinite connected component C; the camgaie of C has Besicovitch density

O(an/B)?.

Proof. Let y = 2ak. (The choice ofax and B will be discussed later.) For evekyand for
every rankk island fix a point in this island and consider teneighborhood of this point. Itis a
square containing the entire island plus an additionalritgczone of widthay, and contained in
the y-neighborhood of the island.

It is enough to prove the following three statements:

e The union U of all these squaré®r all ranks) contains the set E and has Besicovitch size

O(3 (aw/By)?).

e The complement of U is connected
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Figure 9: A point in a rank island, itsy-neighborhood and the security zone of width

e There are no other infinite connected component in the camgaiéof E

The first statement is a direct corollary of Lemfipa 4 above.

To prove the second statement consider two poiatsdy that lie outsidéJ. We need to prove
thatx andy can be connected by a path that is entirely outsidéet us conneck andy by some
path (say, one of the shortest paths) and then push this pattild. Consider squares of maximal
rank that intersect this path. For each of them consideristeffioment when the path gets into the
square and the last moment when the path goes out, and cohesetwo points by a path outside
the square:

,,,,,

Figure 10: Pushing a path out of the square.

Let us assume thai; > 2y; then the new path igg-separated from rankislands. Note also
that the shift (the distance between the original path aadlifted one) does not exceeg.3

Then we can do the same for islands of rianrkl (pushing the path out of surrounding squares).
Note that since the shift is bounded by 3;, we will not bump into islands of rank assuming
that 34_1 is less than the width of the security zowog,

Repeating this process for decreaskygve finally get a path that connectaandy and goes
entirely outsideJ . For this we need only that the total shift on the smallerlgwie sum J;_y ¥
is less tharag. (This is easy to achieve dy, Bx andy are suitable geometric sequences.)

It remains to show that every infinite connected set inteéssihe complement dfi. To show
this, let us take a big circle centered at the origin and theshpt out ofU as described above.
Since the center is outsigg-neighborhoods of islands for large enougtwe may assume that
the size of islands that intersect this circle are small caneg with its radius (say, less than 1% of
it; this can be guaranteed if the geometric sequengefx and y grow fast enough). Then after
the change the circle will still encircle a large neighbatiof the origin, so any infinite connected
component should cross such a circfe.
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9.4 Bi-islands of errors

In the proof of our main result (Sectign]13) we need a morecdtdiversion of the definition of
islands. In fact we need such a definition that some countsspeemmaB could be applied even
if the sequence lof, grows much faster thar'Ze.g., forB, = c¢29"). In this section we define
bi-islands (that generalize the notion of islands from Bead®.2) and prove bi-islands versions of
LemmgB, Lemm@ 4, and Lemrija 5. The reader can safely skipdtii®s for now and return here
before reading Sectidn]13.

Let E C Z? be a set of points. As in Sectign P.2, we call point&idirty, and the other points
areclean Let3 > a > 0 be integers. A non-empty s¥tC E is an(a, 3)-bi-islandin E if X can
be covered by the union of some s¥gs X; such that:

(1) the diameters okp andX; do not exceed;

(2) in theB-neighborhood oKq U X; there are no points frof \ (XoU Xz).

(3) the distance betweefy andX; does not exceefl.

(See Fig[T]1.) In particular, afo,B)-island is a special case of 4o, 3)-bi-island (letX; be

Figure 11: Bi-island is a union of two “islands” that are @ds each other.

empty).

Note that one may split the same bi-island iXgpandX; in different ways.

Obviously, every two different bi-islands are disjoint. Mover, the distance between them is
greater thaB. The diameter of a bi-island is at md&o + f3).

Let (a1,B1), (a2,B2),...be a sequence of pairs of integers anck B for all i. We define
an iterative cleaning procedure for bi-islands. At the fitsp we find all( a1, B1)-bi-islands and
remove all their elements fro (getting a smaller seE;). Then we find inE; all (az, 32)-bi-
islands; removing them, we gBp C E;, etc. Cleaning process ssiccessfulf every dirty point is
removed at some stage.

Similarly to the case of islands, we say that a paiatZ? is affectedduring step if x belongs
to the Bi-neighborhood of one of bi-islands of rank
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The setE is calledbi-sparse(for a given sequence;, 3;) if the cleaning process defined above
is successful, and, moreover, every poirt Z is affected at finitely many steps only (that means
thatx is far from bi-islands of sufficiently large ranks).

We choose the values of and; in such a way that for sufficiently smadl> 0 aBg-random
set is bi-sparse with probability 1. The main achievemen fethat the convergence condition is
now weaker:

Lemma 6. Assume that
logBi
122 Bk < an < B, for every n, and Z %ﬁ' < oo.
|

k<n

Then for all sufficiently smalt > 0 a B-random set is bi-sparse with probability

Proof of Lemma[§ is very similar to the proof of Lemrjja 3. At first weiette the probability
of the event X is not cleaned aftar steps” for a given point. If x € Ej,, thenx belongs td,_1 and
is not cleaned during theth step (wher{an, 3,)-bi-islands inE,_1 are removed). There E,_;.
Moreover, we show that there existo otherpointsxi, X, € E,_1 such that the three distances
d(x,x1), d(x,x2), d(x1,X2) are all greater thaoy/2 but not greater thanB + 2(an/2) < 3Bn.

Let Xp be thean/2-neighborhood ok in E. If X were an island, it would be removed. Since
it does not happen, there is a poxatoutsideXy but in thef,-neighborhood oK.

Let X3 be theay,/2-neighborhood of; in E. Again Xy andX; do not form a bi-island. Each of
them has diameter at mas} and the distance between them is at n$stSo the only reason why
they are not a bi-island is that there exists a prirg E outsideXyUX; but in thef,-neighborhood
of it. The pointsxy, andx have the required properties.

To make the notation uniform, we denotby xo. Each of the pointsgg, x;, %o belongs tde,, 1.
This means that each of them belong&to, together with a pair of other points (at the distance
greater tham,_1/2 but not exceeding3,_1). In this way we get a 3-ary tree that “explains” why
x belongs taE,.

The distance between every two points amagg, andx; in this tree is at leaat,, /2 while
the diameters of the subtrees startinggtx;, andx, do not exceed;_, 3. Thus, the Lemma’s
assumption guarantees that these subtrees cannot intengethat all the leaves of the tree are
different. The number of leaves in this 3-ary tree'isahd they all belong t& = Ep. Every point
appears irE independently from other points; hence, one such an “egpi@mtree” is valid with
probabilitye3". It remains to count the number of all explanation trees fgivan pointx.

