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UNIVERSAL ENVELOPING ALGEBRAS OF LIE

ANTIALGEBRAS

SÉVERINE LEIDWANGER AND SOPHIE MORIER-GENOUD

Abstract. Lie antialgebras is a class of supercommutative algebras recently
appeared in symplectic geometry. We define the notion of enveloping alge-
bra of a Lie antialgebra and study its properties. We show that every Lie
antialgebra is canonically related to a Lie superalgebra and prove that its en-
veloping algebra is a quotient of the enveloping algebra of the corresponding
Lie superalgebra.

Introduction

In 2007, Ovsienko [11] introduced a class of non-associative superalgebras called
Lie antialgebras. The axioms were established after encountering two “unusual”
algebraic structures in a context of symplectic geometry: the algebras, named asl2
and the conformal antialgebra AK(1). Ovsienko found that both of them are related
to an odd bivector fields on R2|1 invariant under the action of the orthosymplectic
Lie superalgebra osp(1|2). The algebra AK(1) is also related to the famous Neveu-
Schwartz Lie superalgebra.

It turns out that the Lie antialgebras asl2 and AK(1) are particular cases of
Jordan superalgebras, known as tiny Kaplansky superalgebra K3 and full derivation
superalgebra, respectively. The algebra K3 appears in the classifications of Jordan
superalgebras made in the middle of 70’s by Kac [5] and Kaplansky [4], while the
full derivation superalgebra is the main example of the article of McCrimmon on
Kaplansky superalgebras [9]. The axioms of Lie antialgebras appear throughout [9]
but no general theory is developed. Lie antialgebras are somehow a combination of
Kaplansky and Jordan superalgebras.

The basics for the representation theory of Lie antialgebras and their relation to
Lie superalgebras was also developed in [11]. The theory is specific for Lie antial-
gebras and cannot be applied to the more general class of Jordan superalgebras.

The present paper is a representation theoretic approach to Lie antialgebras in
continuation of [11]. We show that every Lie antialgebra canonically corresponds to
a Lie superalgebra, this construction was given in [11] without proof. We define the
notion of universal enveloping algebra of a Lie antialgebra and establish a universal
property. We show that the PBW property is not satisfied in general. Our main
result is a realization of the enveloping algebra of a Lie antialgebra as a quotient of
the universal enveloping algebra of the corresponding Lie superalgebra. We deduce
that every representation of a Lie antialgebra can be extended to a representation
of the corresponding Lie superalgebra as announced in [11].

Representations and modules of Jordan superalgebras, in particular of the tiny
Kaplansky superalgebra, have been studied by several authors [7, 8, 12] (see also [10]).
In this paper, we compare different approaches and definitions.
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2 SÉVERINE LEIDWANGER AND SOPHIE MORIER-GENOUD

The paper is organized as follows.
In Section 1, we recall the definitions of Jordan superalgebras and Kaplansky

superalgebras. We explain the relation between these algebras and the Lie antial-
gebras. The relation is based on results appearing in [9]. We also recall the notions
of representations and modules for these algebras.

In Section 2, we define the universal enveloping algebra U(a) of a Lie antialgebra.
We establish a universal property and discuss the Poincaré-Birkhoff-Witt theorem
for U(a). The PBW property fails in general but holds true for K3.

In Section 3, we recall the construction [11] of the adjoint Lie superalgebra
ga associated to a. We formulate and prove our main theorem stating that the
enveloping algebra U(a) is a quotient of U(ga). As a consequence, we obtain the
relation between representations of a and those of ga as announced in [11]. We
illustrate the constructions in the case of the tiny Kaplansky algebra.

Section 4 is entirely devoted to the case of the algebra AK(1), the conformal
antialgebra, also known as full derivation algebra. We study its enveloping algebra
and the representations.

Section 5 contains the computations establishing the Jacobi identity in ga. The
computations are not straightforward and were missing in [11].

Acknowledgments: We are grateful to R. Berger, C. Conley and V. Ovsienko for
enlightening discussions and helpful references.

1. Jordan, Kaplansky and Ovsienko superalgebras

1.1. Definitions. First recall that a superalgebra A is an algebra with a grading
over Z2, i.e

A = A0 ⊕ A1, Ai ·Aj ⊂ Ai+j .

Elements in the subspaces Ai, i = 0, 1 are called homogeneous elements. For
a ∈ Ai, the value i is called the parity of a that we denote by ā ∈ {0, 1}.

A superalgebra is called supercommutative if it satisfies

a · b = (−1)āb̄ b · a,

for all homogeneous elements a, b.
A superalgebra is called half-unital (cf [9]) if it contains an even element ε such

that

ε · a = a, a ∈ A0, ε · a = 1
2a, a ∈ A1.

Throughout this paper we consider algebras over the field K = R or C.

Lie antialgebras. A Lie antialgebra is a superalgebra a = a0 ⊕ a1 with a super-
commutative product satisfying the following cubic identities:

(LA0) associativity of a0

x1 · (x2 · x3) = (x1 · x2) · x3,

for all x1, x2, x3 ∈ a0,
(LA1) half-action

x1 · (x2 · y) = 1
2 (x1 · x2) · y,

for all x1, x2 ∈ a0 and y ∈ a1,
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(LA2) Leibniz identity

x · (y1 · y2) = (x · y1) · y2 + y1 · (x · y2) ,

for all x ∈ a0 and y1, y2 ∈ a1,
(LA3) odd Jacobi identity

y1 · (y2 · y3) + y2 · (y3 · y1) + y3 · (y1 · y2) = 0,

for all y1, y2, y3 ∈ a1.

A weak version of Lie antialgebras is also considered by replacing the axiom
(LA1) by:

(LA1’) “full action”

x1 · (x2 · y) + x2 · (x1 · y) = (x1 · x2) · y,

for all x1, x2 ∈ a0 and y ∈ a1.

Note that, in the case where the even part of a Lie antialgebra is generated by the
odd part, the associativity axiom (LA0), is follows from the axioms (LA1)–(LA3)
(cf. Section 1.4).

Jordan (super)algebras. An algebra J is a Jordan algebra if it satisfies

(J1) commutativity, a · b = b · a, for all a, b ∈ J,
(J2) Jordan identity, a2 · (b · a) = (a2 · b) · a, for all a, b ∈ J.

A superalgebra J = J0 ⊕ J1 is a Jordan superalgebra if it satisfies

(SJ1) supercommutativity,
(SJ2) super Jordan identity

(a · b) · (c · d) + (−1)b̄c̄ (a · c) · (b · d) + (−1)(b̄+c̄)d̄(a · d) · (b · c)

= ((a · b) · c) · d + (−1)(b̄+c̄)d̄+b̄c̄((a · d) · c) · b + (−1)(b̄+c̄+d̄)ā+c̄d̄((b · d) · c) · a,

for all a, b, c, d homogeneous elements in J.

We refer to [6] (see also the references therein) for the general theory of Jordan
superalgebras.

