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Fixed-point tile sets and their applications

Bruno Durand∗, Andrei Romashchenko†, Alexander Shen‡

October 13, 2009

Abstract

An aperiodic tile set was first constructed by R. Berger whileproving the undecidability of
the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from
logic (the Entscheidungsproblem) to physics (quasicrystals).

We present a new construction of an aperiodic tile set that isbased on Kleene’s fixed-point
construction instead of geometric arguments. This construction is similar to J. von Neumann
self-reproducing automata; similar ideas were also used byP. Gács in the context of error-
correcting computations.

This construction it rather flexible, so it can be used in manyways: we show how it can
be used to implement substitution rules, to construct strongly aperiodic tile sets (any tiling is
far from any periodic tiling), to give a new proof for the undecidability of the domino problem
and related results, characterize effectively closed 1D subshift it terms of 2D shifts of finite
type (improvement of a result by M. Hochman), to construct a tile set which has only complex
tilings, and to construct a “robust” aperiodic tile set thatdoes not have periodic (or close to
periodic) tilings even if we allow some (sparse enough) tiling errors. For the latter we develop
a hierarchical classification of points in random sets into islands of different ranks.

Finally, we combine and modify our tools to prove our main result: there exists a tile set
such that all tilings have high Kolmogorov complexity even if (sparse enough) tiling errors are
allowed.

Some of these results were included in the DLT extended abstract [8] and in the ICALP
extended abstract [9].
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1 Introduction

In this paper,tiles are unit squares with colored sides. Tiles are considered asprototypes: we
may place translated copies of the same tile into different cells of a cell paper (rotations are not
allowed). Tiles in the neighbor cells should match (common side should have the same color in
both).

Formally speaking, we consider a finite setC of colors. A tile is a quadruple of colors (left,
right, top and bottom ones), i.e., an element ofC4. A tile setis a subsetτ ⊂C4. A tiling of the plane
with tiles fromτ (τ-tiling) is a mappingU : Z

2 → τ that respects the color matching condition. A
tiling U is periodic if it has aperiod, i.e., a non-zero vectorT ∈ Z

2 such thatU(x+T) = U(x) for
all x∈ Z

2. Otherwise the tiling isaperiodic. The following classical result was proved by Berger
in a paper [2] where he used this construction as a main tool toproveBerger’s theorem: thedomino
problem(to find out whether a given tile set has tilings or not) is undecidable.

Theorem 1. There exists a tile setτ such thatτ-tilings exist and all of them are aperiodic.[2]

The first tile set of Berger was rather complicated. Later many other constructions were sug-
gested. Some of them are simplified versions of the Berger’s construction ([26], see also the
expositions in [1, 6, 20]). Some others are based on polygonal tilings (including famous Penrose
and Ammann tilings, see [13]). An ingenious construction suggested in [17] is based on the mul-
tiplication in a kind of positional number system and gives asmall aperiodic set of 14 tiles (in [4]
an improved version with 13 tiles is presented). Another nice construction with a short and simple
proof (based explicitly on ideas of self-similarity) was recently proposed by N. Ollinger [24].

In this paper we present yet another construction of aperiodic tile set. It does not provide a
small tile set; however, we find it interesting because:

• The existence of an aperiodic tile set becomes a simple application of a classical construc-
tion used in Kleene’s fixed point (recursion) theorem, in vonNeumann’s self-reproducing
automata [23] and, more recently, in Gács’ reliable cellular automata [10, 11]; we do not
use any geometric tricks. The construction of an aperiodic tile set is not only an interest-
ing result but an important tool (recall that it was inventedto prove that domino problem is
undecidable); our construction makes this tool easier to use.

• The construction is rather general, so it is flexible enough to achieve some additional proper-
ties of the tile set. We illustrate this flexibility providing new proof for several known results
and proving new results; these new results add robustness (resistance to sparse enough er-
rors) to known results about aperiodic tile sets and tile sets that have only complex tilings.

It is not clear whether this kind of robustness can be achieved for previously known construc-
tions of tile sets; on the other hand, robustness propertieslook important. For example, a math-
ematical model for processes like quasicrystals’ growth orDNA-computation should take errors
into account. Note that our model (independent choice of places where errors are allowed) has no
direct physical meaning; it is just a simple mathematical model that can be used as a playground
to develop tools for estimating the consequences of tiling errors.
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The paper is organized as follows. In Section 2 we present thefixed-point construction of
an aperiodic tile set (new proof of Berger’s theorem). Then we illustrate the flexibility of this
construction by several examples:

• In Section 3 we show that any ‘uniform’ substitution rule canbe implemented by a tile set
(thus providing a new proof for this rather old result). Thenin Section 4 we use substitu-
tions to show that there are strongly aperiodic tile sets (this means that any tiling is strongly
aperiodic, i.e., any shift changes at least some fixed fraction of tiles).

• Fixed-point construction of Section 2 provides a self-similar tiling: blocks of sizen× n
(“macro-tiles”) behave exactly as individual tiles, so on the next level we haven2×n2 blocks
made ofn× n macro-tiles that have the same behavior, etc. In Section 5 wemake some
changes in our construction that allow us to get variable zoom factors (the numbers of tiles
in macro-tiles increases as the level increases).

Variable zoom factor tilings can be used for simulating computations (higher levels per-
form more computation steps); we use them to give a simple proof of the undecidability
of the domino problem (main technical difficulty in the standard proof was to synchronize
computations on different levels, now this is not needed at all); we show also that other
undecidability results can be obtained in this way.

• This technique can be used to push the strong aperiodicity toits limits: the distance between
any tiling and any periodic one (or between any tiling and itsnontrivial shift) can be made
arbitrarily close to 1, not only separated from 0. This is done in Section 6 using an additional
tool: error-correcting codes.

• In [5] a tile set was constructed such that every tiling has maximal Kolmogorov complexity
of fragments (Ω(n) for n×n squares); all tilings for this tile set are non-computable (so we
get a classical result of Hanf [15] and Myers [22] as a corollary). The construction was rather
complicated and was based on a classical construction of an aperiodic tile set. In Section 7
we provide another proof of the same result that uses variable zoom factors. It is simpler in
some respects and can be generalized to produce robust tile sets with complex tiling, which
is our main result (Section 13).

Further in Section 8 we use the same technique to give a new proof ofor some results
by S. Simpson [28] and M. Hochman [16] about effectively closed subshifts: every 1-
dimensional effectively closed subshift can be obtained asa projection of configurations
of some 2-dimensional subshift of finite type (in an extendedalphabet). Our construction
provides a solution of Problem 9.1 from [16].

• To prove the robustness of tile sets against sparse errors weuse a hierarchical classification
of the elements of random sets into islands of different levels (a method that goes back to
Gács [11, 12]). This method is described in Section 9.1.

• In Section 9.2 we give definitions and establish some probabilistic results about islands that
are used to prove robustness: we show that a sparse random seton Z

2 with probability 1
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(for Bernoulli ditribution) can be represented as a union of‘islands’ of different ranks. The
higher is the rank, the bigger is the size of an island; the island are well isolated from each
other (in some neighborhood of an island of rankk there is no other islands of rank≥ k).
Then in Section 9.3 we illustrate these tools using standardresults of percolation theory as a
model example. In Section 11 we generalize results of Section 9.4 and prove similar results
for weaker restrictions for the involved parameters. To achieve this generalization, a more
technically advanced island classification is needed. In this classification two islands of the
same rank can be close to each other (but not more than two).

• In Section 10 we use fixed-point construction to get an aperiodic tile set that is robust in the
following sense: if a tiling has a “hole” of sizen, then this hole can be patched by changing
only O(n)-size zone around it. Moreover, anO(n) zone (with bigger constant inO-notation)
around the hole is enough for this (we don’t need to have the entire plane covered). In
Section 11 we explain how to get a robust aperiodic tile sets with variable zoom factors.

• In Section 12 we combine the techniques developed to establish one of our main results:
there exists a tile set such that every tiling of a plane except a sparse set of random points is
far from every periodic tiling.

• Finally, the Section 13 contains our most technically difficult result: a robust tile set such that
all tilings, even with a sparsely placed errors, have linearcomplexity of fragments. To this
end we need all our techinque: fixed-point construction withvariable zoom factors, splitting
of a random set into doubled islands, and robustification with filling of doubled holes.

2 Fixed-point aperiodic tile set

2.1 Macro-tiles

Fix a tile setτ and an integerN > 1 (zoom factor). A macro-tile is an N×N square tiled by
matchingτ-tiles (i.e., a square block ofN2 tiles). Every side of a macro-tile consists of a sequence
of N colors called amacro-color.

Let ρ be a set ofτ-macro-tiles. We say thatτ simulatesρ if (a) τ-tilings exist, and (b) for every
τ-tiling there exists a unique grid of vertical and horizontal lines that cuts this tiling intoN×N
macro-tiles fromρ .

Example 1. Assume that we have only one (‘white’) color andτ consists of a single tile with 4
white sides. Fix someN. There exists a single macro-tile of sizeN×N. Let ρ be a singleton that
contains this macro-tile. Then everyτ-tiling can be cut into macro-tiles fromρ . However,τ does
not simulateρ , since the placement of cutting lines is not unique.

Example 2. In this example a setρ that consists of exactly one macro-tile (that has the same
macro-colors on all four sides) is simulated by some tile setτ. The tile setτ consists ofN2

tiles indexed by pairs(i, j) of integers moduloN. A tile from τ has colors on its sides as shown
on Fig. 1. This figure also shows the macro-tile ofρ that has colors(0,0), . . . ,(0,N− 1) and
(0,0), . . . ,(N−1,0) on its borders.
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Figure 1: Tiles and macrotiles for Example 2

If a tile setτ simulates some setρ of τ-macro-tiles with zoom factorN > 1 andρ is isomorphic
to τ, the setτ is calledself-similar. Here anisomorphismbetweenτ and ρ is a bijection that
respects the relations “one tile can be placed on the right ofanother one” and “one tile can be placed
on the top of another one”. (An isomorphism induces two bijections: between horizontal/vertical
colors ofτ and horizontal/vertical macro-colors ofρ .)

The idea of self-similarity is used (more or less explicitly) in most constructions of aperiodic
tile sets ([17, 4] are exceptions); we find the following explicit formulation useful.

Proposition 1. All self-similar tile setsτ have only aperiodic tilings.

Proof. Everyτ-tiling U can be uniquely cut intoN×N-macro-tiles fromρ . So every periodT
of U is a multiple ofN (since theT-shift of a cut is also a cut). ThenT/N is a period ofρ-tiling,
which is isomorphic to aτ-tiling, so T/N is again a multiple ofN. Iterating this argument, we
conclude thatT is divisible byNk for everyk, soT = 0. �

So to prove the existence of aperiodic tile sets it is enough to construct a self-similar tile set.

Theorem 2. There exists a self-similar tile setsτ.

The rest of this section is devoted to the proof of Theorem 2. The proof is based on the fixed-
point idea. Before we prove this result, we explain some technique used in our construction: how
to simulate a given tile set by embedding computations.

2.2 Simulating a tile set

For brevity we say that a tile setτ simulates a tile setρ whenτ simulates some set of macro-tiles
ρ̃ isomorphic toρ (e.g., we say that a self-similar tile set simulates itself).

Let us start with some informal discussion. Assume that we have a tile setρ whose colors are
k-bit strings (C = {0,1}k) and the set of tilesρ ⊂C4 is presented as a predicateR(c1,c2,c3,c4) of
four k-bit arguments. Assume that we have some Turing machineR that computesR. Let us show
how to simulateρ using some other tile setτ.

This construction extends Example 2, but simulates a tile set ρ that contains not a single tile but
many tiles. We keep the coordinate system moduloN embedded into tiles ofτ; these coordinates
guarantee that allτ-tilings can be uniquely cut into blocks of sizeN×N and every tile “knows”
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its position in the block (as in Example 2). In addition to thecoordinate system, now each tile in
τ carries supplementary colors (from a finite set specified below) on its sides. These colors form a
new “layer” superimposed with the old one, i.e., the set of colors is now a Cartesian product of the
old one and the set of colors used in this layer.

On the border of a macro-tile (i.e., when one of the coordinates is zero) only two supplementary
colors (say, 0 and 1) are allowed. So the macro-color encodesa string ofN bits (whereN is the
size of macro-tiles). We assume thatN ≥ k and letk bits in the middle of macro-tile sides represent
colors fromC. All other bits on the sides are zeros (this is a restriction on tiles: each tile “knows”
its coordinates so it also knows whether non-zero supplementary colors are allowed).

Now we need additional restrictions on tiles inτ that guarantee that macro-colors on the sides
of each macro-tile satisfy the relationR. To achieve this, we ensure that bits from the macro-tile
sides are transferred to the central part of the tile where the checking computation ofR is simulated
(Fig. 2).

Turing
machine

Figure 2: Wires and processing zones; wires appear quite narrow sinceN ≫ k

For that we need to fix which tiles in a macro-tile form “wires”(this can be done in any rea-
sonable way; let us assume that wires do not cross each other)and then require that each of these
tiles carries equal bits on two sides (so some bit propagatesalong the entire wire); again it is easy
to arrange since each tile knows its coordinates.

Then we checkR by a local rule that guarantees that the central part of a macro-tile represents
a time-space diagram ofR’s computation (the tape is horizontal, time goes up). This is done in
a standard way. We require that computation terminates in anaccepting state: if not, the tiling
cannot be formed.

To make this construction work, the size of macro-tile (N) should be large enough: we need
enough space fork bits to propagate and enough time and space (=height and width) for all accept-
ing computations ofR to terminate.

In this construction the number of supplementary colors depends on the machineR (the more
states it has, the more colors are needed in the computation zone). To avoid this dependency,
we replaceR by a fixed universal Turing machineU that runs aprogramsimulatingR. Let us
agree that the tape of the universal Turing machine has an additional read-only layer. Each cell
carries a bit that is not changed during the computation; these bits are used as a program for the
universal machineU (Fig. 3). In terms of our simulation, the columns of the computation zone
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Universal

Turing

machine

program

Figure 3: Checking tiles with a universal TM

carry unchanged bits (considered as a program forU ), and the tile set restrictions guarantee that
the central zone represents the protocol of an accepting computation ofU (with this program). In
this way we get a tile setτ that simulatesρ with zoom factorN usingO(N2) tiles. (Again we need
N to be large enough, but the constant inO(N2) does not depend onN.)

2.3 Simulating itself

We know how to simulate a given tile setρ (represented as a program for the universal TM) by
another tile setτ with a large enough zoom factorN. Now we wantτ to be isomorphic toρ
(then Proposition 1 guarantees aperiodicity). For this we use a construction that follows Kleene’s
recursion (fixed-point) theorem1 [18].

Note that most rules ofτ do not depend on the program forR, dealing with information transfer
along the wires, the vertical propagation of unchanged program bits, and the space-time diagram
for the universal TM in the computation zone. Making these rules a part ofρ ’s definition (we let
k = 2logN+O(1) and encodeO(N2) colors by 2logN+O(1) bits), we get a program that checks
that macro-tiles behave likeτ-tiles in this respect.

