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Optimal multiple stopping time problem

Magdalena Kobylanski∗, Marie-Claire Quenez†,

Elisabeth Rouy-Mironescu‡

June 9, 2010

Abstract

We study the optimal multiple stopping time problem defined for each

stopping time S by v(S) = ess sup
τ1,··· ,τd≥S

E[ψ(τ1, · · · , τd) | FS] .

The key point is the construction of a new reward φ such that the value

function v(S) satisfies also v(S) = ess supθ≥S E[φ(θ) | FS] . This new re-

ward φ is not a right continuous adapted process as in the classical case

but a family of random variables. For such a reward, we prove a new ex-

istence result of optimal stopping times under weaker assumptions than

in the classical case. This result is used to prove the existence of optimal

multiple stopping times for v(S) by a constructive method. Moreover, un-

der strong regularity assumptions on ψ, we show that the new reward φ

can be aggregated by a progressive process. This leads to different appli-

cations in particular in finance to American options with multiple exercise

times.

Key words: Optimal stopping, optimal multiple stopping, aggregation, swing

options, American options.
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Introduction

Our present work on the optimal multiple stopping time problem consists, fol-

lowing the optimal one stopping time problem, in proving the existence of the
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maximal reward, finding necessary or sufficient conditions for the existence of

optimal stopping times, and giving a method to compute these optimal stopping

times.

The results are well known in the case of the optimal one stopping time

problem. Consider a reward given by a right continuous left limited (RCLL)

positive adapted process (φt) 0≤t≤T on F = (Ω,F , (Ft) 0≤t≤T , P ), F satisfying

the usual conditions, and look for the maximal reward

v(0) = sup{E[φτ ], τ ∈ T0 } ,

where T ∈ ]0,∞[ is the fixed time horizon and where T0 is the set of stopping

times θ smaller than T . From now on, the process (φt) 0≤t≤T will be denoted by

(φt). In order to compute v(0) we introduce for each S ∈ T0 the value function

v(S) = ess sup{E[φτ | FS], τ ∈ TS }, where TS is the set of stopping times in T0
greater than S. The value function is given by a family of r.v. { v(S), S ∈ T0 }.

By using the right continuity of the reward (φt), it can be shown that there exists

an adapted process (vt) which aggregates the family of r.v. { v(S), S ∈ T0 } that

is such that vS = v(S) a.s. for each S ∈ T0. This process is the Snell envelope of

(φt), that is the smallest supermartingale process that dominates φ. Moreover,

when the reward (φt) is continuous, the stopping time defined trajectorially by

θ(S) = inf{ t ≥ S, vt = φt }

is optimal. For details, one is referred to El Karoui (1981), Karatzas and Shreve

(1998) or Peskir and Shiryaev (2006).

In the present work, we show that computing the value function for the

optimal multiple stopping time problem

v(S) = ess sup{E[ψ(τ1, · · · , τd) | FS ], τ1, · · · , τd ∈ TS } ,

reduces to computing the value function for an optimal one stopping time prob-

lem

u(S) = ess sup{E[φ(θ) | FS ], θ ∈ TS } ,

where the new reward φ is no longer a RCLL process but a family {φ(θ), θ ∈ T0 }

of positive random variables which satisfies some compatibility properties. For

this new optimal one stopping time problem with a reward {φ(θ), θ ∈ T0 }, we

show that the minimal optimal stopping time for the value function u(S) is no

longer given by a hitting time of processes but by the essential infimum

θ∗(S) := ess inf{ θ ∈ TS , u(θ) = φ(θ) a.s. }.

This method also presents the advantage that it does no longer require some

aggregation results that need stronger hypotheses and whose proofs are rather

technical.
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By using the reduction property v(S) = u(S) a.s., we give a method to

construct by induction optimal stopping times (τ∗1 , · · · , τ
∗
d ) for v(S), which are

also defined as essential infima, in terms of nested optimal one stopping time

problems.

Some examples of optimal multiple stopping time problems have been stud-

ied in different mathematical fields. In finance, this type of problem appears

for instance in the study of swing options (e.g. Carmona and Touzi (2008),

Carmona and Dayanik (2008)) in the case of ordered stopping times. In the non

ordered case, some optimal multiple stopping time problems appear as a useful

mathematical tool to establish some large deviations estimations (see Kobylan-

ski and Rouy (1998)). Further applications can be imagined for example in

finance and insurance (see Kobylanski et al. (2010)). In a work in prepara-

tion (see Kobylanski and Quenez (2010)), the markovian case will be studied in

details and some applications will be presented.

The paper is organized as follows. In section 1, we revisit the optimal one

stopping time problem for admissible families. We prove the existence of optimal

stopping times when the family φ is right and left continuous in expectation

along stopping times. We also characterize the minimal optimal stopping times.

In section 2, we solve the optimal double stopping time problem. Under quite

weak assumption, we show the existence of a pair of optimal stopping times

and we give a construction of those optimal stopping times. In section 3, we

generalize the results obtained in section 2 to the optimal d-stopping times

problem. Also, we study the simpler case of a symmetric reward. In this

case, the problem clearly reduces to ordered stopping times and our general

characterization of the optimal multiple stopping problem in terms of the nested

optimal one stopping time problems straightforwardly reduces to a sequence of

optimal one stopping time problems defined by backward induction. We apply

these results to swing options and in this particular case, our results correspond

to those of Carmona and Dayanik (2008). In the last section, we prove some

aggregation results, and we characterize the optimal stopping times in terms of

hitting times of processes.

Let F = (Ω,F , (Ft) 0≤t≤T , P ) be a probability space where T ∈]0, ∞[ is

the fixed time horizon and where (Ft) 0≤t≤T is a filtration satisfying the usual

conditions of right continuity and augmentation by the null sets of F = FT . We

suppose that F0 contains only sets of probability 0 or 1. We denote by T0 the

collection of stopping times of F with values in [0, T ]. More generally, for any

stopping time S, we denote by TS the class of stopping times θ ∈ T0 with S ≤ θ

a.s. .

We use the following notation: for real valued random variables X and Xn,

n ∈ N, the notation “Xn ↑ X” stands for “the sequence (Xn) is nondecreasing
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and converges to X a.s.”.

1 The optimal one stopping time problem revis-

ited

We first recall some classical results on the optimal one stopping time problem.

1.1 Classical results

The following classical results, namely the supermartingale property of the value

function, the optimality criterium and the right continuity in expectation of the

value function are well known (see El Karoui (1981) or Karatzas and Shreve

(1998) or Peskir and Shiryaev (2006)). They are very important tools in optimal

stopping theory and they will be often used in this paper in the (non usual) case

of a reward given by an admissible family of random variables defined as follows:

Definition 1.1. A family of random variables {φ(θ), θ ∈ T0} is said to be

admissible if it satisfies the following conditions

1. for all θ ∈ T0 φ(θ) is a Fθ-measurable positive random variable (r.v.),

2. for all θ, θ′ ∈ T0, φ(θ) = φ(θ′) a.s. on { θ = θ′ }.

Remark 1.1. Let (φt) be a progressive process. The family defined by φ(θ) = φθ

is admissible.

Note also that the definition of admissible families corresponds to the notion

of T0-systems introduced by El Karoui (1981).

For the convenience of the reader, we recall the definition of the essential

supremum and its main properties in the Appendix A1.

Suppose the reward is given by an admissible family {φ(θ), θ ∈ T0}.

The value function at time S, where S ∈ T0, is given by

v(S) = ess sup θ∈TS
E[φ(θ) | FS ] . (1.1)

Proposition 1.1. (Admissibility of the value function) The value function that

is the family of r.v. { v(S), S ∈ T0 } defined by (1.1) is an admissible family.

Proof: Property 1 of admissibility for { v(S), S ∈ T0 } follows from the exis-

tence of the essential supremum (see Appendix Theorem A.1).

Take S, S′ ∈ T0 and let A = {S = S′ }. For each θ ∈ TS put θA = θ1A +

T1Ac . As A ∈ FS ∩ FS′ , one has a.s. on A, E[φ(θ) | FS ] = E[φ(θA) | FS ] =

E[φ(θA) | FS′ ] ≤ v(S′), hence taking the essential supremum over θ ∈ TS one

has v(S) ≤ v(S′) a.s. and by symmetry of S and S′, we have shown property 2

of admissibility. �
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Proposition 1.2. There exists a sequence of stopping times (θn)n∈N with θn

in TS such that

E[φ(θn) | FS ] ↑ v(S) a.s. .

Proof: For each S ∈ T0, one can show that the set {E[φ(θ) | FS ], θ ∈ TS }

is closed under pairwise maximization. Indeed, let θ, θ′ ∈ T0, and let A =

{E[φ(θ′) | FS] ≤ E[φ(θ) | FS ] }. One has A ∈ FS. Put τ = θ1A + θ′1Ac , τ is a

stopping time. It is easy to check that E[φ(τ) | FS ] = E[φ(θ) | FS ]∨ E[φ(θ′) | FS ].

The result follows by a classical result (see Appendix Theorem A.1). �

Recall that for each fixed S ∈ T0, an admissible family { h(θ), θ ∈ TS } is

said to be a supermartingale system (resp. a martingale system) if for any θ, θ
′

∈ T0 such that θ ≥ θ
′

a.s. ,

E[h(θ) | Fθ
′ ] ≤ h(θ

′

) a.s. , (resp. E[h(θ) | Fθ
′ ] = h(θ

′

) a.s. .)

Proposition 1.3.

• The value function { v(S), S ∈ T0 } is a supermartingale system.

• Futhermore, it is characterized as the Snell envelope system associated

with {φ(S), S ∈ T0 }, that is the smallest supermartingale system which

is greater (a.s.) than {φ(S), S ∈ T0 }.

Proof: Let us prove the first part. Fix S ≥ S
′

a.s. . By Proposition 1.2, there

exists an optimizing sequence (θn) for v(S). By the monotone convergence

theorem, E[v(S) | FS
′ ] = lim

n→∞
E[φ(θn) | FS

′ ] a.s. . Now, for each n, since θn ≥

S′ a.s. , we have E[φ(θn) | FS′ ] ≤ v(S′) a.s. . Hence, E[v(S) | FS
′ ] ≤ v(S′) a.s.

, which gives the supermartingale property of the value function.

Let us prove the second part. Let {v′(S), S ∈ T0} be a supermartingale

system such that for each θ ∈ T0, v
′(θ) ≥ φ(θ) a.s.. Fix S ∈ T0. By the

properties of v′, for all θ ∈ TS , v
′(S) ≥ E[v′(θ) | FS ] ≥ E[φ(θ) | FS ] a.s. .Taking

the supremum over θ ∈ TS, we have v′(S) ≥ v(S) a.s. . �

Remark 1.2. One can easily show that the supermartingale property of the

value function (first point of Proposition 1.3) is equivalent to the dynamic pro-

gramming principle that is, for each S, S′ ∈ T0 with S ≤ S′ a.s.

v(S) = ess supθ∈TS,S′
E[v(θ) | FS ] a.s. , (1.2)

where TS,S′ is the set of stopping times θ in T0 such that S ≤ θ ≤ S′ a.s. .

Recall now the following Bellman optimality criterium (see for instance El

Karoui (1981)):
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Proposition 1.4. (Optimality criterium) Fix S ∈ T0 and let θ∗ ∈ TS such that

E[φ(θ∗)] <∞. The two following assertions are equivalent

1. θ∗ is S-optimal for v(S), that is

v(S) = E[φ(θ∗) | FS ] a.s. . (1.3)

2. The following equalities hold

v(θ∗) = φ(θ∗) a.s. , and E[v(S)] = E[v(θ∗)].

3. The following equality holds

E[v(S)] = E[φ(θ∗)].

Remark 1.3. Note that since the value function is a supermartingale system,

equality E[v(S)] = E[v(θ∗)] is equivalent to the fact that the family { v(θ), θ ∈

TS,θ∗ } is a martingale system.