Kaplansky superalgebras. In an unpublished work [4], Irving Kaplansky con-
sidered the following class of half-unital supercommutative superalgebras:� let K0 be a unital commutative associative algebra,� let ⋆ : K0 × K1 → K1 be a representation of K0,� let < , >: K1 × K1 → K0 be a K0-valued skew-symmetric bilinear form,

define a structure of algebra on the space K = K0 ⊕ K1 by:

x · y = xy, x, y ∈ K0,

x · a = 1
2x ⋆ a, x ∈ K0, a ∈ K1,

a · x = 1
2x ⋆ a, x ∈ K0, a ∈ K1,

a · b = < a, b >, a, b ∈ K1.
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1.2. Kaplansky-Jordan superalgebras. Kaplansky superalgebras were studied
by McCrimmon [9]. The axioms of Lie antialgebras appear separately in different
places of his work. For instance, the McCrimmon’s Theorem 1.2 states: A half-
unital superalgebra is a Jordan superalgebra if and only if it satisfies the identities
(LA1’), (LA2) and (LA3). Indeed, using the half-unit one can check that the
quartic identities (SJ2) of Jordan superalgebras imply the cubic identities (LA1’),
(LA2) and (LA3). The proof of the “if” part of the theorem is more involved.

From Theorem 1.2 and its proof and Theorem 3.7 of [9], we can immediately
establish the following relations between the above classes of algebras.� Every (weak) Lie antialgebra is a Jordan superalgebra.� Every Jordan superalgebra which is half-unital and which has an associative

even part is a weak Lie antialgebra.� A Kaplansky superalgebra is a Jordan superalgebra if and only if it is a Lie
antialgebra.� Half-unital Lie antialgebras are exactly Kaplansky-Jordan superalgebras.

1.3. Two main examples. The main examples of Kaplansky-Jordan-Ovsienko
algebras are:

(a) The tiny Kaplansky algebra. It is a 3-dimensional algebra K3 (denoted by
asl2 in [11]) with basis vectors ε (even) and a, b (odd) satisfying:

(1.1)

ε · ε = ε,

ε · a = a · ε = 1
2 a, ε · b = b · ε = 1

2 b,

a · b = −b · a = 1
2 ε, a · a = b · b = 0.

(b) The full derivations algebra, AK(1), (called the conformal Lie antialgebra
in [11]). This algebra is generated by even elements {εn, n ∈ Z} and odd
elements {ai, i ∈ Z + 1

2} satisfying

(1.2)

εn · εm = εn+m

εn · ai = 1
2an+i

ai · aj = 1
2 (i − j)εi+j .

The algebra K3 is the unique commutative superalgebra such that Der(K3) =
osp(1|2), see [11]. Similarly, Der(AK(1)) = K(1), where K(1) is the conformal Lie
superalgebra, but the uniqueness is still a conjecture.

1.4. Remark on the axioms of Lie antialgebra. Unlike Kaplansky algebras,
the even part of Lie antialgebras is not required to contain a unit.

One can always add a unit ε in a0. The algebra a
′ = (Kε ⊕ a0) ⊕ a1 obtained

from a non-unital Lie algebra a = a0 ⊕ a1 by extending the multiplication to

ε · a = a, a ∈ a0, ε · a = 1
2a, a ∈ a1,

is still a Lie antialgebra.
The condition of associativity of the even part of Lie antialgebras seems to be

natural due to the following proposition.

Proposition 1.1. If the even part a0 of a Lie antialgebra a is generated by the odd
part a1, then the property of associativity (LA0) follows from (LA1)–(LA3).
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Proof. Assume the axioms (LA1)–(LA3). Using the commutativity, it is equivalent
to show that (xy)z = (xz)y, for all x, y, z ∈ a0.

Write x = ab with a, b ∈ a1.

((ab)y)z = ((ay)b)z + (a(by))z

= ((ay)z)b + (ay)(bz) + (az)(by) + a((by)z)

= 1
2 (a(yz))b + 1

2a(b(yz)) + (ay)(bz) + (az)(by)

= 1
2 (ab)(yz) + (ay)(bz) + (az)(by)

The last expression is symmetric in y, z. Therefore, we deduce ((ab)y)z = ((ab)z)y
and hence the associativity. �

A similar statement holds for Lie superalgebras generated by odd elements. This
fact will be established further in the proof of Theorem 1.

1.5. Representations and modules. Any associative superalgebra A is a Jordan
superalgebra with respect to the product given by so-called anti-commutator or
Jordan superproduct :

(1.3) [a, b]+ = 1
2

(
a · b + (−1)āb̄b · a

)

for all homogeneous elements a, b ∈ A.
Recall that a Jordan superalgebra J is called special if there exist an associative

algebra A and a faithful homomorphism from J into (A, [ , ]+).
A (bi)module over a Jordan superalgebra J is a vector space V together with

left and right actions such that the split null extensions J⊕V and V ⊕J are Jordan
superalgebras.

Lie antialgebras are particular cases of Jordan superalgebras. However, we will
adopt a slightly different definition of specialization and module in the particular
case of Lie antialgebras. It turns out that a nice theory can be developed after
making this change. To avoid any confusion we will be talking of LA-modules and
LA-representations. The definitions are the following.

Definition 1.2. [11] Let a be an arbitrary Lie antialgebra.
(1) An LA-module of a is a Z2-graded vector space V together with an even

linear map ρ : a → End(V ), such that the direct sum a ⊕ V equipped with the
product

(1.4) (a + v) · (b + w) = a · b +
(
ρ(a) (w) + (−1)b̄v̄ ρ(b) (v)

)
,

where a, b ∈ a and v, w ∈ V are homogeneous elements, is again a Lie antialgebra.
(2) An LA-representation of a is a Z2-graded vector space V together with an

even linear map ρ : a → End(V ), such that

(1.5) ρ(a · b) = [ρ(a), ρ(b)]+,

for all elements a, b in a, and

(1.6) ρ(x)ρ(y) = ρ(y)ρ(x),

for all even elements x, y in a0.

Remark 1.3. In other words, an LA-representation is a specialization in the usual
sense of Jordan superalgebras with the additional condition of commutativity (1.6).
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This condition is crucial to link the representations of Lie antialgebras to represen-
tations of Lie superalgebras. This condition was first assumed in [11]; this is the
main difference from the traditional works on Jordan superalgebras.

The modules of the tiny Kaplansky algebra K3, considered as a Jordan superal-
gebra, were studied and classified in [7, 8, 12]. The LA-representations of K3 were
studied independently in [10].

Example: modules over K3. The classification of finite-dimensional irreducible
LA-modules over K3 can be deduced from [8]. Let us consider the adjoint module
over K3, i.e the 3-dimensional vector space

Vad := K < w > ⊕ K < u, v >,

together with the following action:

(1.7)

ε · v = 1
2v , ε · w = w , ε · u = 1

2u,

a · v = w , a · w = u , a · u = 0,

b · v = 0 , b · w = 1
4v , b · u = − 1

4w.

Proposition 1.4. Up to isomorphism, Vad is the only non-trivial finite dimensional
irreducible LA-module of K3.

