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Abstract

The numerical simulation of the interaction between a free surface flow and a moving ob-

stacle is considered for the analysis of hydroplaning flows. A new augmented Lagrangian

method, coupled to fictitious domains and penalty methods, is proposed for the simulation

of multiphase flows. The augmented Lagrangian parameter is estimated by an automatic

analysis of the discretization matrix resulting from the approximation of the momentum

equations. The algebraic automatic augmented Lagrangian 3AL approach is validated on

a two-dimensional collapse of a water column and on the three-dimensional settling of a

particle in a tank. Finally, the 3AL method is utilized to simulate the hydroplaning of a tire

under various pattern shape conditions.
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1 Introduction

The present article aims at providing a fictitious domain model for dealing with two-phase

flows interacting with moving obstacles. The objective is to simulate hydroplaning phenom-

ena with the proposed model and numerical methods and to characterize the efforts exerted

by the free surface flow on a tire.

The hydroplaning is a phenomenon resulting from the lost of contact between a tire and

the road when a vehicle is moving at a certain speed on a wet road. For a given velocity, the

interaction between the water laying on the road and the tire generates a water reserve in

front of the tire which is higher than the initial water depth. A resulting pressure is generated

at the tire surface around the contact area between the tire and the water reserve. When the

vertical effort generated by this pressure becomes superior to the weight of the vehicle, the

contact between this vehicle and the road is no more maintained and the hydroplaning occurs:

the adherence between the vehicle and the road is lost and the trajectory of the vehicle is

no more controlled. Hydroplaning is responsible for the major wet road performances of

vehicles such as the wet road braking and the driving controllability. From the literature,

it is well known that the link between the vehicle velocity and the hydroplaning pressure

follows at first order24

Ph = KV 2
v (1)

where Ph is the hydroplaning pressure, Vv is the velocity of the vehicle and K is a constant

equal to half the density of water. This law is obtained under Bernouilli’s assumptions of

perfect fluid behavior. From the tire manufacturer experience, it is well known that the

more efficient way to decrease Ph for given wetting conditions of roads is to incorporate

specific tread patterns. In this way, more incoming water is evacuated laterally, the water

reserve generated in front the tire is reduced for a given velocity and the hydroplaning effect

appears for higher vehicle velocities. This effect of the tire tread pattern has been studied
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for example by Masataka and Toshihiko21 .

Few existing experimental or theoretical studies have been able to predict quantitatively

the improvement brought by the choice of a tire structure on the hydroplaning compared to

a reference flat tire whereas building a tire is very expensive. The aim of the present article

is to propose a general numerical modeling dedicated to the numerical simulation of two-

phase flows interacting with solids and in particular to the prediction of hydroplaning effects

and classification of tire structures. This objective requires to account for three-dimensional

turbulent free surface air-water flows interacting with complex tire geometries.

Among the rare existing literature works in the field of the numerical simulation of hy-

droplaning, two studies are of interest. The first one concerns the three-dimension simulation

of the interaction between a free surface flow and a tire4 . In this work, the deformation

of the tire shape is not considered and the computational domain remains fixed in time.

The commercial FlowVision CFD code5 is used to generate a Cartesian octree-based mesh

non-conforming to the tire geometry. Due to the intersection of Cartesian cells with the tire-

flow boundary, irregular polyhedral cells are generated near the domain boundaries. Few

details are provided by the authors concerning the numerical treatment of the mesh. Results

obtained from this investigation show a plot of lifting force acting on a tire versus angle of

inclination of tread patterns placed on its surface. The second work of interest28 proposes a

model for simulating and investigating the tire hydroplaning using a three-dimensional pat-

terned tire model provided by a home-made research code. The rainwater flow is assumed

as incompressible and inviscid and is approximated by a first order finite volume method

and front tracking techniques. The tire shape boundary is an exchange surface between the

flow solver and the tire generation code: the interaction between the tire dynamic deforma-

tion and the rainwater flow is treated by a coupling method. Cho et al.28 simulate several

patterned tires and compare the resulting contact forces.
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The numerical simulation of unsteady and incompressible isothermal multi-phase flows in-

volving macroscopic interfaces is classically achieved thanks to the single-fluid Navier-Stokes

equations13,29 and to Eulerian interface tracking methods such as the Volume Of Fluid (VOF)

method7 , the Level-Set technique33 or the Front Tracking approaches34 . These methods

have been extensively compared and evaluated in the last ten years and have demonstrated

their qualities and drawbacks42 . Once an interface tracking method has been chosen, the

major difficulty consists in solving the motion equations for high density or viscosity ratios

and large interface distortions. Near the interface, parasitic currents or unphysical flow be-

havior can occur when using, for example, time splitting projection methods19 for simulating

air-water or particulate unsteady flows. In these problems, the resolution of the coupling

between the incompressibility constraint and the Navier-Stokes equations is difficult to en-

sure in one of the phases due to the ill conditionning of the linear system or to the boundary

condition treatment. Consequently, pressure-velocity coupling is the main difficulty when

solving incompressible two-phase flows interacting with moving obstacles, which are involved

in hydroplaning problems. The present work aims at presenting recent implicit techniques

based on augmented Lagrangian methods, which improve the consistency and the accuracy

of numerical simulations when unsteady multi-phase flows are dealt with. Several adap-

tations of the original single-phase flow augmented Lagrangian method22 are presented for

treating free surfaces and particulate flows. The major idea consists in adapting locally,

in time and space, the Lagrangian or penalty parameter. The motion equations and the

divergence or deformation free constraint are solved at the same time, with the same set of

equations regardless of the discretization point. The formulation is based on the works of

Vincent et al.37,40,41 . As soon as three-dimensional two-phase flows are undertaken, direct

solvers cannot be used to tackle with the ill conditionning of the matrix resulting from the

discretization of the augmented Lagrangian terms. The new Algebraic Adaptive Augmented

Lagrangian (3AL) method is then proposed for solving multi-phase flows and improving the
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conditionning of the matrix when iterative solvers are implemented.

The article is structured as follows. The second section is devoted to the presentation

of the models and numerical methods. Attention is paid to the description of the specific

elements accounting for incompressiblity, free surface flows and fluid-structure interactions.

A set of complex multi-phase flow problems is addressed in the third section, with a view

of validating and demonstrating the efficiency of augmented Lagrangian techniques. Three-

dimensional simulations of hydroplaning flows are presented is the fourth section. In par-

ticular, the abilities of the simulation tool are evaluated on three different patterned tires

which are classified according to vertical efforts. Finally, conclusions and perspectives are

drawn.

