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Abstract.

We propose a scheme for testing the weak equivalence principle (Universality of Free

Fall) using an atom-interferometric measurement of the local differential acceleration

between two atomic species with a large mass ratio as test masses. A apparatus

in free fall can be used to track atomic free-fall trajectories over large distances.

We show how the differential acceleration can be extracted from the interferometric

signal using Bayesian statistical estimation, even in the case of a large mass and

laser wavelength difference. We show that this statistical estimation method does

not suffer from acceleration noise of the platform and does not require repeatable

experimental conditions. We specialize our discussion to a dual potassium/rubidium

interferometer and extend our protocol with other atomic mixtures. Finally, we discuss

the performances of the UFF test developed for the free-fall (0-g) airplane in the ICE

project (http://www.ice-space.fr) .
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1. Introduction

The Einstein equivalence principle is fundamental to the standard model of particle

physics and all metric theories of gravity [1, 2]. It can be broken into three elementary

principles: the local Lorentz invariance; the local position invariance (also known

as universality of red shift); and the universality of free-fall (UFF), stating that all

freely-falling point particles follow identical trajectories independent of their internal

composition. The Lorentz invariance and the position invariance are local properties

and can be tested to unmatched precision using atomic clocks [3, 4, 5] and ultra-stable

cavities [6]. On the contrary, the UFF can only be tested by tracking trajectories,

ideally of freely-falling test masses. Various extensions to the current theoretical-physics

framework predict violations of the UFF [7]. It is thus important to look experimentally

for such violations and push the limits of experimental tests of the UFF. Moreover,

laboratory experiments are an important complement to astrophysical observations in

testing fundamental physics, because of the possibility of controlling the environment

and repeating the experiments in varying conditions.

In this article, we show that using an atom interferometer with two different atomic

species in free fall can lead to an accurate test of the UFF, even for different laser

wavelength and mass (i.e. different scaling factors for the interferometers). We present

a protocol that allows us to accurately extract the acceleration difference and show that

this measurement is almost insensitive to strong vibrational noise or platform movement,

which usually limit the atom interferometer accuracy, or platform movement. We show

how Bayesian statistical methods introduced in [9] for two identical atom interferometers

can be extended to extract the acceleration difference between the two atomic species,

taking advantage of phase-correlated measurements between both interferometers. For

the sake of clarity, we focus on the simultaneous use of rubidium 87 and potassium

39 atoms in a light-pulse gravimeter [8]. Comparing the acceleration of these two

different atomic species constitutes a meaningful test of the UFF, as they combine a

large mass ratio (almost a factor of two), very different nuclear compositions (37 protons

and 50 neutrons for 87Rb and 20/19 for 39K) and almost equal laser wavelength and thus

interferometer scale factors. We show that, with reasonable experimental parameters,

a test could reach the accuracy of η ∼ 5·10−11 in a one-day parabolic flight campaign

in a zero-g airplane, and, if extended to long-duration experiments, could compete with

the best available apparatus. Our discussion can be generalized to other atomic species

such as the mixture proposed in [10] or lighter atomic species.

2. Testing the Universality of Free-Fall

A figure of merit often used to characterize a test of the UFF is the Eötvös ratio η, giving

the fractional difference in acceleration between two test masses in free-fall: η = ∆a/a.

Alternate quantum gravitation theories predict deviations from the UFF for η . 10−13

[11, 12, 13]. Current experimental limits on violations of the UFF (η < 10−13) are set
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by lunar laser-ranging measurements [14] and torsion-balance laboratory experiments

[15]. Tests of the UFF by monitoring the acceleration difference between two objects

freely falling simultaneously have shown η < 10−10 [16]. While all these experiments

test the validity of the UFF on macroscopic objects, in the quest for a quantum gravity

theory, it is interesting to look for deviations on elementary, or microscopic, particles,

where quantum mechanics is needed to describe their evolution [17, 18].