To specifyx; andx, we need to specify horizontal and vertical distance betwgemdxy, Xo.
These distances do not exced8} 3therefore we need about 4I@&f,) bits to specify them (in-
cluding the sign bits). Then we need to specify the distahetaeenxyg and X1, Xo2 as well
as the distances betweaiy and x;1,X12, and betweerxyg and X21,X22.  This requires at most
12log(6fn-1) bits. To specify the entire tree we therefore need

4log(6Bn) + 12109 6B-1) +36l0g(6Bn_2) + ... +4-3"Llog(6B),

which is equal to 43" 1(log(6B1) +10g(6B2)/3+...). The seriesy logB,/3" converges by as-
sumption; so, the total number of explanation trees for amgpoint (and givem) does not exceed
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203" Hence, the probability for a given poirtto be inE, for a Bg-randomE does not exceed
£3'203" which tends to 0 as — » (assuming that is small enough).

We conclude that the event fs not cleaned” (for a given poix) has zero probability; hence,
with probability 1all points inZ? are cleaned.

It remains to show that every point with probability 1 is atied by finitely many steps only.
Indeed, ifx is affected by stem, then some point in it§,-neighborhood belongs 16,, and the
probability of this event is at most

0(B2)e¥'203") — 2109 +0(3")~log(1/2)3"

From the convergence conditions we haveflpg- o(3"), so the first term is negligible compared
to others. The probability series converges (for small gha) and the Borel-Cantelli lemma
gives the result;

By definition, a bi-sparse set s split into a union of bi-reda of different ranks. Such bi-islands
occupy only a small part of the plane:

Lemma 7. Let E be a bi-sparse set for a given familyogfand . Then Besicovitch density of E
is O(3 (ax/Be)?).-

Proof of Lemma[} repeats the proofs of Lemfja.
Recalling Lemm4]5, we may consider a sequence of numiensch thaty > ayx. Then the
Besicovitch density of the union af-neighborhoods of rank bi-islands (for allk and for all

islands) is bounded b®(S (vi/B)?)-
However, this statement is not enough for us. In Sedtibn 1@iN@eed a kind of “closure” of

¥-neighborhood of a bi-island:

Definition. Let S be an n-level bi-island. We say thaty) € Z? belongs to theextendedy-
neighborhood of S if this bi-island can be represented as U S, (diameters of $and §
are not greater tharm,), and there exist point&,y'), (x,y") € Z? such thatdist(S, (x,Y)) < ¥
dist(S1, (x,Y")) < W, and y is between' yand Y/, see Fig[1R.

<
@

Figure 12: An extended neighborhood of a bi-island consistise neighborhoods of its two parts
and a zone between them.
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The meaning of the last definition is quite simple: we takeamy the points that are close to
Shbut also those points that are placed somehow between thleboehoods o0& andS;.

Lemma 8. Let E be a bi-sparse set for a given familyaf and By satisfying the conditions of
Lemma]6. Letk be a sequence of numbers such thgi< y < Bx/8, and the series (yi/Bi)
converges. Then

(1) The Besicovitch density of the union of extengedeighborhoods of rank k bi-islands in
E is bounded by & (y/Bx))-

(2) For every large enough centered square of &izeA, on each vertical section of this square
(of sizel x A) there exists a point not covered by the union of extengetighborhoods of all
k-level bi-islandgfor allk =1,2,...) in E.

Proof of statement (1): Arguments are similar to the proof of Lemrfla 5. An extengigd
neigborhood of am-level island can be covered by a rectangle of widtly,) and heightO( 3, +
Yn); SO its area i©(yBn) (sincey, < Bn)). The distance between any two bi-islands of rank
at leastf,. Hence, the fraction oéxtendedy,-neigborhoods of islands (Y w/B«) (we get it
instead of the boun®(¥ (y/B«)?), which holds for simplgs-neigborhoods).

Proof of statement (2): Let O be the center point. Considerax A-squareSwith the center
O (so the distance betwe&hand any other point in the square is at magP). Denote byn the
maximal integer such thg, < A/2. If k > n and extended thg-neighborhood of somk-level
bi-island intersects the square, then feneighborhood of the same bi-island cov@<grecall
that y < Bk). Since by definition of a bi-sparse set the pdinis affected by only finitely many
islands, we may assume that for a large enaugdll bi-islands whose extendggtneighborhoods
intersectS, have rank at most.

Let us fix any vertical line ir. We show that there is a point on this line not covered by the
extendedj-neighborhood of any rankbi-island (for anyk). Choose a bi-island of maximal rank
that touches this line (i.e., its extendgdneighborhood intersects it). Let it be a bi-islaBgl of
rankko.

Let us now try to find a non-covered point going up and starfftio this bi-island. Its extended
neighborhood covers some interygbn our line. If the poingg right abovelg is not covered, we
are done. But it can be covered by the extengeeeighborhood of some bi-island of rakk
Note thatk; < kg since rankkp bi-islands cannot be closg-zone between them).

It may happen thapg is covered by several extended neighborhoods for diffeiaamits. We
take the maximal among them and get a bi-isl@df rank k; whose extended neighborhood
coverspp. It touches an intervdh on the line that containgg. Take a poini; right above, etc.

This process either gives us a point that is not covered chessthe border of th&® x A-square.
In the latter case we can start again fr@mnand go down. If we again reach the square border,
then the entire vertical section of the square is covereatgyvalsly, |11, etc. (in both directions).
The length ofl, does not exceefi + 2ay + 2y, so the total length of all intervals is bounded by

(20k0+Bk0+2w<0)+2_ (2m+Bi+2y.)<Bko+4y1<O+2_ (56) <

< Bio + AW + Oy < 2By < 2Bn
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(here we used the fact th#t satisfy the conditions of Lemnid 6). Sinfla < A/2, extended
neighborhoods of aB; cannot cover the entire vertical section®f

Lemmas[BH8 will be used in Secti¢n] 13. (The arguments of GesilPLIR do not refer to
bi-islands.) These lemmas will be used toy, 3, such that logr, ~ " for q > 2, B, ~ an,1, and
Yo = O(an) or y, = O(a?). For these parameters we cannot apply Lemihas $Jand 4 beoayBse |
grows faster than2

10 Robusttile sets

Now we are ready to construct an aperiodic tile set wheraisdldefects can be healed.