Proof. One can easily check that the property (1.4) in the definition of LA-module
holds for Vad. From Corollary 2.2 in [8] one knows that the finite dimensional
irreducible modules of K3 are the modules Irr(σ, 1

2 , m), σ ∈ {0, 1}, m ∈ Z≥0, in
which there exists a vector v of parity σ satisfying:

(1.8)

ε · v = 1
2 v

b · v = 0

b · (a · v) = m
4 v

Suppose Irr(σ, 1
2 , m) is also an LA-module. One necessarily has σ = 1. If not the

condition ε ·v = 1
2 v leads to a contradiction with the associativity of even elements.

Consider the odd element v ∈ Irr(1, 1
2 , m) satisfying (1.8). In one hand, using the

axiom (LA3) one has

b · (a · v) = −a · (v · b) − v · (b · a)

= −v(− 1
2ε) = 1

4 v

But in the other hand, by (1.8) one should have

b · (a · v) = m
4 v.

This is possible if and only if m = 1. And in this case Irr(1, 1
2 , 1) ≃ Vad. �

2. Universal enveloping algebra.

2.1. Notations. Let a be a vector space. We denote by T (a), resp. S(a), the
universal tensor, resp. symmetric, algebra over a. Recall briefly, as a vector space

T (a) :=
⊕

n≥0

a
⊗n.

The product of T (a) is given by

a1 ⊗ · · · ⊗ an · b1 ⊗ · · · ⊗ bm = a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm
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on a
⊗n×a

⊗m into a
⊗n+m, and extended by bilinearity on T (a)×T (a). The algebra

T (a) is naturally N-graded. For all n ∈ N we denote by

T n(a) := a
⊗n

the homogeneous component of degree n.
The symmetric algebra is the following quotient

S(a) := T (a)/ < a ⊗ b − b ⊗ a, a, b ∈ a > .

We denote by a⊙b the class of a⊗b in S(a). We denote by Sn(a) the homogeneous
component of degree n, that is the image of T n(a) in S(a).

In addition, if a = a0 ⊕ a1 is a Z2-graded vector space, then T (a) is also a
Z2-graded algebra with respect to the following grading

T (a)i :=
⊕

n≥0

⊕

i1+···+in=i

ai1 ⊗ · · · ⊗ ain
, i = 0, 1.

This grading also induces a Z2-grading on the algebra S(a).

2.2. Definitions. Given a Lie antialgebra a = a0 ⊕ a1, one associates an asso-
ciative Z2-graded algebra U(a) called the universal enveloping algebra of a. The
construction of U(a) is as follows.

Consider the tensor algebra T (a) and denote by P the subset

(2.9)





1
2

(
a ⊗ b − b ⊗ a

)
− ab ,

1
2

(
a ⊗ x + x ⊗ a

)
− ax ,

x ⊗ y − xy,

where a, b ∈ a1 and x, y ∈ a0. We define

U(a) := T (a)/ < P >,

where < P > denotes the two-sided ideal generated by P .
We introduce the canonical projection

π : T (a) ։ U(a).

When no confusion occurs, we use the same notation for the element x1⊗x2⊗· · ·⊗xn

in T (a) and its class in U(a).
We also introduce the canonical embedding of a into U(a):

(2.10) ι : a →֒ a
⊗1 = T 1(a) →֒ T (a) ։ U(a).

2.3. Universal property. The couple (U(a), ι) satisfies a universal property.

Proposition 2.1. Let A be a Z2-graded associative algebra and φ be a linear mor-
phism φ : a → A satisfying

φ(xy) = 1
2

(
φ(x)φ(y) + (−1)x̄ȳφ(y)φ(x)

)
,

for all x, y ∈ a0 ∪ a1 and φ(x)φ(y) = φ(y)φ(x) for all x, y ∈ a0. There exists a
unique morphism of algebras φ′ : U(a) → A such that the following diagram is
commutative:

U(a)
φ′

!!
CC

CC
CC

CC

a
φ

//

ι

==||||||||
A
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Proof. The universal property of T (a) gives an homomorphism of algebra Φ from
T (a) to A such that Φ|a = φ. Since R ⊂ Ker(Φ), the morphism Φ induces a
morphism φ′ from U(a) to A such that φ = φ′ ◦ ι.

T (a) // //

Φ
((R

R
R

R
R

R
R

R U(a)
φ′

!!
CC

CC
CC

CC

a
?�

OO

φ
//

ι

;;wwwwwwwww
A

Since U(a) is generated by the elements ι(x), x ∈ a, the condition φ′◦ι = φ uniquely
determines φ′. �

2.4. The Poincaré-Birkhoff-Witt property. The natural N-filtration of U(a)
inherited from the natural filtration of T (a), is given by

Un := π
( ⊕

0≤k≤n

a
⊗k

)
, n ∈ N.

The associated graded algebra is

GrU :=
⊕

n≥0

Un/Un−1,

with the usual conventions U0 = K and U−1 = {0}.
Consider the algebra

G(a) = T (a)/ < R >,

where R is the set of homogeneous quadratic relations obtained from the relations
(2.9) by projection onto a ⊗ a. More precisely,

R = {a ⊗ b − b ⊗ a , a ⊗ x + x ⊗ a , x ⊗ y} ,

where x, y ∈ a0, a, b ∈ a1.
The algebra U(a) satisfies the Poincaré-Birkhoff-Witt (PBW) property if

GrU ∼= G(a).

We will show that, in general, the universal enveloping algebra of a Lie antialgebra
does not satisfy the PBW property.

Proposition 2.2. One has an isomorphism of algebra

G(a) ≃ (K ⊕ a0) ⊗ S(a1),

where the product on (K ⊕ a0) ⊗ S(a1) is given by

(λ + x) ⊗ a · (µ + y) ⊗ b = (λµ + λx + µy) ⊗ a ⊙ b,

for all λ, µ ∈ K, x, y ∈ a0, a, b ∈ S(a1).

Proof. If {xi, i ∈ I} is a basis of a0 and {aj , j ∈ J} is a basis of a1, where the index
set and J is totally ordered, then a basis of G(a) is given by the set of monomials,

xiaj1 · · · ajp
, and aj1 · · ·ajp

,

where i ∈ I, p ∈ N, and j1 ≤ · · · ≤ jp is an increasing sequence of indices in J . The
multiplication of basis elements in G(a) is

(2.11)

{
xiaj1 · · · ajp

· xi′aj′
1
· · · aj′q

= 0,

aj1 · · ·ajp
· xi′aj′

1
· · · aj′q

= (−1)pxi′aj1 · · · ajp
aj′

1
· · · aj′q

.

Hence the result. �
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Proposition 2.3. For a Lie antialgebra a, the algebra GrU(a) is not necessarily
isomorphic to G(a).

Proof. This can be deduced by using a necessary condition given by Braverman
and Gaitsgory in [2]. Following [2], denote by α : Span

K
R → a the linear map

α(a ⊗ b − b ⊗ a) = 2 ab

α(a ⊗ x + x ⊗ a) = 2 ax

α(x ⊗ y) = xy,

for a, b ∈ a1 and x, y ∈ a0.
The set of relations P then can be described as

P = { q − α(q) , q ∈ R}.

Let us refer to BG-conditions the following two conditions:

(i) Im(α ⊗ Id − Id ⊗ α) ⊂ Span
K
R (where α ⊗ Id − Id ⊗ α is defined on the

space Span
K
(R⊗ a) ∩ Span

K
(a ⊗R)),

(ii) α ◦ (α ⊗ Id − Id ⊗ α) = 0.