The only remaining part of the rules forτ is the hardwired program. We need to ensure that
macro-tiles carry the same program asτ-tiles do. For that our program (for the universal TM) needs
to access the bits of its own text. (This self-referential action is in fact quite legal: the program is

1A reminder: Kleene’s theorem says that for every transformation π of programs one can find a programp such
that p andπ(p) produce the same output. Proof sketch: since the statement is language-independent (use translations
in both directions before and afterπ), we may assume that the programming language has a functionGetText() that
returns the text of the program and a functionExec(string s) that replaces the current process by execution of a
programs. (Think about an interpreter: surely it has an access to the program text; it can also recursively call itself
with another program.) Then the fixed point isExec(π(GetText())).
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written on the tape, and the machine can read it.) The programchecks that if a macro-tile belongs
to the first line of the computation zone, this macro-tile carries the correct bit of the program.

How should we chooseN (hardwired in the program)? We need it to be large enough so the
computation described (which deals withO(logN) bits) can fit in the computation zone. The
computation is rather simple (polynomial in the input size,i.e., O(logN)), so for largeN it easily
fits in Ω(N) available time.

This finishes the construction of a self-similar aperiodic tile set.

3 Substitution rules implemented

The construction of self-similar tiling is rather flexible and can be easily augmented to get a self-
similar tiling with additional properties. Our first illustration is the simulation of substitution rules.

Let A be some finite alphabet andm > 1 be an integer. Asubstitution ruleis a mapping
s: A → Am×m. A substitution rules defines a mapping onA-configurations. ByA-configuration
we mean an integer lattice filled with letters fromA, i.e., a mappingZ2 → A considered modulo
translations. A substitution rulesapplied to a configurationX produces another configurations(X)
where each lettera∈ A is replaced by anm×m matrixs(a).

A configurationX is compatiblewith substitution rules if there exists an infinite sequence

. . .
s→ X3

s→ X2
s→ X1

s→ X,

whereXi are some configurations.
Example 3. Let A = {0,1},

s(0) = (0 1
1 0), s(1) = (0 1

1 0).

It is easy to see that the only configuration compatible withs is the chess-board coloring.
Example 4(Fig. 4). LetA = {0,1},

s(0) = (0 1
1 0), s(1) = (1 0

0 1).

One can check that all configurations that are compatible with this substitution rule (calledThue –
Morse configurationsin the sequel) are aperiodic.

The following theorem goes back to Mozes [21]. It says that every substitution rule can be
enforced by a tile set.

Theorem 3. Let A be an alphabet and let s be a substitution rule over A. Then there exists a tile
setτ and a mapping e: τ → A such that

(a) s-image of anyτ-tiling is an A-configuration compatible with s;
(b) every A-configuration compatible with s can be obtained in this way.

Proof. We modify the construction of the tile setτ (with zoom factorN) takings into account.
Let us first consider the very special case when

• the substitution rule maps eachA-letter into anN×N-matrix (i.e.,m= N).

9



→ → →

Figure 4: Three steps of Thue–Morse substitution

• the substitution rule is easy to compute: given a letteru∈ A and(i, j), we can compute the
(i, j)-th letter ofs(u) in time poly(log|A|) ≪ N.

In this case we proceed as follows. In our basic constructionevery tile knows its coordinates
in the macro-tile and some additional information needed toarrange “wires” and simulate calcula-
tions of the universal TM. Now in addition to this basic structure each tile keeps two letters ofA:
the first is the label of a tile itself, and the second is the label of theN×N-tile it belongs to. This
means that we keep additional 2 log|A| bits in each tile, i.e., multiply the number of tiles by|A|2.
It remains to explain how the local rules work. We add two requirements:

(a) the second letter is the same for neighbor tiles (unless they are separated by a border of some
N×N macro-tile);

(b) the first letter in a tile is determined by the second letter and the coordinates of the tile inside
the macro-tile, according to the substitution rule.

Both requirements are easy to integrate in our construction. The requirement (a) can be easily
enforced; to achieve (b) a macro-tile should check that its first letter appears ins([second letter])
at the required position. It is possible whens is easy to compute (knowing the coordinates and the
second letter, the program computes the required value of the first letter and then compares it with
the actual value).

The requirements (a) and (b) ensure that configuration is ans-image of some other configura-
tion. Also (due the self-similarity) we have the same at the level of macro-tiles. But this is not all:
we need to guarantee that the first letter on the level of macro-tiles is identical to the second letter
on the level of tiles. This is also achievable: the first letter of a macro-tile is encoded by bits on its
border, and we can require that these bits match the second letter of the tiles at that place (recall
that second letter is the same across the macro-tile). It is easy to see that nowτ has the required
properties (each tiling projects into a configuration compatible with τ and vice versa).

However, this construction assumes thatN (the zoom factor) is equal to the matrix size in the
substitution rule, which is usually not the case (m is given, andN we have to choose, and it needs
to be large enough). To overcome this difficulty, we letN be equal tomk for somek, and use the
substitution rulesk, i.e., thekth iteration ofs (a configuration is compatible withsk if and only if it
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is compatible withs). Now we do not needs to be easily computed: for largek the computation of
sk will fit into the space available (exponential ink). �

Remark. We use this “anthropomorphic” language (the tile “knows” something etc.), because
the formal description would be too obscure (it would include writing a rather complicated program
for an explicitly described universal TM). When we say that “tile knows its coordinates”, we mean
that this coordinates are determined by the colors of its sides (on the base level); when we say that
tile additionally knows twoA-letters, it means that the set of tiles is the product of the old one and
A×A. The condition (a) means that the second letter is also reflected in the colors of tile sides
so that matching condition implies that neighbor tiles haveequal labels (unless they are separated
by a border). The condition (b) says which part of all combinations of letters and coordinates is
allowed in tiles.

Of course, all these rules should be enforced on the next level, for macro-tiles. This means
that macro-tile, in addition to the bits that represent its coordinates (and are sent to the borders
according to the scheme of Fig. 1), should have some other bits that represent twoA-labels. The
bits of the second label should be sent to all borders having non-zero coordinates, since they should
match for neighbor macro-tiles. The bits of the first label should be also present in (a known place
of) the input of the computational zone, so the program can check the condition (b). Moreover, we
require that if a tile is in this place, then its first internalA-label is consistent with the bit of the
A-label in a macro-tile (and this again is translated into some part of the checking program) etc.
Note that the first internalA-label is not reflected in macro-tile boundary colors directly since there
is no need to compare these labels for neighbor macro-tiles.Our fixed-point construction can be
easily adapted to such labels.

4 Thue–Morse lemma and strongly aperiodic tile sets

Let α > 0 be a real number. A configurationU : Z
2 → A is α-aperiodicif for every nonzero vector

T ∈Z
2 there existsN such that in every square whose side is at leastN the fraction of pointsx such

thatU(x) 6= U(x+T) exceedsα.
Remark. If U is α-aperiodic, then Besicovitch distance betweenU and any periodic pattern is

at leastα/2. (The Besicovitch distance is defined as limsupN dN wheredN is the fraction of points
where two patterns differ in theN×N centered square. It is easy to see that it does not depend on
the choice of the center point.)

Theorem 4. There exists a tile setτ such thatτ-tilings exist and everyτ-tiling is α-aperiodic for
everyα < 1/4.

Proof. This is obtained by applying Theorem 3 to Thue–Morse substitution ruleT (Example
4). LetC be a configuration compatible withT. We have to show thatC is α-aperiodic for every
α < 1/4. (In fact we use only Thue–Morse bits here.)

Big squares inC obtained by iterating substitution rules can be represented as axor-sum of two
one-dimensional Thue–Morse sequences obtained using the substitution rules 0→ 01 and 1→ 10.
More formally,i- j-bit of such a square is axor of ith and jth bits inan or bn, where we leta0 = 0,
b0 = 1, an+1 = anbn, bn+1 = bnan. (For example,a3 = a2b2 = a1b1b1a1 = 01101001.) Evidently,
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|ai| = |bi| = 2i andbi is the bitwise negation ofai . To prove the required bound, we start with an
estimate for (one-dimensional) aperiodicity ofan andbn:

Lemma 1 (folklore). For any integer u> 0 and for any n such that u≤ |an|/4 the shift by u steps
to the right changes at least|an|/4 positions in an and leaves unchanged at least|an|/4 positions.
(Formally, in the range1. . .2n−u there is at least(1/4)2n positions i such that ith and(i +u)th
bits in an coincide and at least(1/4)2n positions where these bits differ.)

Proof of the Lemma:an can be represented asabbabaabwherea = an−3 andb = bn−3. One
may assume without loss of generality thatu≥ |a| (otherwise we apply Lemma separately to the
two halves ofan). Note thatba appears in the sequence twice and once it is preceded bya and
once byb. Sincea andb are opposite, the shifted bits match in one of the cases and donot math in
the other one. The same is true forab that appears preceded both bya andb. �

Now let α be one-dimensional Thue–Morse infinite sequence; our two-dimensional configu-
rationC is defined byCi j = αi ⊕α j . Let T be any shift. IfT is horizontal, thenα j is unchanged
and the Lemma is enough (the lemma is stated for the intervalsof some special form, but for large
enough squares the boundary effects are compensated by the difference between 1/4 andα). The
same argument works for vertical shifts. If both coordinates of a shift are non-zero integers, the
the fraction is questions is the probability of an event thatis an xor-combination of two events with
probabilities in(1/4,3/4). It is easy to check that such an event also has probability in(1/4,3/4)
(in fact, in(3/8,5/8), but this stronger bound is not needed).

Theorem 4 is proved.�
In fact, the bound 1/4 can be replaced by 1/3 if we use more professional analysis of Thue–

Morse sequence (see, e.g., [29]). But if we want to get a most strong result of this form and make
the bound close to 1, this substitution rule does not work. Wecan use some other rule (in a bigger
alphabet) as Pritykin and Ulyashkina have shown [25], but weprefer to give another construction
with variable zoom factors, see Section 6.

5 Variable zoom factor

The fixed point construction of aperiodic tile set is flexibleenough and can be used in other con-
texts. For example, the “zoom factor”N could depend (recursively) on the levelk (number of
grouping steps). For this each macro-tile should havek encoded at its sides; this labeling should be
consistent when switching to the next level. Using the anthropomorphic terminology, we say that
each macro-tile “knows” its level, i.e., the sequence of bits that form a binary representation of this
level, is transferred from the sides to the tape and the computation checks that all these numbers
(level bits for all four sides) are the same. This is, so to say, a “conscious” information processed
by a computation in the computation region of the macro-tile. One may say also that a macro-tile
of any level contains “subconscious” information (“existing in mind but not immediately available
to consciousness”, as the dictionary says): this is the information that is conscious for the sub-tiles
that form a macro-tile, and their sub-tiles (all the way downto the ground level).

Using this terminology, we can say that each macro-tile knows its coordinates in the macro-
tile of the next level: for a tile of levelk these coordinates are integers moduloNk+1, so in total
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logk+O(logNk+1) bits are required for keeping both the level and these coordinates. Note thatNk

steps should be enough to perform increment operation modulo Nk+1; we assume that both logk
and logNk+1 are much less thanNk. This means thatNk should not increase too fast or too slow
(say,Nk = logk is too slow andNk+1 = 2Nk is too fast). Also we need to computeNk+1 whenk
is known, so we assume that not only the size ofNk+1 (i.e., logNk+1) but also the time needed to
compute this givenk are small compared toNk. These restrictions still allow many possibilities,
say,Nk =

√
k, Nk = k, Nk = 2k, Nk = 2(2k), Nk = k! etc.

There is one more important point that needs to be covered. How do we guarantee that the bits
representing the levelk (on the tape of a macro-tile) are correct? In other terms, we need to ensure
that the levels known to a macro-tile and to one of its tiles differ by one. (In psychoanalytic terms
we need to check that conscious and subconscious information in a tile match each other.) This is
done as follows. The tile knows its level and also knows its position in the macro-tile it belongs (its
father). So it knows whether it is in the place where father should keep level bits, and can check
whether indeed the level bit that father keeps in this place is consistent with the level information
the tile has. (In fact we have the same problem when simulating substitution rule: a check that the
father letter of a tile coincides with the letter of the father tile, is done in the same way.)

This “self-similar” structure with variable zoom factor can be useful in some cases. Though it
is not a self-similar according to our definition, one can still easily prove that any tiling is aperiodic.
Note that now the computation time for the TM simulated in thecentral part increases with level,
and this can be used for a simple proof of undecidability of domino problem. The problem in the
standard proof (based on the self-similar construction with fixed zoom factor) is that we need to
place computations of unbounded size into this self-similar structure, and for that we need special
geometric tricks (see [2, 1]). With our new construction, ifwe want to reduce an instance of the
halting problem (some machineM) to the domino problem, we add to the program embedded in
our construction the parallel computation ofM on the empty tape; if it terminates, this destroys the
tiling.

In a similar way we can show that the existence of a periodic tiling is an undecidable property
of a tile set, and, moreover, the tile sets that admit periodic tilings and tile sets that have no tilings
form two inseparable sets (another classical result, see [14]).

Here is an example of a more exotic version of the latter result (that has probably no interest in
itself, just an illustration of the technique). We say that atile setτ is m-periodicif τ-tilings exist
and for each of them the set of periods is the set ofall multiples ofm (this is equivalent to the fact
that both vectors(0,m) and(m,0) are periods). LetE [resp. O] be all m-periodic tile sets for all
evenm [resp. oddm].

Theorem 5. The sets E and O are inseparable enumerable sets.

Proof. It is easy to see that the property “to be anm-periodic tile set” is enumerable (both the
existence of tiling and enforcing periods(m,0) and(0,m) are enumerable properties).

It remains to reduce some standard pair of inseparable sets (say, machines that terminate with
output 0 and 1) to(E,O). It is easy to achieve using the technique explained. Assumethat the
numbersNk increase being odd integers as long as the computation of a given machine does not
terminate. When and if it terminates with output 0 [1], we require periodicity with odd [resp. even]
period at the next level.�
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Another application of a variable zoom factor is the proof ofthe following result obtained by
Lafitte and Weiss (see [19]) using Turing machine simulationinside Berger–Robinson construc-
tion.

Theorem 6. Let f be a total computable function whose arguments and values are tile sets. Then
there exists a tile setτ that implements a tile set f(τ).

Here we assume that some computable encoding for tile sets isfixed. Since there are no re-
strictions on the computation complexity off , the choice of the encoding is not important.

Proof. Note that for identity functionf this result provides a self-simulating tile set of Sec-
tion 2.3. To prove it we may use the same kind of a fixed-point technique. However, there is
a problem: the computation resources inside a tile are limited (by its size) while time needed to
computef can be large (and, moreover, depends on the tile size).

The solution is to postpone the simulation to large levels: if a tile setτ0 simulatesτ1 that
simulatesτ2 that simulates etc. up toτn, thenτ0 simulatesτn, too. Therefore we may proceed as
follows.

We use the construction explained above with a variable zoomfactor. Additionally, at each
level the computation starts with a preliminary step that may occupy up to (say) half of the available
time. This step involves:

• interpreting a program that it is on the tape and unfolding a tile set that is implemented by
this program on the ground level; this set should be then converted into a form used byf ;

• applying f to this tile set;

• converting the output off into a list of tiles written down in some straightforward encoding.