,,,,,,,,,,,,,,,

Figure 13: Patching holes

Let c; < ¢ be positive integers. We say that a tile seis (c;,cy)-robustif the following
holds: For even/A and for everyr-tiling U of the con-neighborhood of a squarex A excluding
the square itself there exists a tiliNgof the entirecoA-neighborhood of the square (including the
square itself) that coincides with outside of thec;n-neighborhood of the square (see Figd. 13).

Theorem 11. There exists a self-similar tile set that(is, ¢»)-robust for some c£and .

Proof. For every tile selu it is easy to construct a “robustified” versiqn of p, i.e., a tile
setu’ and a mappin@: y’ — p such that: (ap-images ofu’-tilings are exactlyu-tilings; (b) u’
is “5-robust™: everyp/'-tiling of a 5x 5 square minus & 3 hole (see Fig[ 14) can be uniquely
extended to the tiling of the entirex65 square. (One can replace 5 by 4 in our argument using
more careful estimates.)

Indeed, it is enough to keep in opé-tile the information about, say,65 square inu-tiling
and use the colors on the borders to ensure that this infamiatconsistent in neighbor tiles.

This robustification can be easily combined with the fixethpoonstruction. In this way we
can get a 5-robust self-similar tile setf the zoom factoiN (which is considered to be fixed in this
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Figure 14: Filling a 3x 3-hole

argument) is large enough. Let us show that this set is(also,)-robust for some; andc; (that
depend o\, butN is fixed.)

Indeed, assume that a tiling of a large enough neighborhomehd anA x A hole is given.
Denote byk the minimal integer such th&tX > A (so thek-level macro-tiles are greater than the
hole under consideration). Note that the siz&-&ével macro-tiles is linear it sinceNK < N-A.

In the tiling around the hole, aN x N block structure is correct except for tieneighbor-
hood of the centrah x n hole. Indeed, the colors encode coordinates, so in evenyembed tiled
region coordinates are consistent. For similar readéns N2-structure is correct except for the
N + N2-neighborhood, etc. So for the choseme get ak-level structure that is correct except
for (at most) 9= 3 x 3 squares of levek, and such a hole can be filled (due to 5-robustness) with
Nk x NK squares, and these squares can be then detailized baclke tfdpithis detalization is
unique because of the isomorphism between tiles and méesor-t

To start this procedure (and fill the hole), we need a coritigtonly in the O(NK)-neigh-
borhood of the hole (technically, we need to have a corréngtin the (3N")-neighborhood of
the hole; as RK < 3NA, we letc, = 3N). The correction procedure involves changes in another
O(NK)-neighborhood of the hole (technically, changes to(®@MK) of the hole; Nk < 2NA, so we
letc; = 2N).

11 Robusttile sets with variable zoom factors

The construction from the previous Section works only fdf-sinilar tilings with a fixed zoom
factor. It is enough for simple applications, as we see béfo@Bection[IR. However, in the proof
of our main result in Sectiopn [L3 we need variable zoom faSorere we develop some technique
suitable for this case. Reading of this Section can be sHipmsv but should be read before
Section IB.

Now we explain how to get “robust” fixed-point tilings with awable zoom factorbl;, No,. . .
As well as in the case of a fixed zoom factor, the idea islkHatel macro-tiles are “responsible”
for healing holes of size comparable with this macro-tiles.

Let Ap <A1 <Ay < ... Dbe asequence of integers. lat< c, be positive integers. We say
that a tile setr is (¢, cy)-robust against holes of siz®), A, .. ., if the following holds: For every
n and for everyr-tiling U of coAy-neighborhood of a squas, x A, excluding the square itself
there exists a tilingy of the entirec,An-neighborhood of the square (including the square itself)
that coincides withJ outside of thec;Ap-neighborhood of the square. The difference with the
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definition from Sectiof 30 is that we take quantized valves{Ao, A, ...} instead of arbitranA

Proposition 2. Assume a sequence of zoom factorgghws not too fast and not too slofit is
enough to assume thai N Clogk and AogNk,1 < Nk for a large enough C, cf. discussions
in Section[p. Then there exists a self-similar tile set with zoom factdrgk-level macro-tiles
should be of sized= Np-...-Nx_1) that is (cz,cp)-robust(for some ¢ and @) against holes of
size lp,Ly,...

Proof. First, we apply the fixed-point construction from Sectjipartsi get a tile set which is
“self-similar” with variable zoom factorBl;, Ny, ... Denote by the family ofk-level macro-tiles
corresponding to this tile set.

Further we make a “robustified” version of this tile set. lbshl be also a self-similar tile
set with the same zoom factoig, Ny, ... Denote byp, the family ofk-level macro-tiles for the
new tiling. We need that there exists a mappdngu’ — u such that: (ap-images ofy’-tilings
are exactlyu-tilings; (b) i’ is “5-robust”: everyu’-tiling of a 5x 5 square minus 3 3 hole (see
Fig.[14) can be uniquely extended to the tiling of the entiseZHsquare.

To get such a robustification, it is enough to keep in ey€rnacro-tile the information about
5x 5 square iru-tiling and use the colors on the borders to ensure thatrifesation is coherent
in neighbor macro-tiles.

As usual, this robustification can be combined with the fipedit construction. We get a
5-robust macro-tiles for all levels of our construction.effSsimilarity” guarantees that the same
property holds for macro-tiles of all ranks, which impli¢gtrequired property of generalized
robusteness.

Indeed, assume that a tiling of a large enough neighborhamahd aA x A hole is given, and
A < L, for somen. In the tiling around the hole, aflL; x L1) block structure is correct except
only for theL;-neighborhood of the hole. For similar reas@hs x Ly)-structure is correct except
for the (L1 + L2)-neighborhood, etc. So farwe get am-level structure that is correct except for
(at most) 9= 3 x 3 squares of sizé, x Lp, and such a hole can be filled (due to 5-robustness)
with n-level macro-tiles. Note that detalization of a high-lenecro-tile is unique after we know
its “conscious” memory (reconstructed from the neighhdisyr the maximal complexity tile set
(Section[}) it is not the case, and the absence of this pyopdibecome a problem in Sectign]13
where we robustify it. To solve this problem, we will need &@error correcting codes.]