According to [2], if U(a) has the PBW-property, then the BG-conditions are
satisfied.

Let us show that in our situation the BG-conditions fail. Indeed, the space
Span

K
(R⊗ a) ∩ Span

K
(a ⊗R) is generated by the following elements:

(2.12)



u0 = (x ⊗ y) ⊗ z
= x ⊗ (y ⊗ z),

u1 = (a ⊗ x + x ⊗ a) ⊗ y + (x ⊗ y) ⊗ a
= a ⊗ (x ⊗ y) + x ⊗ (a ⊗ y + y ⊗ a),

u2 = x ⊗ (a ⊗ b − b ⊗ a) − b ⊗ (x ⊗ a + a ⊗ x) + a ⊗ (b ⊗ x + x ⊗ b)
= (x ⊗ a + a ⊗ x) ⊗ b − (x ⊗ b + b ⊗ x) ⊗ a + (a ⊗ b − b ⊗ a) ⊗ x,

u3 = (a ⊗ b − b ⊗ a) ⊗ c + (b ⊗ c − c ⊗ b) ⊗ a + (c ⊗ a − a ⊗ c) ⊗ b
= a ⊗ (b ⊗ c − c ⊗ b) + b ⊗ (c ⊗ a − a ⊗ c) + c ⊗ (a ⊗ b − b ⊗ a),

where a, b, c are elements in a1 and x, y, z in a0.
One can check that the elements (α⊗ Id− Id⊗α)(ui) are not elements of SpanR

in general, see Section 4 below for a counterexample. �

Remark 2.4. In the case of a = K3, the BG-conditions hold. Indeed, the set of
generators described above in (2.12) simplifies to





u0 = ε ⊗ ε ⊗ ε

u1 = (t ⊗ ε + ε ⊗ t) ⊗ ε + (ε ⊗ ε) ⊗ t,
= t ⊗ (ε ⊗ ε) + ε ⊗ (t ⊗ ε + ε ⊗ t), t = a, b,

u2 = ε ⊗ (a ⊗ b − b ⊗ a) − b ⊗ (ε ⊗ a + a ⊗ ε) + a ⊗ (b ⊗ ε + ε ⊗ b)
= (ε ⊗ a + a ⊗ ε) ⊗ b − (ε ⊗ b + b ⊗ ε) ⊗ a + (a ⊗ b − b ⊗ a) ⊗ ε,

where ε, a, b are the elements of the standard basis of K3.
Using the relations in K3, one easily gets,

(α ⊗ Id − Id ⊗ α)(ui) = 0,
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for every generators ui, i = 0, 1, 2. This implies the BG-conditions.
In [2], it is shown that in the case where G(a) is of Koszul type the BG-conditions

are sufficient to imply the PBW property. We do not know if G(K3) is of Koszul
type so we will show by hand that U(K3) satisfies the PBW theorem (see Proposi-
tion 2.7).

2.5. Example: the enveloping algebra U(K3). The algebra U(K3) is the asso-
ciative algebra generated by two odd elements A, B and one even element E subject
to the relations

(2.13)





AB − BA = E

AE + EA = A

BE + EB = B

E2 = E .

One can easily establish the following useful formulae by induction:

Lemma 2.5. For any integers p, q, k, l, one has

(1) A2pE = EA2p and A2p+1E = A2p+1 − EA2p+1,
(2) B2qE = EB2q and B2q+1E = B2q+1 − EB2q+1,
(3) if k + l is even then AkBlE = EAkBl,
(4) if k + l is odd then AkBlE = AkBl − EAkBl, in particular EAkBlE = 0,
(5) BA2p = A2pB − pA2p−1 and BA2p+1 = A2p+1B − EA2p − pA2p,
(6) B2qA = AB2q − qB2q−1 and B2q+1A = AB2q+1 − EB2q − qB2q.

Proposition 2.6. The following set of monomials

{EAkBl , k, l ∈ N} ∪ {AkBl , k, l ∈ N}

is a basis of U(K3).

Proof. Using Lemma 2.5, one can see that the above set of monomials is spanning
the vector space U(K3). To see that they are linearly independent we use weight
and order functions, and a representation of U(K3) in the space D of differential
operators over the algebra C[x, ξ]/ < ξ2 >.

Let us introduce the following weight function

wt(A) = 1, wt(E) = 0, wt(B) = −1.

The relations (2.13) are homogeneous with respect to the weight function. There-
fore, linear dependence of the monomials could only occur between monomials of
same weight. Let us fix a weight w in Z and show that the monomials

(2.14) {EAkBl , k − l = w} ∪ {AkBl , k − l = w}

are linearly independent.
Let us consider the following operator D of order 1

2 in D

D := ∂ξ + ξ∂x.

It is easy to check (cf. [10]) that the map defined by

A 7→ xD, B 7→ D, E 7→ ξD

is a representation of U(K3) into the space D . In this representations, one has
{

EAkBl 7→ ξxkDk+l+1 + operators of order < (k + l + 1)/2

AkBl 7→ xkDk+l + operators of order < (k + l)/2.
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Therefore, all of the differential operators corresponding to the monomials of the
set (2.14) have different orders. It follows that these monomials are linearly inde-
pendent and thus form a basis of U(K3). �

Proposition 2.7. The enveloping algebra U(K3) satisfies the PBW property.

Proof. Using Lemma 2.5, one can see that
{

EAkBl · EAk′

Bl′ = (−1)k+lEAk+k′

Bl+l′ + terms of length ≤ (k + l + k′ + l′ + 1)

AkBl · EAk′

Bl′ = (−1)k+lEAk+k′

Bl+l′ + terms of length < (k + l + k′ + l′).

So, in Gr U(K3) one gets
{

EAkBl · EAk′

Bl′ ≡ 0

AkBl · EAk′

Bl′ ≡ (−1)k+lEAk+k′

Bl+l′

what is the same multiplication rules as in G(K3), see (2.11). �

Remark 2.8. The enveloping algebra U(a) endowed with the Jordan superproduct

[x, y]+ = 1
2 (x ⊗ y + (−1)x̄ȳy ⊗ x).

is not a Lie antialgebra. One can notice that in our example the axiom (LA1) fails.
Indeed, using Lemma 2.5 one checks

[EAB, [EB2, EB]+]+ = 1
2 [EAB, EB2EB + EBEB2]+

= 1
2 [EAB, EB2EB]+

= 1
4 (EABEB2EB + EB2EBEAB)

= 1
4EAB4,

whereas

[[EAB, EB2]+, EB]+ = 1
2 [EABEB2 + EB2EAB , EB]+

= 1
4 (EABEB2EB + EB2EABEB + EBEABEB2 + EBEAB)

= 1
4 (EAB4 + EB2AB2)

= 1
4 (EAB4 + E(AB2 − B)B2)

= 1
2EAB4 − 1

4EB3.

Thus one gets [EAB, [EB, EB2]+]+ 6= 1
2 [[EAB, EB2]+, EB]+.

3. Links between Lie superalgebras and Lie antialgebras

3.1. Adjoint Lie superalgebra. In this section, we study the construction of the
Lie superalgebra associated to a Lie antialgebra [11]. We provide the missing proofs
of [11] in Section 5.