Proof: Let us show that 1) implies 2). Suppose 1) is satisfied. Since the

value function v is a supermartingale system greater that φ, we have clearly

v(S) ≥ E[v(θ∗) | FS] ≥ E[φ(θ∗) | FS] a.s. .

Since equality (1.3) holds, this implies that the previous inequalities are actually

equalities.

In particular, E[v(θ∗) | FS ] = E[φ(θ∗) | FS ] a.s. but as inequality v(θ
∗) ≥ φ(θ∗)

holds a.s. , and as E[φ(θ∗)] <∞, we have v(θ∗) = φ(θ∗) a.s. .

Moreover, v(S) = E[v(θ∗) | FS ] a.s. which gives E[v(S)] = E[v(θ∗)]. Hence, 2)

is satisfied.

Clearly, 2) implies 3). It remains to show that 3) implies 1).

Suppose that 3) is satisfied. Since v(S) ≥ E[φ(θ∗) | FS ] a.s. , this gives

v(S) = E[φ(θ∗) | FS ] a.s. . Hence, 1) is safisfied. �

Remark 1.4. It is clear that

E[v(S)] = sup
θ∈TS

E[φ(θ)]. (1.4)

By 3) of Proposition 1.4, a stopping time θ∗ ∈ TS such that E[φ(θ∗)] < ∞ is

S-optimal for v(S) if and only if it is optimal for the optimal stopping time

problem (1.4), that is

sup
θ∈TS

E[φ(θ)] = E[φ(θ∗)].

We now give a regularity result on v (see lemma 2.13 in El Karoui (1981)).

Let us first introduce the following definition.
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Definition 1.2. An admissible integrable family {φ(θ), θ ∈ T0 } is said to be

right (resp. left) continuous along stopping times in expectation (RCE (resp.

LCE)) if for any θ ∈ T0 and for any sequence (θn)n∈N of stopping times such

that θn ↓ θ a.s. (resp. θn ↑ θ a.s.) one has E[φ(θ)] = lim
n→∞

E[φ(θn)].

Remark 1.5. If (φt) is a continuous adapted process such that

E[ sup
t∈[0,T ]

φt] <∞, then the family defined by φ(θ) = φθ is clearly RCE and

LCE. Also, if (φt) is a RCLL adapted process such that its jumps are totally

inaccessible (which is the case for Poisson processes), then the family defined by

φ(θ) = φθ is clearly RCE and even LCE.

Proposition 1.5. Let {φ(θ), θ ∈ T0 } be an admissible family which is RCE.

Then, the family { v(S), S ∈ T0 } is RCE.

Proof: Since {v(S), S ∈ T0} is a supermartingale system, the function S 7→

E[v(S)] is a nonincreasing function of stopping times. Suppose it is not RCE

at S ∈ T0. If E[v(S)] < ∞, there exists a constant α > 0 and a sequence of

stopping times (Sn)n∈N such that Sn ↓ S a.s. and such that

lim
n→∞

↑ E[v(Sn)] + α ≤ E[v(S)]. (1.5)

Now, recall that E[v(S)] = sup
θ∈TS

E[φ(θ)] (see (1.4)). Hence, there exists θ′ ∈ TS

such that

sup
n∈N

sup
θ∈TSn

E[φ(θ)] +
α

2
≤ E[φ(θ′)].

Hence for all n ∈ N, E[φ(θ′∨Sn)]+
α

2
≤ E[φ(θ′)]. As θ′∨Sn ↓ θ′ a.s. we obtain,

by taking the limit when n→ ∞ and by using the RCE property of φ that

E[φ(θ′)] +
α

2
≤ E[φ(θ′)],

which gives the expected contradiction in the case E[v(S)] <∞.

Otherwise, we have instead of (1.5), lim
n→∞

↑ E[v(Sn)] ≤ C for some constant

C > 0 and similar arguments as in the finite case lead to a contradiction as

well. �

1.2 New results

We will now give a new result which generalizes the classical existence result of

an optimal stopping time stated in the case of a reward process to the case of a

reward family of random variables.

Theorem 1.1. (Existence of optimal stopping times)

Let {φ(θ), θ ∈ T0 } be an admissible family that satisfies the integrability condi-

tion E[ess sup θ∈T0
φ(θ)] <∞ and which is RCE and LCE along stopping times.
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Then, for each S ∈ T0, there exists an optimal stopping time for v(S). Moreover

the random variable defined by

θ∗(S) := ess inf{ θ ∈ TS , v(θ) = φ(θ) a.s. } (1.6)

is the minimal optimal stopping time for v(S).

Let us emphasize that in this theorem, the optimal stopping time θ∗(S) is

not defined trajectorially but as an essential infimum of random variables. In

the classical case that is, when the reward is given by an adapted RCLL process,

recall that the minimal optimal stopping time is given by the random variable

θ(S) defined trajectorially by

θ(S) = inf{ t ≥ S, vt = φt } .

The definition of θ∗(S) as an essential infimum allows to relax the assumption

on the regularity of the reward. More precisely, whereas in the previous works

(quoted in the introduction) the reward was given by a RCLL and LCE process,

in our setting, the reward is given by a RCE and LCE family of r.v. . The

idea of the proof is classical: we use an approximation method introduced by

Maingueneau (1978) but our setting allows to simplify and shorten the proof.

Proof: the proof will be divided in two parts.

Part I: In this part, we will prove the existence of an optimal stopping time.

Fix S ∈ T0. We begin by constructing a family of stopping times (see

Maingueneau (1978) or El Karoui (1981)). For λ ∈ ]0, 1[, define the FS-

measurable random variable θλ(S) by

θλ(S) := ess inf{ θ ∈ TS , λv(θ) ≤ φ(θ) a.s. }. (1.7)

The following lemma holds:

Lemma 1.1. The stopping time θλ(S) is a (1− λ)-optimal stopping time for

E[v(S)] = sup
θ∈TS

E[φ(θ)], (1.8)

that is

λE[v(S)] ≤ E[φ(θλ(S))]. (1.9)

Suppose now that we have proved Lemma 1.1.

Since λ 7→ θλ(S) is non decreasing, for S ∈ T0, the following stopping time

θ̂(S) := lim
λ↑1

↑ θλ(S) , (1.10)

is well defined. Let us show that θ̂(S) is optimal for v(S).

By letting λ ↑ 1 in the above inequality (1.9), and since φ is LCE, we easily
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derive that E[v(S)] = E[φ(θ̂(S))]. Consequently, by the optimality criterium 3)

of Proposition 1.4 , θ̂(S) is S-optimal for v(S). This ends part I.

Part II: Let us now prove that θ∗(S) = θ̂(S) a.s. , where θ∗(S) is defined by

(1.6), and that it is the minimal optimal stopping time for v(S).

For each S ∈ T0, the set TS = { θ ∈ TS , v(θ) = φ(θ) a.s. } is not empty

(since T belongs to TS) and is closed under pairwise minimization. Hence there

exists a sequence (θn)n∈N of stopping times in TS such that θn ↓ θ∗(S) a.s. .

Consequently, θ∗(S) is a stopping time.

Let θ be an optimal stopping time for v(S). By the optimality criterium

(Proposition 1.4) and since by assumption E[φ(θ)] < ∞, we have v(θ) = φ(θ)

a.s. and hence

θ∗(S) ≤ ess inf{ θ ∈ T0, θ optimal for v(S) } a.s. .

Now for each λ < 1 the stopping time θλ(S) defined by (1.7) satisfies clearly

θλ(S) ≤ θ∗(S) a.s. . Passing to the limit when λ ↑ 1 we obtain θ̂(S) ≤

θ∗(S). As θ̂(S) is optimal for v(S), this implies that θ̂(S) ≥ ess inf{ θ ∈

T0, θ optimal for v(S) } a.s. . Hence

θ∗(S) = θ̂(S) = ess inf{ θ ∈ T0, θ optimal for v(S) } a.s. ,

which gives the desired result. The proof of Theorem 1.1 is ended. �

It remains now to prove Lemma 1.1.

Proof of Lemma 1.1: We have to prove inequality (1.9). This will be done

by the following steps.

Step 1: Fix λ ∈]0, 1[. It is easy to check that the set T
λ
S = { θ ∈ TS , λv(θ) ≤

φ(θ) a.s. } is non empty (since T ∈ T
λ
S) and closed by pairwise minimization.

By Theorem A.1 in the Appendix, there exists a sequence (θn) in TS such

that θn ↓ θλ(S) a.s. . Therefore θλ(S) is a stopping time and θλ(S) ≥ S a.s. .

Moreover we have λv(θn) ≤ φ(θn) a.s. for all n. Taking expectation and using

the RCE properties of v and φ we obtain

λE[v(θλ(S)]) ≤ E[φ(θλ(S))] . (1.11)

Step 2: Let us show that for each λ ∈]0, 1[ and for each S ∈ T0,

v(S) = E[v(θλ(S)) | FS ] a.s. . (1.12)

Let us define for each S ∈ T0, the random variable J(S) = E[v(θλ(S)) | FS ] .

Step 2 amounts to show that J(S) = v(S) a.s. .

Since { v(S), S ∈ T0 } is a supermartingale system and since θλ(S) ≥ S a.s. , we

have that

J(S) = E[v(θλ(S)) | FS ] ≤ v(S) a.s. .
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It remains to show the reverse inequality.

Step 2 a: Let us show that the family { J(S), S ∈ T0 } is a supermartingale

system.

Let S, S
′

∈ T0 such that S
′

≥ S a.s. . As θλ(S
′

) ≥ θλ(S) ≥ S a.s. , one has

E[J(S
′

) | FS ] = E[v(θλ(S
′

)) | FS ] = E
[

E[v(θλ(S
′

)) | Fθλ(S)] | FS

]

a.s. .

Now, since { v(S), S ∈ T0 } is a supermartingale system, E[v(θλ(S
′

)) | Fθλ(S)]

≤ v(θλ(S)) a.s. . Consequently,

E[J(S
′

) | FS ] ≤ E[v(θλ(S)) | FS ] = J(S) a.s. .

Step 2 b: Let us show that for each S ∈ T0, and each λ ∈]0, 1[,

λv(S) + (1− λ)J(S) ≥ φ(S) a.s. .

Fix S ∈ T0 and λ ∈]0, 1[.

On {λv(S) ≤ φ(S) }, we have θλ(S) = S a.s. . Hence, on {λv(S) ≤ φ(S) },

J(S) = E[v(θλ(S)) | FS ] = E[v(S) | FS ] = v(S), and therefore

λv(S) + (1− λ)J(S) = v(S) ≥ φ(S) a.s. .

Furthermore, on{λv(S) > φ(S) }, as J(S) is nonnegative, we have

λv(S) + (1− λ)J(S) ≥ λv(S) ≥ φ(S) a.s. ,

and the proof of Step 2 b is complete.

Now, the family {λv(S) + (1 − λ)J(S) , S ∈ T0} is a supermartingale sys-

tem by convex combination of two supermartingale systems. Hence, as the

value function { v(S), S ∈ T0 } is characterized as the smallest supermartingale

system which dominates {φ(S), S ∈ T0 }, we derive that for each S ∈ T0,

λv(S) + (1− λ)J(S) ≥ v(S) a.s. .

Now, by the integrability assumption made on φ, we have v(S) <∞ a.s. . Hence,

we have J(S) ≥ v(S) a.s. . Consequently, for each S ∈ T0, J(S) = v(S) a.s. ,

which ends step 2.

Finally, Step 1 (inequality (1.11)) and Step 2 (equality (1.12)) give

λE[v(S)] = λE[v(θλ(S))] ≤ E[φ(θλ(S))],

In orther terms, θλ(S) is a (1 − λ)-optimal stopping time for (1.8), which ends

the proof of Lemma 1.1. �
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Remark 1.6. Recall that in the previous works (see for example Karatzas and

Shreve (1998) Proposition D.10 and Theorem D.12) the proof of the existence

of optimal stopping times requires to aggregate the value function and thus to

use some fine aggregation results such as Proposition 4.1. In our work, since

we only work with families of r.v. , we do not need any aggregation techniques

which simplifies and shorten the proof.