To implement the patching procedure (and fill the hole) wedrteehave a correct tiling in the
O(Ln)-neighborhood of the hole. The correction procedure ire®lghanges in anoth@Ly)-
neighborhood of the hole

We can robustify tiling not only against holes, but agaipairs of holes To this end we
slightly modify our definition of robusteness. L&y < A; < A, < ... be an increasing sequence
of integers, andt; < ¢ be positive integers. We say that a tile seis (c1,cp)-robust against
pairs of holes of siz&g,As,..., if the following holds: Let us have two sek,H, C Z?, each
of them of diameter at mog, (for somen > 0). For everyr-tiling U of c,An-neighborhood of
the union(H; UH>) excludingH; andH; themselves there exists a tiling of the entirec,An-
neighborhood ofH; UH2) (includingH; andH; themselves) that coincides withoutside of the
c1Ay-neighborhood ofH; UH>).
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A robustification againspairs of holes can be done in the same way as the robustification
against a single isolated hole above. Indeed, if these tWestare far apart from each other, we
can “correct” them independently; if they are rather closedach other, we correct them as one
hole of (roughly) doubled size. So we can employ the samestdlmation technique as above; we
need only to take a large enough “radius of multiplicati@n{and useD-robusteness instead of
5-robusteness). So we get the following generalizatiorrop&sition[2:

Proposition 3. Assume a sequence of zoom factoyghdws not too fast and not too slofs.g.,
Nk > Clogk and ClogNk. 1 < N for a large enough ¢ Then there exists a self-similar tile set with
zoom factors N(k-level macro-tiles should be of sizg£ Np-...-Nx_3) thatis(cy, ¢,)-robust(for
some ¢ and @) against pairs of holes of sizgll 4, ...

Of course, similar propositions can be also proven forésptjuadruples and any other sets of
holes of bounded cardinality. But we restrict ourselvesaiwgonly, because it is enough for the
required applications in Sectign]13.

12 Strongly aperiodic robust tile set

Now we are ready to apply islands technique to construct astairongly aperiodic tile set.

Definition. For a subset EC Z? and a tile setr we call by(t, E)-tiling any mapping
T : (Z°\E) =1

such that for every two neighbor cellsyxc 72\ E, the tiles Tx) and and Ty) satisfy the local
restriction rules oft. We may say that T is &tiling of the plane with errors at points of E.

Theorem 12. There exists a tile setwith the following properties(1) -tilings of Z? exist; (2) for
all sufficiently smalk for almost everywith respect to B) subset EC Z? every(t,E)-tiling is at
least1/10 Besicovitch-apart from every periodic mappifg — T.

Remark 1. Since the tiling contains holes, we need to specify how wattthe holes when
defining Besicovitch distance. We dot count points inE as points where two mappings differ;
this makes our statement stronger.

Remark 2. The constant 110 is not optimal and can be replaced by any other constantl.

Proof. Consider a tile set such that (a) alt-tilings area-aperiodic for evena < 1/4; (b) 1
is (c1,C2)-robust for somes; andc,. Such a tile set can be easily constructed by combining the
arguments used for Theordm 11[(g. 34) and Thedfem[&p. 12).

Our plan is to choose sonwg andf such that:

e the conditions of Lemm§f 3 (p.25) are satisfied (and thereda@ndom error set is sparse
with respect to thesey andf;

o for every sparse s& C Z? every(1,E)-tiling can be iteratively corrected (by changing itin
the neighborhoods of islands of all ranks) into-&ling of the entire plane;
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¢ the Besicovitch distance between the tilings before aret afirrection is small.

Then we conclude that the origin@l, E)-tiling is strongly aperiodic since the corrected tiling
is strongly aperiodic and close to the original one.
To implement this plan, we use the following lemma that dégsrthe error correction process.

Lemma 9. Assume that a tile seatis (¢, cy)-robust, Bk > 4c,ay for every k and a set E 72 is
sparse(with respect taai, §;). Then every(t,E)-tiling can be transformed into a-tiling of the
entire plane by changing it in the union &€, ax-neighborhoods of rank k islandor all islands
of all ranks).

Proof. Note thaiBy/2-neighborhoods of rarikislands are disjoint and large enough to perform
the error correction of rank islands, sincg > 4coay. The definition of a sparse set guarantees
also that every point is changed only finitely many times (solimit tiling is well defined) and
that the limit tiling has no errors;

The Besicovitch size of the changed part of a tiling can bienesed by using Lemmf{d 4: here
Y = 2c10y is proportional toag, so the Besicovitch distance between the original and ctade
tilings (in Lemma[P) does not exce@ S (ax/B«)?). (Note that the constant i@-notation de-
pends orc;.)

It remains to chosey andB«. We have to satisfy all the inequalities in Lemnjias 3, Lenijna 4
and Lemmd]9 at the same time. To satisfy Lenjima 4 and Lefhma 9 aydetB, = ckay for large
enougtc. To satisfy Lemm@ 3, we may leg. 1 =8(B1+...+ B«) + 1. Thenay andfk grow faster
that any geometric sequence (likemultiplied by some exponent ik), but still logS; is bounded
by a polynomial ini and the series in Lemnjia 3 converges.

With these parameters (takimglarge enough) we may guarantee that Besicovitch distance
between the origindlt, E)-tiling and the corrected-tiling does not exceed, say' 100. Since the
corrected tiling is 15-aperiodic and 210+ 2-(1/100) < 1/5, we get the desired resytt.

13 Robusttile set that enforces complex tilings

In this section we prove the main result of the paper. We coassa tile set that guarantees large
Kolmogorov complexity of every tiling, and which is robusitivrespect to random errors.

Theorem 13. There exists a tile satand constantsGc, > 0 with the following properties:

(1) a -tiling of Z? exists;

(2) for everyt-tiling T of the plane, every X N-square of T has Kolmogorov complexity at
least gN — Cy;

(3) for all sufficiently smalle for almost everywith respect to the Bernoulli distribution.B
subset EC Z2 every(T, E)-tiling is at mostl /10 Besicovitch-apart from sometiling of the entire
planeZ?;

(4) for all sufficiently smalk for aimost every Brandom subset E Z2, for every(T, E)-tiling
T Kolmogorov complexity of centered squares of T of sizeN\Nis Q(N).
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The rest of the section is devoted to the proof of this theorroombines virtually all tech-
nigue developed in this paper: self-similar tile sets wighiable zoom factors, embedding a se-
guence sequence with Levin’s property (i.e., with lineatrK@gorov complexity of all factors)
into tilings, bi-sparse sets, incremental error corrgcéind robustness against doubled holes.

13.1 The main difficulties and ways to get them round

We want to combine the construction from Sectibn 7 with ecamrecting methods based on the
idea of “islands” of faulty points. There are two main diffites in this plan: fast growing zoom
factors and gaps in vertical columns. Let us discuss thes@&ms in some detail.