The accuracy and sensitivity of local-acceleration measurements using atom-

interferometry nowadays rival state-of-the-art conventional accelerometers using

macroscopic test masses [8, 19, 20]. With such sensors, the quantity measured directly

relates to the acceleration of weakly-interacting particles via experimentally well-

controlled quantities, such as laser wavelengths [21]. In addition, the evolution of

these particles in the gravitational field can be modeled within a covariant quantum

field theory [22]. Recent results using atom-interferometric gravimetry to compare the

acceleration between two isotopes [19, 23] have demonstrated the possibility of atom-

interferometric tests of the UFF. Ongoing efforts to extend the size of inertial-sensing

atom interferometers by increasing the interrogation time [24, 10, 25] open the door to

high-accuracy atom accelerometers which will be very sensitive to smaller accelerations,

thus pushing the limits of these tests. These long interrogation times, i.e. large free-fall

heights, can be achieved when using a large experimental chamber to launch the atoms

such as a ten-meter-high fountain, as suggested in [10].

Compact apparatuses can also be used in reduced-gravity environments, such as

drop towers [26, 27], orbital platforms [28], or atmospheric parabolic flight [25]. However,

increasing the interrogation time also increases the sensitivity of the interferometer to

acceleration noise [29] which can scale from ∼ 10−5 m.s2 in drop towers to ∼ 10−2 m.s2

in the 0-g Airbus [30] and on the International Space Station [31]. Atoms, isolated in a

vacuum chamber, are truly in free-fall in the Earth’s local gravity field, as long as they

do not hit the chamber walls, or experience field gradients (optical or static magnetic).

However, their acceleration is recorded relative to an ill-defined experimental frame.

This can compromise the increase in sensitivity. Measuring differential phase between

similar interferometers using the same light has been shown to reject common-mode

inertial noise up to large scaling-factors [32, 33, 34], however, in the case of an UFF

measurement, the two interferometers compared do not share the same sensitivity to

inertial effects and the common-mode rejection is not straightforward.

3. Differential atom interferometer in free-fall

The acceleration-measurement process on each single species can be pictured as marking

successive positions of freely-falling atoms with a pair of Raman lasers, pulsed in time.

The resulting atomic phase shift φ is the difference between the relative phase of the

Raman lasers at the atom’s successive classical positions [19, 35]. When the Raman

lasers are used in a retroreflected configuration, this phase simply relates to the distance

between the atomic cloud and the reference retroreflecting mirror. In such a three-pulse
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interferometer, using atoms without initial velocity, the inertial phase shift varies with

the acceleration a as:

φ = k a T 2, (1)

where a is the acceleration of the atoms relative to the mirror, k is the effective

wavevector of the Raman lasers, and T is the time between successive pulses.

To test the UFF, we need to extract the difference in acceleration between the

two species. However, in atom interferometers with internal-state labeling [21], the

experimental signal is the population ratio n between the two output arms of a single

interferometer n ∼ cos(φ+Φ), with Φ related to the phase noise of the Raman lasers [24]

and contributions due to vibrations and unwanted inertial effects on the retroreflecting

mirror [36]. To extract an absolute value of the interferometric phase, accumulating

data to scan a fringe is required. This accumulation of several experimental points can

thus be hindered by the acceleration noise of the platform, as the acceleration measured

may vary from one measurement to another. To have access to long integration, we

thus want to extract as much information as possible about the phase difference with a

minimum set of independent measurements.

We now focus on the Potassium(K)-Rubidium(Rb) atom interferometer described

in [24]. The UFF experimental signal that we are interested in is the Eötvos ratio,

η = 2(aK − aRb)/(aK + aRb) with aK and aRb the accelerations of potassium and

rubidium. We thus want to extract the acceleration difference δa = aK − aRb. This can

be related directly to the difference of the inertial phase of each interferometer: using

Equation (1), δφ = φK − φRb = kKaKT 2
K − kRbaRbT

2
Rb where kK = 4π/767 nm−1 and

kRb = 4π/780 nm−1 are the effective wave-vectors of the Raman transitions, and TK and

TRb are the interrogation times for the K and Rb interferometers respectively. In order

to directly read out δa, we need to adjust the respective interferometer interrogation

times so that they have the same scale factor: kRbT
2
Rb = kKT 2

K = S, i.e. TRb/TK ∼ 1.008.