This part of the computation checks also that it does not use more that half of the available time
and that the output is small enough compared to the tile size.If this time turns out to be insufficient
or the output is too big, this part is dropped and we start a normal computation for variable zoom
factor (as explained above). However, if the time is enough and result (list of tiles that corresponds
to f ’s output) is small compared to the tile size, we check that macro-tile (of the current level)
belongs to the tile set computed.

Since the program is the same at all level and the computationof f should be finite (though
may be very long), at some (big enough) level the second possibility starts to play, and we get a
tile set isomorphic tof (τ) whereτ is the tile set on the ground level.�

Another application is the construction of tile sets with any given computable density. Assume
that a tile set is given and, moreover, all tiles are divided into two classes, say, A-tiles and B-tiles.
We are interested in a fraction of A-tiles in a tiling of an entire plane or its large region. If the
tile set is flexible enough, this fraction can vary. However,for some tile sets this ratio tends to a
limit value when the size of a tiled region increases. This phenomenon is captured in the following
definition: we say that tile setτ divided into A- and B-tileshas a limit densityα if for everyε > 0
there existsN such that for anyn > N the fraction of A-tiles in any tiling of then×n square is
betweenα − ε andα + ε.
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Theorem 7. (i) If a tile set has a densityα, thenα is a computable real number in[0,1]. (ii) Any
computable real numberα ∈ [0,1] is a density of some tile set.

Proof. The first part is a direct corollary of the definitions. For each n we can consider all
tilings of then×n square and look for the minimal and maximal fractions of A-tiles in them. Let
us denote them bymn andMn. It is easy to see that the limit frequency (if exists) is in the interval
[mn,Mn]. Indeed, in a large square split into squares of sizen×n the fraction of A-tiles is between
mn andMn being at the same time arbitrarily close toα. Therefore,α is computable (to get its
value withε-precision, we increasen until the difference betweenMn andmn becomes smaller
thanε).

It remains to prove (ii). Sinceα is computable, there exist two computable sequences of
rational numbersl i andr i that converge toα in such a way that

[l1, r1] ⊃ [l2, r2] ⊃ [l3, r3] ⊃ . . .

Our goal will be achieved if macro-tiles of the first level have density eitherl1 or r1, macro-macro-
tiles have density eitherl2 or r2, and so on. Indeed, each large square can be split into macro-tiles
(and the border that does not change the density much), so in any large square the fraction of
A-tiles is (almost) in[l1, r1]. The same argument works for macro-macro-tiles, etc.

However, this plan cannot be implemented directly: the maindifficulty is that the computation
of l i andr i may require a lot of time while the computational abilities of macro-tiles of leveli are
limited (we use variable zoom factors, but they cannot grow too fast).

The solution is to postpone the switch from densitiesl i andr i to densitiesl i+1 andr i+1 to the
higher level of the hierarchy where the computation has enough time to compute all these four
rational numbers and find out in which proportionl i- andr i-tiles should be mixed inl i+1- andr i+1-
tiles. (This proportion is restricted by our construction:the denominator should be the number of
i-level macro-tiles in(i +1)-level macro-tile, but this restriction can be always satisfied by a slight
change inl i andr i which leavesα unchanged.) So, we allocate, say, the first half of the available
time for controlled computation of all these values; if the computation does not finish in time, the
densities for the next level are the same as for the current level. If the computation terminates in
time, we use the result of the computation to have two types ofthe next level tiles: one with density
l i+1 and one with densityr i+1. They are made by using prescribed amount ofl i- andr i-tiles (since
each tile knows its coordinates, it can find out whether it should be of the first or second type).
This finishes the construction.�

6 Strongly aperiodic tile sets revisited

In Section 4 we constructed a tile set such that every tiling isα-aperiodic (for everyα < 1/4). Now
we want to improve this result and construct a tile set such that every tiling is, say, 0.99-aperiodic
(here 0.99 can be replaced by any constant less than 1). It is easy to see that this cannot be achieved
by the same argument, with Thue–Morse substitutions, as well as with any substitutions in a two-
letter alphabet; we need a large alphabet to make the constant close to 1.
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May be it is possible to achieve this result with some other substitution rule just applying
Theorem 3, but we do not know how to construct a substitution rule that gives 0.99-aperiodic
configurations. Instead, we will modify the construction and use substitution rules with variable
zoom factor (and different substitutions on each level).

Instead of one alphabet,A, we now consider a sequence of finite alphabets,A0, A1, A2,. . . ; the
cardinality ofAi will grow as i grows. Then we consider a sequence of mappings:

s1 : A1 → AN0×N0
0 , s2 : A2 → AN1×N1

1 , s3 : A3 → AN2×N2
2 , . . .

whereN0, N1, N2,. . . are some positive integers (zoom factors); they will also increase asi increases.
Then we can compose this mappings. For example, a letterz in A2 can be first replaced by a

N1×N1 squares2(z) filled by A1-letters. Then each of these letters can be replaced by aN0×N0-
square filled byA0-letters according tos1 and we get aN0N1×N0N1-square filled byA0-letters; we
denote this square bys1(s2(z)) (slightly abusing the notation).

All this (the sequence ofAi , Ni, si) is called asubstitution family. Such a family defines a class
of A0-configurations compatible with it (in the same way as in Section 3). Our plan is to construct
a substitution family such that:

• every configuration compatible with this family is 0.99-aperiodic;

• there exists a tile set and projection of it toA0 such that only compatible configurations (and
all compatible configurations) are projections of tilings.

In other words, we use the same argument as before (proving Theorem 4) but use a substitution
family instead of one substitution rule. This substitutionfamily will have special properties:

A. Symbols used in different locations are different. This means thatAi-letters that appear in a
given position of the squaressi+1(z) for z∈ Ai+1, never appear in any other places of these
squares; the setsAi is split intoNi ×Ni disjoint subset used for different positions inNi ×Ni

square.

B. Different letters are mapped to squares that are far away in Hamming distance. This means
that if z,w∈ Ai+1 are different, the imagessi+1(z) andsi+1(w) are far away in the Hamming
distance: the fraction of positions inNi ×Ni squares wheresi+1(z) andsi+1(w) have equal
equal letters, does not exceedεi.

Hereεi is a sequence of positive reals such that∑i≥0 εi < 0.01.

This implies that composite images of different letters arealso far apart. For example, the frac-
tion of positions inN0N1×N0N1 square wheres1(s(2(z)) ands1(s2(w)) coincide does not exceed
ε0 + ε1 < 0.01. (Indeed, ins2(z) ands2(w) we have at mostε1-fraction of matching letters; these
letters generateε1-fraction of matchingA0-letters on the ground level; all other, non-matching,
pairs addε0-fraction. In fact, we get a stronger bound 1− (1− ε0)(1− ε1).)

In the same way, if we take two different letters inAi and then go down to the ground level
and obtain two squares of sizeN0N1 . . .Ni−1×N0N1 . . .Ni−1 filled by A0-letters, the fraction of
coincidences is at mostε0+ . . .+ εi−1 < 0.1.

This property of the substitution family implies the desired property:
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Lemma 2. Any A0-configuration U compatible with such a tiling family is0.99-aperiodic.

Proof. Consider a shift vectorT. If T is not a multiple ofN0 (one of the coordinates is not
a multiple of N0), then property A guarantees that original configuration and its T-shift differ
everywhere. Now assume thatT is a multiple ofN0. ThenT induces aT/N0-shift of an A1-
configurationU1 that is as1-pre-image ofU . If T is not a multiple ofN0N1, thenT/N0 is not a
multiple of N1 and for the same reason thisT/N0-shift changes all the letters inU1. And different
letter inA1 are mapped toN0×N0 squares that coincide in (at most)ε0-fraction of positions.

If T is a multiple ofN0N1 but notN0N1N2, we get aT/(N0N1) shift of A2-configurationU2
that changes all its letters, and different letters give squares that are 1− (ε0 + ε1) apart. The same
argument works for the higher levels.�

Now we have to construct a substitution family that has properties A and B and can be enforced
by a tile set. The requirement of large Hamming distance is standard for coding theory, and the
classical tool is the Reed–Solomon code.

First, letAi be equal toBi ×{0,1, . . . ,Ni}×{0,1, . . . ,Ni}; let us agree that we use letters〈b, i, j〉
only in (i, j)-position of the square. This ensures the requirement A.

Then we construct a code that encodes eachAi+1-letterw by a a string of lengthN2
i made ofBi-

letters (arranged in a square); adding the coordinates, we get si+1-image ofw. We use a sequence
of codes:

s1 : A1 = B1×N1×N1 → BN0×N0
0 , ε0 coincidences betweens1(ai), s1(a j) (i 6= j)

s1 : A2 = B2×N2×N2 → BN1×N1
1 , ε1 coincidences betweens2(ai), s2(a j) (i 6= j)

. . .

To satisfy requirement B, we need to have a code with distance(1−εi)N2
i . The standard construc-

tion uses polynomials of small degree over some finite field. The size of the field should be (at
least) the length of the codeword, i.e.,N2

i . Let us decide thatNi is a power of 2 and the size of
the field is exactlyN2

i . (We can use alsoZ/pZ for prime p of an appropriate size.) To achieve the
required code distance, we have to use polynomials of degreeless thanεiN2

i . Using (for simplicity)

only coefficients 0 and 1, we get 2εiN2
i polynomials of this type, it is enough if

|Ai+1| ≤ 2εiN2
i .

Recalling thatAi+1 = Bi+1×Ni+1×Ni+1 and that we agreed thatBi+1 is a field of sizeN2
i+1, we

get the inequality
N4

i+1 ≤ 2εiN2
i , or 4 logNi+1 ≤ εiN

2
i .

Now letNi = 2i+c for some constantc; we see that for large enoughc this inequality is satisfied for
εi with sum less than 0.01 (or any other constant), since the left-hand side is linear in i while the
right-hand side is exponential.

Now it remains to implement all this using tiling rules. As wehave discussed, the zoom factor
Ni = 2i+c is OK for the construction. This factor leaves enough space to keep two substitution
letters (for the tile itself and its father tile), since these letters require linear size (ini). Moreover,
we have enough time (exponential time) to perform the computations in the finite fields needed
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to construct the error correction code mappings, so the construction used to prove Theorem 3 still
works.

Remark. We can also get an 0.99-aperiodic tile set as a corollary of the result of next section;
indeed, we construct there a tile set such that any tiling embeds a horizontal sequence with high
complexity substrings, and such a sequence cannot match itself well after a shift (in fact, we need
to replace a binary alphabet by a larger finite alphabet in this argument). Then we can superimpose
this with a 90◦-rotated construction; then any non-zero translation willshift either vertical or hori-
zontal sequence and therefore change most of the positions.Note that in this way we can also get
a tile set that is 0.99-far from every periodic pattern (a slightly different approach to define strong
aperiodicity).

However, we prefer to present a more explicit (and simpler) construction in this section that
does not refer to (rather complicated) arguments in Section7.

7 Tile set that has only complex tilings

In this section we provide a new proof of the following resultfrom [5]:

Theorem 8. There exists a tile setτ and constants c1 > 0 and c2 such thatτ-tilings exist and in
everyτ-tiling T every N×N-square has Kolmogorov complexity at least c1N−c2.

We refer to [5] for the discussion of this result (why it is optimal, why the exact value ofc1
does not matter etc.) and other related results.

7.1 A biinfinite bit sequence

Proof. We start the proof in the same way as in [5]: we assume that each tile keeps a bit that
propagates (unchanged) in the vertical direction. Then anytiling contains a biinfinite sequence of
bits ωi (wherei ∈ Z). Any N×N square contains aN-bit substring of this string, so if (for large
enoughN) everyN-bit substring ofω has complexity at leastc1N for some fixedc1, we are done.

We say that a sequenceω hasLevin’s propertyif every N-bit substringx of ω has complexity
Ω(N). Such a biinfinite sequence indeed exists (see [5]; another proof can be obtained by using
Lovasz local lemma, see [27]). So our goal is to formulate tilings rules in such a way that a correct
tiling “ensures” that the biinfinite sequence embedded in itindeed has this property.

The set of all “forbidden” binary strings, i.e., stringsx such thatK(x) < c1|x|−c2 (hereK(x)
stands for Kolmogorov complexity ofx and |x| stands for the length ofx) is enumerable: there
is a program that generates all forbidden substrings. It would be nice to embed into the tiling a
computation that runs this program and compares its output strings with the substrings ofω; such
a computation may blow up (create a tiling error) if a forbidden substring is found.

However, this is not easy. There are several difficulties.

• First of all, our self-similar tiling contains only finite computations; the duration depends
on the zoom factor and may increase as the level increases (bigger macro-tiles keep longer
computations), but at any level the computations are finite.
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• The computation at some level deals with bits encoded in the cells of that level, i.e., with
macro-tile states. So the computation cannot achieve the bits of the sequence (that are “deep
in the subconscious”) directly and some mechanism to dig them out is needed.

Let us explain how to overcome these difficulties.

7.2 Bits delegation

Macro-tile of levelk is a square whose side isLk = N0 ·N1 · . . . ·Nk−1, so there areLk bits of the
sequence that intersect this macro-tile. Let us delegate each of these bits to one of the macro-tiles
it intersects. Note that macro-tile of the next level is madeof Nk×Nk macro-tiles of levelk. We
assume thatNk is much bigger thanLk (more about choice ofNk later); this guarantees that there
is enough macro-tiles of levelk (in the next level macro-tile) to serve all bits that intersect them.
Let us decide thatith macro-tile of levelk (from bottom to top) in a(k+1)-level macro-tile serves
(consciously knows, so to say)ith bit (from the left) in its zone. (In this way we have several
macro-tiles of levelk in each macro-tile of levelk+1 that are “responsible” for the same bit, but
this does not create any problems.)
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Figure 5: Bit delegation

So each bit (each vertical line) has a representative on every level — a macro-tile that con-
sciously knows this bit. However, we need some mechanisms that guarantee that this information
is indeed true (consistent on different levels). On the bottom level it is easy, since the bits are
available on the same level.

To guarantee the consistency we use the same trick as in Section 3: at each level we keep the
information not only for this level but also for its father and made necessary consistency checks.
Namely, each macro-tile knows (has on its computation tape):

• the bit delegated to this macro-tile;

• the coordinates of this macro-tile in its father macro-tile(that are already used in the fixed-
point construction); they-coordinate determines the position of the bit delegated tothis
macro-tile (relative to the left boundary of the macro-tile).
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• the bit delegated to the father of this macro-tile;

• the coordinates of the father macro-tile in the grandfathermacro-tile

This information is subject to consistency checks:

• the information about the father macro-tile should coincide with the same information in
neighbor tiles (unless they have a different father, i.e., one of the coordinates is zero).

• if it happens that the bit delegated to the father macro-tileis the same bit as delegated for the
tile, these bits should match;

• it can happen that the macro-tile occupies a place in its father macro-tile where some bits of
its coordinates (inside grandfather macro-tile) or the bitdelegated to the father are kept; then
this partial information on the father level should be checked against the information about
father coordinates and bit.

These tests guarantee that the information about father is the same in all brothers, and some of
these brothers (that are located on the father tape) can check it against actual father information;
at the same time some other brother (that has the same delegated bit as the father) checks the
consistency of the delegated bits information.

