
HAL Id: hal-00423997
https://hal.science/hal-00423997

Submitted on 16 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Shared resources high-level modeling in embedded
systems using virtual nodes

Chafic Jaber, Andreas Kanstein, Ludovic Apvrille, Amer Baghdadi, Renaud
Pacalet

To cite this version:
Chafic Jaber, Andreas Kanstein, Ludovic Apvrille, Amer Baghdadi, Renaud Pacalet. Shared resources
high-level modeling in embedded systems using virtual nodes. Joint IEEE North-East Workshop on
Circuits and Systems and TAISA Conference 2009, Jun 2009, Toulouse, France. �10.1109/NEW-
CAS.2009.5290506�. �hal-00423997�

https://hal.science/hal-00423997
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Shared Resources High-Level Modeling in Embedded Systems Using
Virtual Nodes

Chafic Jaber
1
, Andreas Kanstein

1
, Ludovic Apvrille

2
,

Amer Baghdadi
3
, Renaud Pacalet

 2

1
Freescale Semiconductor, 134 Av. du Général Eisenhower, BP 72329, 31023 Toulouse Cedex 1, France

2
 Institut Telecom; Telecom ParisTech; B.P. 193, 2229 rte des Crêtes,

06904 Sophia-Antipolis Cedex, France

3
Institut Telecom; Telecom Bretagne; Technopôle Brest Iroise, CS83818, 29238 Brest, France

Abstract

The increasing complexity of system-on-chip design

and shorter time to market constraints has stimulated

systems designers to investigate performance

characteristics of the final system implementation in

the early design stages, by means of modeling the

design at a high level of abstraction. This paper

presents the virtual node concept for modeling the

shared resources of a system-on-chip, therefore

specifically dedicated to the study of the impact of

shared resources contention on the overall system’s

performance, which is often defined by concurrent use

cases. The overall approach is based on using a

specific UML modeling profile and a SystemC-based

simulator to execute models and analyze their

performance.

1. Introduction

System-on-chip design, that is, integrating

multiple functionalities on a single die, has reached a

very high level of complexity due to the available

integration density. Taking an example from the

domain of mobile devices, one can integrate multiple

telephony modems and an operating system (OS) like

Linux or Symbian, and have them share a single

external memory [14]. In a true multitasking OS, the

device must be able to handle simultaneous voice and

data calls, while also handling complex imaging tasks

like image or video capture, in part sharing processing

engines, and all serviced by a single external memory.

Both HW and SW architectures must be designed

carefully with worst-case concurrent use cases in mind,

to avoid any negative user experience.
Modeling the use case behavior and the candidate

system architectures at an early stage is therefore

essential for a successful system design. Fast

architecture evaluation requires system modeling at a

very high abstraction level. Furthermore, due to typical

development cycles, the HW design needs to be closed

earlier, sometimes much earlier than the SW design,

providing another reason for high-level modeling.

As illustrated in the example, shared resources, like the

integrated applications processor and the external

memory, have a great influence on the performance of

the system-on-chip. Our approach extends the

DIPLODOCUS modeling methodology [8] with

modeling and simulation techniques for shared

resources [7]. This paper defines the concept of the

virtual node to model shared resources and estimate

their impact on system performance. A virtual node

ensures – given a parameterized policy – the

scheduling of accesses to shared resources (e.g. CPUs,

busses, memories). The virtual node concept helps to

build a well-structured simulation model, and also

facilitates the creation of simple and reusable

architecture component models.
The rest of the paper is organized as follows:

Section 2 presents the virtual node concept and Section

3 presents our system modeling methodology and

environment where we integrated the virtual node

concept. Section 4 discusses related work on system

modeling with a special focus on shared resources

modeling, and finally Section 5 concludes this paper

and gives future guidelines.

2. Modeling Accesses to Shared Resources

2.1. A Demonstrative Example

Let us consider a simple application example

composed of three tasks: T1, T2 and T3; where T1 and

T3 are two dependent tasks and exchange data between

each other, while T2 is independent. This application

will be executed by a hardware architecture composed

1

of two CPUs (CPU1 and CPU2), one bus (BUS1) and

one memory (MEM1). The two CPUs share the bus

BUS1 to access the shared memory MEM1. We

consider, as well, that T1 and T2 will execute on

CPU1, while T3 will execute on CPU2. In this

scenario, when T1 and T3 exchange data, the data will

be transmitted using the BUS1 and the MEM1. This

communication involves two shared architecture

nodes, the bus and the memory, whose access is

determined with access policies: the arbitration policy.

The communication latency is the sum of time needed

to access shared resources and the contention on them

when CPU1 and CPU2 want to access the bus at the

same time for example).

Another level of contention is on the CPU

scheduling level; a scheduling policy should indeed

select a task to execute among the non-blocked ones.

For instance, if the scheduling policy of CPU1 is

priority based, and T1 is of higher priority than T2,

then T1 will be chosen to execute. In this case, T2

execution is delayed until T1 finishes its execution,

including the communication cost with T3 that may

vary depending on the contention on the bus and the

memory.