Under some regularity assumptions on the reward, we can show that the

value function family is left continuous along stopping times. More precisely,

Proposition 1.6. Suppose that the admissible family {φ(θ), θ ∈ T0 } is LCE

and RCE and satisfies the integrability condition E[ess sup
θ∈T0

φ(θ)] <∞.

Then, the value function { v(S), S ∈ T0 } defined by (1.1) is LCE.

Proof : Let S ∈ T0 and let (Sn) be a sequence of stopping times such that

Sn ↑ S a.s. . Note that by the supermartingale property of v we have

E[v(Sn)] ≥ E[v(S)]. (1.13)

Now by Theorem 1.1, the stopping time θ∗(Sn) defined by (1.6) is optimal

for v(Sn). Moreover, it is clear that (θ∗(Sn))n is a nondecreasing sequence of

stopping times dominated by θ∗(S).

Let us define θ = lim
n→∞

↑ θ∗(Sn). Note that θ is a stopping time. Also, as for

each n, θ∗(Sn) ≥ Sn a.s. , it follows that θ ≥ S a.s. . Therefore, since φ is LCE,

E[v(S)] ≥ E[φ(θ)] = lim
n→∞

E[φ(θ∗(Sn))] = lim
n→∞

E[v(Sn)].

This together with (1.13) gives E[v(S)] = lim
n→∞

E[v(Sn)]. �

Remark 1.7. In this proof, we have also proved that θ is optimal for v(S).

Hence, by the optimality criterium, v(θ) = φ(θ) a.s. which implies that θ ≥

θ∗(S) a.s. Moreover, since for each n, θ∗(Sn) ≤ θ∗(S) a.s. , by letting n tend

to ∞, we have clearly that θ ≤ θ∗(S) a.s. . Hence, θ = lim
n→∞

↑ θ∗(Sn) = θ∗(S)

a.s. . Thus, we have also shown that the map S 7→ θ∗(S) is left continuous along

stopping times.

2 The optimal double stopping time problem

2.1 Definition and first properties of the value function

We consider now the optimal double stopping time problem. We introduce the

following definitions

11



Definition 2.1. The family {ψ(θ, S), θ, S ∈ T0 } is a biadmissible family if it

satisfies

1. for all θ, S ∈ T0, ψ(θ, S) is a Fθ∨S-measurable positive r.v.,

2. for all θ, θ′, S, S′ ∈ T0, ψ(θ, S) = ψ(θ′, S′) a.s. on { θ = θ′ } ∩ {S = S′ }.

Remark 2.1. Let Ψ be a biprocess that is a function

Ψ : [0, T ]2 × Ω → R
+; (t, s, ω) 7→ Ψt,s(ω)

such that for almost surely ω, the map (t, s) 7→ Ψt,s(ω) is right continuous

(that is Ψt,s = lim
(t′,s′)→(t+,s+)

Ψt′,s′ ) and for each (t, s) ∈ [0, T ]2, Ψt,s is Ft∨s-

measurable . In this case, the family {ψ(θ, S), θ, S ∈ T0 } defined by

ψ(θ, S)(ω) := Ψθ(ω),S(ω)(ω)

is clearly biadmissible.

For a biadmissible family {ψ(θ, S), θ, S ∈ T0} let us consider the value

function associated with the reward family {ψ(θ, S), θ, S ∈ T0}

v(S) = ess supτ1,τ2∈TS
E[ψ(τ1, τ2) | FS ] (2.1)

As in the case of one stopping time problem, we have the following properties:

Proposition 2.1. Let {ψ(θ, S), θ, S ∈ T0 } be a biadmissible family of r.v. ,

then the following properties hold:

1. The family { v(S), S ∈ T0 } is an admissible family of r.v. .

2. For each S ∈ T0, there exists a sequence of pairs of stopping times ((τn1 , τ
n
2 ))n∈N

in TS × TS such that {E[ψ(τn1 , τ
n
2 ) | FS] }n∈N is nondecreasing and a.s.

E[ψ(τn1 , τ
n
2 ) | FS ] ↑ v(S).

3. The family of r.v. { v(S), S ∈ T0 } is a supermartingale system. In other

words, it satisfies the dynamic programming principle (1.2).

Proof: 1) As in the case of one stopping time, Property 1 of admissibility for

{ v(S), S ∈ T0 } follows from the existence of the essential supremum.

Take S, S′ ∈ T0 and put A = {S = S′ }, and for each τ1, τ2 ∈ TS put τA1 =

τ11A + T1Ac and τA2 = τ21A + T1Ac . As A ∈ FS ∩ FS′ , one has a.s. on

A, E[ψ(τ1, τ2) | FS] = E[ψ(τA1 , τ
A
2 ) | FS ] = E[ψ(τA1 , τ

A
2 ) | FS′ ] ≤ v(S′). Hence,

taking the essential supremum over τ1, τ2 ∈ TS, we have v(S) ≤ v(S′) a.s. and

12



by symmetry, we have shown Property 2 of admissibility. Hence, the family

{ v(S), S ∈ T0 } is an admissible family of r.v. .

The proofs of 2) and 3) can be easily adapted from the proofs of Proposition

1.2 and Proposition 1.3. �

Following the case of one stopping time, we now give some regularity results

on the value function.

Definition 2.2. A biadmissible family {ψ(θ, S), θ, S ∈ T0 } is said to be right

continuous along stopping times in expectation (RCE) if for any θ, S ∈ T0 and

for any sequences (θn)n∈N ∈ T0 and (Sn)n∈N ∈ T0 such that θn ↓ θ and Sn ↓ S

a.s. , one has E[ψ(θ, S)] = lim
n→∞

E[ψ(θn, Sn)] .

Proposition 2.2. Suppose that the biadmissible family {ψ(θ, S), θ, S ∈ T0 } is

RCE. Then, the family { v(S), S ∈ T0 } defined by (2.1) is RCE.

Proof: The proof follows the proof of Proposition 1.5. �

2.2 Reduction to an optimal single stopping time problem

In this section, we will show that the optimal double stopping time problem

(2.1) can be reduced to an optimal single stopping time problem associated

with a new reward family.

More precisely, for each stopping time θ ∈ TS, let us introduce the two Fθ-

measurable random variables

u1(θ) = ess sup
τ1∈Tθ

E[ψ(τ1, θ) | Fθ], u2(θ) = ess sup
τ2∈Tθ

E[ψ(θ, τ2) | Fθ]. (2.2)

Note that since {ψ(θ, S), θ, S ∈ T0 } is biadmissible, for each fixed θ ∈ T0,

the families {ψ(τ1, θ), τ1 ∈ T0 } and {ψ(θ, τ2), τ2 ∈ T0 } are admissible. Hence,

by Proposition 1.1, the families { u1(θ), θ ∈ TS } and { u2(θ), θ ∈ TS } are

admissible. Put

φ(θ) = max[u1(θ), u2(θ)]. (2.3)

The family {φ(θ), θ ∈ TS }, which is called the new reward family, is also clearly

admissible. Consider the value function associated with the new reward

u(S) = ess supθ∈TS
E[φ(θ) | FS ] a.s. . (2.4)

Theorem 2.1. (Reduction) Suppose that {ψ(θ, S), θ, S ∈ T0 } is a biadmissible

family. For each stopping time S, consider v(S) defined by (2.1) and u(S)

defined by (2.2), (2.3), (2.4), then

v(S) = u(S) a.s. .
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Proof : Let S be a stopping time.

Step 1: First, let us show that v(S) ≤ u(S) a.s. .

Let τ1, τ2 ∈ TS . Put A = { τ1 ≤ τ2 }. As A is in Fτ1 ∩ Fτ2 ,

E[ψ(τ1, τ2) | FS ] = E[1AE[ψ(τ1, τ2) | Fτ1 ] | FS] + E[1AcE[ψ(τ1, τ2) | Fτ2] | FS ].

By noticing that on A one has E[ψ(τ1, τ2) | Fτ1 ] ≤ u2(τ1) ≤ φ(τ1 ∧ τ2) a.s.,

and similarly on Ac one has E[ψ(τ1, τ2) | Fτ2 ] ≤ u1(τ2) ≤ φ(τ1 ∧ τ2) a.s., we

get

E[ψ(τ1, τ2) | FS ] ≤ E[φ(τ1 ∧ τ2) | FS] ≤ u(S) a.s. .

By taking the supremum over τ1 and τ2 in TS we obtain step 1.

Step 2: Let us show now that v(S) ≥ u(S) a.s. .

We have clearly v(S) ≥ ess supτ2∈TS
E[ψ(S, τ2) | FS ] = u2(S) a.s. . By sim-

ilar arguments, v(S) ≥ u1(S) a.s. and consequently,

v(S) ≥ max[u1(S), u2(S)] = φ(S) a.s. .

Thus, { v(S), S ∈ T0 } is a supermartingale system which is greater than

{φ(S), S ∈ T0 }. Now, by Proposition 1.3, { u(S), S ∈ T0 } is the smallest

supermartingale system which is greater than {φ(S), S ∈ T0 }. Consequently,

step 2 follows, which ends the proof. �

Note that the reduction to an optimal one stopping time problem associated

with a new reward will be the key property used to construct optimal multiple

stopping times and to establish an existence result of optimal multiple stopping

times (see sections 2.3 to 2.5).

2.3 Properties of optimal stopping times

In this section, we are given a biadmissible family {ψ(θ, S), θ, S ∈ T0} such

that E[ess sup
θ,S∈T0

ψ(θ, S)] <∞.

Proposition 2.3. (A necessary condition of optimality) Let S be a stopping

time and consider the value function v(S) defined by (2.1), for all θ ∈ TS,

u1(θ), u2(θ) defined by (2.2), φ(θ) defined by (2.3) and u(S) defined by (2.4).

Suppose that the pair (τ∗1 , τ
∗
2 ) is optimal for v(S), and put A = { τ∗1 ≤ τ∗2 } then

1. τ∗1 ∧ τ∗2 is optimal for u(S),

2. τ∗2 is optimal for u2(τ
∗
1 ) a.s. on A,

3. τ∗1 is optimal for u1(τ
∗
2 ) a.s. on Ac.

Moreover A = { τ∗1 ≤ τ∗2 } ⊂ B = { u1(τ
∗
1 ∧ τ∗2 ) ≤ u2(τ

∗
1 ∧ τ∗2 ) }.
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Proof : Let S ∈ T0, and suppose the pair of stopping times (τ∗1 , τ
∗
2 ) is optimal

for v(S). As u(S) = v(S) a.s. , we obtain equality in step 1 of the proof of

Theorem 2.1. More precisely,

v(S) = E[ψ(τ∗1 , τ
∗
2 ) | FS ] = E[φ(τ∗1 ∧ τ∗2 ) | FS] = u(S) a.s. ,

E[ψ(τ∗1 , τ
∗
2 ) | Fτ∗

1
] = u2(τ

∗
1 ) = u2(τ

∗
1 ∧ τ∗2 ) = φ(τ∗1 ∧ τ∗2 ) a.s. on A,

E[ψ(τ∗1 , τ
∗
2 ) | Fτ∗

2
] = u1(τ

∗
2 ) = u1(τ

∗
1 ∧ τ∗2 ) = φ(τ∗1 ∧ τ∗2 ) a.s. on Ac,

which easily leads to 1), 2), 3) and A ⊂ B. �

Remark 2.2. Note that in general for a pair (τ∗1 , τ
∗
2 ) of optimal stopping times

for v(S) the inclusion A ⊂ B is strict. Indeed if ψ ≡ 0, then v = u = u1 = u2 =

φ = 0, and all pairs of stopping times are optimal. Consider τ∗1 = T, τ∗2 = 0. In

this case, A = ∅ and B = Ω.

We now give a sufficient condition of optimality.