In this case, we simply have

δφ = Sδa. (2)

As in [9] we make a statistical description of the measurement process in a two-

species interferometer. Two quantities are measured:
{

nK = A + B cos(φK + ΦK)

nRb = C + D cos(φRb + ΦRb)
(3)

where the capital letters represent fluctuating quantities: A and C are the offsets of the

population measurement, B and D are the fringe visibilities, and ΦK and ΦRb are related

to the phase and acceleration noises on the two interferometers. In the following, we

neglect the laser-induced phase noise, due e.g. to finite laser linewidth [37] or microwave

source jitter [24], since it can be reduced with appropriate phase-locking techniques [36].

The interferometric phase noise, due to vibrations or other uncontrolled inertial

effects, appears as shifts of the local Raman phase for each interferometer. Following
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[38] and assuming a white acceleration noise of power spectral density (PSD) S0
α, the

standard deviation of ΦK,Rb can be written

σΦi
= kiT

3/2
i

√

2S0
α

3
, i = K, Rb. (4)

This phase noise can be expressed as a random spatial displacement X(t) of deviation

σX = σΦ/k of the retroreflecting mirror. The effect of other common-mode, spatial,

Raman-phase fluctuations such as optical aberrations [39] can also be included in this

fluctuating variable X.

When calculating the differential response of the two-species atom interferometer,

the relative phase noise between the two interferometers can be written ∆Φ = ΦK −

ΦRb = kK X̃ where the standard deviations of X̃ and X are simply related by a vernier-

scale relation

σX̃ = σX
δk

2k
(5)

with σX calculated for T = TK and δk/2k = (kK−kRb)/2kK ≈ 8.5·10−3. The derivation

of this scale relation and its physical explanation are detailed in Appendix B. We can

now rewrite Eq. (3) as a simplified measurement model, highlighting differential effects:
{

nK = A + B cos(Φ̃Rb + δφ + kK X̃)

nRb = C + D cos Φ̃Rb

(6)

The phase Φ̃Rb = SaRb + ΦRb of the rubidium interferometer is taken as the reference.

The phase offset in the potassium interferometer includes the UFF signature, δφ and

the effect of vibrations of the retroreflecting mirror, kK X̃.

4. Extracting the differential phase using Bayesian analysis

To extract the differential phase δφ from statistically independent data acquired

during different measurement sequences, we use recursive Bayesian estimation [40, 41].

Although several solutions for signal processing in atom-interferometric inertial sensors

have been studied [9, 42], Bayesian estimators make best use of a noise model for

estimating information from experimental data [9] and they have been successfully

used in quantum optics [41, 43] or in optical interferometers [44]. Moreover, Kalman

filtering, a restricted version of Bayesian estimation, plays a critical role for proper use

of fiber-optic gyroscope data [45]. In the Bayesian framework, the parameters to be

estimated are considered as random variables, whose probability distribution is deduced

from the measurements by inverting the measurement model. Using Bayes’ theorem,

we calculate the probability distribution function p(δφ | (nK,nRb)i) for the parameter δφ

given the results of a coupled measurement on both interferometers (nK, nRb)i, for each

measurement i. The probability distribution p(δφ | (nK,nRb)1, (nK,nRb)2, . . .) for δφ, given

all measurements, is the product of all these conditional probabilities:

p(δφ | (nK,nRb)1, (nK,nRb)2, . . .) = p(δφ | (nK,nRb)1) p(δφ | (nK,nRb)2) . . . (7)
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Figure 1. Simulation of the model of Eq. (6). The random variable Φ̃Rb is generated

from a uniform distribution taken in the interval 0, 2π. We generate X from a normal

distribution centered around 0 with σX = 1.2 µm. A, B, C and D are generated from

a normal distribution with σ = 0.05. The mean values are 0 for A and C and 1 for B

and D. For each simulation are displayed (going clockwise, starting bottom left) : the

measurement probability in the (nRb, nK) plane for the value of the hidden parameter

δφ choosen in the simulation, the different measurements actually drawn, the successive

probability-distribution estimations for δφ, and the distance between estimated values

of δφ and the actual value.

