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Abstract 

The increasing complexity of system-on-chip design 

and shorter time to market constraints has stimulated 

systems designers to investigate performance 

characteristics of the final system implementation in 

the early design stages, by means of modeling the 

design at a high level of abstraction. This paper 

presents the virtual node concept for modeling the 

shared resources of a system-on-chip, therefore 

specifically dedicated to the study of the impact of 

shared resources contention on the overall system’s 

performance, which is often defined by concurrent use 

cases. The overall approach is based on using a 

specific UML modeling profile and a SystemC-based 

simulator to execute models and analyze their 

performance.  

1. Introduction

System-on-chip design, that is, integrating

multiple functionalities on a single die, has reached a 

very high level of complexity due to the available 

integration density. Taking an example from the 

domain of mobile devices, one can integrate multiple 

telephony modems and an operating system (OS) like 

Linux or Symbian, and have them share a single 

external memory [14]. In a true multitasking OS, the 

device must be able to handle simultaneous voice and 

data calls, while also handling complex imaging tasks 

like image or video capture, in part sharing processing 

engines, and all serviced by a single external memory. 

Both HW and SW architectures must be designed 

carefully with worst-case concurrent use cases in mind, 

to avoid any negative user experience. 
Modeling the use case behavior and the candidate 

system architectures at an early stage is therefore 

essential for a successful system design. Fast 

architecture evaluation requires system modeling at a 

very high abstraction level. Furthermore, due to typical 

development cycles, the HW design needs to be closed 

earlier, sometimes much earlier than the SW design, 

providing another reason for high-level modeling.  

As illustrated in the example, shared resources, like the 

integrated applications processor and the external 

memory, have a great influence on the performance of 

the system-on-chip. Our approach extends the 

DIPLODOCUS modeling methodology [8] with 

modeling and simulation techniques for shared 

resources [7]. This paper defines the concept of the 

virtual node to model shared resources and estimate 

their impact on system performance. A virtual node 

ensures – given a parameterized policy – the 

scheduling of accesses to shared resources (e.g. CPUs, 

busses, memories). The virtual node concept helps to 

build a well-structured simulation model, and also 

facilitates the creation of simple and reusable 

architecture component models.  
The rest of the paper is organized as follows: 

Section 2 presents the virtual node concept and Section 

3 presents our system modeling methodology and 

environment where we integrated the virtual node 

concept. Section 4 discusses related work on system 

modeling with a special focus on shared resources 

modeling, and finally Section 5 concludes this paper 

and gives future guidelines. 

2. Modeling Accesses to Shared Resources

2.1. A Demonstrative Example  

Let us consider a simple application example 

composed of three tasks: T1, T2 and T3; where T1 and 

T3 are two dependent tasks and exchange data between 

each other, while T2 is independent. This application 

will be executed by a hardware architecture composed 
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of two CPUs (CPU1 and CPU2), one bus (BUS1) and 

one memory (MEM1). The two CPUs share the bus 

BUS1 to access the shared memory MEM1. We 

consider, as well, that T1 and T2 will execute on 

CPU1, while T3 will execute on CPU2. In this 

scenario, when T1 and T3 exchange data, the data will 

be transmitted using the BUS1 and the MEM1. This 

communication involves two shared architecture 

nodes, the bus and the memory, whose access is 

determined with access policies: the arbitration policy. 

The communication latency is the sum of time needed 

to access shared resources and the contention on them 

when CPU1 and CPU2 want to access the bus at the 

same time for example). 

Another level of contention is on the CPU 

scheduling level; a scheduling policy should indeed 

select a task to execute among the non-blocked ones. 

For instance, if the scheduling policy of CPU1 is 

priority based, and T1 is of higher priority than T2, 

then T1 will be chosen to execute. In this case, T2 

execution is delayed until T1 finishes its execution, 

including the communication cost with T3 that may 

vary depending on the contention on the bus and the 

memory. 