Proposition 2.4. (Construction of optimal stopping times) Under the notation

of Proposition 2.3, suppose that

1. θ∗ is optimal for u(S),

2. θ∗2 is optimal for u2(θ
∗),

3. θ∗1 is optimal for u1(θ
∗).

and put B = { u1(θ
∗) ≤ u2(θ

∗) }, then the pair of stopping times (τ∗1 , τ
∗
2 )

defined by

τ∗1 = θ∗1B + θ∗11Bc , τ∗2 = θ∗21B + θ∗1Bc , (2.5)

is optimal for v(S).

Moreover, τ∗1 ∧ τ∗2 = θ∗ and B = { τ∗1 ≤ τ∗2 }.

Proof: Let θ∗ be an optimal stopping time for u(S) that is u(S) = E[φ(θ∗) | FS ]

a.s. . Let θ∗1 be an optimal stopping time for u1(θ
∗) ( u1(θ

∗) = E[ψ(θ∗1 , θ
∗) |Fθ∗ ]

a.s.) and let θ∗2 be an optimal stopping time for u2(θ
∗) (u2(θ

∗) = E[ψ(θ∗, θ∗2) |Fθ∗ ]

a.s.). We introduce the set B = { u1(θ
∗) ≤ u2(θ

∗) }. Note that B is in Fθ∗ .

Let τ∗1 , τ
∗
2 be the stopping times defined by (2.5). We have clearly the inclusion

B ⊂ { τ∗1 ≤ τ∗2 }. (2.6)

Since u(S) = E[φ(θ∗) | FS ] and since φ(θ∗) = max[u1(θ
∗), u2(θ

∗)], we have

u(S) = E[1Bu2(θ
∗) + 1Bcu1(θ

∗) | FS ].

The optimality of θ∗1 and θ∗2 gives that a.s. ,

u(S) = E[1Bψ(θ
∗, θ∗2) + 1Bcψ(θ∗1 , θ

∗) | FS ]

= E[1Bψ(τ
∗
1 , τ

∗
2 ) + 1Bcψ(τ∗1 , τ

∗
2 ) | FS ] = E[ψ(τ∗1 , τ

∗
2 ) | FS ] .
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As u(S) = v(S) a.s. , the pair of stopping times (τ∗1 , τ
∗
2 ) is S-optimal for v(S).

By Proposition 2.3, we have { τ∗1 ≤ τ∗2 } ⊂ B. Hence, by (2.6), B = { τ∗1 ≤ τ∗2 }.

�

Remark 2.3. Proposition 2.4 still holds true if condition 2. holds true on the

set B, and condition 3. holds true on the set Bc.

Note that by Remark 2.2, we do not have a characterization of optimal pairs

of stopping times. However, it is possible to give a characterization of minimal

optimal stopping times in a particular sense (see the Appendix B).

2.4 Regularity of the new reward

Before studying the problem of existence of optimal stopping times, we have to

state some regularity properties of the new reward family {φ(θ), θ ∈ T0}.

Let us introduce the following definition,

Definition 2.3. A biadmissible family {ψ(θ, S), θ, S ∈ T0 } is said to be uni-

formly right (resp. left) continuous in expectation along stopping times (URCE

(resp. ULCE)) if E[ess sup θ,S∈T0
ψ(θ, S)] < ∞ and if, for each θ, S ∈ T0 and

for each sequence of stopping times (Sn)n∈N such that Sn ↓ S a.s. (resp. Sn ↑ S

a.s. )

lim
n→∞

E

[

ess sup
θ∈T0

|ψ(θ, S)− ψ(θ, Sn)|

]

= 0

and lim
n→∞

E

[

ess sup
θ∈T0

|ψ(S, θ)− ψ(Sn, θ)|

]

= 0.

The following right continuity property holds true for the new reward family:

Theorem 2.2. Suppose that the biadmissible family {ψ(θ, S), θ, S ∈ T0 } is

URCE and ULCE. Then, the family {φ(S), S ∈ T0 } defined by (2.3) is RCE

and LCE.

Proof: As φ(θ) = max[u1(θ), u2(θ)], it is sufficient to show the RCE and LCE

properties for the family { u1(θ), θ ∈ T0 }.

Let us introduce the following value function for each S, θ ∈ T0,

U1(θ, S) = ess supτ1∈Tθ
E[ψ(τ1, S) | Fθ] a.s. . (2.7)

As for all θ ∈ T0,

u1(θ) = U1(θ, θ) a.s. ,

it is sufficient to prove that {U1(θ, S), θ, S ∈ T0 } is RCE (resp. LCE) that is,

if θ, S ∈ T0 and (θn)n, (Sn)n in T0 are such that θn ↓ θ and Sn ↓ S a.s. (resp.
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θn ↑ θ and Sn ↑ S a.s. .), then lim
n→∞

E[U1(θn, Sn)] = E[U1(θ, S)]. Now, we have

|E[U1(θ, S)]−E[U1(θn, Sn)]| ≤

|E[U1(θ, S)]− E[U1(θn, S)]|
︸ ︷︷ ︸

(I)

+ |E[U1(θn, S)]− E[U1(θn, Sn)]|
︸ ︷︷ ︸

(II)

.

Let us show that (I) tends to 0 as n→ ∞. For each S ∈ T0, {ψ(θ, S), θ ∈ T0 }

is an admissible family of positive r.v. which is RCE and LCE. By Proposition

1.5 (resp. by Proposition 1.6), the value function {U1(θ, S), θ ∈ T0} is RCE

(resp. LCE). It follows that (I) converges to 0 as n tends to ∞.

Let us show that (II) tends to 0 as n→ ∞. By definition of the value function

U1(., .) (2.7), it follows that

|E[U1(θn, S)] − E[U1(θn, Sn)]| ≤ E
(
ess supτ∈T0

|ψ(τ, S)− ψ(τ, Sn)|
)

which converges to 0 since {ψ(θ, S), θ, S ∈ T0 } is URCE (resp. ULCE). The

proof of Theorem 2.2 is ended. �

Lemma 2.1. Suppose that E[ess supθ,S∈T0
ψ(θ, S)p] <∞ for some p > 1.

Then, E[ess supθ∈T0
φ(θ)p] <∞.

Proof: We have u1(θ) ≤ E[ess sup
τ,S∈T0

ψ(τ, S) | Fθ] a.s. . Hence, by martingale

moments inequalities, E[ess sup
θ∈T0

u1(θ)
p] ≤ Cp E[ess sup

τ,S∈T0

ψ(τ, S)p] where Cp > 0.

The same arguments hold for u2. The result clearly follows. �

Corollary 2.1. Suppose that E[ess supθ,S∈T0
ψ(θ, S)p] <∞ for some p > 1.

Under the same hypothesis as Theorem 2.2, the family { v(S), S ∈ T0 } defined

by (2.1) is LCE.

Proof: It follows from the fact that v(S) = u(S) a.s. (Theorem 2.1) where

{ u(S), S ∈ T0 } is the value function family associated with the new reward

{φ(S), S ∈ T0 }. Moreover by Lemma 2.1 one has E[ess sup S∈T0
φ(S)] < ∞.

Applying Proposition 1.6 we obtain the required LCE property. �

We will now turn to the problem of existence of optimal stopping times.

2.5 Existence of optimal stopping times

Let {ψ(θ, S), θ, S ∈ T0 } be a biadmissible family which is URCE and ULCE.

Suppose that there exists p > 1 such that E[ess supθ,S∈T0
ψ(θ, S)p] <∞.

By Theorem 2.2 the admissible family of positive r.v. {φ(θ), θ ∈ T0 } defined

by (2.3) is RCE and LCE. By Theorem 1.1, the stopping time

θ∗ = ess inf{ θ ∈ TS , u(θ) = φ(θ) a.s. },
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is optimal for u(S) (= v(S)), that is

u(S) = ess supθ∈TS
E[φ(θ) | FS ] = E[φ(θ∗) | FS ] a.s. .

Moreover, the families {ψ(θ, θ∗), θ ∈ Tθ∗ } and {ψ(θ∗, θ), θ ∈ Tθ∗ } are ad-

missible and are RCE and LCE. Consider the following optimal stopping time

problems defined for each S ∈ Tθ∗:

v1(S) = ess sup
θ∈TS

E[ψ(θ, θ∗) | FS ] and v2(S) = ess sup
θ∈TS

E[ψ(θ∗, θ) | FS ].

By Theorem 1.1, the stopping times θ∗1 and θ∗2 defined by θ∗1 = ess inf{ θ ∈

Tθ∗ , v1(θ) = ψ(θ, θ∗) a.s. } and θ∗2 = ess inf{ θ ∈ Tθ∗ , v2(θ) = ψ(θ∗, θ) a.s. } are

optimal stopping times for v1(θ
∗) and v2(θ

∗). Note that v1(θ
∗) = u1(θ

∗) and

v2(θ
∗) = u2(θ

∗) a.s. .

Let τ∗1 and τ∗2 be the stopping times defined by

τ∗1 = θ∗1B + θ∗11Bc , τ∗2 = θ∗1Bc + θ∗21B , (2.8)

where B = { u1(θ∗) ≤ u2(θ∗) }. By Proposition 2.4, the pair (τ∗1 , τ
∗
2 ) is optimal

for v(S). Consequently, we have proved the following theorem

Theorem 2.3. (Existence of an optimal pair of stopping times)

Let {ψ(θ, S), θ, S ∈ T0 } be a biadmissible family which is URCE and ULCE.

Suppose that there exists p > 1 such that E[ess supθ,S∈T0
ψ(θ, S)p] <∞.

Then, the pair of stopping times (τ∗1 , τ
∗
2 ) defined by (2.8) is optimal for v(S)

defined by (2.1).

Remark 2.4. Note that, since θ∗, θ∗1 , θ
∗
2 are minimal optimal, by the Appendix

B, (τ∗1 , τ
∗
2 ) is minimal optimal for v(S) (in the sense defined in the Appendix

B).

3 The optimal d-stopping time problem

Let d ∈ N, d ≥ 2. In this section, we show that computing the value function

for the d-optimal multiple stopping time problem

v(S) = ess sup{E[ψ(τ1, · · · , τd) | FS ], τ1, · · · , τd ∈ TS } ,

reduces to computing the value function for an optimal one stopping time prob-

lem that is

v(S) = ess sup{E[φ(θ) | FS ], θ ∈ TS } a.s.

for a new reward φ. This new reward is expressed in terms of d − 1-optimal

multiple stopping time problems. Hence, by induction, the initial d-optimal

multiple stopping time problem can be reduced to nested optimal one stopping

time problems.
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3.1 Definition and first properties of the value function

Definition 3.1. We say that the family of random variables {ψ(θ), θ ∈ T d
0 }

is a d-admissible family if it satisfies the following conditions

1. for all θ=(θ1,. . ., θd) ∈ T d
0 , ψ(θ) is a Fθ1∨...∨θd measurable positive r.v.,

2. for all θ, θ′ ∈ T d
0 , ψ(θ) = ψ(θ′) a.s. on { θ = θ′ }.

For each stopping time S ∈ T0, we consider the value function associated with

the reward {ψ(θ), θ ∈ T d
0 }

v(S) = ess supτ∈Td
S
E[ψ(τ) | FS ]. (3.1)

As in the optimal two stopping times problem, the value function satisfies the

following properties:

Proposition 3.1. Let {ψ(θ), θ ∈ T d
0 } be a d-admissible family of r.v. , then

the following properties hold:

1. The family { v(S), S ∈ T0 } is an admissible family of r.v. .

2. For each S ∈ T0, there exists a sequence of stopping times (θn)n∈N in T d
S

such that the sequence {E[ψ(θn) | FS ] }n∈N is nondecreasing and such that

v(S) = lim
n→∞

↑ E[ψ(θn) | FS ] a.s. .

3. The family of r.v. { v(S), S ∈ T0 } defined by (3.1) is a supermartingale

system.

The proof is an easy generalization of the optimal two stopping problem

(Proposition 2.1).