Given a Lie antialgebra a, the adjoint Lie superalgebra ga is defined as follows.
As a vector space ga = (ga)0 ⊕ (ga)1, where

(ga)1 := a1, (ga)0 := a1 ⊗ a1/S

and S is the ideal generated by

{a ⊗ b − b ⊗ a, ax ⊗ b − a ⊗ bx | a, b ∈ a1, x ∈ a0}.
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We denote by a ⊙ b the image of a ⊗ b in (ga)0. Therefore, we have the following
useful relations in (ga)0:

(3.15)

{
a ⊙ b = b ⊙ a,

ax ⊙ b = a ⊙ bx = b ⊙ ax = bx ⊙ a, a, b ∈ a1, x ∈ a0.

The Lie bracket on ga is given by:

(3.16)

[a, b] = a ⊙ b,

[a ⊙ b, c] = −[c, a ⊙ b] = a(bc) + b(ac),

[a ⊙ b, c ⊙ d] = 2 a(bc)⊙ d + 2 b(ad) ⊙ c,

where a, b, c and d are elements of (ga)1 = a1.

Example 3.1. In the a = K3 case the above construction leads to ga = osp(1|2).
More precisely,

(ga)1 =< a, b >, (ga)0 =< a ⊙ a, a ⊙ b, b ⊙ b > .

Rescale the basis elements as follows:

E := 1
2a ⊙ a, F := − 1

2b ⊙ b, H := −a ⊙ b, A := a, B := b.

Then using the definitions of the bracket and the relations in K3 one checks

(3.17)

[H, E] = 2E, [H, F ] = −2F, [E, F ] = H,

[H, A] = A, [E, A] = 0, [F, A] = B,

[H, B] = −B, [E, B] = A, [F, B] = 0,

[A, B] = −H, [A, A] = 2E, [B, B] = −2F.

The above system is a presentation of osp(1|2).

Remark 3.2. This construction differs from the Kantor-Koecher-Tits construction.
For instance, the Lie superalgebra associated to K3 through KKT is psl(2, 2), see [5].
In general, if one applies KKT to a Jordan superalgebra a = a0 ⊕ a1, the odd
subspace of the resulting Lie superalgebra is much bigger than a1.

In [11], the following statements are formulated.

Proposition 3.3. The definition of the bracket on ga given in (3.16) is compatible
with the relations (3.15) in (ga)0.

Theorem 1. The bracket given in (3.16) is a Lie superbracket on ga.

We give the direct proofs of these statements in Section 5.

3.2. Relations between the enveloping algebras. The following proposition
relates the universal enveloping algebra of an arbitrary Lie antialgebra a to the
universal enveloping algebra of the adjoint Lie superalgebra ga.

Theorem 2. Let a be a Lie antialgebra such that the odd part a1 spans the even
part a0. If g := ga is the Lie superalgebra associated to a then,

U(a) ≃ U(g)/Ia

for some ideal Ia of U(g).
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Proof. Recall that U(g) is the quotient of the universal associative algebra

T (g) :=
⊕

n≥0

g
⊗n

by the the 2-sided ideal

J :=< 1
2 (x ⊗ y − (−1)x̄ȳy ⊗ x) − [x, y] > , x, y homogeneous in g.

The algebra T (g) is spanned by the elements of g. We define an homomorphism of
algebra

π : T (g) → U(a)

by setting

(3.18) π(a) = a, π(a ⊙ b) = 1
2 (a ⊗ b + b ⊗ a)

for all odd elements a and b (recall they can be viewed as elements of a1 or g1).
The application π is well defined. Indeed, one can check that π(ax⊙ b) = π(a⊙ bx)
for all a, b ∈ a1 and x ∈ a0:

(3.19)
π(ax ⊙ b) − π(a ⊙ bx) = 1

2 (ax ⊗ b + b ⊗ ax − a ⊗ bx − bx ⊗ a)

= 1
2 (1

2 (a ⊗ x + x ⊗ a) ⊗ b + b ⊗ 1
2 (a ⊗ x + x ⊗ a)

−a⊗ 1
2 (b ⊗ x + x ⊗ b) − 1

2 (b ⊗ x + x ⊗ b) ⊗ a)

= 1
4 (x ⊗ a ⊗ b + b ⊗ a ⊗ x − a ⊗ b ⊗ x − x ⊗ b ⊗ a)

= 1
4 (x ⊗ (a ⊗ b − b ⊗ a) − (a ⊗ b − b ⊗ a) ⊗ x)

= 1
2 (x ⊗ ab − ab ⊗ x)

= 0.

Lemma 3.4. The morphism π is surjective.

Proof. We are under the assumption that the odd part of a spans the algebra. By
definition of π all the odd elements are reached. �

Lemma 3.5. With the above notations, one has

J ⊂ Ker(π).

Proof. One needs to check

(3.20) π
(

1
2 (x ⊗ y − (−1)x̄ȳy ⊗ x)

)
= π([x, y])

for all homogeneous elements of g. The more involved case is the one where x and
y are both even elements i.e

(3.21) π(a ⊙ b ⊗ c ⊙ d − c ⊙ d ⊗ a ⊙ b) = 2 π([a ⊙ b, c ⊙ d]).

Let us expand the the left hand side (LHS) of (3.21) using the definition of π, we
get :

LHS = 1
2 (a ⊗ b + b ⊗ a) ⊗ 1

2 (c ⊗ d + d ⊗ c) − 1
2 (c ⊗ d + d ⊗ c) ⊗ 1

2 (a ⊗ b + b ⊗ a)

= 1
4 (a ⊗ b ⊗ c ⊗ d + a ⊗ b ⊗ d ⊗ c + b ⊗ a ⊗ c ⊗ d + b ⊗ a ⊗ d ⊗ c

−c⊗ d ⊗ a ⊗ b − c ⊗ d ⊗ b ⊗ a − d ⊗ c ⊗ a ⊗ b − d ⊗ c ⊗ b ⊗ a).



14 SÉVERINE LEIDWANGER AND SOPHIE MORIER-GENOUD

Now let us expand the right hand side (RHS) of (3.21) using the equivalent expres-
sion (5.30) of the bracket and then the definition of π. We get:

RHS = 2π(a(bc) ⊙ d − c(da) ⊙ b + b(ac) ⊙ d − c(db) ⊙ a)

= a(bc) ⊗ d + d ⊗ a(bc) − c(da) ⊗ b − b ⊗ c(da) + b(ac) ⊗ d + d ⊗ b(ac)

−c(db) ⊗ a − a ⊗ c(db).

Now using the relations in U(a) we can rewrite each terms as tensor products of
four elements. For instance

a(bc) ⊗ d = 1
2 (a ⊗ bc + bc ⊗ a) ⊗ d

= 1
4 (a ⊗ b ⊗ c − a ⊗ c ⊗ b) ⊗ d.