The first problem is that our construction of tiling with higdolmogorov complexity from
Section[J7 requiresariable zoom factors What is even worse, zoom factok must increase
very fast (their logarithms grow faster thaf).2Hence, we cannot apply directly the technique
of islands from Sectiofi 9.2 since it works only whg Ogﬁi < oo (heref; is the parameter from
the definition of islands; in our construction it must be camgble with the size aflevel macro-
tiles). To overcome this obstacle, we replace islands higlairds (the technique developed in
Section[9.4). We deal with bi-islands mostly in the same waya did with islands. We have
seen in Sectiof 9.4 that with probability 1 a Bernoulli-randset of faults is bi-sparse, so we can
incrementally correct bi-islands of errors.

The second problem is that now it is not enough to know thescmus” memory of a macro-
tile to detalize it consistently with its neighbors. The anng) information is the bits on the vertical
columns (that carry bits of a high-complexity sequenge But random errors make gaps in
vertical columns, so now the columns are split into parts¢ha (a priori) carry different bits. We
organize some additional information flows between maites-{of all ranks) to guarantee that
each vertical column of tiles carries in most places the dainalue.

13.2 General scheme

Here we explain general ideas of our proof. First of all, we msacro-tiles with variable zoom
factorsNy = QL2-5kJ for a large enough integ€) > 0. This means that evekylevel macro-tile is an
(Nk_1 x Nx_1)-array of(k— 1)-level macro-tiles. So the size (the number of columns = thalver
of rows) of ak-level macro-tile idx = Np-...-Nx_1, andLx < Nx. (Here 25 can be replaced by
any constant between 2 and 3.)

To get tilings with high Kolmogorov complexity, we re-useethonstruction from Sectiof} 7
with the zoom factors defined above. Let us remind the idehaifd¢onstruction (proof of Theo-
rem[8). In theith column of tiles (in a correct tiling) all tiles keep some &j, and we want that
in the corresponding biinfinite sequenmeeveryN-bits substring otv has Kolmogorov complex-
ity Q(N). Technically, we fix some constantse (0,1) andc and guarantee the following local

property:

for every k-level macro-tile Mk = 1,2,...), and for every substring x ab
that is contained in M’s zone of responsibiliggf length L) the inequality (*)
K(x) > a|x| — c holds.
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This property implies that the entire sequeneas the required property: eveXybits substring
of w has Kolmogorov complexity a’N — ¢’ (for some other constants € (0, a) andc’). Indeed,
every substring ofv is either contained in a large enough macro-tile or consist&o parts with
this property (as he discussed in Secfioh 7.4).

To enforce propertyf) we organize some computation on macro-tiles of all levEfe crucial
point of the construction is propagation of hitsto the computational zones of macro-tiles of high
levels. [In fact, our construction in Sectiph 7 guarantded only for two halves of the sequence,
and we needed a special trick (Section 7.4) to guaranteerbggerty for the entire sequence. For
simplicity we do not consider the robustification of this anbed version of a complex tiling; it
can be done but is not needed for the proof of Thedrgm 13.]

To run this propagation, we delegate the bitsuwto macro-tiles of different levels. Every
macro-tileM of levelk is “responsible” for they bits «y that correspond to the columns intersect-
ing this macro-tile. One of these bits is “delegated” to maide M itself. For convenience we
assume that the ordinal number of the delegated bit (anegnfegm the range 1 .Ly) corresponds
to the vertical position oM in the enclosing macro-tile of levék+ 1). More precisely, the ordinal
number (i.e., its position in the zone of “responsibilitpf)the delegated bit fo¥ is calculated as
the ordinate oM in the enclosing macro-tile of levék+ 1) (this ordinate is an integer from the
range 1..Ny) moduloLy (recall thatNg > Ly).

The bit delegated to macro-ti must be kept ifM’s “consciousness”, i.e., it is available to the
computation running oM’s computational zone. Besides the delegated bit, in the@onsness
of M there should be also a few other bits fréi's zone of “responsibility” (see Sectidh 7). The
bits fromM'’s zone of “responsibility” that are not kept explicitly ihis macro-tile consciousness,
are kept inM implicitly. Indeed, each bit from the zone of “responsityiliof a k-level macro-
tile M is delegated to somi — 1)-level macro-tile inside oM. Moreover, for each of these bits
we can easily calculate the position of tfile— 1)-level macro-tile to which this bit is delegated.
We say thatM keeps all these bits in “subconsciousness” (in fact, in aaSc@mus” memory of
(k—1)-level blocks ofM).

In this Section we tolerate random errors in a tiling, andigal columns can be broken by
faults. So we need to make additional efforts to enforce tivatcopies ofty consciously kept
by different macro-tiles are coherent (at least for the mdibes that are not seriously damaged
by local errors). We do it by means of small enough checkswhgh guarantee that neighbor
macro-tiles have coherent conscious and subconscious méumess they are damaged by error
islands of very high rank).

To deal with random errors we use the technique of bi-islgsels Sectiof 9.4). Our arguments
will work if diameters ofk-level bi-islands are comparable with the sizekdevel macro-tiles.
Technically we setry = 13Lx_1 and B¢ = Lx. Lemmag6[]7 can be applied for these values of
parameters. (Also in the sequel we will apply Lemiha 8 witk= O(ay).)

13.3 The new construction of the tile set

We take the construction from Sectifjn 7 as a starting poidtsaiperimpose some new structures
on k-level macro-tiles. We introduce these supplementarycsiras in several steps.
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First step (introducing checksums): Everyk-level macro-tileM (in a correct tiling) consists
of anNy_1 x Ni_j-array of (k— 1)-level macro-tiles; each of thegk — 1)-level macro-tiles keeps
the bit delegated to it (these bits together determine themwscious memory d¥l). Take in this
2D-array one horizontal row of g — 1)-level macro-tiles (such a row consistsgf_; macro-
tiles). Denote the corresponding sequence of delegated¥pnys,...,nn, ;. Now we introduce
some checksums for this sequence.

Let D > 0 be a constant (to be fixed later). The checksums should heybrio reconstruct all
bitsny, ..., NN, , if at most D of these bits are corrufit is enough for us to be able to reconstruct
the corrupt bits if their positions are known). Also we wdrg thecksums to be easily computable.
The standard solution is the Reed—Solomon error correcbdg.

Let us explain this solution in more detail. We take a finitédfig, of large enough size (the
size of Fx must be approximately twice greater thid 1). Now we calculate a polynomial of
degree less tha,_1 that takes valuegy, ..., nn,_, at someN,_, points of the field. Then take as
checksums the values of this polynomial at some otBep@ints fromFy (all (Nx_1 + 2D) points
are fixed in advance).