Note that this scheme requires that not only logNk but also logNk+1 is much less thanNk−1.
This requirement, together with the inequalityLk = N0 ·N1 · . . .Nk−1 ≤ Nk (discussed earlier) is
satisfied ifNk = Qck

whereQ is a large enough constant (this is needed also to make macro-tiles
of the first level large enough) andc > 2 (so 1+c+c2 + . . .+ck−1 < ck).

Later, in Section 13, the choice ofc has to be reconsidered: we needc < 3 to achieve error
correction.

7.3 Bit blocks checked

We explained how macro-tile of any level can have a true information about one bit (delegated to
it). However, we need to check not bits, but substrings (and create a tiling error if a forbidden
string appears). Note that it is OK to test only very short substrings compared to the macro-tile
size (Nk): if this test is done on all levels, this short substring becomes long enough to detect any
violation. (Also note the short forbidden substrings can appear very late in the generation process,
so we need computation in arbitrary high levels for this reason, too.)

So we need to provide more information to tiles. It can be donein the following way. Let us
assume that a tile contains not one bit but a group of bits thatstarts at the delegated bit and has
length depending on the levelk (and growing very slowly withk, say, log loglogk is slow enough).
If this group goes out of the region occupied by a tile, we truncate it.

Similarly, a macro-tile should have this information for the father macro-tile (even if the bits are
outside its own region), this information should be the samefor brothers and needs to be checked
against the delegated bits on the macro-tile level and pieces of information on the father level.
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Then the computation in the computation zone can start the generating process and checking
the forbidden strings that appear against all the substrings of the group of bits available to this
computation. This process is time- and space-bounded, but this does not matter since every string
is considered on a high enough level.

7.4 Last correction

The argument explained above still needs some correction. We claim that every forbidden string
will be detected at some level where it is short enough compared to the level parameters. However,
there could be strings that never become a part of one macro-tile. Imagine that there is some
vertical line that is a boundary between macro-tiles of all levels (so we have bigger and bigger tiles
on both sides, and this line is still the boundary between them). Then a substring that crosses this
line will be never checked and therefore we cannot guaranteethat it is not forbidden.

There are several ways to get around this problem. One can decide that each macro-tile contains
information not only about blocks inside its father macro-tile but in a wider regions (say, three times
wider including uncle macro-tiles); this information should be checked for consistency between
cousins, too.

But there is a simpler solution. Note that even if a string on the boundary is never checked, its
parts (on both sides of the boundary) are, so their complexity is proportional to their length. And
one of the parts has length at least half of the original length, so we still have a complexity bound,
just the constant is twice smaller.

This finishes the proof of Theorem 8.�

8 Subshifts

The analysis of the proof in the previous section shows that it can be divided into two parts. We
definedforbiddenstrings as bit strings that are sufficiently long and have complexity at mostα ·
(length). We started by showing that biinfinite strings without forbidden factors (substrings) exist.
Then we constructed a tile set that contains such a biinfinitestring in any tiling.

The second part can be separated from the first one, and in thisway we get new proofs for some
results of S. Simpson [28] and M. Hochman [16] about effectively closed subshifts.

Fix some alphabetA. LetF be a set ofA-strings. Consider a setSF of all biinfinite A-sequences
that have no factors (substrings) inF. This is aclosed1-dimensional subshiftover A, i.e., a
closed shift-invariant subset of the space of all biinfiniteA-sequences. If the setF is (computably)
enumerable,SF is called aneffectively closed1-dimensional subshiftoverA. If F is finite, SF is
called asubshift of finite type.

In one dimension (non-empty) subshifts of finite type alwayscontain periodic sequences.
Berger’s theorem says that for two-dimensional subshifts it is not the case. More precisely, let
F be a set of two-dimensional patterns (squares filled withA-letters). Then we can consider a set
SF of all A-configurations (= mappingsZ2 → A) that do not contain any pattern fromF. This is
a closed shift-invariant set ofA-configurations (= 2-dimensional closed subshift overA). If F is
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(computably) enumerable,SF is calleda 2-dimensional effectively closed subshiftoverA. If F is
finite, SF is calleda 2-dimensional subshift of finite type.

Let X andY be two alphabets and letr : X → Y be a mapping. Then everyX-configuration
can be mapped to aY-configuration by applyingr to every letter. It is easy to see that an image
of a closed subshift is a closed subshift (compactness argument). An effective version of this
compactness argument shows that an image of an effectively closed subshift is again an effectively
closed subshift.

The following theorem shows that for 2-dimensional subshifts of finite type it is not the case
(an image of a finite type subshift is not necessarily of finitetype).

Theorem 9. Let A be some alphabet and let S be a1-dimensional effectively closed subshift over A.
Then there exists an alphabet B, a mapping r: B→ A, and a2-dimensional subshift S′ of finite type
over B such that r-images of configurations in S′ are (exactly) elements of S extended vertically
(vertically aligned cells contain the same A-letter).

Proof. The proof uses the same argument as in Theorem 8. Each cell nowcontains anA-letter that
propagates vertically. Computational zones in macro-tiles generate (in available space and time)
elements of the enumerable set of forbiddenA-substrings and compare them withA-substrings that
are made available to them. It remains to note that tiling requirements (matching colors) are local,
i.e., they define a finite type 2-dimensional subshift.

Note that now the remark of Section 7.4 becomes crucial, since otherwise the image ofS′-
configuration may be a concatenation of two sequences (a left-infinite one and a right-infinite
one); each sequence does not contain forbidden patterns butthey may appear near the meeting
point. (This makes a fixed-point construction essential in the proof: the argument from [5] does
not work here.)

A similar argument shows that every 2-dimensional effectively closed subshift can be repre-
sented as an image of a 3-dimensional subshift of finite type (after a natural extension along the
third dimension), any 3-dimensional effectively closed subshift is an image of a 4-dimensional
subshift of finite type, etc.

This result is an improvement of a similar one proved by M. Hochman (Theorem 1.4 in [16],
where the dimension increases by 2), thus providing a solution of Problem 9.1 in this paper. Note
also that it implies the result of S. Simpson [28] where 1-dimensional sequences are embedded
into 2-dimensional tilings but in some weaker sense (definedin terms of Medvedev degrees).

One can ask whether a dimension reduction is essential here.For example, is it true that every
2-dimensional effectively closed subshift is an image of some 2-dimensional subshift of finite
type? The answer for this question (and related questions inhigher dimensions) is negative. This
follows from an upper bound in [5] saying that every tile set has a tiling wheren× n squares
have complexityO(n) (this result immediately translates for subshifts of finitetype) and a result
from [27] that shows that some non-empty effectively closed2-dimensional subshift hasn× n
squares of complexityΩ(n2). Therefore the latter cannot be an image of the first one (complexity
can only decrease when we apply an alphabet mapping).
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9 Random errors

9.1 Motivation and discussion

The result of Section 10 states that an isolated hole in a tiling can be patched, if the tile set is
constructed in a special way. Moreover, it implies that manyholes of bounded size can be patched
simultaneously if the distance between the holes is large enough compared to their size (since the
corrected neighborhoods of holes are disjoint). However, this is a rather special case of holes set,
and we are interested in more general results: we would like to prove that for a “robust” tile set any
tiling with “sparse enough” errors or holes can be patched (by changing a small fraction of tiles).

Note that it does not matter much whether we speak about errors (places where two neighbor
tiles do not match) or holes (places without tiles). Indeed,we can convert a tiling error into a
hole (by deleting one of the two non-matching tiles) and convert a hole into a small number(at
most 4) errors by placing an arbitrary tile there. (Holes look more naturally if we start with a set
of holes and then try to tile the rest; on the other hand, if we imagine some process similar to
crystallization when a tiling tries to become correct by some trial-and-error procedure, it is more
natural to consider tiling errors. Since it does not make serious difference from the mathematical
point of view, we use both metaphors.)

We use a hierarchical approach to hole patching that goes back to P. Gacs who used it in a much
more complicated situation [11]. This means that first we tryto patch small holes that are not too
close to each other (by changing small neighborhoods aroundthem). This (if we are lucky enough)
makes larger (and still unpatched) holes more isolated since there are less small holes around.
Some of these larger holes (that are not too large and not too close to each other) can be patched
again. Then the same procedure can be repeated again for the next level. Of course, we need some
conditions (that guarantee that holes are not too dense) to make this procedure successful. These
conditions are described later in full details, but the important question is: How do we ensure that
these conditions are reasonable (i.e., general enough)? Our answer is: we prove that if holes are
generated at random (each position becomes a hole independently of other positions with small
enough probabilityε) then the generated set satisfies these conditions with probability 1.

From the physics viewpoint, this argument sounds rather weak: if we imagine some crystal-
lization process, errors in different positions are not independent at all. However, this approach
could be a first approximation until a more adequate one is found.

Note that patching holes in a tiling could be considered as a generalization of the percolation
theory. Indeed, let us consider a simple tile set made of two tiles: one has all black sides and the
other has all white sides. Then the tiling conditions reduceto the following simple condition: each
connected component of the complement to the holes set is either completely black or completely
white. We want to make small corrections in the tiling that patch the holes (and therefore make
the entire plane black or white). This means that initially either we have small black “islands” in
a white ocean or vice versa, which is exactly what percolation theory says (it guarantees that if
holes are generated at random independently with small probability, the rest consists of one large
connected component and many small islands.)

This example shows also that simple conditions like small density (in Besicovitch sense) of the
holes set are not enough: a regular grid of thin lines can havesmall density but still splits the plane
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into non-connected squares; if half of these squares are black and the others are white, no small
correction can patch the holes.

One can define an appropriate notion of a sparse set in the framework of algorithmic random-
ness (Martin-Löf definition of randomness) considering individual random sets (with respect to
Bernoulli distributionBε ) and their subsets as “sparse”. Then we can prove that any “sparse”
set satisfies the conditions that are needed to make the iterative patching procedure work. This
algorithmic notion of “sparseness” is discussed in [3]. However, in the current paper we do not
assume that reader is familiar with algorithmic randomnessand restrict ourselves to the classical
probability theory.

So our statements become quite lengthy and use probabilistic quantifiers “for almost all” (=with
probability 1). The order of quantifiers (existential, universal and probabilistic) is important here.
For example, the statement “a tile setτ is robust” means thatthere existssomeε > 0 such thatfor
almost all H (with probability 1 with respect to the distribution where each point independently
belongs toH with probabilityε) the following is true:for every(τ,H)-tiling U there existsa τ-
tiling U ′ (of the entire plane) that is “close” toU . Here by(τ,H)-tiling we mean a tiling ofZ2\H
(where existing pairs of neighbor tiles match).

9.2 Islands of errors

In this section we develop the notion of sparsity based on theiterative grouping of errors (or holes)
and prove its properties.

Let E ⊂Z
2 be a set of points; points inE are calleddirty; other points areclean. Letβ ≥ α > 0

be integers. A non-empty setX ⊂ E is an(α,β )-island in E if:
(1) the diameter ofX does not exceedα;
(2) in theβ -neighborhood ofX there is no other point fromE.
(Diameter of a set is a maximal distance between its elements; the distanced is defined asl1,

i.e., the maximum of distances along both coordinates;β -neighborhood ofX is a set of all points
y such thatd(y,x) ≤ β for somex∈ X.)

It is easy to see that two (different) islands are disjoint (and the distance between their points
is greater thanβ ).

Let (α1,β1), (α2,β2),. . . be a sequence of pairs of integers andαi ≤ βi for all i. Consider
the following iterative “cleaning” procedure. At the first step we find all(α1,β1)-islands (rank 1
islands) and remove all their elements fromE (thus getting a smaller setE1). Then we find all
(α2,β2)-islands inE1 (rank 2 islands); removing them, we getE2 ⊂ E1, etc. Cleaning process is
successfulif every dirty point is removed at some stage.

At the ith step we also keep track of theβi-neighborhoods of islands deleted during this step.
A point x∈ Z

2 is affectedduring a stepi if x belongs to one of these neighborhoods.
The setE is calledsparse(for a given sequenceαi,βi) if the cleaning process is successful,

and, moreover, every pointx∈ Z
2 is affected at finitely many steps only (i.e.,x is far from islands

of sufficiently large ranks).
The values ofαi andβi should be chosen in such a way that for sufficiently smallε > 0 aBε -

random set is sparse with probability 1. (As we have said, this justifies that our notion of sparsity
is not unreasonably restrictive.) The sufficient conditions are provided by the following statement:
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Figure 6: Explanation tree; vertical lines connect different names for the same points.

Lemma 3. Assume that

8 ∑
k<n

βk < αn ≤ βn for every n and ∑
i

logβi

2i < ∞.

Then for all sufficiently smallε > 0 a Bε -random set is sparse with probability1.

Proof of Lemma 3. Let us estimate the probability of the event “x is not cleaned aftern steps”
for a given pointx (this probability does not depend onx). If x∈ En, thenx belongs toEn−1 and
is not cleaned during thenth step (when(αn,βn)-islands inEn−1 are removed). Thenx ∈ En−1

and, moreover, there exists some other pointx1 ∈ En−1 such thatd(x,x1) is greater thanαn/2
but not greater thanβn + αn/2 < 2βn. Indeed, if there were no suchx1 in En−1, then theαn/2-
neighborhood ofx in En−1 is an(αn,βn)-island inEn−1 andx would be removed.

Each of the pointsx1 andx (that we denote alsox0 to make the notation uniform) belongs to
En−1 because it belongs toEn−2 together with some other point (at the distance greater thanαn−1/2
but not exceeding 2βn−1). In this way we get a tree (Figure 6) that “explains” whyx belongs toEn.

The distance betweenx0 andx1 in this tree is at leastαn/2 while the diameter of the subtrees
starting atx0 andx1 does not exceed∑i<n2βi. Therefore, the Lemma’s assumption guarantees that
these subtrees cannot intersect and, moreover, that all theleaves of the tree are different. Note that
all 2n leaves of the tree belong toE = E0. As every point appears inE independently from other
points, such an “explanation tree” is valid with probability ε2n

. It remains to estimate the number
of possible explanation trees for a given pointx.

To specifyx1 we need to specify horizontal and vertical distance betweenx0 andx1. Both
distances do not exceed 2βn, therefore we need about 2 log(4βn) bits to specify them (including
the sign bits). Then we need to specify the distances betweenx00 andx01 as well as distances
betweenx10 andx11; this requires at most 4 log(4βn−1) bits. To specify the entire tree we therefore
need

2log(4βn)+4log(4βn−1)+8log(4βn−2)+ . . .+2n log(4β1)

bits, and that is (reversing the sum and taking out the factor2n) equal to 2n(log(4β1)+ log(4β2)/2+
. . .). Since the series∑ logβn/2n converges by assumption, the total number of explanation trees
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for a given point (and givenn) does not exceed 2O(2n), so the probability for a given pointx to be in
En for a Bε -randomE does not exceedε2n

2O(2n), which tends to 0 (even super-exponentially fast)
asn→ ∞, assuming thatε is small enough.

We conclude that the event “x is not cleaned” (for a given pointx) has zero probability; the
countable additivity guarantees that with probability 1 all points inZ

2 are cleaned.
It remains to show that every point with probability 1 is affected by finitely many steps only.