Hence we write

4.RHS = (a ⊗ b ⊗ c − a ⊗ c ⊗ b + b ⊗ c ⊗ a − c ⊗ b ⊗ a) ⊗ d

+d ⊗ (a ⊗ b ⊗ c − a ⊗ c ⊗ b + b ⊗ c ⊗ a − c ⊗ b ⊗ a)

−(c ⊗ d ⊗ a − c ⊗ a ⊗ d + d ⊗ a ⊗ c − a ⊗ d ⊗ c) ⊗ b

−b ⊗ (c ⊗ d ⊗ a − c ⊗ a ⊗ d + d ⊗ a ⊗ c − a ⊗ d ⊗ c)

+(b ⊗ a ⊗ c − b ⊗ c ⊗ a + a ⊗ c ⊗ b − c ⊗ a ⊗ b) ⊗ d

+d ⊗ (b ⊗ a ⊗ c − b ⊗ c ⊗ a + a ⊗ c ⊗ b − c ⊗ a ⊗ b)

−(c ⊗ d ⊗ b − c ⊗ b ⊗ d + d ⊗ b ⊗ c − b ⊗ d ⊗ c) ⊗ a

−a ⊗ (c ⊗ d ⊗ b − c ⊗ b ⊗ d + d ⊗ b ⊗ c − b ⊗ d ⊗ c).

Some of the above terms obviously cancel. The remaining terms can be reorganized
as follows:

4.RHS = 4.LHS + (b ⊗ c − c ⊗ b) ⊗ (a ⊗ d − d ⊗ a) − (a ⊗ d − d ⊗ a) ⊗ (b ⊗ c − c ⊗ b)

−(b ⊗ d − d ⊗ b) ⊗ (a ⊗ c − c ⊗ a) − (a ⊗ c − c ⊗ a) ⊗ (b ⊗ d − d ⊗ b).

Using relations in U(a) this simplify to

RHS = LHS + bc ⊗ ad − ad ⊗ bc − ac ⊗ bd + bd ⊗ ac.

But, in U(a) even elements of order 1 commute so the last terms cancel and we
have established (3.20) in the case where x and y are two even elements. The other
cases are straightforward. �

Since J ⊂ Ker(π), the homomorphism π induces a surjective homomorphism π̃
from U(g) to U(a). One has U(a) ≃ U(g)/Ker(π̃).

Theorem 2 is proved. �

Example 3.6. In the case a = K3 it was already noticed in [10] that

U(K3) = U(osp(1|2)) / < C >,

where C is the usual Casimir element of U(osp(1|2)). Using the generators E, F and
H and A, B of U(osp(1|2)) subject to the relations (3.17) for the Lie superbracket,
we express C as

C = EF + FE + 1
2H2 + 1

2 (AB − BA) .

An alternative presentation of the ideal is also given in terms of ghost Casimir
(see [10] for more details). The ghost casimir Γ of U(osp(1|2)) can be expressed as

Γ = AB − BA − 1
2 .
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It is the unique element invariant for the twisted adjoint action

(3.22) ãdXY := XY − (−1)X̄(Ȳ +1) Y X.

for X, Y in U(osp(1|2)).
Equivalently, one has

U(K3) = U(osp(1|2)) / < Γ2 − 1
4 > .

This presents U(K3) as a generalized Weyl algebra as given in [1].

3.3. Extension of representations. In [11], Ovsienko claimed that any repre-
sentation of a Lie antialgebra a can be extended to a representation of the Lie
superalgebra ga. This property can be viewed as a consequence of Theorem 2.

Corollary 3.7. Let (V, ρ) be a representation of a Lie antialgebra a. We define a
map ρ̃ on ga by setting for all a, b ∈ a1:

(3.23)
ρ̃(a) := ρ(a)
ρ̃(a ⊙ b) := 1

2 ( ρ(a)ρ(b) + ρ(b)ρ(a) ).

The map ρ̃ is a representation of ga.

Proof. By universal property of U(a), the representation ρ induces an algebra homo-
morphism ρ′ from U(a) to End(V ). The map ρ̃′ := ρ′ ◦ π, where π is the surjection
defined in (3.19), is a homomorphism from U(ga) to End(V ). The restriction of ρ̃′

to ga is a representation of ga, namely ρ̃.

U(a)

ρ′

$$II
II

II
II

I
U(ga)

πoooo

ρ̃′

zzuuuuuuuuu aa

0 PDD
DD

DD
DD

a
ρ

//
. �

ι

>>}}}}}}}}
End(V ) ga

ρ̃
oo_ _ _ _ _ _ _ _

Hence the result. �

4. The conformal Lie antialgebra AK(1)

An interesting example of Lie antialgebra which plays an important role in [11]
is an infinite-dimensional algebra AK(1) called the conformal Lie antialgebra. This
algebra is generated by even elements {εn, n ∈ Z} and odd elements {ai, i ∈ Z+ 1

2}
satisfying

(4.24)





εn εm = εn+m

εn ai = 1
2an+i

ai aj = 1
2 (i − j)εi+j .

It contains infinitely many subalgebras isomorphic to K3. Note that (a slightly
different version of) AK(1) was considered in [9] under the name of full derivation
algebra.
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4.1. The universal enveloping algebra U(AK(1)). The universal enveloping
algebra U(AK(1)) is the associative algebra generated by {En, n ∈ Z, Ai, i ∈ Z+ 1

2}
and the relations:

(4.25)





EnEm = En+m

EnAi + AiEn = An+i

AiAj − AjAi = (i − j)Ei+j .

A remarkable additional relation is satisfied in U(AK(1)).

Proposition 4.1. One has

(4.26) AiAj + AjAi = AkAl + AlAk,

for all i + j = k + l.

Proof. Fix i, j, k, l such that i + j = k + l, one gets

AiAj + AjAi = (Ei−kAk + AkEi−k)Aj + Aj (Ei−kAk + AkEi−k)

= Ei−kAkAj + AkEi−kAj + AjEi−kAk + AjAkEi−k

= Ei−kAkAj + Ak(Ei−kAj + AjEi−k) − AkAjEi−k

+(AjEi−k + Ei−kAj)Ak − Ei−kAjAk + AjAkEi−k

= Ei−k(AkAj − AjAk) + AkAl + AlAk − (AkAj − AjAk)Ei−k

= (k − j)Ei−kEk+j + AkAl + AlAk − (k − j)Ek+jEi−k

= AkAl + AlAk.

Hence the result. �

Corollary 4.2. The algebra U(AK(1)) does not satisfy the PBW property.

Proof. The identity (4.26) can be written as

2AiAj − (i − j)Ei+j = 2AkAl − (k − l)Ek+l, ∀ i + j = k + l.

Therefore, in Gr(U(AK(1)) one has AiAj = AkAl for all i + j = k + l and this is
not true in G(AK(1)) = (K⊕ < En, n ∈ Z >) ⊗ S(< Ai, i ∈

1
2 + Z >). �

Remark 4.3. The canonical mapping ι : AK(1) → U(AK(1)) introduced in (2.10)
is injective. Indeed, if one associates the following weights to the generators

wt(Ai) = i, wt(En) = n,

one can see that the relations in U(AK(1)) are homogeneous with respect to this
weight function. Therefore, the elements {Ai, i ∈ 1

2 + Z, En, n ∈ Z} are linearly
independent.