Two different polynomials of degree less thidg ; can coincide in at mogtN,_1 — 1) points.
Hence, if at mosD bits from the sequenag, . . ., nn,_, are corrupt, we can reconstruct them given
the checksums defined above.

These checksums conta@®(logNy_1) bits of information. Now we should discuss how to
compute them.

Second step (calculating checksums}:or each row in &-level macro-tile, we can calculate
its checksums (values of the corresponding polynomialhendonscious memory ¢f— 1-level
macro-tile that form this row. This is done (in a standard Jas/follows.

Let ny,...,nn., be the values of a polynomiad(x) (of degree less thah_1) at points
X1,..., XN, ;- Assume we want to reconstruct all coefficients of this potypral. We can do it
by the following iterative procedure. For=1,...,Nx_; we calculate polynomialp;(x) andg;(x)

(of degree< (i — 1) andi respectively) such that

pi(xj)=n;j for j=1,...,i

and

gi(X) = (X—X1)...(X=X)
It is easy to see thai, 1 andq.1 can be calculated from polynomigbg, gi, and values;. 1 and
Ni+1.

If we do not need to know the resulting polynomged= py,_, (X) but want to get only the value
p(a) for some particular poird, then we can do all these calculations modX¥e-a). Thus, to
obtain the value op(x) at 2D different points, we run in paralle2copies of this process. At each
step of the calculation we need to keep in memory @1(¥) elements ofy, which isO(logNk_1)
bits of temporary data (the multiplicative constant in 1B(s)-notation depends on the valuelDy.

These calculations can be easily simulated by a tiling. fawize this simulation we include
into conscious memory ak — 1)-level macro-tiles additionaD(logNy_1) bits of data. This fits
well our fixed-point construction since zoom factblsgrow fast, and we have enough room in the
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computational zone. We may assume that the resulting valugsecksums are kept in conscious
memory of the rightmogtk — 1)-level macro-tile in each row.

Third step (consistency of checksums between macro-tilespo far, everyk-level macro-
tile containsO(N_110gNk_1) bits of checksumD(logNk_1) bits for every row. We want these
checksums to be the same for every two vertical neighbor origles. It is inconvenient to keep
the checksums for all rows only in the rightmost column (siitavould create too much traffic in
this column if we try to transmit the checksums to the neighbacro-tiles). So we propagate the
checksums of théh row in ak-level macro-tileM (i = 1,...,Nx_1) along the entireth row and
along the entiréth column ofM. In other words, these checksums must be “consciously” know
to all (k— 1)-level macro-tiles in théth row and in thath column ofM. On Fig.[Th we show the
area of propagation of checksums for two rows (theand thejth rows).

N

i

i i

Figure 15: Propagation of checksums inside of a macro-tiles

On the border of two neighbdelevel macro-tiles (one above another) we check that in each
columni = 1,...,N_1 all the corresponding checksums calculated in both mal@®-toincide.
This check is redundant if there is no errors in the tilinge thecksums are calculated from
delegated bits (which come from the sequence of ditncoded into tiles of the basic level), so
the corresponding values must be equal for vertically akitjalevel macro-tiles. However this
redundancy is useful to resist random errors, as we shoveisghuel.

Fourth step (robustification): The explained above features organized in ekdgyel macro-
tile (conscious and subconscious memory, calculating amplggating checksums, and all calcula-
tions simulated in the computational zone of a macro-tite)implemented by means of bits kept
in “conscious” memory ofk — 1)-level macro-tiles. Now we made this constructi@mobust in
the following sense: eadlk— 1)-level macro-tileM keeps in consciousness not only “its own” data
but also the bits previously assigned(to- 1)-level macro-tiles from it$C - Lx_)-neighborhood
(i.e., the(2C+1) x (2C+ 1) array of(k— 1)-level macro-tiles centered Bt). So, the content of
the conscious memory of each macro-tile is multiplied by smonstant facto®(C?).

We choose the consta@tso that anyk-level bi-island (that consist of two parts of siag) and
even they = O(ak)-neighborhood of anig-level bi-island (we specifyk below) can involve only
a small part of théCLy_1)-neighborhood of angk — 1)-level macro-tile. (Note that we speak here
about neighborhoods, not extended neighborhoods.)

This robustification allows us to talk about conscious mgnodiof ak-level macro-tile and its
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building (k— 1)-level blocks even if this macro-tile is damaged by @revel bi-island (assuming
there is no other errors).

The last remark (the number of bits in the conscious memory)The construction explained
above requires that we put into the computational zone& ef 1)-level macro-tiles additional
poly(logNx_1) bits of data (the most substantial part is the data used fouleting the check-
sums). This fits well our fixed-point construction becausly @ogNx_1) is much less thahi_»,
so we have enough room to keep and process all these data.

The tile setr is defined. Since there exigtwith Levin’s property, it follows that-tiling exist,
and everyN x N-square of such a tiling has Kolmogorov complextyN). Further we prove that
this 7 satisifies also the statement (3) of Theofen 13.

13.4 Error correcting procedure

Denote byr the tile set described in Sectipn 73.3. ket 0 be small enough. Lemnja]11 says that
Be-random set with probability 1 is bi-sparse. Now we assuraeBh— Z2 is a bi-sparse set (for
the chosen values af; and ), andT is a t-tiling of Z?\ E. Further we explain how to correct
errors and conveit into a tiling T’ of the entire planeT’ should be close td).

We follow the usual strategy. The détis bi-sparse, i.e., it can be represented as a union of
isolated bi-islands of different ranks. We correct them by®ne, starting from bi-islands of low
rank. We need only to explain how to correct bi-isl&of rankk assuming that it is well isolated.
i.e., in thefx-neighborhood of this bi-island there are no other (stilhioorrected) errors.

Let us recall that &-level bi-islandSis a union of two “clusters’y), S;; diameters of botls
andS; are at mostry = O(Lx_1). Hence the cluster§ andS; touch onlyO(1) macro-tiles of
level (k—1). The distance betwee®y andS,; is at mostf, and theB-neighborhood ofis free
of other bi-islands of rank and higher (so we can assume thatfreeighborhood oSis already
cleaned of errors). Our correction procedure aro8mll involve only points in extended the
¥-neighborhood o, wherey = 2ay. Sincef + 2y < 2L, the correction procedure can involve
points of onlyO(1) macro-tiles of levek (four if it happens near the corner of a macro-tile).