Indeed, ifx is affected by stepn, then some point in itsβn-neighborhood belongs toEn, and the
probability of this event is at most

O(β 2
n)ε2n

2O(2n) = 22logβn+O(2n)−log(1/ε)2n
;

the convergence conditions guarantees that logβn = o(2n), so the first term is negligible compared
to others, the probability series converges (for small enoughε) and the Borel–Cantelli lemma gives
the desired result.�

Our next step: by definition a sparse set is split into a union of islands of different ranks;
now we prove that these islands together occupy only a small part of the plane. To make this
statement formal, we use the notion of Besicovich size (density) of a setE ⊂ Z

2. Let us recall the
definition. Fix some pointO of the plane and consider squares of increasing size centered at O.
For each square consider the fraction of points in this square that belong toE. The limsup of these
frequencies is calledBesicovitch densityof E. (Note that the choice of the center pointO does not
matter, since for any two pointsO1 andO2 large squares of the same size centered atO1 andO2
share most of their points.)

By definition the distance between two rankk islands is at leastβk. Therefore theβk/2-
neighborhoods of these islands are disjoint. Each of the islands contains at mostα2

k points (it
can be placed in a rectangle that has sides at mostαk). Each neighborhood has at leastβ 2

k points
(since it contains aβk×βk-square centered at any point of the island). Therefore the union of all
rankk islands has Besicovitch density at most(αk/βk)

2. Indeed, for a large square the islands near
its border can be ignored, and all other islands are surrounded by disjoint neighborhoods where
their density is bounded by(αk/βk)

2.
One would like to conclude that the overall density of all islands (of all ranks) does not exceed

∑k(αk/βk)
2. However, the Besicovitch density is in general not countably semi-additive (for ex-

ample, the union of finite sets having density 0 may have density 1). But in our case the second
condition of the definition of a sparse set (each point is covered by only finitely many neighbor-
hoods of islands) helps.

Lemma 4. Let E be a sparse set for a given family ofαk andβk. Then Besicovitch density of E is
O(∑(αk/βk)

2).

Proof of Lemma 4. LetO be a center point used in the definition of Besicovitch density. By
definition of sparsity, this point is not covered byβk-neighborhoods of rankk islands ifk is greater
than someK. Now we split the setE into two parts: one (E≤) is formed by islands of rank at
mostK and other (E>) is formed by all islands of bigger ranks. As we have just seen, in a large
square the share ofE≤ is bounded by∑k≤K(αk/βk)

2 up to negligible (as the size goes to infinity)
boundary effects (we consider separately eachk ≤ K and then sum over allk ≤ K). The similar
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βk/2

βk/2

Figure 7: Rankk islands form a set of a small density. (In this picture each island is shown as a
rectangle, which is not always the case.)

bound is valid for rankk islands withk > K, though the argument is different and a constant factor
appears. Indeed, such an islandI hasβk-neighborhood that does not contain the center pointO.
Therefore, any squareScentered atO that intersects the island, contains also a significant partof
its βk/2-neighborhoodN: the intersection ofN andScontains at least(βk/2)2 elements.

βk/2βk/2

O

S

part of theβk/2-neighborhood

of an island

part of theβk/2-neighborhood

of the island that is guaranteed
to be insideS

Figure 8: Together with a point in a rankk island, a squareScontains at least(βk/2)2 points of its
(βk/2)-neighborhood.

Therefore, the share ofE> in S is bounded by 4∑k>K(αk/βk)
2. �

Remark. It is easy to chooseαk and βk satisfying the conditions of Lemma 3 and having
arbitrarily small∑(αk/βk)

2 (take geometric sequences that grow fast enough). Therefore we get
the following well known result as a corollary of Lemmas 3 and4: for everyα > 0 there exists
ε > 0 such that with probability 1 aBε -random set has Besicovitch density less thanα.
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In fact we will need a slightly more complicated version of Lemma 4. We are interested not
only in the Besicovitch density of a sparse setE but also in the Besicovitch density of a larger set:
the union ofγk-neighborhoods of rankk islands inE. Hereγk are some numbers (in most appli-
cationsγk = cαk for some constantc). The same argument gives the bound 4∑((αk +2γk)/βk)

2.
Assuming thatγk ≥ αk, we can rewrite this bound asO(∑(γk/βk)

2). So we arrive at the following
statement:

Lemma 5. Let E be a sparse set of a given family ofαk andβk and letγk ≥ αk be some integers.
Then the union ofγk-neighborhoods of level k islands(over all k and all islands) has Besicovitch
density O(∑(γk/βk)

2).

9.3 Islands as a tool in percolation theory

Let us show how some basic results of percolation theory can be proved using the island technique.

Theorem 10. For someαk and βk satisfying Lemma 3 the complement of any sparse set E con-
tains exactly one infinite connected component C; the complement of C has Besicovitch density
O(αk/βk)

2.

Proof. Let γk = 2αk. (The choice ofαk andβk will be discussed later.) For everyk and for
every rankk island fix a point in this island and consider theγk-neighborhood of this point. It is a
square containing the entire island plus an additional security zone of widthαk and contained in
theγk-neighborhood of the island.

αk

γk γk

Figure 9: A point in a rankk island, itsγk-neighborhood and the security zone of widthαk.

It is enough to prove the following three statements:

• The union U of all these squares(for all ranks) contains the set E and has Besicovitch size
O(∑(αk/βk)

2).

• The complement of U is connected.

• There are no other infinite connected component in the complement of E.

The first statement is a direct corollary of Lemma 4 above.
To prove the second statement consider two pointsx andy that lie outsideU . We need to prove

thatx andy can be connected by a path that is entirely outsideU . Let us connectx andy by some
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path (say, one of the shortest paths) and then push this path out ofU . Consider squares of maximal
rank that intersect this path. For each of them consider the first moment when the path gets into the
square and the last moment when the path goes out, and connectthese two points by a path outside
the square:

αk

γk γk

Figure 10: Pushing a path out of the square.

Let us assume thatβk > 2γk; then the new path isαk-separated from rankk islands. Note also
that the shift (the distance between the original path and the shifted one) does not exceed 3γk.

Then we can do the same for islands of rankk−1 (pushing the path out of surrounding squares).
Note that since the shift is bounded by 3γk−1, we will not bump into islands of rankk assuming
that 3γk−1 is less than the width of the security zone,αk.

Repeating this process for decreasingk, we finally get a path that connectsx andy and goes
entirely outsideU . For this we need only that the total shift on the smaller levels, the sum 3∑i<k γi

is less thanαk. (This is easy to achieve ifαk, βk andγk are suitable geometric sequences.)
It remains to show that every infinite connected set intersects the complement ofU . To show

this, let us take a big circle centered at the origin and then push it out ofU as described above.
Since the center is outsideβk-neighborhoods of islands for large enoughk, we may assume that
the size of islands that intersect this circle are small compared with its radius (say, less than 1% of
it; this can be guaranteed if the geometric sequencesαk, βk andγk grow fast enough). Then after
the change the circle will still encircle a large neighborhood of the origin, so any infinite connected
component should cross such a circle.�

9.4 Bi-islands of errors

In the proof of our main result (Section 13) we need a more delicate version of the definition of
islands. In fact we need such a definition that some counterpart of Lemma 3 could be applied even
if the sequence logβn grows much faster than 2n (e.g., forβn = c(2.5)n

). In this section we define
bi-islands (that generalize the notion of islands from Section 9.2) and prove bi-islands versions of
Lemma 3, Lemma 4, and Lemma 5. The reader can safely skip this section for now and return here
before reading Section 13.

Let E ⊂ Z
2 be a set of points. As in Section 9.2, we call points inE dirty, and the other points

areclean. Let β ≥ α > 0 be integers. A non-empty setX ⊂ E is an(α,β )-bi-island in E if X can
be covered by the union of some setsX0, X1 such that:

(1) the diameters ofX0 andX1 do not exceedα;
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(2) in theβ -neighborhood ofX0∪X1 there are no points fromE \ (X0∪X1).
(3) the distance betweenX0 andX1 does not exceedβ .

(See Fig. 11.) In particular, an(α,β )-island is a special case of an(α,β )-bi-island (letX1 be

≤ α

≤ α

≤ α

≤ α

β

β

β

Figure 11: Bi-island is a union of two “islands” that are close to each other.

empty).
Note that one may split the same bi-island intoX0 andX1 in different ways.
Obviously, every two different bi-islands are disjoint. Moreover, the distance between them is

greater thanβ . The diameter of a bi-island is at most(2α +β ).
Let (α1,β1), (α2,β2),. . . be a sequence of pairs of integers andαi ≤ βi for all i. We define

an iterative cleaning procedure for bi-islands. At the firststep we find all(α1,β1)-bi-islands and
remove all their elements fromE (getting a smaller setE1). Then we find inE1 all (α2,β2)-bi-
islands; removing them, we getE2 ⊂ E1, etc. Cleaning process issuccessfulif every dirty point is
removed at some stage.

Similarly to the case of islands, we say that a pointx∈ Z
2 is affectedduring stepi if x belongs

to theβi-neighborhood of one of bi-islands of ranki.
The setE is calledbi-sparse(for a given sequenceαi ,βi) if the cleaning process defined above

is successful, and, moreover, every pointx∈ Z
2 is affected at finitely many steps only (that means

thatx is far from bi-islands of sufficiently large ranks).
We choose the values ofαi andβi in such a way that for sufficiently smallε > 0 aBε -random

set is bi-sparse with probability 1. The main achievement here is that the convergence condition is
now weaker:

Lemma 6. Assume that

12∑
k<n

βk < αn ≤ βn for every n, and ∑
i

logβi

3i < ∞.

Then for all sufficiently smallε > 0 a Bε -random set is bi-sparse with probability1.
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Proof of Lemma 6 is very similar to the proof of Lemma 3. At first we estimate the probability
of the event “x is not cleaned aftern steps” for a given pointx. If x∈En, thenx belongs toEn−1 and
is not cleaned during thenth step (when(αn,βn)-bi-islands inEn−1 are removed). Thenx∈ En−1.
Moreover, we show that there existtwo otherpointsx1,x2 ∈ En−1 such that the three distances
d(x,x1), d(x,x2), d(x1,x2) are all greater thanαn/2 but not greater than 2βn+2(αn/2) < 3βn.

Let X0 be theαn/2-neighborhood ofx in E. If X0 were an island, it would be removed. Since
it does not happen, there is a pointx1 outsideX0 but in theβn-neighborhood ofX0.

Let X1 be theαn/2-neighborhood ofx1 in E. AgainX0 andX1 do not form a bi-island. Each of
them has diameter at mostαn and the distance between them is at mostβn. So the only reason why
they are not a bi-island is that there exists a pointx2 ∈E outsideX0∪X1 but in theβn-neighborhood
of it. The pointsx1, andx2 have the required properties.

To make the notation uniform, we denotex by x0. Each of the pointsx0,x1,x2 belongs toEn−1.
This means that each of them belongs toEn−2 together with a pair of other points (at the distance
greater thanαn−1/2 but not exceeding 3βn−1). In this way we get a 3-ary tree that “explains” why
x belongs toEn.

The distance between every two points amongx0, x1, andx2 in this tree is at leastαn/2 while
the diameters of the subtrees starting atx0, x1, andx2 do not exceed∑i<n3βi. Thus, the Lemma’s
assumption guarantees that these subtrees cannot intersect and that all the leaves of the tree are
different. The number of leaves in this 3-ary tree is 3n, and they all belong toE = E0. Every point
appears inE independently from other points; hence, one such an “explanation tree” is valid with
probabilityε3n

. It remains to count the number of all explanation trees for agiven pointx.
To specifyx1 andx2 we need to specify horizontal and vertical distance betweenx0 andx1,x2.

These distances do not exceed 3βn, therefore we need about 4 log(6βn) bits to specify them (in-
cluding the sign bits). Then we need to specify the distancesbetweenx00 and x01,x02 as well
as the distances betweenx10 and x11,x12, and betweenx20 and x21,x22. This requires at most
12 log(6βn−1) bits. To specify the entire tree we therefore need

4log(6βn)+12log(6βn−1)+36log(6βn−2)+ . . .+4 ·3n−1 log(6β1),

which is equal to 4·3n−1(log(6β1)+ log(6β2)/3+ . . .). The series∑ logβn/3n converges by as-
sumption; so, the total number of explanation trees for a given point (and givenn) does not exceed
2O(3n). Hence, the probability for a given pointx to be inEn for a Bε -randomE does not exceed
ε3n

2O(3n), which tends to 0 asn→ ∞ (assuming thatε is small enough).
We conclude that the event “x is not cleaned” (for a given pointx) has zero probability; hence,

with probability 1all points inZ
2 are cleaned.

It remains to show that every point with probability 1 is affected by finitely many steps only.
Indeed, ifx is affected by stepn, then some point in itsβn-neighborhood belongs toEn, and the
probability of this event is at most

O(β 2
n)ε3n

2O(3n) = 22logβn+O(3n)−log(1/ε)3n
.

From the convergence conditions we have logβn = o(3n), so the first term is negligible compared
to others. The probability series converges (for small enough ε) and the Borel–Cantelli lemma
gives the result.�
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By definition, a bi-sparse set is split into a union of bi-islands of different ranks. Such bi-islands
occupy only a small part of the plane:

Lemma 7. Let E be a bi-sparse set for a given family ofαk andβk. Then Besicovitch density of E
is O(∑(αk/βk)

2).

Proof of Lemma 7 repeats the proofs of Lemma 4.�

Recalling Lemma 5, we may consider a sequence of numbersγk such thatγk ≥ αk. Then the
Besicovitch density of the union ofγk-neighborhoods of rankk bi-islands (for allk and for all
islands) is bounded byO(∑(γk/βk)

2).
However, this statement is not enough for us. In Section 13 wewill need a kind of “closure” of

γk-neighborhood of a bi-island:

Definition. Let S be an n-level bi-island. We say that(x,y) ∈ Z
2 belongs to theextendedγk-

neighborhood of S if this bi-island can be represented as S= S0 ∪S1 (diameters of S0 and S1
are not greater thanαn), and there exist points(x,y′),(x,y′′) ∈ Z

2 such thatdist(S0,(x,y′)) ≤ γk,
dist(S1,(x,y′′)) ≤ γk, and y is between y′ and y′′, see Fig. 12.

γk

γk

Figure 12: An extended neighborhood of a bi-island consistsof the neighborhoods of its two parts
and a zone between them.

The meaning of the last definition is quite simple: we take notonly the points that are close to
Sbut also those points that are placed somehow between the neighborhoods ofS0 andS1.

Lemma 8. Let E be a bi-sparse set for a given family ofαk and βk satisfying the conditions of
Lemma 6. Letγk be a sequence of numbers such thatαk < γk < βk/8, and the series∑(γi/βi)
converges. Then

(1) The Besicovitch density of the union of extendedγk-neighborhoods of rank k bi-islands in
E is bounded by O(∑(γk/βk)).