Finally, we can identify several types of shared

resources. In fact each architecture node is shared

between multiple elements: the CPU is shared between

different tasks, the bus is shared between multiple

CPUs and the memory is also shared between multiple

CPUs using the bus.

This simple example shows clearly how the

overall performance of the system depends

significantly on shared resources access control and

contention. It justifies the three types of resource

requests that we have identified:

1- Computation requests generated by

application tasks to computation nodes (e.g.

CPUs).

2- Communication requests generated by

computation nodes to the communication

nodes (e.g. Bus) in order to transfer data

generated/requested by tasks.

3- Storage requests generated by computation

and communication nodes to storage nodes

(e.g. memories)

As each resource can be shared between different

requesters, resources should have an access policy that

select a request among pending ones. We generalized

this by introducing the virtual node concept, explained

in the following section.

2.2. The Virtual Node

We define the “Virtual Node” (VN) as a generic

modeling component that controls the access to a

resource by implementing an access policy. It allocates

the controlled resource to a requester, for example the

VN of a CPU allocates the CPU to a task that is ready

to execute, or the VN of a bus allocates the bus

bandwidth to a CPU that is trying to reach the memory

or other architecture nodes that are connected to the

bus.

A request is generated by a requester to access to a

resource. It specifies the resource amount that the

requester needs. For example, a storage request shall

specify the size of data to transfer. In addition, a

request has a priority in the case when the VN’s access

policy is priority based.

Figure 1 shows the shared resources view of the

example introduced in section 2.1. Each architecture

node is controlled by a virtual node; for example

“VN4CPU1” is the virtual node that controls the

access to the CPU1. Requests are stored in queues (one

queue for each virtual node). We have three types of

queues: computation, communication and storage

queues. The virtual node, using its access policy,

chooses among the requests in the queue which one

will acquire the access to the resource.

Figure 1: Shared resources modeling with virtual nodes

2.2.1. Virtual nodes hierarchy

Embedded systems can concurrently execute

different real-time heterogeneous applications; for

instance in a modern mobile device multimedia

application such as video or audio could execute

concurrently with control applications

(telecommunication protocols). These applications may

have specific scheduling requirements (soft real time,

intensive data transfer or execution loop, etc);

furthermore applying one access policy to all

applications is not the optimal solution [11].

Hierarchical stacking of virtual nodes is our solution to

optimize resources sharing when heterogeneous groups

of requesters request the resource. A main virtual node

controls a hardware resource and a secondary virtual

2

node controls each group of requesters. This approach

allows us to optimize the access policies to satisfy

requirements of all groups. We use, as well, the

hierarchical composition of virtual nodes for

computation, communication and storage resource

sharing.

Figure 2 shows an example of two classes of

applications; “App1” is controlled using a round robin

policy while “App2” is controlled by a priority based

policy. The CPU is shared between the two

applications by a time sharing policy implemented by

the main VN. The main VN (VN4CPU) allocates a

time slot of the CPU to an application; the secondary

VN (VN4App1 or VN4App2) controlling this

application allocates the available execution time to

one or more tasks depending on its access policy.

Figure 2: Virtual nodes hierarchy example

3. Modeling Methodology and Tool

We integrated the shared resources modeling,

presented in the previous section, in the

DIPLODOCUS UML modeling methodology [6, 7].

We furthermore defined a translation of

DIPLODOCUS models into a simulator based on

SystemC in order to execute the system model and

estimate its performance. The following subsections

give a brief overview of the DIPLODOCUS

methodology and the simulation and analysis of its

models.

3.1. DIPLODOCUS Methodology

DIPLODOCUS is a UML profile [8] targeting

design space exploration at a high level of abstraction.

It adopts the Y modeling paradigm [3, 4] which

consists of modeling separately the application and the

architecture, and then integrating both in a mapping

model. Application and architecture models are totally

independent from each other, and so a designer can

easily evaluate candidate architectures using the same

application model. It also permits to explore the

mapping of two different applications on a given

architecture during first stages of projects.

DIPLODOCUS is supported by the TTool [1] toolkit

that can automatically generate LOTOS or UPPAAL

code for formal verification.

We extended the DIPLODOCUS modeling with

the notion of virtual nodes to enable the analysis of

performance issues related to shared resources, such as

contention [7].

3.2. Mapping Model Simulation and

Analysis

We developed a SystemC-based simulation

environment where simulation code can be directly

generated from UML DIPLODOCUS models.

Hardware architecture resources are instantiated

from a library of pre-defined abstract models for

architecture nodes that can be customized by setting

the appropriate performance parameters (e.g. pipeline

on a CPU, etc.), thus reducing the modeling effort. The

designer can also use pre-defined access policies (with

or without preemption): round-robin, fixed priority

based, time slice scheduling, first-come-first-served. In

addition, new access policies can be easily defined.