Finally, we can identify several types of shared 

resources. In fact each architecture node is shared 

between multiple elements: the CPU is shared between 

different tasks, the bus is shared between multiple 

CPUs and the memory is also shared between multiple 

CPUs using the bus.  

This simple example shows clearly how the 

overall performance of the system depends 

significantly on shared resources access control and 

contention. It justifies the three types of resource 

requests that we have identified: 

1- Computation requests generated by 

application tasks to computation nodes (e.g. 

CPUs). 

2- Communication requests generated by 

computation nodes to the communication 

nodes (e.g. Bus) in order to transfer data 

generated/requested by tasks. 

3- Storage requests generated by computation 

and communication nodes to storage nodes 

(e.g. memories) 

As each resource can be shared between different 

requesters, resources should have an access policy that 

select a request among pending ones. We generalized 

this by introducing the virtual node concept, explained 

in the following section. 

2.2. The Virtual Node 

We define the “Virtual Node” (VN) as a generic 

modeling component that controls the access to a 

resource by implementing an access policy. It allocates 

the controlled resource to a requester, for example the 

VN of a CPU allocates the CPU to a task that is ready 

to execute, or the VN of a bus allocates the bus 

bandwidth to a CPU that is trying to reach the memory 

or other architecture nodes that are connected to the 

bus. 

A request is generated by a requester to access to a 

resource. It specifies the resource amount that the 

requester needs. For example, a storage request shall 

specify the size of data to transfer. In addition, a 

request has a priority in the case when the VN’s access 

policy is priority based.  

Figure 1 shows the shared resources view of the 

example introduced in section 2.1. Each architecture 

node is controlled by a virtual node; for example 

“VN4CPU1” is the virtual node that controls the 

access to the CPU1. Requests are stored in queues (one 

queue for each virtual node). We have three types of 

queues: computation, communication and storage 

queues. The virtual node, using its access policy, 

chooses among the requests in the queue which one 

will acquire the access to the resource. 

Figure 1: Shared resources modeling with virtual nodes 

2.2.1. Virtual nodes hierarchy 

Embedded systems can concurrently execute 

different real-time heterogeneous applications; for 

instance in a modern mobile device multimedia 

application such as video or audio could execute 

concurrently with control applications 

(telecommunication protocols). These applications may 

have specific scheduling requirements (soft real time, 

intensive data transfer or execution loop, etc); 

furthermore applying one access policy to all 

applications is not the optimal solution [11]. 

Hierarchical stacking of virtual nodes is our solution to 

optimize resources sharing when heterogeneous groups 

of requesters request the resource. A main virtual node 

controls a hardware resource and a secondary virtual 
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node controls each group of requesters. This approach 

allows us to optimize the access policies to satisfy 

requirements of all groups. We use, as well, the 

hierarchical composition of virtual nodes for 

computation, communication and storage resource 

sharing. 

Figure 2 shows an example of two classes of 

applications; “App1” is controlled using a round robin 

policy while “App2” is controlled by a priority based 

policy. The CPU is shared between the two 

applications by a time sharing policy implemented by 

the main VN. The main VN (VN4CPU) allocates a 

time slot of the CPU to an application; the secondary 

VN (VN4App1 or VN4App2) controlling this 

application allocates the available execution time to 

one or more tasks depending on its access policy. 

Figure 2: Virtual nodes hierarchy example 

3. Modeling Methodology and Tool

We integrated the shared resources modeling, 

presented in the previous section, in the 

DIPLODOCUS UML modeling methodology [6, 7]. 

We furthermore defined a translation of 

DIPLODOCUS models into a simulator based on 

SystemC in order to execute the system model and 

estimate its performance. The following subsections 

give a brief overview of the DIPLODOCUS 

methodology and the simulation and analysis of its 

models. 

3.1. DIPLODOCUS Methodology 

DIPLODOCUS is a UML profile [8] targeting 

design space exploration at a high level of abstraction. 