4.2. Adjoint Lie superalgebra. One can check (cf. [11]) that the adjoint Lie
super algebra of AK(1) is the conformal (or centerless Neveu-Schwartz) Lie algebra
K(1) generated by {

xn, n ∈ Z; ai, i ∈ Z + 1
2

}

with the following commutation relations

(4.27)





[xn, xm] = 1
2 (m − n)xn+m,

[xn, aj] = 1
2

(
n
2 − i

)
an+i,

[ai, aj] = xi+j .
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The corresponding universal enveloping algebra U(K(1)) is the associative alge-
bra generated by {Xn, n ∈ Z, Ai, i ∈ Z + 1

2} and the relations:

(4.28)





XnXm − XmXn = (m − n)Xn+m

XnAi − AiXn = (n
2 − i)An+i

AiAj + AjAi = 2Xi+j .

Proposition 4.4. One has

(4.29) U(AK(1)) ∼= U(K(1))/

〈
An−iAi − AiAn−i = (n − 2i)En ,

EnEm = En+m, n, m ∈ Z, i ∈ 1
2 + Z

〉
.

Proof. By Lemma 3.5, π(Ai) = Ai defines a homomorphism from U(K(1)) to
U(AK(1)). In other words, the relations (4.28) are satisfied in U(AK(1)) (see
remark 4.1 and Example 4.5 below for direct verifications).

Conversely, in U(K(1)), let us denote for all n ∈ Z,

En :=
1

n − 1
(A

n−
1
2
A1

2
− A1

2
A

n−
1
2
).

The result follows. �

Example 4.5. The isomorphism (4.29) can be checked by direct computations.
For instance, one can use the following relations

XnAi − AiXn = 1
2 (An−iAi + AiAn−i)Ai −

1
2Ai(An−iAi + AiAn−i)

= 1
2 (An−iAi − AiAn−i)Ai + 1

2Ai(An−iAi − AiAn−i)

= 1
2 (n − 2i)(EnAi + AiEn).

4.3. Representations. Let us consider a well-known particular class of represen-
tations of K(1) called the density representations. We will determine under what
condition a given density representation is a representation of AK(1).

The density representations are denoted by Fλ, where λ ∈ C is the parameter.
The basis in Fλ is {fn, n ∈ Z, φi, i ∈ Z + 1

2} and the action of K(1) is given by

χxn
(fm) = (m + λn) fn+m,

χxn
(φi) =

(
i + (λ + 1

2 )n
)
φn+i,

χai
(fn) =

(
n
2 + λi

)
φi+n,

χai
(φj) = fi+j .

Remark 4.6. The adjoint representation of K(1) is precisely the module F−1.

Proposition 4.7. The K(1)-module Fλ is a representation of AK(1) if and only
if λ = 0, or λ = 1

2 .

Proof. Suppose that Fλ is a representation of AK(1). By definition, the odd gen-
erators of AK(1) are represented by χai

. Surprisingly, one can check that operators
on Fλ of the form:

1
i−j

(
χai

χaj
− χaj

χai

)

only depends on i + j and not on the couple (i, j).
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We define the even generators by:

χεn
:= 2

i−j

(
χai

χaj
− χaj

χai

)

with i + j = n. One then obtains

χεn
(fm) = −2λ fn+m, χεn

(φi) = (2λ − 1)φn+i.

The relation

χεn
χai

+ χai
χεn

= χan+i

is always satisfied. The operators χεn
and χεm

obviously commute, but the relation

χεn
χεm

= χεn+m

is true if and only if λ = 0, 1
2 . �

5. Appendix: the technical proofs

Theorem 1 and Proposition 3.3 are formulated in [11] without proofs. These
statements are crucial for the whole theory and their proofs are far of being evident.
We think that it is important to have these proofs in a written form.

5.1. Proof of Proposition 3.3. We will need to use all the axioms (LA1)-(LA3)
of Lie antialgebras.

(i) The definition of [a ⊙ b, c] is compatible with relations (3.15):
The expression a(bc) + b(ac) is symmetric in a, b. Therefore, one immediately has

[a ⊙ b, c] = [b ⊙ a, c].

Now, we want to show that for a, b, c ∈ a1, x ∈ a0 we have

[a ⊙ bx, c] = [ax ⊙ b, c].

That is, we want to show that the expression

(∗) = a((bx)c) + (bx)(ac) − (ax)(bc) − b((ax)c)

cancels.
Using the identity (LA2) we rewrite the first and last terms:

a((bx)c) = a(x(bc) − b(xc) )

b((ax)c) = b(x(ac) − a(xc) ).

So, now we have

(∗) = a(x(bc)) − a(b(xc)) + (bx)(ac) − (ax)(bc) − b(x(ac)) + b(a(xc)).

Using the identity (LA3) for the odd elements a, b and (xc) we can change the
2nd and last term of (*) to:

−a(b(xc)) + b(a(xc)) = (xc)(ab).

Finally, we have

(∗) = a(x(bc)) + (bx)(ac) − (ax)(bc) − b(x(ac)) + (xc)(ba).



UNIVERSAL ENVELOPING ALGEBRAS OF LIE ANTIALGEBRAS 19

We can factor out the element x in each term. Indeed, using (LA1) we get

a(x(bc)) = 2(a(bc))x

(bx)(ac) = (b(ac))x

(ax)(bc) = (a(bc))x

b(x(ac)) = 2(b(ac))x

(xc)(ab) = ((ab)c)x.

Replacing the above expressions in (*) we obtain

(∗) = (a(bc))x − (b(ac))x + ((ab)c)x.

And we can see that (*)=0 by the Jacobi identity (LA3).

(ii) The definition of [a ⊙ b, c ⊙ d] is compatible with relations (3.15):
To see that the expression in (3.16) is well-defined one expands it using some rela-
tions. Using the Jacobi identity for the elements of a1 as well as the relations (3.15)
in ga one can express [a ⊙ b, c ⊙ d] in different ways.

Lemma 5.1. One has the following equivalent expressions

(5.30)
[a ⊙ b, c ⊙ d] = a(bc) ⊙ d + b(ad) ⊙ c + b(ac) ⊙ d + a(bd) ⊙ c

= d(bc) ⊙ a + c(ad) ⊙ b + d(ac) ⊙ b + c(bd) ⊙ a.

Proof. To get the first expression of (5.30) one uses the Jacobi identity on the odd
elements of a1:

b(ac) ⊙ d + a(bd) ⊙ c =
(
a(bc) + c(ab)

)
⊙ d +

(
b(ad) − d(ab)

)
⊙ c

= a(bc) ⊙ d + b(ad) ⊙ c + c(ab) ⊙ d − d(ab) ⊙ c.

The last two terms cancel by the relations (3.15) in ga. Thus,

a(bc) ⊙ d + b(ad) ⊙ c + b(ac) ⊙ d + a(bd) ⊙ c = 2 a(bc)⊙ d + 2 b(ad) ⊙ c.

This establishes the first identity of (5.30). The second expression is immediately
deduced using the equivalence relations (3.15) in ga. �

Now, from (5.30) it is easy to check that the expression of [a⊙b, c⊙d] is symmetric
in a, b and symmetric in c, d. So, the definition is compatible with the relations
a ⊙ b = b ⊙ a and c ⊙ d = d ⊙ c.