Following the case with one or two stopping times, we now state the following

result on the regularity of the value function.

Proposition 3.2. Suppose that the d-admissible family {ψ(θ), θ ∈ T d
0 } is RCE

and that E[ess sup θ∈Td
0
ψ(θ)] <∞. Then, the family { v(S), S ∈ T0 } defined

by (3.1) is RCE.

The definition of RCE and the proof of this property are easily derived from the

one or two stopping times case (see Definition 2.2 and Proposition 2.2).

3.2 Reduction to an optimal single stopping time problem

The optimal d-stopping time problem (3.1) can be expressed in terms of an

optimal single stopping time problem as follows.
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For i = 1, · · · , d and for θ ∈ T0 consider the random variable

u(i)(θ) = ess sup
τ1,··· ,τi−1,τi+1,··· ,τd∈T

d−1
θ

E[ψ(τ1, · · · , τi−1, θ, τi+1, · · · , τd) | Fθ] (3.2)

Note that this notation is adapted to the d-dimensional case.

In the two dimensional case (d = 2), we have

u(1)(θ) = ess supτ2∈Tθ
E[ψ(θ, τ2) | Fθ] = u2(θ) a.s.

and

u(2)(θ) = ess supτ1∈Tθ
E[ψ(τ1, θ) | Fθ] = u1(θ) a.s. ,

by definition of u1(θ) and u2(θ)(see (2.2)). Thus, the notation in the two di-

mensional case was different but more adapted to that simpler case.

For each θ ∈ T0, define the Fθ-measurable random variable called new reward

φ(θ) = max[u(1)(θ), · · · , u(d)(θ)], (3.3)

and for each stopping time S, define the FS-measurable variable

u(S) = ess supθ∈TS
E[φ(θ) | FS ]. (3.4)

Theorem 3.1. (Reduction) Let {ψ(θ), θ ∈ T d
0 } be a d-admissible family of

r.v. , and for each stopping time S, consider v(S) defined by (3.1) and u(S)

defined by (3.2), (3.3), (3.4), then

v(S) = u(S) a.s. .

Proof :

Step 1: Let us prove that for all S ∈ T0, v(S) ≤ u(S) a.s. .

Let S be a stopping time and let τ = (τ1, · · · , τd) ∈ T d
S . There exists

(Ai)i=1,··· ,d with Ω = ∪iAi, Ai ∩Aj = for i 6= j and such that τ1 ∧ · · · ∧ τd = τi

a.s. on Ai and Ai are in Fτ1∧···∧τd for i = 1, · · · , d (For d = 2, one can take

A1 = {τ1 ≤ τ2} and A2 = Ac
1). One has

E[ψ(τ) | FS ] =

d∑

i=1

E[1Ai
E[ψ(τ) | Fτi ] | FS].

By noticing that on Ai one has a.s. E[ψ(τ) | Fτi ] ≤ u(i)(τi) ≤ φ(τi) =

φ(τ1 ∧ · · · ∧ τd) , we get E[ψ(τ) | FS ] ≤ E[φ(τ1 ∧ · · · ∧ τd) | FS ] ≤ u(S) a.s. . By

taking the supremum over τ = (τ1, · · · , τd) we obtain step 1.

Step 2: Let us show that for all S ∈ T0, v(S) ≥ u(S) a.s. .

This follows from the fact that { v(S), S ∈ T0 } is a supermartingale sys-

tem greater than {φ(S), S ∈ T0 } and that { u(S), S ∈ T0 } is the smallest

supermartingale system of this class. �
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Note that the new reward is expressed in terms of d − 1-optimal multiple

stopping time problems. Hence, by induction, the initial d-optimal multiple

stopping time problem can be reduced to nested optimal one stopping time

problems. In the case of a symmetric reward, the problem reduces to ordered

stopping times and the nested optimal one stopping time problems simply re-

duces to a sequence of optimal one stopping time problems defined by backward

induction (see section 3.6 and the application to swing options).

3.3 Properties of optimal stopping times in the d-stopping

time problem

Let {ψ(θ), θ ∈ T d
0 } be a d-admissible family such that E[ess sup

θ∈Td
0

ψ(θ)] <∞.

Let us introduce the following notation. For i = 1, · · · , d and for θ ∈ T0 and

for τ1, · · · , τd−1 in T0, consider the random variable

ψ(i)(τ1, · · · , τd−1, θ) = ψ(τ1, · · · , τi−1, θ, τi, · · · , τd−1). (3.5)

Using this notation, note that for each i = 1, · · · , d the value function u(i)

defined above (3.2) can be written

u(i)(θ) = ess sup
τ∈T

d−1
θ

E[ψ(i)(τ, θ) | Fθ] (3.6)

Proposition 3.3. (Construction of optimal stopping times) Suppose that

1. there exists an optimal stopping time θ∗ for u(S),

2. for i = 1, · · · , d, there exist (θ
(i)∗
1 , · · · , θ

(i)∗
i−1 , θ

(i)∗
i+1 , · · · , θ

(i)∗
d ) = θ(i)∗ in

T d−1
θ such that u(i)(θ∗) = E[ψ(i)(θ(i)∗, θ∗) | Fθ∗ ].

Let (Bi)i=1,··· ,d with Ω = ∪iBi, Bi ∩Bj = for i 6= j and such that such that

φ(θ∗) = u(i)(θ∗) a.s. on Bi, and Bi is Fθ∗ measurable for i = 1, · · · , d. Put

τ∗j = θ∗1Bj
+

d∑

i6=j,i=1

θ
(i)∗
j 1Bi

, (3.7)

then (τ∗1 , · · · , τ
∗
d ) is optimal for v(S), and τ∗1 ∧ · · · ∧ τ∗d = θ∗.

Proof: It is clear that τ∗1 ∧ · · · ∧ τ∗d = θ∗ and a.s. ,

u(S) = E[φ(θ∗) | FS ] =

d∑

i=1

E[1Bi
u(i)(θ∗) | FS]

=

d∑

i=1

E[1Bi
E[ψ(i)(θ(i)∗, θ∗) | Fθ∗ ] | FS ]

=

d∑

i=1

E[1Bi
E[ψ(θ

(i)∗
1 , · · · , θ

(i)∗
i−1 , θ

∗, θ
(i)∗
i+1 , · · · , θ

(i)∗
d ) | Fθ∗ ] | FS]

= E[ψ(τ∗1 , · · · , τ
∗
i−1, τ

∗
i , τ

∗
i+1, · · · , τ

∗
d ) | FS ] ≤ v(S) = u(S). �
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Remark 3.1. As in the bidimensional case, one can easily derive a necessary

condition for obtaining optimal stopping times. Moreover, for an adapted partial

order relation on R
d, one can also derive a characterization of minimal optimal

d-stopping times. This result is given in the Appendix B.2.

Before studying the existence of an optimal d-stopping time for v(S), we will

study the regularity properties of the new reward {φ(θ), θ ∈ T0 } defined by

(3.3).

3.4 Regularity of the new reward

Let us introduce the following definition of uniform continuity.

Definition 3.2. A d-admissible family {ψ(θ), θ ∈ T d
0 } is said to be uniformly

right (resp. left ) continuous along stopping times in expectation (URCE (resp.

ULCE)) if E[ess supθ∈Td
0
ψ(θ)p] <∞ for some p > 1, and for each i = 1, · · · , d

and for each S ∈ T0 and for each sequence of stopping times (Sn)n∈N such that

Sn ↓ S a.s. (resp. Sn ↑ S a.s. )

lim
n→∞

E

[

ess sup
θ∈T

d−1
0

|ψ(i)(θ, Sn)− ψ(i)(θ, S)|

]

= 0 a.s. .

Proposition 3.4. Let {ψ(θ), θ ∈ T d
0 } be a d-admissible family which is URCE

and ULCE, then the family of positive r.v. {φ(S), S ∈ T0 } defined by (3.3) is

RCE and LCE.

Proof: The proof uses an induction argument. For d = 1 and d = 2,

the result has already been shown. Fix d ≥ 1 and suppose by induction

that the property holds for any d-admissible family URCE and ULCE. Let

{ψ(θ), θ ∈ T d+1
S } be a d + 1-admissible family URCE and ULCE. As φ(θ) =

max[u(1)(θ), · · · , u(d+1)(θ)], it is sufficient to show the RCE and LCE properties

for the family { u(i)(θ), θ ∈ T0 } for all i = 1, · · · , d+ 1.

Let us introduce the following value function for each S, θ ∈ T0,

U (i)(θ, S) = ess supτ∈Td
θ
E[ψ(i)(τ, S) | Fθ] a.s. . (3.8)

As for all θ ∈ T0,

u(i)(θ) = U (i)(θ, θ) a.s. ,

it is sufficient to prove that the biadmissible family {U (i)(θ, S), θ, S ∈ T0 } is

RCE and LCE (as in the bidimensional case).

Let θ, S ∈ T0 and (θn)n and (Sn)n be monotonic sequences of stopping times

that converge to θ and S a.s. . We have,

E[|U (i)(θ, S) − U (i)(θn, Sn)|] ≤

E[|U (i)(θ, S)− U (i)(θn, S)|]
︸ ︷︷ ︸

(I)

+E[|U (i)(θn, S)− U (i)(θn, Sn)|]
︸ ︷︷ ︸

(II)

.
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Let us show that (I) tends to 0 as n→ ∞. For each S ∈ T0, as {ψ(i)(τ, S), τ ∈

T d
0 } is a d-admissible family of positive r.v. which is URCE and ULCE and

{U (i)(θ, S), θ ∈ T0 } is the corresponding value function family. By the induc-

tion assumption, this family is RCE and LCE. Hence (I) converges a.s. to 0 as

n tends to ∞ when (θn) is monotonic.

Let us show now that (II) tends to 0 as n → ∞. By definition of the value

function U (i)(., .) (3.8), it follows that

E[|U (i)(θn, S)− U (i)(θn, Sn)|] ≤ E[ess supθ∈Td
0
|ψ(i)(θ, S)− ψ(i)(θ, Sn)]

and the right hand side tends to 0 by the URCE and ULCE properties of ψ.

�

3.5 Existence of optimal stopping times

By Theorem 1.1, the regularity properties of the new reward will ensure the

existence of an optimal stopping time θ∗ ∈ T0 for u(S). By Proposition 3.3, this

will allow to show by induction the existence of an optimal stopping time for

v(S).

Theorem 3.2. (Existence of optimal stopping times) Let {ψ(θ), θ ∈ T d
0 } be a

d-admissible family of positive r.v. which is URCE and ULCE, then there exists

τ∗ ∈ T d
S optimal for v(S), that is such that

v(S) = ess supτ∈Td
S
E[ψ(τ) |FS ] = E[ψ(τ∗) |FS ] .

Proof of Theorem 3.2: The result is proved by induction on d.

For d = 1 it is Theorem 1.1. Suppose now d ≥ 1, and suppose by induction

that for all d-admissible families URCE and ULCE, optimal d-stopping times do

exist. Let {ψ(θ) , θ ∈ T d+1
S } be a d+1-admissible family URCE and ULCE. The

existence of an optimal d + 1-stopping times for the associated value function

v(S) will be derived by applying Proposition 3.3. Now, by Proposition 3.4,

the new reward family {φ(θ), θ ∈ T0} is LCE and RCE. By Theorem 1.1,

there exists an optimal stopping time θ∗ for u(S). Thus, we have proved that

condition 1) of Proposition 3.3 is satisfied.

Note now that for i = 1, · · · , d+1, the d-admissible families {ψ(i)(θ, θ∗), θ ∈

T d
0 } are URCE and ULCE. Thus by the induction hypothesis, for each θ ∈ T0,

there exists an optimal θ∗(i) ∈ T d
θ∗ for the value function U (i)(θ∗, θ∗) defined by

(3.8). Noticing that U (i)(θ∗, θ∗) = u(i)(θ∗), we have proved that condition 2)

of Proposition 3.3 is satisfied. Applying now Proposition 3.3, the result follows.