Let M be one of macro-tiles intersecting the extengigdeighborhood ok-level bi-islandS.
Basically, we need to reconstruct 8— 1)-level macro-tiles iVl destroyed bys. First we will
reconstruct the conscious memory of @+ 1)-level macro-tiles irM. This is enough to get all
bits of w from the zone of “responsibility” oM. Then we will reconstruct subconscious memory
of all the blocks that mak#, and reconstruct alt-level macro-tiles insid&/ for all n < k (in a
consistent way).

Thus, we start with reconstructing the conscious memonylofka— 1)-level macro-tilesv’
enclosed inVl. First of all we remind that conscious memory (the contenthef computational
zone) of everyk — 1)-level macro-tileM’ consists of several groups of bits:

[A] the binary representation of the numig&r 1) and coordinates &’ in the enclosing macro-
tile M (these coordinates are integers from the rangeNk_1);

[B] the bit (from the sequenc®) delegated td’;
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[C] the bit (from w) delegated to the enclosing macro-tNeé (and propagated among all its
(k—1)-level blocks, see our construction in Sectipn 7);

[D] bits used to calculate and communicate the checksumsgh®icorresponding row in the
enclosing macro-tilé/;

[E] the bits used to simulate a Turing machine on the commutakzone of the enclosirglevel
macro-tileM;

[F] a short segment of bits frori’s zone of responsibility, and some computation that ver-
ifies that this segment does not violate propeRy ({.e., does not contain factors of low
Kolmogorov complexity).

Bits of field [A] in a small isolated group aofk — 1)-level macro-tiles are trivially reconstructed
from the surrounding macro-tiles of the same level. FieB{€[D,E] can be reconstructed because
of robustification on the level gk — 1)-level macro-tiles (we organized the robustification on the
level of (k— 1)-level macro-tiles in such a way that we are able to recoosthese fields for any

C x C group of missing or corruptk — 1)-level macro-tiles). So far the correcting procedure goes
absolutely in the same way as in Secfjioh 11.

We postpone the question of reconstructing fields [F] of threscious memory since we have
a more urgent problem: to reconstructka— 1)-level blocks insideM it is not enough to know it
conscious memory; we need to know also the bit@abrresponding to the columns that crdés
Where can we obtain these bits? We can read them in the cosstiemory of blocks itM; we
can also look for these bits in a neighlkalevel tile (recall thaStouches onlyO(1) k-level macro-
tiles and there is a “healthy” zone &flevel macro-tiles around them). However, the problem
remains since we are not guaranteed thdiit aboveM, belowM, and insideM are consistent.
(This is the reason to use checksums.)

Denote byM, andMq thek-level macro-tiles just above and bel@&that are free of errors, see
Fig. [ (in this picture bi-islan&touches only on&-level macro-tile; in case wheBtouches sev-
eralk-level macro-tiles, almost the same arguments work, saulerplanations refer to Fif). [L6).

It is enough to prove that the values of bibsreconstructed foM are equal to the corresponding
values inM, (and inMgy).

The macro-tilesM, andMy are error-free; therefore, they contain some sequencessodit
vertical lines (a priori different itM, andMg) and information on all the levels is consistent with
the bit sequences (including checksums).

Note that bit sequences fdd, and My coincide at most places (outside the grey zone that
is O(1) blocks wide and consists of blocks involved in the correcimd their vertical stripes).
Indeed, the vertical transmission of these bits is not ab#td by errors.

Note also the after the correction the conscious informefto all (k — 1)-level blocks is con-
sistently reconstructed; this implies that checksums raresmitted througM and are the same
for My andMg.

Therefore, the error correction property guarantees tksairbM,, andMy are the same and we
use these bits (with already existing conscious infornmatio reconstruct all the blocks M, and
get a consistent tiling iM and around.
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macro-tileM, without errors

macro-tileM with an error bi-island

macro-tileMy without errors

Figure 16: Bi-island of errors in a macro-tile

Finally, we have to look which blocks could be changed dutimg correction process. Blocks
outside grey zone already had correct bits and consciousonyeso they are not changed. More-
over, not all the grey zone needs to be changed, only the paavelen two clusters (and their small
neighborhoods) can be affected. This is the extended nergbbd ofS as we have defined it.
(This argument is the motivation of the definition.)

It remains to explain how to reconstruct fields [F] in the dgedk — 1)-level macro-tiles. It
may look trivial: we already know all conscious and subcamss memory of the involved macro-
tiles. So we know the values of the bits that should be testd#]i The testing procedure is
deterministic and fixed (we enumerate strings with smalhkadorov complexity and check that
these strings are not factors of the tested interval). Themwoblem is to show that this procedure
never crashes. In other words, we want to prove that reasistt bits (insidévl) indeed satisfy
property f]). Unfortunately, this is false: this finite string of bitsrcaontain simple substrings
(e.g., it may happen that we are between two error islandgbfiank, and the values of bits on
the vertical lines are not the “global” ones). However, by iaagle the global process of error
correction converges to a correct tiling®f. We explain this in the next Sectign 13.5.
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13.5 Levin’s property for w embedded into a(t, E)-tiling

As we have seen, while correcting a bi-island of errors wegedrstuck: a macro-tile that fills the
gap does not exist, because the computation performedsmtacro-tile would find that the bits
of w inside its zone of responsibility do not have the prop€eay (

Nevertheless, we still want to apply the correction procediescribed in Sectidn 18.4 despite
of this obstacle. Let us explain very informally how the eation process could work. If it hap-
pens that we cannot correct some bi-island of rackmpletely, we do some “partial correcting”.
This means that for the involvddlevel macro-tiles we (a) reconstruct their conscious mgmo
and (b) guarantee that bits af are correctly transmitted from top to bottom (i.e., the ssmes
of bits written on the top and bottom sides of a “partially reated” macro-tile are equal). At
the same time we tolerate several inconsistencies betwdemdinate macro-tiles of levets < k
inside of these “partially corrected:level macro-tiles. Then we continue the error correctiom f
bi-islands of higher ranks. A “partially corrected” madile of levelk can participate (in the same
way as explained in Sectidn IB.4) in the correction procedar bi-islands of ranks > k as it
were a correct macro-tile.

It can be shown (and this fact is nontrivial) that in the limlit“partially correct” macro-tiles
disappear: every point (and every finite region) of the plarehanged finitely many times during
the correction process; the limit tiling is defined and is arect (not only “partially correct”)
tiling. Unfortunately, the implementation of this idea echnically complicated. To make the
proof easier, we use a different and simpler (though slgntiificial) argument.