(2) For every large enough centered square of size∆×∆, on each vertical section of this square
(of size1×∆) there exists a point not covered by the union of extendedγk-neighborhoods of all
k-level bi-islands(for all k = 1,2, . . .) in E.
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Proof of statement (1): Arguments are similar to the proof of Lemma 5. An extendedγn-
neigborhood of ann-level island can be covered by a rectangle of widthO(γn) and heightO(βn +
γn); so its area isO(γnβn) (sinceγn ≤ βn)). The distance between any two bi-islands of rankn is
at leastβn. Hence, the fraction ofextendedγn-neigborhoods of islands isO(∑γk/βk) (we get it
instead of the boundO(∑(γk/βk)

2), which holds for simpleγn-neigborhoods).
Proof of statement (2):Let O be the center point. Consider a∆×∆-squareSwith the center

O (so the distance betweenO and any other point in the square is at most∆/2). Denote byn the
maximal integer such thatβn < ∆/2. If k > n and extended theγk-neighborhood of somek-level
bi-island intersects the square, then theβk-neighborhood of the same bi-island coversO (recall
that γk < βk). Since by definition of a bi-sparse set the pointO is affected by only finitely many
islands, we may assume that for a large enough∆, all bi-islands whose extendedγk-neighborhoods
intersectS, have rank at mostn.

Let us fix any vertical line inS. We show that there is a point on this line not covered by the
extendedγk-neighborhood of any rankk bi-island (for anyk). Choose a bi-island of maximal rank
that touches this line (i.e., its extendedγk-neighborhood intersects it). Let it be a bi-islandB0 of
rankk0.

Let us now try to find a non-covered point going up and startingfrom this bi-island. Its extended
neighborhood covers some intervalI0 on our line. If the pointp0 right aboveI0 is not covered, we
are done. But it can be covered by the extendedγk1-neighborhood of some bi-island of rankk1.
Note thatk1 < k0 since rankk0 bi-islands cannot be close (βk0-zone between them).

It may happen thatp0 is covered by several extended neighborhoods for differentranks. We
take the maximal among them and get a bi-islandB1 of rank k1 whose extended neighborhood
coversp0. It touches an intervalI1 on the line that containsp0. Take a pointp1 right aboveI1, etc.

This process either gives us a point that is not covered or reaches the border of the∆×∆-square.
In the latter case we can start again fromB0 and go down. If we again reach the square border,
then the entire vertical section of the square is covered by intervalsI0, I1, etc. (in both directions).
The length ofIk does not exceedβk +2αk +2γk, so the total length of all intervals is bounded by

(2αk0 +βk0 +2γk0)+2 ∑
i<k0

(2αi +βi +2γi) < βk0 +4γk0 +2 ∑
i<k0

(5βi) <

< βk0 +4γk0 +αk0 ≤ 2βk0 ≤ 2βn

(here we used the fact thatβi satisfy the conditions of Lemma 6). Sinceβn < ∆/2, extended
neighborhoods of allBi cannot cover the entire vertical section ofS. �

Lemmas 6–8 will be used in Section 13. (The arguments of Sections 10–12 do not refer to
bi-islands.) These lemmas will be used forαn,βn such that logαn ∼ qn for q > 2, βn ∼ αn+1, and
γn = O(αn) or γn = O(α2

n). For these parameters we cannot apply Lemmas 3 and 4 because logβn

grows faster than 2n.

10 Robust tile sets

Now we are ready to construct an aperiodic tile set where isolated defects can be healed.
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∆
c1∆c2∆

Figure 13: Patching holes

Let c1 < c2 be positive integers. We say that a tile setτ is (c1,c2)-robust if the following
holds: For every∆ and for everyτ-tiling U of thec2n-neighborhood of a square∆×∆ excluding
the square itself there exists a tilingV of the entirec2∆-neighborhood of the square (including the
square itself) that coincides withU outside of thec1n-neighborhood of the square (see Fig. 13).

Theorem 11. There exists a self-similar tile set that is(c1,c2)-robust for some c1 and c2.

Proof. For every tile setµ it is easy to construct a “robustified” versionµ ′ of µ, i.e., a tile
setµ ′ and a mappingδ : µ ′ → µ such that: (a)δ -images ofµ ′-tilings are exactlyµ-tilings; (b) µ ′

is “5-robust”: everyµ ′-tiling of a 5× 5 square minus 3× 3 hole (see Fig. 14) can be uniquely
extended to the tiling of the entire 5×5 square. (One can replace 5 by 4 in our argument using
more careful estimates.)

Figure 14: Filling a 3×3-hole

Indeed, it is enough to keep in oneµ ′-tile the information about, say, 5×5 square inµ-tiling
and use the colors on the borders to ensure that this information is consistent in neighbor tiles.

This robustification can be easily combined with the fixed-point construction. In this way we
can get a 5-robust self-similar tile setτ if the zoom factorN (which is considered to be fixed in this
argument) is large enough. Let us show that this set is also(c1,c2)-robust for somec1 andc2 (that
depend onN, butN is fixed.)
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Indeed, assume that a tiling of a large enough neighborhood around an∆×∆ hole is given.
Denote byk the minimal integer such thatNk ≥ ∆ (so thek-level macro-tiles are greater than the
hole under consideration). Note that the size ofk-level macro-tiles is linear in∆ sinceNk ≤ N ·∆.

In the tiling around the hole, anN×N block structure is correct except for theN-neighbor-
hood of the centraln×n hole. Indeed, the colors encode coordinates, so in every connected tiled
region coordinates are consistent. For similar reasonsN2×N2-structure is correct except for the
N + N2-neighborhood, etc. So for the chosenk we get ak-level structure that is correct except
for (at most) 9= 3×3 squares of levelk, and such a hole can be filled (due to 5-robustness) with
Nk ×Nk squares, and these squares can be then detailized back. (Note that this detalization is
unique because of the isomorphism between tiles and macro-tiles.)

To start this procedure (and fill the hole), we need a correct tiling only in the O(Nk)-neigh-
borhood of the hole (technically, we need to have a correct tiling in the (3Nk)-neighborhood of
the hole; as 3Nk ≤ 3N∆, we letc2 = 3N). The correction procedure involves changes in another
O(Nk)-neighborhood of the hole (technically, changes touch(2Nk) of the hole; 2Nk ≤ 2N∆, so we
let c1 = 2N). �

11 Robust tile sets with variable zoom factors

The construction from the previous Section works only for self-similar tilings with a fixed zoom
factor. It is enough for simple applications, as we see belowin Section 12. However, in the proof
of our main result in Section 13 we need variable zoom factor.So here we develop some technique
suitable for this case. Reading of this Section can be skipped now but should be read before
Section 13.

Now we explain how to get “robust” fixed-point tilings with a variable zoom factorsN1, N2,. . .
As well as in the case of a fixed zoom factor, the idea is thatk-level macro-tiles are “responsible”
for healing holes of size comparable with this macro-tiles.

Let ∆0 ≤ ∆1 ≤ ∆2 ≤ . . . be a sequence of integers. Letc1 < c2 be positive integers. We say
that a tile setτ is (c1,c2)-robust against holes of size∆0,∆1, . . . , if the following holds: For every
n and for everyτ-tiling U of c2∆n-neighborhood of a square∆n×∆n excluding the square itself
there exists a tilingV of the entirec2∆n-neighborhood of the square (including the square itself)
that coincides withU outside of thec1∆n-neighborhood of the square. The difference with the
definition from Section 10 is that we take quantized values∆ ∈ {∆0,∆1, . . .} instead of arbitrary∆
.

Proposition 2. Assume a sequence of zoom factors Nk grows not too fast and not too slow(it is
enough to assume that Nk ≥ C logk and ClogNk+1 < Nk for a large enough C, cf. discussions
in Section 5). Then there exists a self-similar tile set with zoom factorsNk (k-level macro-tiles
should be of size Lk = N0 · . . . ·Nk−1) that is (c1,c2)-robust(for some c1 and c2) against holes of
size L0,L1, . . .

Proof. First, we apply the fixed-point construction from Section 5and get a tile set which is
“self-similar” with variable zoom factorsN1,N2, . . . Denote byµk the family ofk-level macro-tiles
corresponding to this tile set.
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Further we make a “robustified” version of this tile set. It should be also a self-similar tile
set with the same zoom factorsN1,N2, . . . Denote byµ ′

k the family of k-level macro-tiles for the
new tiling. We need that there exists a mappingδ : µ ′ → µ such that: (a)δ -images ofµ ′-tilings
are exactlyµ-tilings; (b) µ ′ is “5-robust”: everyµ ′-tiling of a 5×5 square minus 3×3 hole (see
Fig. 14) can be uniquely extended to the tiling of the entire 5×5 square.

To get such a robustification, it is enough to keep in everyµ ′-macro-tile the information about
5×5 square inµ-tiling and use the colors on the borders to ensure that this information is coherent
in neighbor macro-tiles.

As usual, this robustification can be combined with the fixed-point construction. We get a
5-robust macro-tiles for all levels of our construction. “Self-similarity” guarantees that the same
property holds for macro-tiles of all ranks, which implies the required property of generalized
robusteness.

Indeed, assume that a tiling of a large enough neighborhood around a∆×∆ hole is given, and
∆ ≤ Ln for somen. In the tiling around the hole, an(L1×L1) block structure is correct except
only for theL1-neighborhood of the hole. For similar reasons(L2×L2)-structure is correct except
for the(L1 +L2)-neighborhood, etc. So forn we get ann-level structure that is correct except for
(at most) 9= 3× 3 squares of sizeLn×Ln, and such a hole can be filled (due to 5-robustness)
with n-level macro-tiles. Note that detalization of a high-levelmacro-tile is unique after we know
its “conscious” memory (reconstructed from the neighbors). [For the maximal complexity tile set
(Section 7) it is not the case, and the absence of this property will become a problem in Section 13
where we robustify it. To solve this problem, we will need to use error correcting codes.]

To implement the patching procedure (and fill the hole) we need to have a correct tiling in the
O(Ln)-neighborhood of the hole. The correction procedure involves changes in anotherO(Ln)-
neighborhood of the hole.�

We can robustify tiling not only against holes, but againstpairs of holes. To this end we
slightly modify our definition of robusteness. Let∆0 ≤ ∆1 ≤ ∆2 ≤ . . . be an increasing sequence
of integers, andc1 < c2 be positive integers. We say that a tile setτ is (c1,c2)-robust against
pairs of holes of size∆0,∆1, . . . , if the following holds: Let us have two setsH1,H2 ⊂ Z

2, each
of them of diameter at most∆n (for somen > 0). For everyτ-tiling U of c2∆n-neighborhood of
the union(H1∪H2) excludingH1 andH2 themselves there exists a tilingV of the entirec2∆n-
neighborhood of(H1∪H2) (includingH1 andH2 themselves) that coincides withU outside of the
c1∆n-neighborhood of(H1∪H2).

A robustification againstpairs of holes can be done in the same way as the robustification
against a single isolated hole above. Indeed, if these two holes are far apart from each other, we
can “correct” them independently; if they are rather closedto each other, we correct them as one
hole of (roughly) doubled size. So we can employ the same robustification technique as above; we
need only to take a large enough “radius of multiplication”D (and useD-robusteness instead of
5-robusteness). So we get the following generalization of Proposition 2:

Proposition 3. Assume a sequence of zoom factors Nk grows not too fast and not too slow(e.g.,
Nk ≥C logk and ClogNk+1 < Nk for a large enough C). Then there exists a self-similar tile set with
zoom factors Nk (k-level macro-tiles should be of size Lk = N0 · . . . ·Nk−1) that is(c1,c2)-robust(for
some c1 and c2) against pairs of holes of size L0,L1, . . .
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Of course, similar propositions can be also proven for triples, quadruples and any other sets of
holes of bounded cardinality. But we restrict ourselves to pairs only, because it is enough for the
required applications in Section 13.

12 Strongly aperiodic robust tile set

Now we are ready to apply islands technique to construct a robust strongly aperiodic tile set.

Definition. For a subset E⊂ Z
2 and a tile setτ we call by(τ,E)-tiling any mapping

T : (Z2\E) → τ

such that for every two neighbor cells x,y ∈ Z
2 \E, the tiles T(x) and and T(y) satisfy the local

restriction rules ofτ. We may say that T is aτ-tiling of the plane with errors at points of E.

Theorem 12.There exists a tile setτ with the following properties:(1) τ-tilings ofZ2 exist;(2) for
all sufficiently smallε for almost every(with respect to Bε ) subset E⊂ Z

2 every(τ,E)-tiling is at
least1/10Besicovitch-apart from every periodic mappingZ

2 → τ.

Remark 1. Since the tiling contains holes, we need to specify how we treat the holes when
defining Besicovitch distance. We donot count points inE as points where two mappings differ;
this makes our statement stronger.

Remark 2. The constant 1/10 is not optimal and can be replaced by any other constantα < 1.
Proof. Consider a tile setτ such that (a) allτ-tilings areα-aperiodic for everyα < 1/4; (b) τ

is (c1,c2)-robust for somec1 andc2. Such a tile set can be easily constructed by combining the
arguments used for Theorem 11 (p. 34) and Theorem 4 (p. 11).

Our plan is to choose someαk andβk such that:

• the conditions of Lemma 3 (p. 25) are satisfied (and thereforea random error set is sparse
with respect to theseαk andβk;

• for every sparse setE ⊂ Z
2 every(τ,E)-tiling can be iteratively corrected (by changing it in

the neighborhoods of islands of all ranks) into aτ-tiling of the entire plane;

• the Besicovitch distance between the tilings before and after correction is small.

Then we conclude that the original(τ,E)-tiling is strongly aperiodic since the corrected tiling
is strongly aperiodic and close to the original one.

To implement this plan, we use the following lemma that describes the error correction process.

Lemma 9. Assume that a tile setτ is (c1,c2)-robust,βk > 4c2αk for every k and a set E⊂ Z
2 is

sparse(with respect toαi , βi). Then every(τ,E)-tiling can be transformed into aτ-tiling of the
entire plane by changing it in the union of2c1αk-neighborhoods of rank k islands(for all islands
of all ranks).
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Proof. Note thatβk/2-neighborhoods of rankk islands are disjoint and large enough to perform
the error correction of rankk islands, sinceβk > 4c2αk. The definition of a sparse set guarantees
also that every point is changed only finitely many times (so the limit tiling is well defined) and
that the limit tiling has no errors.�

The Besicovitch size of the changed part of a tiling can be estimated by using Lemma 4: here
γk = 2c1αk is proportional toαk, so the Besicovitch distance between the original and corrected
tilings (in Lemma 9) does not exceedO(∑k(αk/βk)

2). (Note that the constant inO-notation de-
pends onc1.)

It remains to choseαk andβk. We have to satisfy all the inequalities in Lemmas 3, Lemma 4
and Lemma 9 at the same time. To satisfy Lemma 4 and Lemma 9, we may letβk = ckαk for large
enoughc. To satisfy Lemma 3, we may letαk+1 = 8(β1+ . . .+βk)+1. Thenαk andβk grow faster
that any geometric sequence (likek! multiplied by some exponent ink), but still logβi is bounded
by a polynomial ini and the series in Lemma 3 converges.

With these parameters (takingc large enough) we may guarantee that Besicovitch distance
between the original(τ,E)-tiling and the correctedτ-tiling does not exceed, say 1/100. Since the
corrected tiling is 1/5-aperiodic and 1/10+2 · (1/100) < 1/5, we get the desired result.�

13 Robust tile set that enforces complex tilings

In this section we prove the main result of the paper. We construct a tile set that guarantees large
Kolmogorov complexity of every tiling, and which is robust with respect to random errors.