Simulations produce VCD waveforms containing

temporal characteristics of the analyzed system, i.e. of

the application, the architecture and of the VNs. In

order to get a global view of the system, our simulator

provides, for each resource, the utilization factor and

the average contention delay on each resource thanks

to add-on observers. Buffer overflow situations on

storage nodes are also indicated. At last, application

temporal behaviors are summarized in terms of end-to-

end latency of the application, tasks’ execution time,

and the ratio of a task being ready or waiting to be

scheduled by the VN of a computation node.

The designer can make design decisions based on

simulation results: for example, he/she can evaluate the

access policies of shared resources, tasks’ memory

mapping and the optimal capacity of resources (CPU

frequency, memory size and hierarchy, bus speed …).

4. Related Work

The back annotation techniques like MESH [13]

and the one proposed in Schnerr & al. [12] focus on the

modeling of task scheduling and extract contention

attributes related to communication and memories

3

from low level simulations. In our approach, we extract

this information from the high-level simulation of our

models. They utilize analytical and simulation

techniques to estimate shared resources contention.

Final code is used to estimate the performance. On the

contrary, our methodology is applied early in the

design flow, and so before the code is released.

On the other hand, early architecture exploration

methodologies like Sesame [5] offer a clear distinction

between application and architecture concerns, and

facilitate flexible system-level performance evaluation.

So far Sesame only provides schedulers to allocate

computation resources to the application processes: it

does not model communication architecture arbitration

nor memory mapping.

Kempf et al. [2] present a simulation framework

for MP-SoC platforms. They use a virtual processing

unit (VPU) to schedule the execution of tasks mapped

to a processor. The important difference to our

approach is that we generalize the notion of a virtual

node to model accesses policies to any type of

architecture resources, and that we are able to extract

performance result of any shared resource.

Hierarchical scheduling methodologies for

processors [9] or bus [10] try to optimize resources

sharing between multiple groups with different

scheduling requirements. Our approach applies the

hierarchical control to all shared resources, and more

importantly at a high level of abstraction.

5. Conclusion and Future Work

This paper describes an important part of our

methodology for the rapid investigation of the

performance impact of contention on shared resources.

We have extended DIPLODOCUS with a modular and

extendible generic virtual node to model shared

resources. Our virtual node model is hierarchical and

can model the sharing of computation, communication

and storage resources.

In addition to the aspects presented in this paper, we

have also extended DIPLODOCUS with test bench

modeling and simulation observers to support model

analysis. To evaluate our methodology, industrial case

studies are conducted over 4G telecommunication

systems [7].

6. References

[1] LabSoC. TTool, The TURTLE Toolkit. See

http://labsoc.comelec.enst.fr/turtle/ttool.html.

[2] T. Kempf et al. “A modular simulation framework for

spatial and temporal task mapping onto multi-processor

SoC plateforms”. In Design, Automation and Test in

Europe (DATE2005), April 16-20, 2005.

[3] K. Keutzer et al., “System-Level Design:

Orthogonalization of Concerns and Platform-Based

Design”. In Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions Dec 2000

[4] B. Kienhuis, “An Approach for Quantitative Analysis of

Application-Specific Dataflow Architectures”. In

Application-Specific Systems, Architectures and

Processors, july 1997.

[5] Andy D.Pimentel, Cagkan Erbas, and Simon Polstra. “A

systematic approach to exploring embedded system

architectures at multiple abstraction levels”. In IEEE

Trans. Computers, vol.55, No.2, Feb. 2006.

[6] W. Muhammad et al. “Abstract application modeling for

system design exploration”. In Euromicro Conference

on Digital System Design (DSD’06), Aug. 2006.

[7] Chafic Jaber et al. “A High-Level System Modeling for

Rapid HW/SW Architecture Exploration”. In the

International Symposium on Rapid System Prototyping

(RSP09), Paris, France, June 2009.

[8] L. Apvrille et al. “A UML-based environment for

system design space exploration”. In 13th IEEE

International Conference on Electronics, Circuits and

Systems (ICECS’06), Nice, France, Dec. 2006.

[9] Giuseppe Lipari and Enrico Bini, “A methodology for

designing hierarchical scheduling systems”. In Journal

of Embedded Computing, 2005

[10] Trevor Meyerowitz et al. “A Tool for Describing and

Evaluating Hierarchical RealTime Bus Scheduling

Policies”. In Proc. of 40th Design Automation Conf.

(DAC’2003), pp.312–317 (2003).

[11] Insik Shin et al. “Hierarchical Scheduling Framework

for Virtual Clustering of Multiprocessors”. In

Proceedings of the IEEE Real-Time Systems

Symposium, pages 57–67. IEEE Computer Society,

2004.

[12] J. Schnerr et al., “High performance timing simulation

of embedded software”. In Design Automation

Conference DAC, June 2008

[13] Alex Bobrek et al. “Modeling shared resource

contention using a hybrid simulation/analytical

approach”. In Proc. Design, Automation and Test in

Europe (DATE2004), pp 16-20, Feb 2004.

[14] Freescale Semiconductor. Integrating Operating

Systems with Freescale’s Cellular Software Platform.

http://www.freescale.com/files/wireless_comm/doc/whit

e_paper/INTGFSLCELPLATWP.pdf

4