�
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3.6 Symmetric case

Suppose that ψ(τ1,. . ., τd) is symmetric with respect to (τ1,. . ., τd) that is

ψ(τ1,. . ., τd) = ψ(τσ(1),. . ., τσ(d))

for each permutation σ of {1, ..., d}. By symmetry we can suppose that τ1 ≤

τ2 ≤ . . . ≤ τd, that is the value function v(S) coincide with

vd(S) = ess sup
(τ1,··· ,τd)∈Sd

S

E[ψ(τ1, · · · , τd) | FS] ,

where Sd
S = {τ1, · · · , τd ∈ TS s.t. τ1 ≤ τ2 ≤ . . . ≤ τd } . It follows that the value

functions u(i)(θ) and the new reward φ(θ) coincide and are simply given for each

θ ∈ T0 by the following random variable:

φ1(θ) = ess sup
(τ2,τ3,··· ,τd)∈Sd−1

θ

E[ψ(θ, τ2, · · · , τd) | Fθ].

The reduction property can be written as follows:

v(S) = ess supθ∈TS
E[φ1(θ) | FS ].

Then, we consider the value function φ1(θ1). The associated new reward is given

for θ1, θ2 such that S ≤ θ1 ≤ θ2 by

φ2(θ1, θ2) = ess sup
(τ3,··· ,τd)∈Sd−2

θ2

E[ψ(θ1, θ2, τ3, · · · , τd) | Fθ2 ].

Again, the reduction property gives:

φ1(θ1) = ess supθ∈Tθ1
E[φ2(θ1, θ2) | Fθ1]. (3.9)

Then, we consider the value function φ2(θ1, θ2) and so on. Thus, by forward

induction, we define the new rewards φi for i = 1, 2, . . . , d− 1 by

φi(θ1, · · · , θi) = ess sup
(τi+1,··· ,τd)∈Sd−i

θi

E[ψ(θ1, · · · , θi, τi+1, · · · , τd) | Fθi ],

for each (θ1, · · · , θi) ∈ Si
S . The reduction property gives:

φi(θ1, · · · , θi) = ess supθi+1∈Tθi
E[φi+1(θ1, · · · , θi, θi+1) | Fθi ] . (3.10)

Note that for i = d− 1,

φd−1(θ1, · · · , θd−1) = ess supθd∈Tθd−1
E[Ψ(θ1, · · · , θd−1, θd) | Fθd−1

] , (3.11)

for each (θ1, · · · , θd−1) ∈ Sd−1
S .

Hence, we now can define by backward induction φd−1(θ1, · · · , θd−1) by (3.11)

and then φd−2(θ1, · · · , θd−2), · · · , φ2(θ1, θ2), φ1(θ1) by the induction formula

(3.10). Consequently, we have the following characterization of the value func-

tion and a construction of a multiple optimal stopping time (which are rather

intuitive):
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Proposition 3.5. Let

• Let {ψ(θ), θ ∈ T d
0 } be a symmetric d-admissible family of r.v. , and for

each stopping time S, consider the associated value function v(S).

Let φi, for i = d− 1, d− 2,· · · , 2, 1 be defined by backward induction as

follows:

φd−1(θ1, · · · , θd−1) is given by (3.11) for each (θ1, · · · , θd−1) ∈ Sd−1
S . Also,

for i = d−2,· · · , 2, 1 and for each (θ1, · · · , θi) ∈ Si
S , φi(θ1, · · · , θi) is given

in function of φi+1 by backward induction formula (3.10).

Then, the value function satisfies

v(S) = ess supθ∈TS
E[φ1(θ) | FS ]. (3.12)

• Suppose that {ψ(θ), θ ∈ T d
0 } is URCE and ULCE. Let θ∗1 be an optimal

stopping time for v(S) given by (3.12), let θ∗2 be an optimal stopping time

for φ1(θ
∗
1) given by (3.9), and for i = 2, 3, , · · · , d − 1, let θ∗i+1 be an

optimal stopping time for φi(θ
∗
1 , · · · , θ

∗
i ) given by (3.10).

Then, (θ∗1 , · · · , θ
∗
d) is a multiple optimal stopping time for v(S).

Some simple examples

First, consider the very simple additive case: suppose that the reward is given

by

ψ(τ1,. . ., τd) = Yτ1 + Yτ2 + · · ·+ Yτd , (3.13)

where (Yt) is a RCLL non negative adapted process such that lim supt→+∞ Yt ≤

Y∞. Then, we obviously have that v(S) = d v1(S), where v1(S) is the value

function of the one optimal stopping time problem associated with reward Y .

Also, if θ∗1 is an optimal stopping time for v1(S), then (θ∗1 , · · · , θ
∗
1) is optimal

for v(S).

Application to swing options

Let us now consider the more interesting additive case of swing options: suppose

that T = +∞ and that the reward is still given by (3.13) but the stopping times

are separated by a fixed amount of time δ > 0 (sometimes called “refracting

time”). In this case, the value function is given by

v(S) = ess sup{E[ψ(τ1, · · · , τd) | FS ], (τ1, · · · , τd) ∈ Sd
S } ,

where Sd
S = {τ1, · · · , τd ∈ TS s.t. τi ∈ Tτi−1+δ , 2 ≤ i ≤ d − 1 } . Then all

the previous properties still hold. Again, the φi satisfy the following induction

equality:

φi(θ1, · · · , θi) = ess supθi+1∈Tθi+δ
E[φi+1(θ1, · · · , θi, θi+1) | Fθi ] .
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Then, one can easily derive that φd−1(θ1, θ2, · · · , θd−1) = Yθ1 + · · · + Yθd−1
+

Zd−1(θd−1) where

Zd−1(θd−1) = ess supτ∈Tθd−1+δ
E[Yτ | Fθd−1

] .

φd−2(θ1, · · · , θd−2) = Yθ1 + · · ·+ Yθd−2
+ Zd−2(θd−2) where

Zd−2(θd−2) = ess supτ∈Tθd−2+δ
E[Yτ + Zd−1(τ) | Fθd−2

]

and so on. Hence for i = 1, 2, , · · · , d−2, φi(θ1, · · · , θi) = Yθ1 + · · ·+Yθi +Zi(θi),

where

Zi(θi) = ess supτ∈Tθi+δ
E[Yτ + Zi+1(τ) | Fθi ].

The value function satisfies

v(S) = ess supθ∈TS
E[Z1(θ) | FS ]. (3.14)

This corresponds to Proposition 3.2 of Carmona and Dayanik (2008).

Also, if θ∗1 is an optimal stopping time for v(S) given by (3.14) and if for

i = 1, 2, , · · · , d−1, θ∗i+1 is an optimal stopping time for Zi(θ
∗
i ), then (θ∗1 , · · · , θ

∗
d)

is a multiple optimal stopping time for v(S).

This corresponds to Proposition 5.4 of Carmona and Dayanik (2008).

Note that the multiplicative case can be solved similarly. Further applica-

tions to American options with multiple exercise times are studied in Kobylanski

and Quenez (2010).

4 Aggregation and multiple optimal stopping times

As explained in the introduction, in previous works on the one optimal stopping

time problem, the reward is given by a RCLL postive adapted process (φt).

Moreover, when the reward (φt) is continuous, a S-optimal stopping time is

given by

θ(S) = inf{ t ≥ S, vt = φt } , (4.1)

which corresponds to the first hitting time after S of 0 by the RCLL adapted

process (vt−φt). This formulation is very important since it gives a simple and

efficient method to compute an optimal stopping time.

In the two dimensional case, instead of considering a reward process, it is

quite natural to suppose that the reward is given by a biprocess (Ψt,s)(t,s)∈[0,T ]2

such that a.s. , the map (t, s) 7→ Ψt,s is continuous and for each (t, s) ∈ [0, T ]2,

Ψt,s is Ft∨s-measurable (see Remark 2.1).

We would like to construct some optimal stopping times by using hitting

times of processes. By the existence and construction properties of optimal
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stopping times given in Theorem 2.3, we are led to construct θ∗, θ∗1 , θ
∗
2 as hitting

times of processes. Since Ψ is a continuous biprocess, there is no problem for

θ∗1 , θ
∗
2 . But for θ

∗, we need to aggregate the new reward {φ(θ), θ ∈ T0 }, which

requires new aggregation results. These results hold under stronger assumptions

on the reward than those made in the previous existence theorem (Theorem 2.3).

4.1 Some general aggregation results

4.1.1 Aggregation of a supermartingale system

Recall the classical result of aggregation of a supermartingale system (El Karoui

(1981)):

Proposition 4.1. Let { h(S), S ∈ T0 } be a supermartingale system which is

RCE, then there exists a RCLL adapted process (ht) which aggregates the family

{ h(S), S ∈ T0 } that is, for each S ∈ T0, hS = h(S) a.s. ,

This lemma relies on a well known result (see for example El Karoui (1981)

or Theorem 3.13 in Karatzas and Shreve (1994); for details, see the proof in

section 4.4).

Classicaly, the above Proposition 4.1 is used to aggregate the value function

of the one stopping time problem. However, it cannot be applied to the new

reward since it is no longer a supermartingale system. Thus, we will now state

a new result of aggregation.

4.1.2 A new result of aggregation of an admissible family

Let us introduce the following right continuous property for admissible families.

Definition 4.1. An admissible family {φ(θ), θ ∈ T0 } is said to be right contin-

uous along stopping times (RC) if for any θ ∈ T0 and for any sequence (θn)n∈N

of stopping times such that θn ↓ θ a.s. one has φ(θ) = lim
n→∞

φ(θn) a.s. .

We state the following result

Theorem 4.1. Suppose that the admissible family of positive r.v. {φ(θ), θ ∈

T0 } is right continuous along stopping times, then there exists a progressive

process (φt) such that for each θ ∈ T0, φθ = φ(θ) a.s. , and such that there

exists a nonincreasing sequence of right continuous processes (φnt )n∈N such that

for each (ω, t) ∈ Ω× [0, T ], limn→∞ φnt (ω) = φt(ω).

Proof: see section 4.4 . �
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4.2 The optimal stopping problem

First, recall the following classical result (El Karoui (1981)).

Proposition 4.2. (Aggregation of the value function)

Let {φ(θ), θ ∈ T0} be an admissible family of r.v. which is RCE. Suppose that

E[ess supθ∈T0
φ(θ)] <∞.

Then there exists a RCLL supermartingale (vt) which aggregates the family

{ v(S), S ∈ T0 } defined by (1.1) that is, for each stopping time S, v(S) =

vS a.s .

Proof of Proposition 4.2: The family { v(S), S ∈ T0 } is a supermartingale

system (Proposition 1.3), and has the RCE property (Proposition 1.5). The

result clearly follows by applying the aggregation property of supermartingale

systems (Proposition 4.1). �

Theorem 4.2. Suppose the reward is given by a RC and LCE admissible family

{φ(θ), θ ∈ T0 } such that E[ess supθ∈T0
φ(θ)] <∞.

Let (φt) be a progressive process that aggregates this family given by Theorem

4.1. Let { v(S), S ∈ T0 } be the family of value function defined by (1.1), and

let (vt) be a RCLL adapted process that aggregates the family { v(S), S ∈ T0 }.

The random variable defined by

θ(S) = inf{ t ≥ S, vt = φt }. (4.2)

is an optimal stopping time for v(S) (i.e v(S) = E[φ(θ(S)) | FS ] ).

As for Theorem 1.1, the proof relies on the construction of a family of stop-

ping times that are approximatively optimal. The details, which require some

fine techniques of the general theory of processes are given in section 4.4.

Remark 4.1. In the case of a RCLL reward process supposed to be LCE, the

above theorem corresponds to the classical existence result (see El Karoui (1981)

and Karatzas and Shreve (1998)).

Proposition 4.3. Under the same assumptions as in the previous theorem, for

each S ∈ T0, θ(S) is the minimal optimal stopping time for vS . In other words

,

θ(S) = θ∗(S) a.s..