The non linearities of the measurement model introduced by the trigonometric functions

in Eq. (6), with different periods kRb and kK, make the analytical calculation of

the conditional probability required for the Bayesian estimation tedious and the

resulting expression is computationally costly to evaluate. We calculate this probability

distribution (i.e. the “posterior”) by using Monte Carlo sampling of the state space

with the noise model (Eq. (6)). We use the probability law to estimate the reversed

conditional probability (i.e. the “prior”) p(nK, nRb|δφ). A kernel density estimator [40]

can be used to reduce the number of sampling points required, though this may not

increase overall numerical efficiency. The posterior, used for Eq. (7), is obtained from

the prior using Bayes’ theorem [46].

We have run Monte Carlo simulations of the estimation process for different values

of displacement noise amplitude σX with the measurement model described in Eq. (6),

as pictured in figure 1. We use Gaussian noise of standard deviation σ = 0.05 for the

various parameters. The common-mode phase Φ̃Rb is taken to be uniformly random in

the interval [0, 2π]. As seen in figure 2, the estimator converges to a precise value of the
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Figure 2. Standard deviation of the Bayesian estimation of the differential phase δφ

between K and Rb interferometers. The standard deviations of the estimation of the

differential phase decrease at different rates with repeated measurements for different

mirror-displacement amplitudes (dotted lines). The convergence of the points towards

the dotted lines shows how correlated noise is handled by the algorithm.

differential phase with fewer than 10 uncorrelated measurements for fluctuations of X

up to a few micrometers, which corresponds to a drift of the one-species interferometric

signal by several complete fringes. This surprising result comes from the vernier scale

relation in Eq. (5) that reduces the differential measurement sensitivity to Raman-phase

fluctuations.

One should note that if δφ ∼ 0, the measurements performed do not contain enough

information for good estimation (we have checked that the Fisher information matrix

[40] is zero for δφ = 0). This can be easily understood since the data nK and nRb are

then distributed along a single line and we lose the sensitivity to phase/vibration noise

[42]. It is thus necessary to introduce a controlled phase jump of π/2 in one of the two

interferometers, e.g. on the phase of the Raman lasers. This choice of interferometric

phase shift corresponds to working on the side of a fringe in a standard interferometer:

the two parameters are maximally independent, distributed on a large-ellipticity curve

rather than a flat line (see figure 1), giving optimal measurement sensitivity.

We have performed other simulations for different choices of noise distribution

for X, which can be related to acceleration-noise power spectral density using the

interferometer sensitivity function as described in Appendix B. We find that the

convergence rate is not dependent on the nature of the bell-shaped noise distribution,

nor on its behavior in its wings, but only on the RMS amplitude of the fluctuations. In

addition, we have performed simulations for different dual-interferometer configurations

in which the distance between the effective Raman transition wave vectors is reduced,

thus reducing the Vernier-scale effect. Specifically we have investigated using the

potassium D1 transition (at 770 nm) with rubidium, or the two isotopes of rubidium,
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K–D2/Rb K–D1/Rb 85Rb/87Rb

σX ∼ 0.1 µm .022 .022 .021

σX ∼ 0.5 µm .037 .033 .021

σX ∼ 1.5 µm .101 .075 .021

σX ∼ 3.0 µm .229 .166 .022

Table 1. Standard deviation on the phase estimate, in radians, after 30 measurements,

for different mirror-displacement amplitudes σX, and for different pairs of Raman

transitions. The species and transition lines considered here are: the potassium D2

line at 767 nm, the potassium D1 line at 770 nm, and the rubidium 85 and 87 D2 lines

at 780 nm, with a distance of 3 GHz ∼ 0.03 nm between the two isotopes.

with transitions separated only by 3 GHz ∼ 0.03 nm (see tab. 1). We find that for

small variations of X, (σX < 0.5 µm typ.), the phase-estimation is not limited by the

Vernier scale effect as the convergence speed is similar for all three intereferometer

configurations.