2 Numerical modeling of two-phase flows interacting

with obstacles of complex shape

2.1 The fictitious domain approach

The numerical simulation of a hydroplaning flow interacting with a tire could be investigated

following two different numerical strategies: unstructured or structured grids. This impor-

tant choice is motivated by the representation of the complex tire shape. On the one hand,

the more natural solution seems to be the implementation of an unstructured body-fitted

grid to simulate the area of the two-phase flow between the tire and the road. Building

such a finite volume or finite element mesh in three dimension is not easy and requires au-

tomatic mesh generators as the tire moves according to time. The remeshing process at

each calculation step is time consuming and can be very difficult to manage automatically

in computer softwares when the shape of the tire is complex. On the other hand, it can be

imagined to use a fixed structured grid to simulate the hydroplaning. In this case, the mesh
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of the fluid domain is simple. The difficulty lies in the taking into account of the complex

tire shape on a non conforming grid. This type of numerical problem belongs to the class

of fictitious domains20 . The modeling strategy developed hereafter is based on this approach.

Irregular Cartesian underlaying calculation grids are considered in the rest of the article

for their easy programming and possible refinement in the road to tire interaction zone.

As presented in figure 1, the fictitious domain method consists in considering each different

phase (air, water and tire) as a fluid domain of specific rheological properties which is located

by a phase function Ci. By definition, C1 = 1 in the tire phase and 0 elsewhere whereas

C2 = 1 in the water phase and 0 elsewhere. The air medium is directly described by the

zones where C1 = 0 and C2 = 0.

2.2 The 1-fluid model

The modeling of incompressible two-phase flows involving separated phases can be achieved

by convolving the incompressible Navier-Stokes equations with a phase function C. As

explained by Kataoka13 , the resulting model takes implicitly into account the jumps relations

at the interface17,29 and the interface evolutions are described by an advection equation on

function C:

∇ · u = 0 (2)

ρ(
∂u

∂t
+ (u · ∇)u) = −∇p + ρg +∇ · (µ(∇u +∇tu)) + Fst (3)

∂C

∂t
+ u · ∇C = 0 (4)

where u is the velocity, p the pressure, t the time, g the gravity vector, ρ and µ respectively

the density and the viscosity of the equivalent fluid. The surface tension forces are taken into

account thanks to a volume force Fst = σκniδi. The surface tension coefficient σ is assumed
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constant. The local curvature of the interface is κ whereas the normal to the interface is ni

and δi is a Dirac function indicating interface.

The 1-fluid model is almost identical to the classical incompressible Navier-Stokes equa-

tions, except that the local properties of the equivalent fluid (ρ and µ) depends on C, the

interface location requires the solving of an additional equation and a specific volume force

is added at the interface to account for capillary effects.

2.3 Discretization and solvers

On a general point of view, the 1-fluid Navier-Stokes equations are discretized with implicit

finite volumes on an irregular staggered Cartesian grid. All the terms are written at time

(n + 1)∆t, except the inertial term which is linearized as follows:

un+1 · ∇un+1 ≈ un · ∇un+1 (5)

The coupling between velocity and pressure is ensured with an implicit algebraic adaptive

augmented Lagrangian (3AL) method. The augmented Lagrangian methods presented in

this work are independent of the chosen discretization and could be implemented for exam-

ple in a finite element framework9 . In two-dimensions, the standard augmented Lagrangian

approach22 can be used to deal with two phase flows as direct solvers are efficient in this case.

However, as soon as three-dimensional problems are under consideration, the linear system

resulting from the discretization of the augmented Lagrangian terms has to be inverted with

a BiCG-Stab II solver12 , preconditionned under a Modified and Incomplete LU method11 .

Indeed, in three-dimensions, the memory cost of direct solvers makes them impossible to use.

The 3AL method presented bellow is a kind of general preconditionning which is particularly

efficient when multi-phase or multi-material flows are undertaken, i.e. when steep density

or viscosity gradients occurs.
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Concerning the interface tracking, a volume of fluid (VOF) approach is used with a

piecewise linear interface construction (PLIC)7 . This approach ensures the mass conser-

vation while maintaining the interface width on one grid cell. The surface tension force

Fst = σκniδi is approximated as Fst = σ∇ ·
( ∇C

‖∇C‖
)
∇C, following the continuum surface

force (CSF) method proposed by Brackbill et al.18 .

The numerical methods and the 1-fluid model have been widely validated by the authors

concerning jet flows14,38 , capillary flows25,27,39 , wave breaking26,40,41 , material processes6 ,

plasma to water jet interaction35 and more generally turbulent two-phase flows8,36 .

2.4 Adaptive augmented Lagrangian methods for incompressible

multi-phase flows

In the following subsections, the existing augmented Lagrangian approaches are first pre-

sented briefly in order to justify the introduction of an algebraic method for managing

augmented Lagrangian techniques when multi-phase flows are dealt with37,41 .

2.4.1 Standard augmented Lagrangian (SAL)

The standard augmented Lagrangian (SAL) method was first introduced by22 . It consists

in solving an optimisation problem by finding a velocity-pressure saddle point following an

Uzawa algorithm10 . Starting with u∗,0 = un and p∗,0 = pn, the predictor solution reads

while ||∇ · u∗,m|| > ε , solve
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(u∗,0, p∗,0) = (un, pn)

ρ

(
u∗,m − u∗,0

∆t
+ u∗,m−1 · ∇u∗,m

)
− r∇(∇ · u∗,m)

= −∇p∗,m−1 + ρg +∇ · [µ(∇u∗,m +∇Tu∗,m)] + σkniδi

p∗,m = p∗,m−1 − r∇ · u∗,m

(6)

where r is the augmented Lagrangian parameter used to impose the incompressibility

constraint, m is an iterative convergence index and ε a numerical threshold controlling the

constraint. Usually, a constant value of r is used. From numerical experiments, optimal

values are found to be of the order of ρi and µi to accurately solve the motion equations

in the related zone41 . The momentum, as well as the continuity equations are accurately

described by the predictor solution (u∗, p∗) coming from (6) in the medium, where the value

of r is adapted. However, high values of r in the other zones act as penalty terms inducing

the numerical solution to satisfy the divergence free property only. Indeed, if we consider

for example ρ1/ρ0 = 1000 (characteristic of water and air problems) and a constant r = ρ1

to impose the divergence free property in the denser fluid, the asymptotic equation system

solved in the the predictor step is:

ρ

(
u∗ − un

∆t
+ (un · ∇)u∗

)
− r∇(∇ · u∗)

= ρg −∇pn +∇ · [µ(∇u∗ +∇Tu∗)] + σkniδi in Ω1

u∗ − un

∆t
− r∇(∇ · u∗) = 0 in Ω0

(7)

Our idea is to locally estimate the augmented Lagrangian parameter in order to obtain

satisfactory equivalent models and solutions in all the media.