Proof : Fix S ∈ T0. Suppose that there exists θ∗ ∈ TS which is optimal for

vS and such that P ({θ∗ < θ(S)}) > 0.

Now, by definition of θ(S), for all t ∈ [S, θ(S)[, we have vt > φt.

Hence, for each ω ∈ {θ∗ < θ(S)}, we have vθ∗(ω) > φθ∗(ω). Hence,

P ({vθ∗ > φθ∗}) ≥ P ({θ∗ < θ(S)}) > 0,

which contradicts the optimality criterium 1.4. �
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4.3 The optimal multiple stopping time problem

For simplicity, we study only the case when d = 2. We will now prove that

the minimal optimal pair of stopping times (τ∗1 , τ
∗
2 ) defined by (2.8) can also be

given in terms of hitting times. In order to do this, we need first to aggregate

the value function and the new reward.

4.3.1 Aggregation of the value function

Proposition 4.4. Suppose the reward is given by a RCE biadmissible family

{ψ(θ, S), θ, S ∈ T0 } such that E[ess supθ,S∈T0
ψ(θ, S)] <∞.

Then, there exists a supermartingale (vt) with RCLL paths that aggregates the

family { v(S), S ∈ T0 } defined by (2.1), that is such for each S ∈ T0, v(S) =

vS a.s. .

Proof of Proposition 4.4: The RCE property of {v(S), S ∈ T0} shown

in Proposition 2.2, together with the supermartingale property (Proposition

2.1(3)) give, by Proposition 4.1, the desired result. �

4.3.2 Aggregation of the new reward

We will now study the aggregation problem of the new reward family {φ(θ), θ ∈

T0}.

Let us introduce the following definition,

Definition 4.2. A biadmissible family {ψ(θ, S), θ, S ∈ T0 } is said to be uni-

formly right continuous along stopping times (URC) if for each nonincreasing

sequence of stopping times (Sn)n∈N in TS which converges a.s. to a stopping

time S ∈ T0,

lim
n→∞

[
ess sup θ∈TS

{|ψ(θ, Sn)− ψ(θ, S)|}
]
= 0 a.s. ,

and lim
n→∞

[
ess sup θ∈TS

{|ψ(Sn, θ)− ψ(S, θ)|}
]
= 0 a.s. .

The following right continuity property holds true for the new reward family:

Theorem 4.3. Suppose that the admissible family of positive r.v. {ψ(θ, S),

θ, S ∈ T0 } is URC, then the family of positive r.v. {φ(S), S ∈ T0 } defined by

(2.3) is RC.

Proof : As φ(θ) = max[u1(θ), u2(θ)], it is sufficient to show the RC property

for the family { u1(θ), θ ∈ T0 }.

Now, for that for all θ ∈ T0, u1(θ) = U1(θ, θ) a.s. , where

U1(θ, S) = ess supτ1∈Tθ
E[ψ(τ1, S) | Fθ] a.s. . (4.3)
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Hence, it is sufficient to prove that {U1(θ, S), θ, S ∈ T0} is RC.

Let θ, S ∈ T0 and (θn)n and (Sn)n be nonincreasing sequences of stopping times

in TO that converge to θ and S a.s. . We have,

|U1(θ, S)− U1(θn, Sn)| ≤ |U1(θ, S)− U1(θn, S)|
︸ ︷︷ ︸

(I)

+ |U1(θn, S)− U1(θn, Sn)|
︸ ︷︷ ︸

(II)

.

(I) tends to 0 as n→ ∞

For each S ∈ T0, as {ψ(θ, S), θ ∈ T0 } is an admissible family of postive r.v.

which is RC, Proposition 4.4 gives the existence of a RCLL adapted processes

(U1,S
t ) such that for each stopping time θ ∈ T0

U
1,S
θ = U1(θ, S) a.s. . (4.4)

(I) can be rewritten |U1(θ, S)−U1(θn, S)| = |U1,S
θ −U

1,S
θn

| a.s. which converges

a.s. to 0 as n tends to ∞ by the right continuity of the process (U1,θ
t ).

(II) tends to 0 as n→ ∞

By definition of the value function U1(., .) (4.3), it follows that

|U1(θn, S)− U1(θn, Sn)| ≤ E
(

ess supτ1∈Tθn
|ψ(τ1, S)− ψ(τ1, Sn)| | Fθn

)

≤ E (Zm | Fθn) a.s. ,

for any n ≥ m, where Zm := sup
r≥m

{
ess supτ∈T0

|ψ(τ, Sr)− ψ(τ, S)|
}
, and where

(E(Zm | Ft))t≥0 is a RCLL version of the conditional expectation. Hence, by

the right continuity of this process, for each fixed m ∈ N, the sequence of r.v.

(E(Zm | Fθn))n∈N
converges a.s. to E(Zm | Fθ) as n tends to ∞. It follows that

for each m ∈ N,

lim sup
n→∞

|U1(θn, S)− U1(θn, Sn)| ≤ E (Zm | Fθ) a.s. . (4.5)

Now, the sequence (Zm)m∈N converges a.s. to 0 and

|Zm| ≤ 2 ess sup θ,S∈T0
|ψ(θ, S)| a.s. .

Note that the second member of this inequality is integrable. By the Lebesgue

theorem for the conditional expectation, E (Zm | Fθ) converges to 0 in L1 as m

tends to ∞. The sequence (Zm)m∈N is decreasing. It follows that the sequence

{E (Zm | Fθ) }m∈N is also decreasing and hence converges a.s. . Since this se-

quence converges to 0 in L1, its limit is also 0 almost surely. By letting m tend

to ∞ in (4.5), we obtain

lim sup
n→∞

|U1(θn, S)− U1(θn, Sn)| ≤ 0 a.s. .

The proof of Theorem 4.3 is ended. �
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Corollary 4.1. (Aggregation of the new reward) Under the same hypothesis as

Theorem 4.3, there exists some progressive right continuous adapted processes

(φt) which aggregates the family {φ(θ), θ ∈ T0 } that is, φθ = φ(θ) a.s. for each

θ ∈ T0, and such that there exists a decreasing sequence of right continuous

adapted processes (φnt )n∈N that converges to (φt).

Proof: It follows from the right continuity of the new reward (Theorem 4.3)

which we can aggregate (Theorem 4.1). �

Remark 4.2. For the optimal d-stopping time problem, the same result holds

for URC d-admissible families {ψ(θ) θ ∈ T d
0 } i.e families that satisfy

lim
n→∞

ess sup θ∈T0
|ψ(i)(θ, S)− ψ(i)(θ, Sn)| = 0

for i = 1, · · · , d, θ, S ∈ T0 and (Sn) sequences in T0 such that Sn ↓ S a.s. .

The proof is strictly the same with U1(θ, S) replaced by U (i)(θ, S) for θ, S ∈

T0 and ψ(τ, S) with τ, S ∈ T0 replaced by ψ(i)(τ, S) with τ ∈ T d−1
0 and S ∈ T0.

4.3.3 Optimal multiple stopping times as hitting times of processes

As before, for the sake of simplicity, we suppose that d = 2. Suppose that

{ψ(θ, S), θ, S ∈ T0} is an URC and ULCE biadmissible family such that

E[ess sup θ,S∈T0
ψ(θ, S)p] < ∞ for some p > 1. Let {φ(θ), θ ∈ T0} be the

new reward family. By Theorem 2.2, this family is LCE. Futhermore, by Theo-

rem 4.3, this family is RC. Let (φt) be the progressive process that aggregates

this family given by Theorem 4.1. Let (ut) be a RCLL process that aggregates

the value function associated with (φt). By Theorem 4.2 and Proposition 4.3,

the stopping time

θ∗ = inf{t ≥ S , ut = φt}

is optimal for u(S).

The family {ψ(θ, θ∗) θ ∈ Tθ∗} is admissible, RC and LCE. Let (ψ1
t ) be the

progressive process that aggregates this family given by Theorem 4.1. Let (v1t )

be a RCLL process that aggregates the value function associated with (ψ1
t ). By

Theorem 4.2, the stopping time θ∗1 = inf{t ≥ θ∗ , v1t = ψ1
t } is optimal for v1θ∗

and v1θ∗ = u1(θ∗).

The family {ψ(θ∗, θ) θ ∈ Tθ∗} is admissible, RC and LCE. Let (ψ2
t ) be the

progressive process that aggregates this family given by Theorem 4.1. Let (v2t )

be a RCLL process that aggregates the value function associated with (ψ2
t ). By

Theorem 4.2, the stopping time θ∗2 = inf{t ≥ θ∗ , v2t = ψ2
t } is optimal for v2θ∗ ,

and v2θ∗ = u2(θ
∗).

By Proposition 2.4, the pair of stopping times (τ∗1 , τ
∗
2 ) defined by

τ∗1 = θ∗1B + θ∗11Bc ; τ∗2 = θ∗21B + θ∗1Bc , (4.6)

where B = { u1(θ
∗) ≤ u2(θ

∗) } = { v1θ∗ ≤ u2θ∗ }, is optimal for v(S).
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Theorem 4.4. Let {ψ(θ, S), θ, S ∈ T0 } be a biadmissible family which is URC

and ULCE. Suppose that E[ess supθ,S∈T0
ψ(θ, S)p] <∞ for some p > 1. Then,

the pair of stopping times (τ∗1 , τ
∗
2 ) defined by (4.6) is optimal for v(S).

Note that the above construction of (τ∗1 , τ
∗
2 ) as hitting times of processes

requires stronger assumptions on the reward than those made in Theorem 2.3.

Futhermore, let us emphasize that it also requires some new aggregation results

(Theorem 4.1 and Theorem 4.2).

4.4 Proofs of Proposition 4.1, Theorem 4.1 and Theorem

4.2

We now give the proofs of Proposition 4.1, Theorem 4.1 and Theorem 4.2.

First, we give the short proof of the classical Proposition 4.1 which we recall

here (for the reader’s comfort).

Proposition 4.1 Let { h(S), S ∈ T0 } be a supermartingale system which is

right continuous along stopping times in expectation, then there exists a RCLL

adapted process (ht) which aggregates the family { h(S), S ∈ T0 }, that is

hS = h(S) a.s. .

Proof: Let us consider the process (h(t))0≤t≤T . It is a supermartingale and the

function t 7→ E(h(t)) is right continuous. By classical results (see Theorem 3.13

in Karatzas and Shreve (1994)), there exists a RCLL supermartingale (ht)0≤t≤T

such that for each t ∈ [0, T ], ht = h(t) a.s. . Then, it is clear that for each dyadic

stopping time S ∈ T0, hS = h(S) a.s. (for details, see step 2 of the proof of

Theorem 1.1). This implies that

E[hS ] = E[h(S)]. (4.7)

Since the process (ht)0≤t≤T is RCLL and since the family {h(S), S ∈ T0} is right

continuous in expectation, equality (4.7) still holds for any stopping time S ∈ T0.

Then, it remains to show that hS = h(S) a.s. but this is classical. Let A ∈ FS

and define SA = S1A+T1Ac . Since SA is a stopping time, E[hSA
] = E[h(SA)].

Since hT = h(T ) a.s. , it gives that E[hS1A] = E[h(S)1A], which gives the

desired result. �

We now give the proof of Theorem 4.1.

Theorem 4.1 Suppose that the admissible family of positive r.v. {φ(θ), θ ∈

T0 } is right continuous along stopping times, then there exists a progressive

process (φt) such that for each θ ∈ T0, φθ = φ(θ) a.s. , and such that there

exists a nonincreasing sequence of right continuous processes (φnt )n∈N such that

for each (ω, t) ∈ Ω× [0, T ], limn→∞ φnt (ω) = φt(ω).
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Proof: For each n ∈ N
∗, let us define a process (φnt )t≥0 that is a function of

(ω, t) by

φnt (ω) = sup
s∈D∩]t, [2

nt]+1
2n [

φ(s ∧ T ), (4.8)

for each (ω, t) ∈ Ω× [0, T ] where D is the set of dyadic rationals.