5. Higher-order inertial effects

We now consider the contribution of additional inertial effects on the differential

measurement strategy. Equation (1) gives only dependence of the phase shift to an

acceleration, and does not include rotation, gravity gradients, and higher-order effects.

The effect of rotation can, in principle, be rejected by a feed-forward on the phase of

the lasers [47] and a accurate control of the atom cloud velocity after release. We are

then left with the major second-order contribution to the phase shifts, the effect of

the gravity gradients. Since the atomic trajectories in the two interferometers explore

slightly different altitudes, gravity gradients will add a contribution to the inertial phase

shift [48, 49]:

φγ ∼ k γ T 2
( 7

12
T 2a − (v −

vr

2
)T

)

, (8)

where v is the relative velocity between the center of mass of the atom cloud and the

reference mirror. vr = ~k
m

is the recoil velocity and γ the gravity gradient. If the scale

factors S of both interferometers are kept constant, the numerical value of the total

differential phase shift (Eq. 2) then becomes δφtot = δφ + δφγ with δφγ the residual

gradient-induced phase shift. In general, the contribution to δφγ of first term in Eq. (8)

is negligible and v can be chosen to compensate for the recoil velocity ~k/m.

6. Conclusion

We finally turn to the specific case of the experiment in the 0-g airplane described in

[25]. We can use the results from our simulation to give an order of magnitude of the

precision achievable by a campaign of measurements in Zero-G flights. For a residual

displacement from free fall X such as σX ∼ 1 µm (achieved with proper decoupling
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from the low frequency vibrations), after 30 data points, the standard deviation on δφ

is ∼ 3·10−2 rad. Thus, for an interrogation time of T = 2 s, the differential-acceleration

resolution is ∼ 2.5·10−10 m·s−2, and the η parameter characterizing a test of the UFF can

be measured to a precision of η ∼ 5·10−11. For the experimental conditions encountered

in a 0-g plane, an initial velocity v ≤ 1 cm·s−1 and T = 2 s, the effect of gravity gradients

is negligible.

In conclusion, we have shown that Bayesian estimation can be efficient to perform

a differential measurement between two inertial sensors using atoms of different mass

and interrogation wavelength. Even for large vibrational noise, and large interrogation

times, the Bayesian estimator converges rapidly. The measurement of the differential

phase shift , i.e. the acceleration difference can thus be measured to a high precision.

This opens new perspectives for the development of high precision test of fundamental

physics such as tests of the equivalence principle. For example, we predict a precision

of η ∼ 5·10−11 when using only 30 experimental data points with a free-fall time of

4 s in the Zero-G Airbus, such as for the ICE experiment [24, 25]. In the future, free-

fall and integration times may be increased by deploying atom-interferometric inertial

sensors on dedicated orbital platforms for next-generation tests of the UFF, at the price

of an increased sensitivity to vibrational noise. The use of fast-convergence estimators

will help rejecting this acceleration noise and thus relax the requirement on drag-free

vibration isolation performance. A rough estimate indicates that for 20 seconds of

interrogation time and an integration over 1 year [50], a target accuracy of η ∼ 8·10−15,

close to that of the project µSCOPE [51], is reachable with no specific drag-free platform.
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Appendix A. Simple derivation of the single-atom interferometer

spatial-displacement noise

It can be shown [20, 52] that the major contribution to the interferometric phase shift is

due to the interaction with the Raman beams. Whenever the state of the atom changes

during such an interaction, it acquires an additional phase φi(ξi, ti) = k ξi − ω ti. The

sign of the phase depends on the initial state of the atom. The position of the atom ξi

with respect to the retroreflecting mirror, taken at the time ti of the pulses i = {1, 2, 3},

can be written ξi = ξ(ti) = x(ti) +X (ti) where x(t) is the absolute position of the atom

and X (ti) is a random mirror position related to the vibration noise. Taking ξ2 = t2 = 0,
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t3 = −t1 = T and tracing all the state changes leads to a phase difference