2.4.2 Adaptive augmented Lagrangian (2AL)

Instead of choosing an empirical constant value of r fixed at the beginning of the simulations,

we propose at each time step to locally estimate the augmented Lagrangian parameter r.
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Then, r(t,M) becomes a function of time t and space position M . It must be two to three

orders of magnitude higher than the most important term in the conservation equations.

Let L0, t0, u0 and p0 be reference space length, time, velocity and pressure respectively. If we

consider one iterative step of the augmented Lagrangian procedure (6), the non-dimensional

form of the momentum equations can be rewritten as

ρ
u0

t0

u∗,m − un

∆t
+ ρ

u2
0

L0

(u∗,m−1 · ∇)u∗,m − u0

L2
0

∇(r∇ · u∗,m)

= ρg − p0

L0

∇p∗,m−1 +
u0

L2
0

∇ · [µ(∇u∗,m +∇Tu∗,m)] +
σ

L2
0

kniδi

(8)

Multiplying the right and left parts of equation (8) by L2
0/u0, we can compare the augmented

Lagrangian parameter r to all the contributions of the flow (inertia, gravity, pressure and

viscosity). We obtain

ρ
L2

0

t0

u∗,m − un

∆t
+ ρu0L0(u

∗,m−1 · ∇)u∗,m −∇(r∇ · u∗,m)

= ρ
L2

0

u0

g − p0L0

u0

∇p∗,m−1 +∇ · [µ(∇u∗,m +∇Tu∗,m)] +
σ

u0

kniδi

(9)

It can be noticed that r is comparable to a viscosity coefficient. It is then defined as

r(t,M) = K max

(
ρ(t,M)

L2
0

t0
, ρ(t,M)u0L0,ρ(t,M)

L2
0

u0

g,
p0L0

u0

, µ(t,M),
σ

u0

)
(10)
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If, for example,
ρ1

ρ0

= 1000 and µ0 < µ1 << ρ0 << ρ1, the semi-discrete form of the momen-

tum equations resulting from the new values of r(t,M) given by (10) then becomes

ρ1

(
u∗,m − un

∆t
+ (u∗,m−1 · ∇)u∗,m

)
−∇(r∇ · u∗,m)

= ρ1g −∇p∗,m−1 +∇ · [µ1(∇u∗,m +∇Tu∗,m)] + σkniδi

in Ω1 with r = K1ρ1L
2
0u0

ρ0

(
u∗,m − un

∆t
+ (u∗,m−1 · ∇)u∗,m

)
−∇(r∇ · u∗,m)

= ρ0g −∇p∗,m−1 +∇ · [µ0(∇u∗,m +∇Tu∗,m)] + σkniδi

in Ω0 with r = K0ρ0L
2
0u0

(11)

where K0 and K1 are in between 10 and 1000. In this way, thanks to expression (9), the

adaptive Lagrangian parameter is assigned a value that exceeds from 10 to 1000 times the

order of magnitude of the most important term between inertia, viscosity, pressure or gravity

in both Ω1 and Ω0 domains. Compared to the SAL approach (7), the 2AL is consistent with

the Navier-Stokes equations in each phase41 . The new method (10) can be easily extended

to other forces such as surface tension and Coriolis or specific source terms. Comparisons

between standard and adaptive augmented Lagrangian (2AL) methods are presented in the

next section. In particular, the influence of the penalty parameter on the convergence speed

of the BiCG-Stab solver and time and space variations of r(M) are discussed.

As a summary, the complete time-marching procedure of the predictor-corrector algo-

rithm including the 2AL method is the following:

⊗ Step 1: initial values u0 and p0 and boundary conditions on Γ are defined,
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⊗ Step 2: knowing un, pn and a divergence threshold ε, the predictor values u∗ and p∗ are

estimated with the Uzawa algorithm (6) associated to the local estimate of r(t,M) defined

in expression (10), so that u∗ = u∗,m and p∗ = p∗,m when m verifies ||∇ · u∗,m|| < ε,

⊗ Step 3: the solution (u∗, p∗) is projected on a divergence free subspace thanks, for exam-

ple, to projection approaches16,19 to get the correction solution (u,, p,). Then, the numerical

solution at time (n + 1)∆t is (un+1, pn+1) = (u∗ + u,, p∗ + p,),

⊗ Step 4: n is iterated in steps 3 and 4 until the physical time is reached.

2.4.3 Algebraic adaptive augmented Lagrangian (3AL)

It has been demonstrated that estimating a local and adapted augmented Lagrangian para-

meter is crucial for simulating multi-phase flows41 . The main remaining drawback of the

2AL method is linked to the a priori definition of dimensionless parameters for defining

r(t,M). The augmented Lagrangian approach is based on the concept of a penalty method.

As a consequence, the augmented Lagrangian parameter acts as an algebraic parameter

which increases the magnitude of specific coefficients in the linear system in order to verify

a specific constraint, while solving at same time the conservation equations. In this section,

an estimate of r(t, M) is proposed which is based on a scanning of the matrix coefficients.

The main interests of the algebraic adaptive augmented Lagrangian method (3AL) are the

following: it does not require any a priori physical information, it applies to any kind of

geometry and grid and it takes into account the residual of the linear solver and the fulfil-

ment of incompressible and solid constraints.

At each time step and in two-dimensions (the three-dimensional algorithm is straightfor-

ward), the 3AL method determines r(t,M) as follows:
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⊗ Step 1: two matrices A and A∗ are built corresponding respectively to the discretization

of the momentum equations with r(t,M) = 0 and r(t,M) = 1. In order to optimize com-

puter memory, a compressed storage raw (CSR) structure is chosen to store only the non

null coefficients of each matrix,

⊗ Step 2: on the fixed staggered Cartesian grid, r(t)i,j is evaluated according to the dis-

cretization coefficients of the surrounding velocity ux,i− 1
2
,j, ux,i+ 1

2
,j, uy,i,j− 1

2
and uy,i,j+ 1

2
com-

ponents, as presented on figure 2. The discretization of each velocity component, ux,i− 1
2
,j

for example, requires the use of 9 neighboring velocity nodes, i.e. ux,i− 1
2
,j, ux,i+ 1

2
,j,ux,i− 3

2
,j,

ux,i− 1
2
,j+1 and ux,i− 1

2
,j−1 for the discretization of the inertial and viscous terms and uy,i−1,j− 1

2
,

uy,i−1,j+ 1
2
, uy,i,j− 1

2
and uy,i,j+ 1

2
for the viscous and augmented Lagrangian terms. In this way,

we estimate the maximum values of the discretization coefficients AI(u), 1 6 I 6 9, associ-

ated to velocities ux,i− 1
2
,j, ux,i+ 1

2
,j, uy,i,j− 1

2
and uy,i,j+ 1

2
. We define:





Ci− 1
2
,j = maxI=1...9

[
AI(ux,i− 1

2
,j)

]

Ci+ 1
2
,j = maxI=1...9

[
AI(ux,i+ 1

2
,j)