It adopts the Y modeling paradigm [3, 4] which 

consists of modeling separately the application and the 

architecture, and then integrating both in a mapping 

model. Application and architecture models are totally 

independent from each other, and so a designer can 

easily evaluate candidate architectures using the same 

application model. It also permits to explore the 

mapping of two different applications on a given 

architecture during first stages of projects. 

DIPLODOCUS is supported by the TTool [1] toolkit 

that can automatically generate LOTOS or UPPAAL 

code for formal verification. 

We extended the DIPLODOCUS modeling with 

the notion of virtual nodes to enable the analysis of 

performance issues related to shared resources, such as 

contention [7]. 

3.2. Mapping Model Simulation and 

Analysis 

We developed a SystemC-based simulation 

environment where simulation code can be directly 

generated from UML DIPLODOCUS models.  

Hardware architecture resources are instantiated 

from a library of pre-defined abstract models for 

architecture nodes that can be customized by setting 

the appropriate performance parameters (e.g. pipeline 

on a CPU, etc.), thus reducing the modeling effort. The 

designer can also use pre-defined access policies (with 

or without preemption): round-robin, fixed priority 

based, time slice scheduling, first-come-first-served. In 

addition, new access policies can be easily defined. 

Simulations produce VCD waveforms containing 

temporal characteristics of the analyzed system, i.e. of 

the application, the architecture and of the VNs. In 

order to get a global view of the system, our simulator 

provides, for each resource, the utilization factor and 

the average contention delay on each resource thanks 

to add-on observers. Buffer overflow situations on 

storage nodes are also indicated. At last, application 

temporal behaviors are summarized in terms of end-to-

end latency of the application, tasks’ execution time, 

and the ratio of a task being ready or waiting to be 

scheduled by the VN of a computation node. 

The designer can make design decisions based on 

simulation results: for example, he/she can evaluate the 

access policies of shared resources, tasks’ memory 

mapping and the optimal capacity of resources (CPU 

frequency, memory size and hierarchy, bus speed …). 

4. Related Work

The back annotation techniques like MESH [13] 

and the one proposed in Schnerr & al. [12] focus on the 

modeling of task scheduling and extract contention 

attributes related to communication and memories 
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from low level simulations. In our approach, we extract 

this information from the high-level simulation of our 

models. They utilize analytical and simulation 

techniques to estimate shared resources contention. 

Final code is used to estimate the performance. On the 

contrary, our methodology is applied early in the 

design flow, and so before the code is released.  

On the other hand, early architecture exploration 

methodologies like Sesame [5] offer a clear distinction 

between application and architecture concerns, and 

facilitate flexible system-level performance evaluation. 

So far Sesame only provides schedulers to allocate 

computation resources to the application processes: it 

does not model communication architecture arbitration 

nor memory mapping. 

Kempf et al. [2] present a simulation framework 

for MP-SoC platforms. They use a virtual processing 

unit (VPU) to schedule the execution of tasks mapped 

to a processor. The important difference to our 

approach is that we generalize the notion of a virtual 

node to model accesses policies to any type of 

architecture resources, and that we are able to extract 

performance result of any shared resource. 

Hierarchical scheduling methodologies for 

processors  [9] or bus [10] try to optimize resources 

sharing between multiple groups with different 

scheduling requirements. Our approach applies the 

hierarchical control to all shared resources, and more 

importantly at a high level of abstraction. 

5. Conclusion and Future Work

This paper describes an important part of our 

methodology for the rapid investigation of the 

performance impact of contention on shared resources. 

We have extended DIPLODOCUS with a modular and 

extendible generic virtual node to model shared 

resources. Our virtual node model is hierarchical and 

can model the sharing of computation, communication 

and storage resources. 

In addition to the aspects presented in this paper, we 

have also extended DIPLODOCUS with test bench 

modeling and simulation observers to support model 

analysis. To evaluate our methodology, industrial case 

studies are conducted over 4G telecommunication 

systems [7].  
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