φ = k [x(−T ) + x(T )] + k [X (−T ) + X (T )] (A.1)

Without gravitational field the trajectories are straightlines and the inherent

symmetry of the situation leads to φ = k [X (−T ) + X (T )]. Here, the interferometric

phase shift is only related to the vibrational noise and can be written φ = Φ = k X(T )

where X(T ) is a random variable representing the amplitude of the vibrational noise

phase shift Φ for an interrogation time T , as calculated in Appendix B.

The introduction of a gravitational field breaks the symmetry. The atom now falls

three times as far during transit in the second half of the interferometer as in the first

half and we find an additional contribution to the phase shift φ = k a T 2 proportional

to the gravitational acceleration, so that the interferometric signal becomes :

n = A + B cos(φ + Φ) (A.2)

Appendix B. Interferometric phase noise of the two-species accelerometer

In this section, we derive the vernier scale relation in Eq. (5) between the interferometric

phase noise standard deviations of the two-species (K-Rb) and one-species (Rb)

accelerometers. Following [29, 38], the interferometric phase noise can be written

Φ =

∫ +∞

−∞

h(t)
d(kX (t))

dt
dt, (B.1)

where h(t) is the sensitivity function of the interferometer (see reference [29] for its

definition) and X (t) represents the retroreflecting mirror position at time t so that

d2X (t)/dt2 = α(t) with α(t) the acceleration noise of the experimental platform.

Integrating by parts equation (B.1) leads to

Φ =
[

f(t)
d(kX (t))

dt

]+∞

−∞

−

∫ +∞

−∞

k f(t)α(t)dt, (B.2)

with k f(t) =
∫ t

0
k h(u)du. Neglecting the duration of the Raman light pulses (τ ∼ 20µs

typically) with respect to the interrogation time (T ∼ 2s), the function h(t) is an odd

and piecewise constant function and the function f(t) is an even and piecewise linear

function; moreover, h(t) and f(t) are equal to zero out of the window [−T, T ]. Thus,

the first term in the above equation vanishes and the variance of the interferometric

phase noise can be written:

σ2
Φ = 〈Φ2〉 =

∫∫ +∞

−∞

dt1dt2 kf(t1)kf(t2) 〈α(t1)α(t2)〉. (B.3)

Assuming a white acceleration noise, i.e. 〈α(t1)α(t2)〉 = S0
α δ(t1 − t2) results in a

major simplification of equation (B.3), and a straightforward single-integration of f(t)2

finally leads to:

σ2
Φ = (σX/k)2 = 2k2T 3S0

α/3 (B.4)
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Figure B1. Comparison of the transfer functions of the two-species (K-Rb) and

one-species (Rb, dashed line) accelerometers in the low frequency range for T = 2 s.

In the case of a differential acceleration measurement, the two interferometers have

different sensitivities hK(t) and hRb(t) (because TK 6= TRb). Additionally, the impact of

the acceleration noise is slightly different on the K-interferometer (∝ kKX (t)) and on the

Rb-interferometer (∝ kRbX (t)). The relative interferometric phase noise ∆Φ = ΦK−ΦRb

can be easily calculated by replacing kf(t) by kKfK(t) − kRbfRb(t) in Eq. (B.3) . We

find to leading order in δk/k ≈ 0.017:

σ2
∆Φ =

2k2T 3S0
α

3

(δk

2k

)2

+ O
(δk

k

)3

. (B.5)