]

Ci,j− 1
2

= maxI=1...9

[
AI(uy,i,j− 1

2
)
]

Ci,j+ 1
2

= maxI=1...9

[
AI(uy,i,j+ 1

2
)
]

⊗ Step 3: in the same way, the coefficient C∗
i− 1

2
,j
, C∗

i+ 1
2
,j
, C∗

i,j− 1
2

and C∗
i,j+ 1

2

, corresponding

to A∗, are estimated,

⊗ Step 4: the minimum and maximum discrete coefficient Rmini,j and Rmaxi,j at the

scalar position of r(t)i,j are then defined as:





Rmini,j = min(‖C
i− 1

2 ,j

C∗
i− 1

2 ,j

‖, ‖C
i+1

2 ,j

C∗
i+1

2 ,j

‖, ‖C
i,j− 1

2

C∗
i,j− 1

2

‖, ‖C
i,j+1

2

C∗
i,j+1

2

‖)

Rmaxi,j = max(‖C
i− 1

2 ,j

C∗
i− 1

2 ,j

‖, ‖C
i+1

2 ,j

C∗
i+1

2 ,j

‖, ‖C
i,j− 1

2

C∗
i,j− 1

2

‖, ‖C
i,j+1

2

C∗
i,j+1

2

‖)
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⊗ Step 5: if
Rmaxi,j

Rmini,j
6 1010 and

max(∆x,i,j ,∆y,i,j)

min(∆x,i,j ,∆y,i,j)
6 1000, r(t)i,j = Rmini,j. Else, r(t)i,j =

Rmaxi,j unless the penalty of the incompressible or solid constraint is not ensured due to

grid irregularity or strong local variation of physical or penalty parameters (at the interface

between fluid and solid media for example),

⊗ Step 6: once r(t)i,j has been estimated for all i and j, 1 6 i 6 nx and 1 6 j 6 ny, the

local values of the algebraic penalty parameters are normalized by r(t)i,j =
Kr(t)i,j

rmin+10−40 , where

rmin = mini=1..nx,j=1..ny(r(t)i,j). The constant K is equal to 1 except at the first calculation

step where K = 100 if
Rmaxi,j

Rmini,j
6 1010 or if during the five first calculation steps, the norm

of the residual of the linear solver divided by the norm of the divergence, obtained at the

previous calculation step, is greater than 106. This last particular case can be obtained when

a flow simulation is initialized without any imposed velocity field.

Steps 1 to 6 are repeated at each calculation step corresponding to a physical time

incremented of ∆t seconds.

2.5 Management of moving obstacles by penalty methods

While a phase function C is used to locate the different fluid media, a Heaviside function

H is used to locate the solid media, and consequently H = 1 in the solid, i.e. the tire in

the present work, and 0 elsewhere. The principle of the penalty method is to use a unique

set of equation in the whole computational domain and to add specific penalty terms to the

initial physical model. The magnitude of the penalty terms varies according to H in order

to impose a particular behavior in each media. The Brinkman penalty term20 accounting for

Darcy flows in solid porous media is one of the simplest penalty method for the Navier-Stokes

equations. It consists in adding the term
µ

K
u in the momentum conservation equation, with

K the local permeability. The equation (3) becomes:

ρ(
∂u

∂t
+ (u · ∇)u) +

µ

K
u = −∇p + ρg +∇ · (µ(∇u +∇tu)) + Fst (12)
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In the fluid media (H = 0), K → +∞ and the penalty term has no effect. In the solid media

(H = 1), K → 0 and the equation (12) reduces to u = 0. Using a Brinkman penalty term

in this way is a staightforward method for modelling fixed obstacles. For moving obstacles

such as a tire, a volume penalty method1 is more suitable. The Brinkman penalty term is

replaced in the equation (12) by
1

ε
(u − uD) with uD the local prescribed velocity of the

tire and ε the local penalty coefficient. As for the Brinkman penalty term, ε → +∞ in the

fluid media and ε → 0 in the solid media in which equation (12) reduces to u = uD and a

non-zero velocity can be imposed.

These methods are first order in space only as each local velocity is imposed in an entire

grid cell. Hence, the original complex object is considered as being a set of boxes matching

the control volumes of the Eulerian grid. A more accurate description of the interface can be

obtained with the sub mesh penalty method1,2 . In this recent method, the volume penalty

term
1

ε
(u − uD) is replaced by

1

ε
(
∑

αjuj − uD) where αjuj is a linear combination of the

solution at a given nodes and at its neighbors. This more complex term takes into account

the exact location of the interface and reaches a second order in space.

Concerning the initialization of the object function H, a ray-casting method is used2 . For

each point of the Eulerian grid, a ray is casted to the infinity. If the number of intersections

between the ray and the Lagrangian surface grid Σh describing the obstacle is even, the point

is outside of the object, neither inside. The whole methodology, especially for curvilinear

structured grids, is detailed in a recent work3 . The first order penalty method is used in

this work for its easy programming.

2.6 Calculation of the force exerted on obstacles

The fluid force applied on an obstacle such as the tire is

F =

∫

Σ

σ · n dS =

∫

Σ

(2µD − pId) .n dS (13)
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where σ is the stress tensor, D the deformation tensor and n the local normal to the fluid-

solid interface. The resulting force is decomposed in two parts:

F p = −
∫

Σ

(pId) .n dS (14)

F v =

∫

Σ

(2µD) .n dS (15)

with F p the pressure force and F v the viscous force.

The numerical computation of the wall forces are often used in the literature of the

fictitious domain methods where the accuracy of the drag force of a particle is a common test

case. Nonetheless, the details of such a calculation are rarely explained. For the Brinkman

penalty approach, the volume integral method proposed by Caltagirone15 is simple and well

suited. When volume penalty fictitious domain techniques of first or higher orders are used,

a different calculation is desirable.

The theoretical force calculation requires to know the pressure and the deformation tensor

of the velocity on the fluid-obstacle interface. The tire surface is discretized as a Lagrangian

surface composed of triangular elements. The fluid field is only defined outside of the object

(exceptions will be discussed later) and the interface does not generally match the location

of the Eulerian nodes. As a consequence, a quantity has to be extrapolated from the fluid

domain to the interface and the first step is to define points in the fluid to build the inter-

polations. The number of surface element σi of Σh (the discretization of Σ) is denoted as

Ne. In three-dimensions, the elements are triangles defined by three points of coordinates

xe
ik, k = 1..3. For each element σi , 1 6 i 6 Ne, we define xi =

∑
16k63 xe

ik

3
the barycenter

of the element and ñi its outward local normal at xi. Three fluid extrapolation points are

then defined at the locations

xil = xi + l (∆x∆y∆z)1/3 ñi, l = 1, .., 3 (16)
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The discrete values of a given field Φ (pressure, derivative...) are then interpolated on

the Lagrangian points xil. For each xil, the Eulerian points used to interpolate Φ in xil

are denoted xj
il, j = 1, ..., Smax with Smax the number of Eulerian points of the stencil

of the considered interpolation function. Using two or three Lagrangian points and more

related Eulerian points to interpolate Φ on σi produces an interpolation with a large stencil.