Theorem 13. There exists a tile setτ and constants c1,c2 > 0 with the following properties:
(1) a τ-tiling of Z

2 exists;
(2) for everyτ-tiling T of the plane, every N×N-square of T has Kolmogorov complexity at

least c1N−C2;
(3) for all sufficiently smallε for almost every(with respect to the Bernoulli distribution Bε )

subset E⊂Z
2 every(τ,E)-tiling is at most1/10Besicovitch-apart from someτ-tiling of the entire

planeZ
2;

(4) for all sufficiently smallε for almost every Bε -random subset E⊂Z
2, for every(τ,E)-tiling

T Kolmogorov complexity of centered squares of T of size N×N is Ω(N).

The rest of the section is devoted to the proof of this theorem. It combines virtually all tech-
nique developed in this paper: self-similar tile sets with variable zoom factors, embedding a se-
quence sequence with Levin’s property (i.e., with linear Kolmogorov complexity of all factors)
into tilings, bi-sparse sets, incremental error correcting and robustness against doubled holes.

13.1 The main difficulties and ways to get them round

We want to combine the construction from Section 7 with errorcorrecting methods based on the
idea of “islands” of faulty points. There are two main difficulties in this plan: fast growing zoom
factors and gaps in vertical columns. Let us discuss these two items in some detail.

38



The first problem is that our construction of tiling with highKolmogorov complexity from
Section 7 requiresvariable zoom factors. What is even worse, zoom factorsNi must increase
very fast (their logarithms grow faster than 2i). Hence, we cannot apply directly the technique
of islands from Section 9.2 since it works only when∑ logβi

2i < ∞ (hereβi is the parameter from
the definition of islands; in our construction it must be comparable with the size ofi-level macro-
tiles). To overcome this obstacle, we replace islands by bi-islands (the technique developed in
Section 9.4). We deal with bi-islands mostly in the same way as we did with islands. We have
seen in Section 9.4 that with probability 1 a Bernoulli-random set of faults is bi-sparse, so we can
incrementally correct bi-islands of errors.

The second problem is that now it is not enough to know the “conscious” memory of a macro-
tile to detalize it consistently with its neighbors. The missing information is the bits on the vertical
columns (that carry bits of a high-complexity sequenceω). But random errors make gaps in
vertical columns, so now the columns are split into parts that can (a priori) carry different bits. We
organize some additional information flows between macro-tiles (of all ranks) to guarantee that
each vertical column of tiles carries in most places the samebit value.

13.2 General scheme

Here we explain general ideas of our proof. First of all, we use macro-tiles with variable zoom
factorsNk = Q⌊2.5k⌋ for a large enough integerQ> 0. This means that everyk-level macro-tile is an
(Nk−1×Nk−1)-array of(k−1)-level macro-tiles. So the size (the number of columns = the number
of rows) of ak-level macro-tile isLk = N0 · . . . ·Nk−1, andLk < Nk. (Here 2.5 can be replaced by
any constant between 2 and 3.)

To get tilings with high Kolmogorov complexity, we re-use the construction from Section 7
with the zoom factors defined above. Let us remind the idea of that construction (proof of Theo-
rem 8). In theith column of tiles (in a correct tiling) all tiles keep some bit ωi , and we want that
in the corresponding biinfinite sequenceω everyN-bits substring ofω has Kolmogorov complex-
ity Ω(N). Technically, we fix some constantsα ∈ (0,1) andc and guarantee the following local
property:

for every k-level macro-tile M(k = 1,2, . . .), and for every substring x ofω
that is contained in M’s zone of responsibility(of length Lk) the inequality
K(x) ≥ α|x|−c holds.

(∗)

This property implies that the entire sequenceω has the required property: everyN-bits substring
of ω has Kolmogorov complexity≥α ′N−c′ (for some other constantsα ′ ∈ (0,α) andc′). Indeed,
every substring ofω is either contained in a large enough macro-tile or consistsof two parts with
this property (as he discussed in Section 7.4).

To enforce property (∗) we organize some computation on macro-tiles of all levels.The crucial
point of the construction is propagation of bitsωi to the computational zones of macro-tiles of high
levels. [In fact, our construction in Section 7 guaranteed that only for two halves of the sequence,
and we needed a special trick (Section 7.4) to guarantee thisproperty for the entire sequence. For
simplicity we do not consider the robustification of this enhanced version of a complex tiling; it
can be done but is not needed for the proof of Theorem 13.]
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To run this propagation, we delegate the bits ofω to macro-tiles of different levels. Every
macro-tileM of levelk is “responsible” for theLk bitsωi that correspond to the columns intersect-
ing this macro-tile. One of these bits is “delegated” to macro-tile M itself. For convenience we
assume that the ordinal number of the delegated bit (an integer from the range 1. . .Lk) corresponds
to the vertical position ofM in the enclosing macro-tile of level(k+1). More precisely, the ordinal
number (i.e., its position in the zone of “responsibility”)of the delegated bit forM is calculated as
the ordinate ofM in the enclosing macro-tile of level(k+1) (this ordinate is an integer from the
range 1. . .Nk) moduloLk (recall thatNk ≥ Lk).

The bit delegated to macro-tileM must be kept inM’s “consciousness”, i.e., it is available to the
computation running onM’s computational zone. Besides the delegated bit, in the consciousness
of M there should be also a few other bits fromM’s zone of “responsibility” (see Section 7). The
bits fromM’s zone of “responsibility” that are not kept explicitly in this macro-tile consciousness,
are kept inM implicitly. Indeed, each bit from the zone of “responsibility” of a k-level macro-
tile M is delegated to some(k−1)-level macro-tile inside ofM. Moreover, for each of these bits
we can easily calculate the position of the(k−1)-level macro-tile to which this bit is delegated.
We say thatM keeps all these bits in “subconsciousness” (in fact, in a “conscious” memory of
(k−1)-level blocks ofM).

In this Section we tolerate random errors in a tiling, and vertical columns can be broken by
faults. So we need to make additional efforts to enforce thatthe copies ofωi consciously kept
by different macro-tiles are coherent (at least for the macro-tiles that are not seriously damaged
by local errors). We do it by means of small enough checksums,which guarantee that neighbor
macro-tiles have coherent conscious and subconscious memory (unless they are damaged by error
islands of very high rank).

To deal with random errors we use the technique of bi-islands(see Section 9.4). Our arguments
will work if diameters ofk-level bi-islands are comparable with the size ofk-level macro-tiles.
Technically we setαk = 13Lk−1 andβk = Lk. Lemmas 6, 7 can be applied for these values of
parameters. (Also in the sequel we will apply Lemma 8 withγk = O(αk).)

13.3 The new construction of the tile set

We take the construction from Section 7 as a starting point and superimpose some new structures
on k-level macro-tiles. We introduce these supplementary structures in several steps.

First step (introducing checksums):Everyk-level macro-tileM (in a correct tiling) consists
of anNk−1×Nk−1-array of(k−1)-level macro-tiles; each of these(k−1)-level macro-tiles keeps
the bit delegated to it (these bits together determine the subconscious memory ofM). Take in this
2D-array one horizontal row of a(k− 1)-level macro-tiles (such a row consists ofNk−1 macro-
tiles). Denote the corresponding sequence of delegated bits by η1, . . . ,ηNk−1. Now we introduce
some checksums for this sequence.

Let D > 0 be a constant (to be fixed later). The checksums should be enough to reconstruct all
bitsη1, . . . ,ηNk−1 if at most D of these bits are corrupt(it is enough for us to be able to reconstruct
the corrupt bits if their positions are known). Also we want the checksums to be easily computable.
The standard solution is the Reed–Solomon error correctingcode.
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Let us explain this solution in more detail. We take a finite field Fk of large enough size (the
size ofFk must be approximately twice greater thanNk−1). Now we calculate a polynomial of
degree less thanNk−1 that takes valuesη1, . . . ,ηNk−1 at someNk−1 points of the field. Then take as
checksums the values of this polynomial at some other 2D points fromFk (all (Nk−1 +2D) points
are fixed in advance).

Two different polynomials of degree less thanNk−1 can coincide in at most(Nk−1−1) points.
Hence, if at mostD bits from the sequenceη1, . . . ,ηNk−1 are corrupt, we can reconstruct them given
the checksums defined above.

These checksums containO(logNk−1) bits of information. Now we should discuss how to
compute them.

Second step (calculating checksums):For each row in ak-level macro-tile, we can calculate
its checksums (values of the corresponding polynomial) in the conscious memory ofk−1-level
macro-tile that form this row. This is done (in a standard way) as follows.

Let η1, . . . ,ηNk−1 be the values of a polynomialp(x) (of degree less thanNk−1) at points
x1, . . . ,xNk−1. Assume we want to reconstruct all coefficients of this polynomial. We can do it
by the following iterative procedure. Fori = 1, . . . ,Nk−1 we calculate polynomialspi(x) andqi(x)
(of degree≤ (i −1) andi respectively) such that

pi(x j) = η j for j = 1, . . . , i

and
qi(x) = (x−x1) . . .(x−xi)

It is easy to see thatpi+1 andqi+1 can be calculated from polynomialspi , qi , and valuesxi+1 and
ηi+1.

If we do not need to know the resulting polynomialp = pNk−1(x) but want to get only the value
p(a) for some particular pointa, then we can do all these calculations modulo(x−a). Thus, to
obtain the value ofp(x) at 2D different points, we run in parallel 2D copies of this process. At each
step of the calculation we need to keep in memory onlyO(1) elements ofFk, which isO(logNk−1)
bits of temporary data (the multiplicative constant in thisO(·)-notation depends on the value ofD).

These calculations can be easily simulated by a tiling. To organize this simulation we include
into conscious memory of(k−1)-level macro-tiles additionalO(logNk−1) bits of data. This fits
well our fixed-point construction since zoom factorsNk grow fast, and we have enough room in the
computational zone. We may assume that the resulting valuesof checksums are kept in conscious
memory of the rightmost(k−1)-level macro-tile in each row.

Third step (consistency of checksums between macro-tiles): So far, everyk-level macro-
tile containsO(Nk−1 logNk−1) bits of checksums,O(logNk−1) bits for every row. We want these
checksums to be the same for every two vertical neighbor macro-tiles. It is inconvenient to keep
the checksums for all rows only in the rightmost column (since it would create too much traffic in
this column if we try to transmit the checksums to the neighbor macro-tiles). So we propagate the
checksums of theith row in ak-level macro-tileM (i = 1, . . . ,Nk−1) along the entireith row and
along the entireith column ofM. In other words, these checksums must be “consciously” known
to all (k−1)-level macro-tiles in theith row and in theith column ofM. On Fig. 15 we show the
area of propagation of checksums for two rows (theith and thejth rows).
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Figure 15: Propagation of checksums inside of a macro-tiles

On the border of two neighbork-level macro-tiles (one above another) we check that in each
column i = 1, . . . ,Nk−1 all the corresponding checksums calculated in both macro-tiles coincide.
This check is redundant if there is no errors in the tiling: the checksums are calculated from
delegated bits (which come from the sequence of bitsω encoded into tiles of the basic level), so
the corresponding values must be equal for vertically aligned k-level macro-tiles. However this
redundancy is useful to resist random errors, as we show in the sequel.

Fourth step (robustification): The explained above features organized in everyk-level macro-
tile (conscious and subconscious memory, calculating and propagating checksums, and all calcula-
tions simulated in the computational zone of a macro-tile) are implemented by means of bits kept
in “conscious” memory of(k−1)-level macro-tiles. Now we made this constructionC-robust in
the following sense: each(k−1)-level macro-tileM keeps in consciousness not only “its own” data
but also the bits previously assigned to(k−1)-level macro-tiles from its(C ·Lk−1)-neighborhood
(i.e., the(2C+1)× (2C+1) array of(k−1)-level macro-tiles centered atM). So, the content of
the conscious memory of each macro-tile is multiplied by some constant factorO(C2).

We choose the constantC so that anyk-level bi-island (that consist of two parts of sizeαk) and
even theγk = O(αk)-neighborhood of anyk-level bi-island (we specifyγk below) can involve only
a small part of the(CLk−1)-neighborhood of any(k−1)-level macro-tile. (Note that we speak here
about neighborhoods, not extended neighborhoods.)

This robustification allows us to talk about conscious memory of of ak-level macro-tile and its
building(k−1)-level blocks even if this macro-tile is damaged by onek-level bi-island (assuming
there is no other errors).

The last remark (the number of bits in the conscious memory):The construction explained
above requires that we put into the computational zones of(k− 1)-level macro-tiles additional
poly(logNk−1) bits of data (the most substantial part is the data used for calculating the check-
sums). This fits well our fixed-point construction because poly(logNk−1) is much less thanNk−2,
so we have enough room to keep and process all these data.

The tile setτ is defined. Since there existω with Levin’s property, it follows thatτ-tiling exist,
and everyN×N-square of such a tiling has Kolmogorov complexityΩ(N). Further we prove that
this τ satisifies also the statement (3) of Theorem 13.

42



13.4 Error correcting procedure

Denote byτ the tile set described in Section 13.3. Letε > 0 be small enough. Lemma 11 says that
Bε -random set with probability 1 is bi-sparse. Now we assume that E ⊂ Z

2 is a bi-sparse set (for
the chosen values ofαi andβi), andT is a τ-tiling of Z

2 \E. Further we explain how to correct
errors and convertT into a tilingT ′ of the entire plane (T ′ should be close toT).

We follow the usual strategy. The setE is bi-sparse, i.e., it can be represented as a union of
isolated bi-islands of different ranks. We correct them oneby one, starting from bi-islands of low
rank. We need only to explain how to correct bi-islandSof rankk assuming that it is well isolated.
i.e., in theβk-neighborhood of this bi-island there are no other (still non-corrected) errors.

Let us recall that ak-level bi-islandS is a union of two “clusters”S0,S1; diameters of bothS0

andS1 are at mostαk = O(Lk−1). Hence the clustersS0 andS1 touch onlyO(1) macro-tiles of
level (k−1). The distance betweenS0 andS1 is at mostβk, and theβk-neighborhood ofS is free
of other bi-islands of rankk and higher (so we can assume that theβk-neighborhood ofSis already
cleaned of errors). Our correction procedure aroundS will involve only points in extended the
γk-neighborhood ofS, whereγk = 2αk. Sinceβk +2γk < 2Lk, the correction procedure can involve
points of onlyO(1) macro-tiles of levelk (four if it happens near the corner of a macro-tile).

Let M be one of macro-tiles intersecting the extendedγk-neighborhood ofk-level bi-islandS.
Basically, we need to reconstruct all(k−1)-level macro-tiles inM destroyed byS. First we will
reconstruct the conscious memory of all(k−1)-level macro-tiles inM. This is enough to get all
bits of ω from the zone of “responsibility” ofM. Then we will reconstruct subconscious memory
of all the blocks that makeM, and reconstruct alln-level macro-tiles insideM for all n < k (in a
consistent way).