Combining Eq. (B.5) and Eq. (B.4), we can estimate the vibration noise rejection ratio

between the one-species and the two-species interferometer:

σX̃

σX

=
kK σ∆Φ

kK σΦ

≈
δk

2k
≈ 0.00852. (B.6)

It is also interesting to visualize this noise rejection of the two-species interferometer

in the frequency domain since one often has access to the acceleration noise spectrum

of the experimental platform. In this formalism, the interferometer sensitivity functions

HK(ω) and HRb(ω) result from the Fourier transforms of hK(t) and hRb(t). The variance

of the relative interferometric phase noise can be written:

σ2
∆Φ =

∫ +∞

0

|H(ω)|2
Sα(ω)

ω4

dω

2π
, (B.7)

with Sα(ω) the acceleration noise PSD and H(ω) = HK(ω) − HRb(ω) the transfer

function of the differential interferometer. In figure B1, we have plotted |H(ω)|2/ω4

and the transfer function |HRb(ω)|2/ω4 of a one-species (Rb) interferometer, for perfect
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π/2 pulses, an effective Rabi frequency Ω = 2π × 50kHz of the Raman transitions and

T = 2 s. This figure shows that the relative phase noise ∆Φ is considerably reduced

with respect to the phase noise of a single interferometer in the low frequency domain.

This feature is all the more interesting that the amplitude of the acceleration noise of

the platform (such as the Zero-G Airbus) is usually the highest at low frequencies.

Appendix C. Noise rejection ratio in the aircraft A300-0G experimental

platform

In this appendix we evaluate the noise rejection of the two-specices accelerometer in the

experimental platform where the I.C.E. experiment is performed, namely the A300-0G

aircraft carrying out parabolic flights. We take into account the measured acceleration

noise spectrum Sα(ω) in the plane during the quiet part of the parabola , in the direction

of the Raman beams propagation. With the notations introduced in Appendix B, the

noise rejection ratio is now given by

σX̃

σX

=
σ∆Φ

σΦ

=
[

∫ +∞

0
dω |H(ω)|2Sα(ω)/ω4

∫ +∞

0
dω |HK(ω)|2Sα(ω)/ω4

]1/2

, (C.1)

with H(ω) the transfer function of the differential accelerometer (HK(ω) for the K-

accelerometer).
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Figure C1. Left : measured acceleration noise spectrum of the A300-0G aircraft in

the direction of the Raman beams. Right : noise rejection ratio between the one-

species and the differential accelerometers for various interrogation times TK (various

scale factors). The squares correspond to a white acceleration noise whereas the dots

account for the real noise spectrum in the plane.

In figure C1, we have plotted the evolution of the rejection ratio with the

total interrogation time of the interferometer. We obtained these data by numerical

integrations in equation (C.1), performed on one hand for the real acceleration noise

in the plane, and on the other hand for a white noise (Sα(ω) = S0
α). In the case of

a white acceleration noise, we find that the noise rejection ratio is independant of the

interrogation time and is equal to the vernier factor δk/2k ≈ 0.0085, as it was derived

in Appendix B. This rejection ratio can be seen as the weighted average rejection on a
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limited bandwidth around 1/T which contributes the most to the interferometric phase

noise. When T is increased, this bandwidth shifts to lower frequencies together with

the rejection efficiency. On a white noise, this leads to a constant rejection ratio. On a

structured noise such as the real noise spectrum measured in the plane (figure C1), this

is no longer true. For TK = 100 ms, the relevant bandwidth is around 10 Hz where the

spectrum is relatively flat and we find a rejection similar to the white spectrum case. For

larger values of TK , the noise spectrum gives more weight to the low frequencies for which

rejection is more efficient. The rejection ratio is then improved up to a factor 3 as one

can see in figure C1. In other words, both accelerometers (one species and two-species)

operate where the noise is stronger for longer T , but the two-species accelerometer phase

noise will increase less than the one-species one.
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