Furthermore, each extrapolated value of a component of D is itself a centered derivative

which enlarges again the stencil. Hence, two constraints opposed themselves:

• the calculation and the interpolation at the points xil of the stress tensor requires a

large stencil, so the tensor has not to be taken too close to the considered element σi

• a point inside the solid could be accidently used to compute the extrapolated values

of D if the Lagrangian points xik is taken too far from σi

To a smaller degree, these constraints remain valid for the computation of the pressure at

the interface. The occurrence of such problems varies according to the complexity of the

discrete Lagrangian interface Σh. A convex shape does not generally induces such effects

and the study of the wall forces on a sphere is easily performed. For shapes with concavity

such as a tire with complex patterns, the troubles increases with the curvature of the shape.

However, if the ratio of the magnitudes of the pressure forces to the viscous forces is

such that the viscous forces are negligible, the wall forces calculation is easier to perform.

The pressure field is directly available on the grid, and one can simply take its value at the

closest fluid node. If a calculation of higher order of the pressure is required, two methods

can be used to prevent the troubles induced by the curvature of the interface.

The first method is to use adaptive interpolations such as kernel functions30 which are

built with any number of points belonging to a restricted spherical area of chosen radius R

surrounding xik. For example, R = max (∆x, ∆y, ∆z). To be efficient, only the fluid points

such as H < 0.5 are considered in this approach.

The second method is to extend the field Φ from the fluid media to the solid media. The

17



resulting field denoted as Φ̃ allows to use of standard Lagrange interpolation schemes which

select Eulerian values in the obstacle region as Φ̃ is continuous across Σh. The following

penalty Helmoltz equation is solved to obtain Φ̃:

∇2Φ̃ +
1

εp

(
Φ̃− Φn+1

)
= 0 (17)

where Φn+1 is the value obtained by solving the conservation equations and εp is a penalty

parameter tending to infinity if H ≥ 0.5 and to 0 if H < 0.5. As a resulting property, the

physical values of Φn+1 are maintained in the fluid and Φ̃ is continuous across Σh. Then, Φ̃

can be interpolated from the Eulerian grid to Σh. In this case, a Q1 interpolation can be

used. As a Neumann condition is not imposed on Σ for the problem (17), the first derivative

of Φ̃ is not continuous. Hence, if Φ̃ is the velocity, one cannot use Φ̃ to calculate D. As

can be seen, the calculation of a high order interpolation of D on the interface is a complex

problem which requires the use of a high order local penalty method1 to impose in (17) that

∇p · ñi = 0 on Σh in the obstacle. This point is not presented here as fortunately, the vis-

cous forces are negligible in the case of the hydroplaning of a tire treated in the present paper.

Once the Eulerian extended pressure p̃ is estimated by (17), the pressure force F p is

implemented by a discretization of (14) as follows:

F p = −
∑

16i6Ne

p̃i∆Siñi (18)

with

p̃i = 3p̃i1 − 3p̃i2 + p̃i3 (19)

and

p̃il =

∑
16j6Smax

p̃j
ild

j
il∑

16j6Smax
dj

il

, l = 1, .., 3 (20)

The notation .jil corresponds to a value taken at the Eulerian nodes xj
il surrounding the

18



Lagrangian position xil. The surface of element σi is

∆Si =
1

2

√
ñ2

x,i + ñ2
y,i + ñ2

z,i (21)

where ñx,i , ñy,i and ñz,i are the components of ñi. The notation dj
il denotes the distance

between the Lagrangian barycenter xi and the Eulerian position xj
il whereas the outward

local normal ñi is estimated at the barycenter xi of each σi by taking the vectorial product

of two tangent vectors t̃i,1 and t̃i,2 to σi:

ñi = t̃i,1 ∧ t̃i,2 (22)

For example, the tangent vectors can be defined as

t̃i,1 =




xe
i2,x − xe

i1,x

xe
i2,y − xe

i1,y

xe
i2,z − xe

i1,z




(23)

t̃i,2 =




xe
i3,x − xe

i1,x

xe
i3,y − xe

i1,y

xe
i3,z − xe

i1,z




(24)

where xe
ik,x, xe

ik,y and xe
ik,z, k = 1..3, denotes the Cartesian coordinates of the points forming

the element σi.

3 Numerical testing and validation of augmented La-

grangian methods

The augmented Lagrangian methods have been widely validated and compared to experi-

mental and theoretical reference results in previous publications40,41 . For example, the 2D
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laplace law, the sedimentation of a particle in Stokes regimes, the flow across a fixed cubic

face centered (CFC) array of particles and the two-dimensional wave breaking in deep water

have been investigated. The 2AL method has proven its efficiency and its consistency with

physical and numerical reference solutions. In this section, the 3AL approach is investigated

and validated on reference two-phase flows.

3.1 2D collapse of a water column

The ability of the 3AL method to simulate free surface flows is investigated on the col-

lapse of a 2D water column in a tank. The interest of this two-phase flow problem is to

provide experimental measurements of free surface position at several characteristic times32

. The width and height of the calculation domain are 0.584 m and 1.168 m respectively.

As presented on figure 3, the closed cavity is initially full of air and the water column is

placed in the bottom left corner of the domain. Its width and heigth are 0.146 m and 0.292 m.

A convergence study is carried out on three calculation grids 200 × 400, 400 × 800 and

800 × 1600. The time steps used for each grid simulation are 5 × 10−4 s, 2.5 × 10−4 s and

1.25 × 10−4 s. Ten calculation steps are used in the iterative BiCG-Stab II solver. The

results are presented on figure 4. The experimental visualizations of Koshizuka and Oka32

have been digitalized in order to extract the position of the free surface at several points.

It is observed that all the simulations describe correctly the dynamics of the water which

runs until t = 0.04 s. From t = 0.6 s to t = 0.8 s, the left part of the flow is accurately

recovered by all grid calculations. However, near the right wall, significant discrepancies are

observed between numerical simulations and experiments. The finest grid provides the best

description of the flow near the right wall, where the water film formed on the wall falls

under the action of gravity, hits the water on the bottom boundary and splashes. The flow

is strongly non linear, with important interface deformation, coalescence and rupture. On a

macroscopic point of view, the three grids provide solutions which tend to the experimental
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measurements, demonstrating space convergence.