This argument constructs a tile set satisfying the statéwfahe theorem in two steps. First,
we introduce a new tile sat; then we select some parg of 1, and prove the theorem fap.
Every 13-tiling of the plane (without errors) carries a bi-infinitecgiencew of bits propagated
along the vertical columns. The difference witls that noweveryw can be embedded into some
tiling. In 11-tilings, the procedure of testing the propeifd) {s allowed to fail without destroying
a tiling. Even if a simulation of the Turing machine in the qmuiational zone of somk-level
macro-tileM discovers that propertf) is violated for some bits frorv’s zone of responsibility,
the computational zone & still can be correctly tiled, but a special “alarm” is raised

More precisely, inti-tiling every macro-tile (consciously) knows an additibti@arm bit”
(saying whether the alarm is on or off for this macro-tile)arn bits on different levels are related:
all subordinates of a macro-tile where alarm is on, showdd abve alarm on; subordinates of a
macro-tile where alarm is off, may have any value of theirralaits. This can be implemented
in the same way as the substitution rules (see Selion 3prtlyedifference is that now the rule
is not deterministic, but this is not important for the counstion (each tile consciously knows its
alarm bit and its father’s alarm bit). In particular, on th@gnd level the value of the alarm bit
divides all tiles into two groups. The tiles where it is offiio the setry C 1;. All the arguments
of the previous sections remain valid foy; the advantage is that now we have an extensjoof
To Which tolerates all sequences of bits (the violations ofgitoperty ) do not destroy the tiling,
they just raise the alarm bit in the corresponding maceoanid all its subordinate tiles).

The correction procedure from Section 13.4 guarantee$ahabi-sparse séf, everyro-tiling
T of (Z?\ E) can be converted into m-tiling T’ of the entire plane such th@tand T’ coincide
everywhere except for the extendganeighborhoods ok-level bi-islands fronE. On each step
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of the error correction we resort to “alarm” tiles or “alarmacro-tiles in case we cannot correctly
reconstruct field [F] of some macro-tile damaged by erraasfE. Our goal is to show that the
resultingts-tiling is in fact atp-tiling. In other words, though we need to use “alarm” maties

at some steps, in the limit tiling’ they are not used anywhere (every introduced “alarm” macro-
tile is removed during one of the subsequent steps). Tealwyid is enough to prove that the
sequencev embedded into the resultini satisfies the propert].

Informally, the argument goes as follows. Why the check efg¢hquencev that appear i’
cannot fail? Assume that it fails on some lekel But in original tiling we already ha#-level
macro-tiles that were not touched when correcting higlnem() levels, so they (a) carry the same
bits as in the limit tilingT’; (b) check these bits for correctness. We need also to etisatrall
possible (for levek) checks are performed in this way (in the original tilinghiJ'is because in
the corresponding vertical stripe there are sufficienthgleertical groups of levek macro-tiles
not affected by the correction.

We start a more formal argument with a definition. We say thielevel macro-tile inT’ is
healthyif it is outside extendegh-neighborhoods of all islands of ranks> k (from E). Recalling
the argument explained in Sectipn 13.4, we see that in altyealacro-tileM we never raise the
alarm bit. Indeed, a healtilevel macro-tile cannot be involved into correction ofifiands of
rank greater thak. And even ifM is damaged by a bi-island of rakk the computational zone
of M is reconstructed due to robustification, so there is no hsk the computation of a Turing
machine that is embedded intis computation zone terminates with an alarm.

Let w be the biinfinite sequence of bits corresponding to thegilin. By the way of con-
tradiction, assume that= @ ...wm_1 is a substring (of lengtm) of w where §) is violated
(Kolmogorov complexity ok is much less tham). Letk be a large enough number so thdevel
macro-tiles have enough space on their computational Zorgetect this violation.

Consider the (infinite) vertical stripe kflevel macro-tiles i’ that keep bits okin their zones
of responsibility. By construction, macro-tiles of thisige test all short enough subsequences of
bits from their (common) zone of responsibility. There &gebits of w in this zone. Different
macro-tiles of this stripe test different substrings otthone (all having the same length but dif-
ferent starting points). The macro-tiles that tesippear periodically in this stripe with periag
(measured in macro-tiles). It remains to show that one dadghiests was already present in the
original tiling (and therefore does not raise an alarm).

We know that the error correction procedure involves ophneighborhoods oh-level bi-
islands of errors (for alh), wherey, = 2a, = O(Ln_1). Denoteyy = yn+ Lﬁ_l. The valuey;, is
larger thany, but still much less tha,. Hence we can apply Lemna 8 (part 2) to our usual
and f3,, and ¥ instead ofy,. This Lemma implies that in any vertical line there existsompz
which is not covered by the extend@dneighborhood of ang-level bi-island (whateven is). Fix
such a poinz on some vertical line inside the stripe.

The choice ofz guarantees thdtlevel macro-tile that contairnsis healthy, because the dis-
tance betweemand extendegh-neighborhoods ofi-level bi-islands (fom > k) is at least the gap
betweeny, andh, andyh — yh = Lﬁ_l > L (recall thatn— 1 > k). For the same reason not only
this macro-tile, but alsbx macro-tiles around it (in fact, even more) are healthy. Cirtbem tests
the substring, thereforex cannot have low complexity.
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Thus, we have proven thab satisifies [ff), and the obtained;-tiling T’ is in fact a correct
To-tiling (without alarm macro-tiles). The difference beevel andT’ is covered by extended
Yk-neighborhoods dk-level bi-islands. Now Theorei]13 (part 3) follows from Lemf (part 1)
applied to the usualy, Bk, Y.

It remains to prove part (4) of Theord 13. IEebe a bi-sparse sef, be a tiling ofZ?\ E, and
T’ be a correct tiling ofZ? such thafl andT’ differ only in extended-neighborhoods dk-level
bi-islands fromE (for k= 1,2,...). The existence of’ is already proven.

Fix a pointO. SinceE is bi-sparseQ is covered byBc-neighborhoods of only finitely many
bi-islands. Hence, for large enoudh the A x A-squareQa centered aD intersects extended
¥-neighborhoods ok-level bi-islands only iffx < A. (If the extendedx-neighborhood of some
bi-island intersect®a andfx > A, thenfx— y > A/2 andO is covered by3k-neighborhood of this
bi-island.) Therefore, to reconstrutt in Q, it is enough to correct all the bi-islands of bounded
levels Bk < A), and all the information needed to perform this correctio@, is determined by
the restriction ofT to the centere@®(A) x O(A)-square. Therefore, the Kolmogorov complexity
of the latter isQ(A) (as the complexity of the restriction &f to Q, is), and we are done
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