For each t ∈ [0, T ] and for each ε > 1
2n , the process (φnt ) is (Ft+ε)-adapted

and, for each ω ∈ Ω, the function t 7→ φnt (ω) is right continuous. Hence, the

process (φnt ) is also (Ft+ε)-progressive. Moreover, the sequence (φnt )n∈N∗ is

decreasing. Let φt be its limit i.e for each (ω, t) ∈ Ω× [0, T ],

φt(ω) = lim
n→∞

φnt (ω) .

It follows that for each ε > 0, the process (φt) is (Ft+ε)-progressive. Thus, (φt)

is (Ft+)-progressive and consequently (Ft)-progressive since Ft+ = Ft.

Step 1: Fix θ ∈ T0. Let us show that φθ ≤ φ(θ) a.s. .

Let us suppose by contradiction that the above inequality does not hold.

Then there exists ε > 0 such that the set A = {φ(θ) ≤ φθ−ε} satisfies P (A) > 0.

Fix n ∈ N . We have for all ω ∈ A that φ(θ)(ω) ≤ φn
θ(ω)(ω)− ε, where φn

θ(ω)(ω)

is defined by (4.8) with t replaced by θ(ω).

By definition of φn there exists t ∈]θ(ω), [2
nθ(ω)]+1

2n [∩D such that

φ(θ)(ω) ≤ φ(t)(ω) −
ε

2
.

We introduce the following subset of [0, T ]× Ω:

An =

{

(t, ω) , t ∈]θ(ω),
[2nθ(ω)] + 1

2n
[∩D and φ(θ)(ω) ≤ φ(t)(ω) −

ε

2

}

.

First, note that An is optional. Indeed, we have An = ∪t∈D{t} ×Bn,t , where

Bn,t =

{

θ < t <
[2nθ] + 1

2n

}

∩
{

φ(θ) ≤ φ(t) −
ε

2

}

and the process (ω, t) 7→ 1Bn,t
(ω) is optional since θ and [2nθ]+1

2n are stopping

times and since {φ(θ), θ ∈ T0 } is admissible. Also, A is included in π(An), the

projection of An on Ω, that is

A ⊂ π(An) =
{
ω ∈ Ω, ∃t ∈ [0, T ] s.t.(t, ω) ∈ An

}
.

Hence, by a section Theorem (see Chap. IV Dellacherie and Meyer (1977)),

there exists a dyadic stopping time Tn such that for each ω in {Tn < ∞},

(Tn(ω), ω) ∈ An and

P (Tn <∞) ≥ P (π(An))−
P (A)

2n+1
≥ P (A) −

P (A)

2n+1
.
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Hence, for all ω in {Tn <∞}

φ(θ)(ω) ≤ φ(Tn(ω))−
ε

2
and Tn(ω) ∈]θ(ω),

[2nθ(ω)] + 1

2n
[∩D.

Note that

P (∩n≥1{Tn <∞}) ≥ P (A)−




∑

n≥1

P (A)

2n+1



 ≥
P (A)

2
> 0.

Put Tn = T1 ∧ · · · ∧Tn. One has Tn ↓ θ and φ(θ) ≤ φ(T n)−
ε
2 for each n on

∩n≥1{Tn <∞}. By letting n tend to ∞ in this inequality, since {φ(θ), θ ∈ T0 }

is right-continuous along stopping times, we derive that φ(θ) ≤ φ(θ)− ε
2 a.s. on

∩n≥1{Tn <∞} which gives the desired contradiction.

Step 2: Fix θ ∈ T0. Let us show that φ(θ) ≤ φθ a.s. .

Put T n = [2nθ]+1
2n . The sequence (T n) is a nonincreasing sequence of stopping

times such that T n ↓ θ. Moreover, note that since the family {φ(θ), θ ∈ T0 }

is admissible, for each d ∈ D, for almost every ω ∈ {T n+1 = d}, φ(T n+1)(ω) =

φ(d)(ω). Now, we have T n+1 ∈ ]θ, T n[∩D. Also, for each ω ∈ Ω and each d ∈

]θ(ω), T n(ω)[∩D,

φ(d)(ω) ≤ sup
s∈]θ(ω),Tn(ω)[∩D

φ(s)(ω) = φnθ(ω)(ω),

where the last equality follows by definition of φn
θ(ω)(ω) (see (4.8) with t replaced

by θ(ω)). Hence,

φ(T n+1) ≤ φnθ a.s. .

Letting n tend to ∞, by using the right continuous property of {φ(θ), θ ∈ T0 }

along stopping times and the convergence of φn
θ(ω)(ω) to φθ(ω)(ω) for each ω, we

derive that φ(θ) ≤ φθ a.s. . �

We now give the proof of Theorem 4.2.

Theorem 4.2 θ(S) = inf{t ≥ S , vt = φt} is an optimal stopping time for

vS.

Proof: We begin by constructing a family of stopping times that are approxi-

matively optimal. For λ ∈ ]0, 1[, define the stopping time

θ
λ
(S) := inf{ t ≥ S , λvt ≤ φt } ∧ T . (4.9)

The proof follows exactly the proof of theorem 1.1 except for step1, which

corresponds to the following lemma:

Lemma 4.1. For each S ∈ T0 and λ ∈]0, 1[,

λv
θ
λ
(S)

≤ φ
θ
λ
(S)

a.s. . (4.10)
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By the same arguments as in the proof of Theorem 1.1, θ
λ
(S) is nondecreas-

ing with respect to λ and converges as λ ↑ 1 to an optimal stopping time which

coincides with θ(S) a.s. . �

Proof of Lemma (4.1): To simplify notation, θ
λ
(S) will be denoted by θ

λ
.

For the sake of simplicity, without loss of generality, we suppose that t 7→ vt(ω)

is RCLL for each ω ∈ Ω.

Fix ω ∈ Ω. In the following, we only use simple analytic arguments.

By definition of θ
λ
(ω) (1.7), for each n ∈ N

∗, there exists t ∈ [θ
λ
(ω), θ

λ
(ω) + 1

n
[

such that λvt(ω) ≤ φt(ω).

Note also that for each m ∈ N
∗, φt(ω) ≤ φmt (ω).

Fix now m ∈ N
∗ and fix α > 0.

By the right continuity of t 7→ vt(ω) and t 7→ φmt (ω), there exists tmn (ω) ∈

D ∩ [θ
λ
(ω), θ

λ
(ω) + 1

n
[ such that

λvtmn (ω)(ω) ≤ φmtmn (ω)(ω) + α (4.11)

Note that lim
n→∞

tmn (ω) = θ
λ
(ω) and tmn (ω) ≥ θ

λ
(ω) for any n.

Again, by using the right continuity of t 7→ vt(ω) and t 7→ φmt (ω) and by letting

n tend to ∞ in (4.11), we derive that

λv
θ
λ
(ω)

(ω) ≤ φm
θ
λ
(ω)

(ω) + α ,

and this inequality holds for each α > 0, for each m ∈ N
∗ and for each ω ∈

Ω. By letting m tend to ∞ and α tend to 0, we derive that for each ω ∈ Ω,

λv
θ
λ
(ω)

(ω) ≤ φ
θ
λ
(ω)

(ω), which ends the proof of the lemma. �

A

We recall the classical following theorem (see for example Karatzas and Shreve

(1998), Neveu (1975)).

Theorem A.1. (Essential supremum) Let (Ω,F , P ) be a probability space and

let X be a non empty family of positive r.v. defined on (Ω,F , P ). There exists

a r.v. X∗ satisfying

1. for all X ∈ X , X ≤ X∗ a.s. ,

2. if Y is a r.v. satisfying X ≤ Y a.s. for all X ∈ X , then X∗ ≤ Y a.s. .

This r.v. , which, is unique a.s. , is called the essential supremum of X and is

denoted ess sup X .

Furthermore, if X is closed under pairwise maximization (i.e X,Y ∈ X

implies X ∨Y ∈ X ), then there is a nondecreasing sequence {Zn }n∈N of r.v. in

X satisfying X∗ = lim
n→∞

Zn a.s. .
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B

B.1 Characterization of minimal optimal two stopping times

In order to give a characterization of minimal optimal stopping times, we in-

troduce the following partial order relation on R
2: (a, b) ≺ (a′, b′) if and only

if

[(a ∧ b < a′ ∧ b′) or (a ∧ b = a′ ∧ b′ and a ≤ a′ and b ≤ b′)].

Note that although the minimum of two elements of R2 is not defined, the in-

fimum, that is the greatest minorant of the couple, does exist and inf[(a, b), (a′, b′)] =

1{a∧b<a′∧b′}(a, b) + 1{a′∧b′<a∧b}(a
′, b′) + 1{a∧b=a′∧b′}(a ∧ a

′, b ∧ b′).

Note also that if (τ∗1 , τ
∗
2 ), (τ

′

1, τ
′

2) ∈ T0 × T0 are optimal for v(S), then the

infimum of the couple inf[(τ∗1 , τ
∗
2 ), (τ

′

1, τ
′

2)] in the sense of the relation ≺ a.s. is

optimal for v(S).

One can show that the two following assertions are equivalent:

1. A pair (τ∗1 , τ
∗
2 ) ∈ T0 × T0 is minimal optimal for v(S)

(i.e is the minimum for the order ≺ a.s. of the set
{
(τ∗1 , τ

∗
2 ) ∈ T 2

S ,

v(S) = E[ψ(τ∗1 , τ
∗
2 ) | FS]})

and θ∗ = τ∗1 ∧ τ∗2 and θ∗1 , θ
∗
2 ∈ T0 are such that θ∗2 = τ∗2 on {τ∗1 < τ∗2 } and

θ∗1 = τ∗1 on {τ∗1 > τ∗2 }.

2. (a) θ∗ ∈ T0 is minimal optimal for u(S),

(b) θ∗2 ∈ T0 is minimal optimal for u2(θ
∗) on {u1(θ∗)<u2(θ∗)},

(c) θ∗1 ∈ T0 is minimal optimal for u1(θ
∗) on {u2(θ

∗)<u1(θ
∗)},

and τ∗1 = θ∗1{u1(θ∗)≤u2(θ∗)} + θ∗11{u1(θ∗)>u2(θ∗)}, τ
∗
2 = θ∗1{u2(θ∗)≤u1(θ∗)}

+θ∗21{u2(θ∗)>u1(θ∗)}.

B.2 Characterization of minimal optimal d-stopping times

Consider the following partial order relation ≺d on R
d defined by induction in

the following way:

for d = 1, ∀a, a′ ∈ R a ≺1 a
′ if and only if a ≤ a′,

and,

for d > 1,

∀(a1, · · · , ad), (a
′
1, · · · , a

′
d) ∈ R

d (a1, · · · , ad) ≺d (a′1, · · · , a
′
d) if and only if

either a1 ∧ · · · ∧ ad < a′1 ∧ · · · ∧ a′d ,

or







a1 ∧ · · · ∧ ad = a′1 ∧ · · · ∧ a′d , and for i = 1, · · · d,

ai = a1 ∧ · · · ∧ ad =⇒







a′i = a′1 ∧ · · · ∧ a′d and

(a1, · · · , ai−1, ai+1, · · · , ad) ≺d−1

(a′1, · · · , a
′
i−1, a

′
i+1, · · · , a

′
d).
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Note that for d = 2 the order relation ≺2 is the order relation ≺ defined above.

One can show that a d-stopping time (τ1, · · · , τd) is the d-minimal optimal

stopping time for v(S), that is is minimal for the order ≺d in the set { τ ∈

T d
S , v(S) = E[ψ(τ) | FS ] } if and only if

1. θ∗ = τ1 ∧ · · · ∧ τd is minimal optimal for u(S),

2. for i = 1, · · · , d θ∗(i) = τi ∈ T d−1
S is the d − 1-minimal optimal stopping

time for u(i)(θ∗) on the set {u(i)(θ∗) ≥ ∨k 6=iu
(k)(θ∗)}.
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