Concerning the magnitude and the evolution of the 3AL parameter r(t,M), they are illus-

trated in figure 5 for simulations leaded on a 400 × 800 grid. At each calculation step, the

local magnitude of r(t,M) evolves and adapts in order to ensure the divergence free con-

straint in a balanced way. In the air medium, r(t,M) is almost equal to 1, while r(t,M) lies

between 100 and 400 in water.

To finish with, we evaluate the SAL method for the collapse problem of a water column.

On figure 6, a 400× 800 grid is considered and the simulation results are discussed after the

jet formed on the right wall has splashed down. Three simulations have been performed, with

constant values of r(t,M), equal to 1000 and 100, and 10 and 50 iterations of the iterative

BiCG-Stab II solver. It is observed that with the same numerical cost of the iterative solver

as with the 3AL method (10 iterations), the numerical solution obtain with r(t,M) = 1000

is the worst result of the three (black line) while by changing r(t,M) to 100, the simulation

get closest to the experimental measurements and to the 3AL simulation. Increasing the

number of BiCG iteration, while keeping r(t,M) = 1000, slightly improves the results but

the numerical cost of the simulation is multiplied by 5. A comparison on the numerical

performances according to the method used is provided in table 1 on a 400 × 800 grid. It

is observed that the 3AL approach involves a negligible overcost compared to SAL, while

the residual and divergence obtained with the same solver are comparable as soon as the

number of internal solving steps of the iterative method reaches 50. The major difference

lies in the physical meaning of the obtained solutions, which are always better with 3AL

than with SAL, even for 5 or 10 BiCG-Stab II iterations.

To conclude, the collapse problem of a water column allowed us to demonstrate the

interest of the 3AL method, compared to SAL approaches, as well as 2AL techniques: the

3AL method is always well balanced concerning incompressible penalty terms and requires
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less number of solver iterations to get a suitable solution than SAL and 2AL approaches. In

addition, contrary to 2AL approach, the 3AL method is not based on any a priori physical

information and does not involve any tuning or scaling of the value of r(t,M), as is necessary

with the SAL or 2AL techniques.

3.2 3D settling of a particle in a rectangular tank

The sedimentation of a spherical particle in a square section tank is considered. This test

case corresponds to the experiments of Mordant and Pinton23 where a rigid steel sphere

of diameter 8 × 10−4m and density 7710 kg.m−3 is initially released without initial veloc-

ity. The particle is released into a liquid whose density and viscosity are 1000 kg.m−3 and

8.9× 10−4 Pa.s respectively. The calculation domain is considered unbounded as the radial

containment is less than 10−3. The Reynolds number based on the particle diameter and its

settling velocity is 280 and the corresponding Stokes number is 240.

In this section, several simulations are leaded on a 50×50×800 grid associated to dimensions

0.004 m × 0.004 m × 0.064 m in Cartesian coordinates. The numerical domain is smaller

than the experimental one. However, the magnitude of the Reynolds and Stokes numbers

allows a small effect of choosing a numerical containment of 0.2 artificially higher than the

experimental one to be evaluated. The objectives are to evaluate and physically validate

the 3AL methods by comparing numerical simulations of particulate flows to experiments,23

SAL and 2AL methods41 .

The vertical component of the particle velocity is first investigated with the SAL, 2AL

and 3AL methods (see figure 7). It is observed that the 2AL and 3AL approaches accu-

rately predict the experimental measurements. On the contrary, the SAL method involves

strong discrepancies with the measurements23 . As it has been demonstrated in the work

of Vincent et al.41 , a constant r(t,M) and the resulting augmented Lagrangian penalty

term alter dramatically the conditionning of the linear system in one of the fluids. The

22



resulting simulations are not physically pertinent. Examples of velocity magnitudes and

vectors, obtained with the SAL and 3AL methods at t = 0.15 s, are shown on figure 8 in a

vertical slice intersecting the particle center. The flow behind and in the rear of the particle

is different. The toroidal velocity field, which is experimentally observed near the particle23

and with the 3AL approach, is not recovered with the SAL method. The magnitude of the

resulting velocities is 50% underestimated with the SAL method and the flow is not relevant

in this case. The numerical overcost induced by the 3AL method is less than 1% of the time

required to solved the Navier-Stokes equations and the memory requirements are negligible.

4 Three-dimensional simulation of hydroplaning flows

4.1 Description of the problem

The three-dimensional air-water flow interacting with a tire is considered for a tire rotation

velocity of 46.3rad.s−1 and a corresponding translational velocity of the road of 13.89m.s−1.

The tire is a fictitious domain of imposed velocity which is accounted for into the calculation

grid by means of penalty terms imposing the velocity in all the tire zone. As presented in

figure 9, three tire geometries, called tires T1, T2 and T3, are considered, in order to evaluate

the effect of the tire patterns on the flow-structure interaction and resulting forces exerted

on the tire during hydroplaning. The tires are shown as they are really projected onto the

simulation grid. It is observed that only their bottom part is considered in the simulation.

On the road, the tire is in contact with the bottom boundary of the simulation domain

(empty parts of the tire surface in figure 9). It can be pointed that the tire structure is not

accurately described in the upper part of the calculation domain, due to coarsening of the

grid in this zone. However, the two-phase flow does not provide important features in this

part of the simulation, so its influence on the hydroplaning motion can be solved in a coarser

manner. At each time step, the movement of the tire structures, as well as the deformation
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of the tire, are calculated thanks to a home-made software by MICHELIN, which provides

the triangular surface elements defining the tire topology. Consequently, the effect of the

flow on the tire deformation are not currently taken into account. The tire deformations are

almost due to the force exerted by the vehicle.

The fluid characteristics are 1000kg.m−3 and 1.1768kg.m−3 for the densities in water and

air and 10−3Pa.s and 1.85 × 10−5Pa.s for the dynamic viscosities in water and air respec-

tively. The surface tension coefficient σ between water and air is assumed to be equal to

0.075N.m−1. Initially, a water layer lays upward onto the road with a height of 8mm on

the total width of the road. The Reynolds number based on the initial water layer laying

on the road and the road velocity is equal to 1.11 × 105 while the corresponding Weber

number is 2.06× 104. These two dimensionless numbers allow us to deduct that the flow is

turbulent and that the surface tension effects are negligible in the inertial zones where the

fluid-structure interaction reaches the maximum constraints.

The simulation grid is exponential, with a refined area in the zone where the tire is in

contact with a road. The total number of cells in each directions is 270 x 110 x 80. The

size of the cells in the refined zone is 1mm in each direction, while the main dimensions

of the simulation domain are 1.4m × 0.291m × 0.6m. The grid structure in vertical and

horizontal slice views is presented in figure 10. All the simulations are computed on the

same grid, which provides the required cell density to obtain results which are independent

of the numerical parameters. The calculation time step is chosen constant and equal to

10−4s.