Thus, we start with reconstructing the conscious memory of all (k− 1)-level macro-tilesM′

enclosed inM. First of all we remind that conscious memory (the content ofthe computational
zone) of every(k−1)-level macro-tileM′ consists of several groups of bits:

[A] the binary representation of the number(k−1) and coordinates ofM′ in the enclosing macro-
tile M (these coordinates are integers from the range 1. . .Nk−1);

[B] the bit (from the sequenceω) delegated toM′;

[C] the bit (from ω) delegated to the enclosing macro-tileM (and propagated among all its
(k−1)-level blocks, see our construction in Section 7);

[D] bits used to calculate and communicate the checksums forthe corresponding row in the
enclosing macro-tileM;

[E] the bits used to simulate a Turing machine on the computational zone of the enclosingk-level
macro-tileM;

[F] a short segment of bits fromM’s zone of responsibility, and some computation that ver-
ifies that this segment does not violate property (∗) (i.e., does not contain factors of low
Kolmogorov complexity).
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Bits of field [A] in a small isolated group of(k−1)-level macro-tiles are trivially reconstructed
from the surrounding macro-tiles of the same level. Fields [B,C,D,E] can be reconstructed because
of robustification on the level of(k−1)-level macro-tiles (we organized the robustification on the
level of (k−1)-level macro-tiles in such a way that we are able to reconstruct these fields for any
C×C group of missing or corrupt(k−1)-level macro-tiles). So far the correcting procedure goes
absolutely in the same way as in Section 11.

We postpone the question of reconstructing fields [F] of the conscious memory since we have
a more urgent problem: to reconstruct a(k−1)-level blocks insideM it is not enough to know it
conscious memory; we need to know also the bits ofω corresponding to the columns that crossM.
Where can we obtain these bits? We can read them in the conscious memory of blocks inM; we
can also look for these bits in a neighbork-level tile (recall thatStouches onlyO(1) k-level macro-
tiles and there is a “healthy” zone ofk-level macro-tiles around them). However, the problem
remains since we are not guaranteed thatω-bit aboveM, belowM, and insideM are consistent.
(This is the reason to use checksums.)

Denote byMu andMd thek-level macro-tiles just above and belowS that are free of errors, see
Fig. 16 (in this picture bi-islandStouches only onek-level macro-tile; in case whenStouches sev-
eralk-level macro-tiles, almost the same arguments work, so all our explanations refer to Fig. 16).
It is enough to prove that the values of bitsω reconstructed forM are equal to the corresponding
values inMu (and inMd).

macro-tileMu without errors

macro-tileMd without errors

macro-tileM with an error bi-island

Figure 16: Bi-island of errors in a macro-tile
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The macro-tilesMu andMd are error-free; therefore, they contain some sequences of bits on
vertical lines (a priori different inMu andMd) and information on all the levels is consistent with
the bit sequences (including checksums).

Note that bit sequences forMu and Md coincide at most places (outside the grey zone that
is O(1) blocks wide and consists of blocks involved in the correction and their vertical stripes).
Indeed, the vertical transmission of these bits is not obstructed by errors.

Note also the after the correction the conscious information for all (k−1)-level blocks is con-
sistently reconstructed; this implies that checksums are transmitted throughM and are the same
for Mu andMd.

Therefore, the error correction property guarantees that bits in Mu andMd are the same and we
use these bits (with already existing conscious information) to reconstruct all the blocks inM, and
get a consistent tiling inM and around.

Finally, we have to look which blocks could be changed duringthis correction process. Blocks
outside grey zone already had correct bits and conscious memory, so they are not changed. More-
over, not all the grey zone needs to be changed, only the part between two clusters (and their small
neighborhoods) can be affected. This is the extended neighborhood ofS as we have defined it.
(This argument is the motivation of the definition.)

It remains to explain how to reconstruct fields [F] in the damaged(k−1)-level macro-tiles. It
may look trivial: we already know all conscious and subconscious memory of the involved macro-
tiles. So we know the values of the bits that should be tested in [F]. The testing procedure is
deterministic and fixed (we enumerate strings with small Kolmogorov complexity and check that
these strings are not factors of the tested interval). The only problem is to show that this procedure
never crashes. In other words, we want to prove that reconstructed bits (insideM) indeed satisfy
property (∗). Unfortunately, this is false: this finite string of bits can contain simple substrings
(e.g., it may happen that we are between two error islands of high rank, and the values of bits on
the vertical lines are not the “global” ones). However, by a miracle the global process of error
correction converges to a correct tiling ofZ

2. We explain this in the next Section 13.5.

13.5 Levin’s property for ω embedded into a(τ,E)-tiling

As we have seen, while correcting a bi-island of errors we canget stuck: a macro-tile that fills the
gap does not exist, because the computation performed in this macro-tile would find that the bits
of ω inside its zone of responsibility do not have the property (∗).

Nevertheless, we still want to apply the correction procedure described in Section 13.4 despite
of this obstacle. Let us explain very informally how the correction process could work. If it hap-
pens that we cannot correct some bi-island of rankk completely, we do some “partial correcting”.
This means that for the involvedk-level macro-tiles we (a) reconstruct their conscious memory,
and (b) guarantee that bits ofω are correctly transmitted from top to bottom (i.e., the sequences
of bits written on the top and bottom sides of a “partially corrected” macro-tile are equal). At
the same time we tolerate several inconsistencies between subordinate macro-tiles of levelsm< k
inside of these “partially corrected”k-level macro-tiles. Then we continue the error correction for
bi-islands of higher ranks. A “partially corrected” macro-tile of levelk can participate (in the same
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way as explained in Section 13.4) in the correction procedure for bi-islands of ranksn > k as it
were a correct macro-tile.

It can be shown (and this fact is nontrivial) that in the limitall “partially correct” macro-tiles
disappear: every point (and every finite region) of the planeis changed finitely many times during
the correction process; the limit tiling is defined and is a correct (not only “partially correct”)
tiling. Unfortunately, the implementation of this idea is technically complicated. To make the
proof easier, we use a different and simpler (though slightly artificial) argument.

This argument constructs a tile set satisfying the statement of the theorem in two steps. First,
we introduce a new tile setτ1; then we select some partτ0 of τ1 and prove the theorem forτ0.
Every τ1-tiling of the plane (without errors) carries a bi-infinite sequenceω of bits propagated
along the vertical columns. The difference withτ is that noweveryω can be embedded into some
tiling. In τ1-tilings, the procedure of testing the property (∗) is allowed to fail without destroying
a tiling. Even if a simulation of the Turing machine in the computational zone of somek-level
macro-tileM discovers that property (∗) is violated for some bits fromM’s zone of responsibility,
the computational zone ofM still can be correctly tiled, but a special “alarm” is raised.

More precisely, inτ1-tiling every macro-tile (consciously) knows an additional “alarm bit”
(saying whether the alarm is on or off for this macro-tile). Alarm bits on different levels are related:
all subordinates of a macro-tile where alarm is on, should also have alarm on; subordinates of a
macro-tile where alarm is off, may have any value of their alarm bits. This can be implemented
in the same way as the substitution rules (see Section 3); theonly difference is that now the rule
is not deterministic, but this is not important for the construction (each tile consciously knows its
alarm bit and its father’s alarm bit). In particular, on the ground level the value of the alarm bit
divides all tiles into two groups. The tiles where it is off form the setτ0 ⊂ τ1. All the arguments
of the previous sections remain valid forτ0; the advantage is that now we have an extensionτ1 of
τ0 which tolerates all sequences of bits (the violations of theproperty (∗) do not destroy the tiling,
they just raise the alarm bit in the corresponding macro-tile and all its subordinate tiles).

The correction procedure from Section 13.4 guarantees thatfor a bi-sparse setE, everyτ0-tiling
T of (Z2 \E) can be converted into aτ1-tiling T ′ of the entire plane such thatT andT ′ coincide
everywhere except for the extendedγk-neighborhoods ofk-level bi-islands fromE. On each step
of the error correction we resort to “alarm” tiles or “alarm”macro-tiles in case we cannot correctly
reconstruct field [F] of some macro-tile damaged by errors from E. Our goal is to show that the
resultingτ1-tiling is in fact aτ0-tiling. In other words, though we need to use “alarm” macro-tiles
at some steps, in the limit tilingT ′ they are not used anywhere (every introduced “alarm” macro-
tile is removed during one of the subsequent steps). Technically, it is enough to prove that the
sequenceω embedded into the resultingT ′ satisfies the property (∗).

Informally, the argument goes as follows. Why the check of the sequenceω that appear inT ′

cannot fail? Assume that it fails on some levelk. But in original tiling we already hadk-level
macro-tiles that were not touched when correcting higher (thank) levels, so they (a) carry the same
bits as in the limit tilingT ′; (b) check these bits for correctness. We need also to ensurethat all
possible (for levelk) checks are performed in this way (in the original tiling). This is because in
the corresponding vertical stripe there are sufficiently long vertical groups of levelk macro-tiles
not affected by the correction.
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We start a more formal argument with a definition. We say that ak-level macro-tile inT ′ is
healthyif it is outside extendedγn-neighborhoods of all islands of ranksn > k (from E). Recalling
the argument explained in Section 13.4, we see that in a healthy macro-tileM we never raise the
alarm bit. Indeed, a healthyk-level macro-tile cannot be involved into correction of bi-islands of
rank greater thank. And even ifM is damaged by a bi-island of rankk, the computational zone
of M is reconstructed due to robustification, so there is no risk that the computation of a Turing
machine that is embedded intoM’s computation zone terminates with an alarm.

Let ω be the biinfinite sequence of bits corresponding to the tiling T ′. By the way of con-
tradiction, assume thatx = ωi . . .ωi+m−1 is a substring (of lengthm) of ω where (∗) is violated
(Kolmogorov complexity ofx is much less thanm). Let k be a large enough number so thatk-level
macro-tiles have enough space on their computational zonesto detect this violation.

Consider the (infinite) vertical stripe ofk-level macro-tiles inT ′ that keep bits ofx in their zones
of responsibility. By construction, macro-tiles of this stripe test all short enough subsequences of
bits from their (common) zone of responsibility. There areLk bits of ω in this zone. Different
macro-tiles of this stripe test different substrings of this zone (all having the same length but dif-
ferent starting points). The macro-tiles that testx appear periodically in this stripe with periodLk

(measured in macro-tiles). It remains to show that one of these tests was already present in the
original tiling (and therefore does not raise an alarm).

We know that the error correction procedure involves onlyγn-neighborhoods ofn-level bi-
islands of errors (for alln), whereγn = 2αn = O(Ln−1). Denoteγ̃n = γn + L2

n−1. The valueγ̃n is
larger thanγn but still much less thanβn. Hence we can apply Lemma 8 (part 2) to our usualαn

andβn, and γ̃n instead ofγn. This Lemma implies that in any vertical line there exists a point z
which is not covered by the extendedγ̃n-neighborhood of anyn-level bi-island (whatevern is). Fix
such a pointz on some vertical line inside the stripe.

The choice ofz guarantees thatk-level macro-tile that containsz is healthy, because the dis-
tance betweenz and extendedγn-neighborhoods ofn-level bi-islands (forn > k) is at least the gap
betweenγn andγ̃n, andγ̃n− γn = L2

n−1 ≫ Lk (recall thatn−1≥ k). For the same reason not only
this macro-tile, but alsoLk macro-tiles around it (in fact, even more) are healthy. One of them tests
the substringx, thereforex cannot have low complexity.

Thus, we have proven thatω satisifies (∗), and the obtainedτ1-tiling T ′ is in fact a correct
τ0-tiling (without alarm macro-tiles). The difference between T andT ′ is covered by extended
γk-neighborhoods ofk-level bi-islands. Now Theorem 13 (part 3) follows from Lemma 8 (part 1)
applied to the usualαk,βk,γk.

It remains to prove part (4) of Theorem 13. LetE be a bi-sparse set,T be a tiling ofZ2\E, and
T ′ be a correct tiling ofZ2 such thatT andT ′ differ only in extendedγk-neighborhoods ofk-level
bi-islands fromE (for k = 1,2, . . .). The existence ofT ′ is already proven.

Fix a pointO. SinceE is bi-sparse,O is covered byβk-neighborhoods of only finitely many
bi-islands. Hence, for large enough∆, the ∆ × ∆-squareQ∆ centered atO intersects extended
γk-neighborhoods ofk-level bi-islands only ifβk < ∆. (If the extendedγk-neighborhood of some
bi-island intersectsQ∆ andβk ≥ ∆, thenβk−γk > ∆/2 andO is covered byβk-neighborhood of this
bi-island.) Therefore, to reconstructT ′ in Q∆ it is enough to correct all the bi-islands of bounded
levels (βk < ∆), and all the information needed to perform this correctionin Q∆ is determined by
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the restriction ofT to the centeredO(∆)×O(∆)-square. Therefore, the Kolmogorov complexity
of the latter isΩ(∆) (as the complexity of the restriction ofT ′ to Q∆ is), and we are done.�
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[13] B. Grünbaum, G.C. Shephard,Tilings and Patterns, W.H. Freeman and Company, New York,
1987.

[14] Yu. Gurevich, I. Koryakov, Remarks of Berger’s paper onthe domino problem,Siberian
Math. Journal, 13, 319–321, 1972.

[15] W. Hanf, Nonrecursive tilings of the plane, I,Journal of Symbolic Logic, 39:283–285, 1974.

[16] M. Hochman, On the dynamic and recursive properties of multidimensional symbolic sys-
tems.Inventiones mathematicae, 176, 131–167 (2009).

[17] J. Kari, A Small Aperiodic Set of Wang tiles,Discrete Math., 160, 259–264, 1996.

[18] H. Rogers,The Theory of Recursive Functions and Effective Computability, Cambridge, MIT
Press, 1987.

[19] Lafitte, Weiss, The paper where the formal statement about fixed point is proved

[20] L. Levin, Aperiodic Tilings: Breaking Translational Symmetry,Computer J., 48(6), 642–645,
2005. On-line:http://www.arxiv.org/cs.DM/0409024

[21] S. Mozes, Tilings, Substitution Systems and DynamicalSystems Generated by Them,J.
Analyse Math., 53, 139–186, 1989.

[22] D. Myers. Nonrecursive tilings of the plane, II,Journal of Symbolic Logic, 39:286–294, 1974.

[23] J. von Neumann,Theory of Self-reproducing Automata, Edited by A. Burks, University of
Illinois Press, 1966.

[24] N. Ollinger,Two-by-two Substitution Systems and the Undecidability ofthe Domino Problem,
In Proc.Computability in Europe, LNCS5028, 476–485, 2008.

[25] Yu. Pritykin, J. Ulyashkina, Aperiodicity Measure forInfinite Sequences, Computer Science
— Theory and Applications. Fourth International Computer Science Symposium in Russia,
CSR 2009, Novosibirsk, Russia, August 18–23, 2009. (Lecture Notes in Computer Science,
v. 5675) Springer, 2009. ISBN: 978-3-642-03350-6. P. 274–285.

[26] R. Robinson, Undecidability and Nonperiodicity for Tilings of the Plane.Inventiones Mathe-
maticae, 12, 177–209, 1971.

49



[27] An. Rumyantsev, M. Ushakov, Forbidden Substrings, Kolmogorov Complexity and Al-
most Periodic Sequences,STACS 2006 Proceedings, Lecture Notes in Computer Science,
Vol. 3884, Springer, 2006.

[28] S.G. Simpson, Medvedev degrees of 2-dimensional subshifts of finite type, MPIM2007-67
preprint, 2007.

[29] M. Zaks, A.S. Pikovsky, J. Kurths, On the Correlation Dimension of the Spectral Measure
for the Thue–Morse Sequence,J. Stat. Phys., 88(5/6), 1387–1392, 1997.

50