We also check the compatibility with the relations ax⊙ b = a⊙ bx and cx⊙ d =
c ⊙ dx. Indeed, from (5.30) one can write

(5.31) [a ⊙ b, c ⊙ d] = [a ⊙ b, c] ⊙ d + [a ⊙ b, d] ⊙ c.

Thus, using point (i), we deduce the compatibility with ax ⊙ b = a ⊙ bx.
Now using the expressions of (5.30) we can see that [a⊙b, c⊙d] is skew-symmetric

in (a, b), (c, d). In other words, one has

(5.32) [a ⊙ b, c ⊙ d] = −[c ⊙ d, a ⊙ b].

Therefore, we also deduce the compatibility with cx ⊙ d = c ⊙ dx.
We have proved Proposition 3.3.
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5.2. Proof of Theorem 1. (i) One needs to check the property of antisymmety
of the bracket:

[X, Y ] = −(−1)X̄Ȳ [Y, X ].

In the case of two odd elements or one odd and one even, this property is immedi-
ate from the definitions (3.16). In the case of two even elements this property has
already been observed in (5.32).

(ii) One checks the generalized Jacobi identity of the bracket

(−1)X̄Z̄ [[X, Y ], Z] + (−1)Ȳ X̄ [[Y, Z], X ] + (−1)Z̄Ȳ [[Z, X ], Y ] = 0.

- The case of three odd elements is immediate from the definitions (3.16).
- The case of two odd elements and one even is quite immediate. Indeed, we can

rewrite (5.31) as

[a ⊙ b, [c, d]] = [ [a ⊙ b, c], d] + [ [a ⊙ b, d], c],

that is equivalent to Jacobi identity.
- The case of two even elements and one odd is less involved.
Denote by J the expression

J =
[
[a ⊙ b, c ⊙ d], e

]
−

[
a ⊙ b, [c ⊙ d, e]

]
+

[
c ⊙ d, [ a ⊙ b, e]

]
.

Using the first expression of (5.30) for [a ⊙ b, c ⊙ d] and the definition (3.16), we
can expand J to

J = (a(bc))(de) + d((a(bc))e) + (b(ad))(ce) + c((b(ad))e) +

(b(ac))(de) + d((b(ac))e) + (a(bd))(ce) + c((a(bd))e)

−a(b(c(de))) − b(a(c(de))) − a(b(d(ce))) − b(a(d(ce)))

+c(d(a(be))) + d(c(a(be))) + c(d(b(ae))) + d(c(b(ae))).

One can split J into symmetric expressions in c, d

J = J1(a, b, c, d, e) + J1(a, b, d, c, e) − J2(a, b, c, d, e) − J2(a, b, d, c, e),

where

J1(a, b, c, d, e) = (a(bc))(de) − a(b(c(de))) + (b(ac))(de) − b(a(c(de)))

J2(a, b, c, d, e) = c(e(b(ad))) − c(d(b(ae))) + c(e(a(bd))) − c(d(a(be))).

We show that J2(a, b, c, d, e) − J1(a, b, c, d, e) = 0. By symmetry in c, d, this will
imply that J = 0.

All the terms involved are elements of the Lie antialgebra a. Once again we use
all the axioms (LA1)-(LA3) to prove that the terms vanish. One has

2(a(bc))(de) = a
(
(bc)(de)

)

= a(b(c(de))) + a((b(de))c)

= a(b(c(de))) + c((b(de))a) + (b(de))(ac)

= a(b(c(de))) − c(a(b(de))) + (b(ac))(de)

= a(b(c(de))) − c(a(b(de))) + (a(bc))(de) + (c(ab))(de).



UNIVERSAL ENVELOPING ALGEBRAS OF LIE ANTIALGEBRAS 21

Thus, one has

(a(bc))(de) − a(b(c(de))) = −c(a(b(de))) + (c(ab))(de).

By inverting the role of a and b in the above identity we also deduce

(b(ac))(de) − b(a(c(de))) = −c(b(a(de))) + (c(ba))(de).

Hence, adding the two above identities we deduce

J1(a, b, c, d, e) = −c(a(b(de))) − c(b(a(de))).

We have factored out c in J1. We then have

1

c
(J2 − J1) = e(b(ad)) − d(b(ae)) + e(a(bd)) − d(a(be)) + a(b(de)) + b(a(de))

= e(b(ad)) − {(db)(ae) − (d(ae))b} + {(ea)(bd) − (e(bd))a}

−d(a(be)) + a(b(de)) + b(a(de))

= e(b(ad)) + (d(ae))b − (e(bd))a − d(a(be)) + a(b(de)) − (a(de))b

= e(b(ad)) +
(
d(ae) − a(de)

)
b + a

(
e(bd) + b(de)

)
− d(a(be))

= e(b(ad)) + (e(ad))b + a(d(be)) + (a(be))d

= (eb)(ad) + (ad)(be)

= 0.

The case of three even elements follows now from the fact that even elements are
products of two odd elements and from the fact the Jacobi identities in the other
cases hold. Indeed, denote by K

K =
[
[a ⊙ b, c⊙ d], e ⊙ f

]
−

[
a ⊙ b, [c ⊙ d, e ⊙ f ]

]
+

[
c ⊙ d, [ a ⊙ b, e ⊙ f ]

]
.

We rewrite each terms using the property (5.31).
[
[a ⊙ b, c ⊙ d], e ⊙ f

]
=

[
[a ⊙ b, c ⊙ d], e

]
⊙ f +

[
[a ⊙ b, c ⊙ d], f

]
⊙ e

[
a ⊙ b, [c ⊙ d, e ⊙ f ]

]
=

[
a ⊙ b, [c ⊙ d, e] ⊙ f + [c ⊙ d, f ] ⊙ e

]

=
[
a ⊙ b, [c ⊙ d, e]

]
⊙ f +

[
a ⊙ b, f

]
⊙ [c ⊙ d, e]

+
[
a ⊙ b, [c ⊙ d, f ]

]
⊙ e +

[
a ⊙ b, e

]
⊙ [c ⊙ d, f ]

[
c ⊙ d, [a ⊙ b, e ⊙ f ]

]
=

[
c ⊙ d, [a ⊙ b, e] ⊙ f + [a ⊙ b, f ] ⊙ e

]

=
[
c ⊙ d, [a ⊙ b, e]

]
⊙ f +

[
c ⊙ d, f

]
⊙ [a ⊙ b, e]

+
[
c ⊙ d, [a ⊙ b, f ]

]
⊙ e +

[
c ⊙ d, e

]
⊙ [a ⊙ b, f ]

We replace in the expression of K, we get

K =
[
[a ⊙ b, c ⊙ d], e

]
⊙ f −

[
a ⊙ b, [c ⊙ d, e]

]
⊙ f +

[
c ⊙ d, [a ⊙ b, e]

]
⊙ f

+
[
[a ⊙ b, c ⊙ d], f

]
⊙ e −

[
a ⊙ b, [c ⊙ d, f ]

]
⊙ e +

[
c ⊙ d, [a ⊙ b, f ]

]
⊙ e.

From the previous case, we deduce that K = 0.
Theorem 1 is proved.
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