4.2 Study of three-dimensional flows

The three-dimensional two-phase unsteady flow occurring when a water-air free surface hits

and interacts with a tire has never been studied numerically with a full unsteady description
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of the two-phase motion and the corresponding efforts exerted on the tire. The typical flow

structures that are observed when the tire geometry changes are presented in figure 11. The

free-surface is represented by the iso-surface C = 0.5. The deformation of the free surface is

observed to be periodic and therefore always evolves during time, except for grooved tires.

However, in figure 11, the simulations are considered after the flow has reached a stabilized

state, i.e. the global shape of the free surface does not evolve during time on a macroscopic

point of view. Whatever the type of tire topology, the macroscopic flow structure is almost

the same. A V-like free surface form develops downstream the tire, a lot of water droplets

are generated in the vicinity of the rotating obstacle and a pressure peak is created on the

forward face of the tire near the road. The pressure field projected onto the tire surface

is described in figure 12. The flow is observed with a bottom view perpendicular to the

road. The simulated values of the maximum pressure on the tire are in the range 8 × 104

to 1 × 105Pa. These values are in good agreement with the experimental measurements of

MICHELIN and the theoretical predictions provided by equation 1:

Ph = KV 2
v = 96466Pa (25)

where the constant K is equal to 500 and the velocity of the vehicle Vv is 13.89m.s−1. On a

two-phase point of view, it is observed that air tubes are generated when the water touches

the tire on the side and in the wake of the obstacle. Under surface tension and shearing

effects, these gas tubes break and generate bubbles and droplets, as can be observed in

hydroplaning experiments.

4.3 Analysis of forces exerted on a tire by water

In this section, the vertical component of the normal force F p
n exerted by the two-phase flow

on the tire is first studied. The positive and negative contributions of F p
n , defined as F+

n

and F−
n , are introduced in order to estimate and discriminate the tire structure effect on the
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flow-structure interaction. The behavior of F+
n and F−

n is proposed in figure 13. For the

three tires, the positive contribution of the vertical component of force F p
n is 7 to 8 orders

of magnitude higher than the negative part F−
n . This observation illustrates the hydroplan-

ing configuration of the fluid-structure interaction considered in this work, i.e. the positive

vertical component of the force exerted on the tire is larger than the negative one, involving

hydroplaning if its magnitude is larger than the weight of the considered vehicle.

The time evolution of F+
n admits a similar characteristic behavior for T1, T2 and T3.

For 0s 6 t 6 0.01s, F+
n increases until a maximum value between 800N and 900N . This

time interval corresponds to time required for the incident water layer to wet the tire surface

near the road. For 0.01s 6 t 6 0.02s, the positive part of the vertical force component de-

creases, corresponding to the obtention of an almost equilibrium state between the incident

water flow and the tire and road dynamics. After this time, the effort reaches an average

asymptotic value included in the range 750N to 850N . The main difference between the

flat and structured tires is observed in the asymptotic region, for which the vertical force

exerted by the two-phase flow is constant for T1 (flat tire) whereas regular oscillations are

numerically measured for T2 and T3, which are characteristic of the tire structure.

The discrimination of the tire is now investigated by considering the evolution of the

total vertical force F p
n during time. These results are presented in figure 14. It is observed

that building a structure on a tire reduces by 20% the effort exerted by water on the tire, as

observed experimentally by tire manufacturers. As for F+
n and F−

n , after the fluid-structure

interaction has reach a stabilized state for t ≥ 0.02s, F p
n linearly increases over time. This

results is the correlated increase of the ambient pressure in the calculation domain. The real

effort exerted on the tire after t = 0.02s no more increases. This could be verified numeri-

cally by subtracting the ambient pressure to the pressure calculated locally. The difficulty

lies in the choice of the ambient pressure in our simulations. However, the important fea-
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ture here lies in the classification of the forces resulting from the fluid-structure interaction

according to the tire structure, which is nicely established by the simulations. Contrary to

the classification brought by F+
n , the F p

n curve demonstrates that the tire T3 involves a 5%

in average lower effort than T2. For these two tire geometries, the main difference lies in

the opportunity provided by T3, due to its shape design, to exert a negative vertical effort

which compensate the value of F+
n and allows F p

n to be lower for T3 than for T2.

A last interesting parameter can be extracted from the simulated efforts: the charac-

teristic frequencies arising when the tires are patterned. It is recalled and observed in the

simulations that no typical periodic variations are observed for a flat tire, as expected. The

best variable allowing to measure the characteristic time variations of efforts is F+
n , as ob-

served in figure 13. A zoom of the positive vertical contributions of F p
n is presented in figure

15. The analysis of the F+
n signals allows the characteristic frequencies fT2 and fT3 of tires

T2 and T3 to be extracted:





fT2 = 25/0.089 = 280Hz

fT3 = 32/0.091 = 351Hz
(26)

It can be given an attempt to correlate fT2 and fT3 to the typical tire structures presented

in figure 16. A frequency can be estimated by dividing the relative velocity of the road Vv =

13.89m/s by a characteristic distance. If the vertical distance between the tire structures is

used, it can be demonstrated that





fT2 = 13.89/0.048 = 289Hz

fT3 = 13.89/0.040 = 347Hz
(27)

As a conclusion, it has been demonstrated that the fluctuations observed on the time evolu-

tion of the efforts are directly dependent on the size of the larger structure of the considered

tire.
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To synthesize the results, the three-dimensional two-phase flow structure interacting with

the tire have been clearly simulated. The corresponding efforts exerted on the tire have been

compared for three different tires. A classification of the tire topologies has been proposed

with respect to the magnitude of the total vertical normal forces, i.e. the flat tire involves a

20% higher effort than the structured tires. This demonstrates that using a structured tire

clearly reduces the vertical force exerted on the tire and that in this case, the hydroplaning

will occur for higher road velocities. These results demonstrate the importance of the design

of tire which allow the hydrodynamic pressure in front of the tire31 to be minimized. To finish

with, characteristic frequencies of structured tires are clearly observed. They are related to

the size of the larger tire structure.

5 Concluding remarks

A two-phase flow model dedicated to the simulation of hydroplaning, based on a general-

ized formulation of the Navier-Stokes equations for unsteady free-surface flows, has been

presented. The interaction between the air-water flow and the tire is modeled thanks to

fictitious domains. On a numerical point of view, penalty methods are proposed to take

into account the fluid-structure interaction on fixed grids with artificial sub-domains being

merged into. In addition, an original algebraic augmented Lagrangian method has been

proposed for an accurate treatment of the velocity-pressure coupling in the framework of

two-phase flows.

The two-phase flow model has been successfully validated on the collapse of a water col-

umn and in the case of a particle settling in a rectangular tank. The experimental measure-

ments available concerning these two test cases are accurately recovered by the simulations.

In addition, a numerical study is provided on augmented Lagrangian methods that demon-
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strates the superiority of the algebraic adaptive augmented Lagrangian (3AL) method over

other existing methods (SAL, 2AL): more physically relevant results are obtained while the

numerical cost is decreased.

Concerning hydroplaning simulations and the simulation of three-dimensional two-phase

flows interacting with moving obstacles, it has been demonstrated that the 3AL method

and penalty techniques can be a usefull tool which is easy to implement for engineering

applications while using the real object shape on fixed structured grids. The estimate of

surface constraints exerted by water on various patterned tires has provided new results and

explanations allowing to discriminate the tires according to their typical pattern shape.

6 Acknowledgements

The authors thank the MICHELIN group for its financial support and the Aquitaine Regional

Council for the financial support dedicated to a 256-processor cluster investment, located

in the TREFLE laboratory. This work was also granted access to the HPC resources of

CCRT, CINES and IDRIS by GENCI (Grand Equipement National de Calcul Intensif)

under reference number x2009026115.

29



References

[1] Sarthou A., Vincent S., Caltagirone J.-P., and Angot P. Eulerian-lagrangian grid cou-

pling and penalty methods for the simulation of multiphase flows interacting with com-

plex objects. Int. J. Numer. Meth. Fluids, 56:1093–1099, 2008.

[2] Sarthou A., Vincent S., Angot P., and Caltagirone J.-P. The sub-mesh-penalty method.

Finite Volumes for Complex Applications V, pages 633–640, 2008.

[3] Sarthou A., Vincent S., Angot P., and Caltagirone J.-P. The algebraic immersed in-

terface and boundary method for the elliptic equations with discontinuous coefficients.

Submitted to Journal of Comput. physics, 2009.

[4] Aksenov A.A., Dyadkin A., and Gudzovsky A.V. Numerical simulation of car tire

aquaplaning. ECCOMAS 96, Paris, 1996.

[5] Aksenov A.A. and Gudzovsky A.V. The software flowvision for study of air flows,

heat and mass transfer by numerical modelling methods. Proc. of the Third Forum of

Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and

Building Thermal Physics, 22-25 Aug., Moscow (in Russian), 1993.

[6] Lacanette D., Gosset A., Vincent S., Buchlin J.-M., and Arquis E. Macroscopic analysis

of gas-jet wiping: Numerical simulation and experimental approach. Phys. Fluid, 18:1–

15, 2006.

[7] Youngs D.L. Time-dependent multimaterial flow with large fluid distortion. Morton

K.W. and Baines M.J. (editors), Numerical Methods for Fluid Dynamics, Academic

Press, New-York, 1982.

[8] Labourasse E., Lacanette D., Toutant A., Lubin P., Vincent S., Lebaigue O., Caltagirone

J.-P., and Sagaut P. Detailed comparisons of front-capturing methods for turbulent two-

phase flow simulations. Int. J. Mult. Flow, 33:1–39, 2007.

30



[9] Bertrand F., Tanguy P.A., and Thibault F. A three-dimensional fictious domain method

for incompressible fluid flow problems. Int. J. Numer. Meth. Fluids, 25:716–736, 1997.

[10] Uzawa H. Iterative method for concave programming. in K.J. Arrow, L/ Hurwicz, H.

Uzawa, editors, Studies in linear and nonlinear programming, Stanford University Press.

1958.

[11] Van Der Vorst H.A. Bicg-stab: a fast and smoothly converging variant of bi-cg for the

solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical

Computing, 13(2):631–644, 1992.

[12] Gustafsson I. On First and Second Order Symmetric Factorization Methods for the

Solution of Elliptic Difference Equations. Research report, Department of Computer

Sciences, Chalmers University of Technology and the University of Gateborg. 1978.

[13] Kataoka I. Local instant formulation of two-phase flow. Int. J. Multiphase Flow,

12(5):745–758, 1986.

[14] Larocque J., Rivière N., Vincent S., Reungoat D., Fauré J.-P., Héliot J.-P., and Cal-
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Method Number of BiCG-Stab II iterations Residual Divergence norm CPU time (s)
SAL 5 3.2× 10−3 2.8× 10−3 86
SAL 10 1.0× 10−3 2.8× 10−3 124
SAL 50 2.7× 10−5 2.8× 10−3 438
3AL 5 4.0× 10−3 2.1× 10−2 96
3AL 10 9.4× 10−4 7.5× 10−3 141
3AL 50 3.5× 10−5 2.7× 10−3 439

Table 1: Numerical performances of the augmented Lagrangian techniques for the collapse
of a water column on a 400 x 800 grid.
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Figure 1: Definition sketch of the fictitious domain method for the hydroplaning flow.
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Figure 2: Typical distribution of discretization variables on a 2D fixed staggered Cartesian
grid.
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Figure 3: Definition sketch of the collapse of a water column in a square tank.
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Figure 4: Simulation of the collapse of a water column - Convergence study of the free surface
position for t = 0.4, 0.6 and 0.8 s.
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Figure 5: Simulation of the collapse of a water column on a 400 × 800 grid - Magnitude of
the 3AL parameter (iso-contours) and free surface (black line) for t = 0.4, 0.6 and 0.8 s.

40



Figure 6: Simulation of the collapse of a water column - Comparison between several SAL
simulations on a 400 x 800 grid at t = 0.8 s to experiments.
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Figure 7: Simulation of the settling of a spherical particle at Re = 280 - Evolution of the
particle velocity during time - Comparison between SAL, 2AL, 3AL and experimental results
(top) and zoom for the same comparison between t = 0.05s and t = 0.025s (bottom).
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Figure 8: Simulation of the settling of a spherical particle at Re = 280 - Isolines of vertical
velocity norms in a vertical slice cutting the particle barycenter - Comparison between SAL
(top) and 3AL (bottom) results.
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Figure 9: Topology of the three considered tires called T1, T2 and T3 (from left to right and
top to bottom) - The tire patterns are provided by MICHELIN.
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Figure 10: Structure of the calculation grid in an horizontal (top) and a vertical slice (bot-
tom).
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Figure 11: Two-phase flow interacting with tires T1, T2 and T3 - The tire iso-surface is
plotted in grey whereas the free surface is represented in blue.
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Figure 12: Two-phase flow interacting with tires T1, T2 and T3 - The free surface is repre-
sented in blue with translucency whereas the iso-colors describe the pressure projected onto
the tire surface.
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Figure 13: Time evolution of F−
n and F+

n for tires T1, T2 and T3 (from left to right and top
to bottom).
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Figure 14: Time evolution of F p
n for tires T1, T2 and T3.
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Figure 15: Zoom on the time evolution of F+
n for tires T2 and T3.
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Figure 16: Typical structure of tires T2 (top) and T3 (bottom) - A downside view of the tires
is presented at the contact area with the road.
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