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Abstract. The aim of this work is to study the coherence profile (dependence) of robust eyes-closed 
resting EEG sources isolated by group blind source separation (gBSS). We employ a test-retest strategy 
using two large sample normative databases (N=57 and N=84). Using a BSS method in the complex 
Fourier domain, we show that we can rigourously study the out-of-phase dependence of the exctracted 
components, albeit they are extracted so as to be in-phase independent (by BSS definition). Our focus 
on lagged communication between components effectively yields dependence measures unbiased by 
volume conduction effects, which is a major concern about the validity of any dependence measures 
issued by EEG measurements. We are able to show the organization of the extracted components in 
two networks. Within each network components oscillate coherently with multiple-frequency 
dynamics, whereas between networks they exchange information at non-random multiple time-lag 
rates.  

 

 
Keywords: Blind Source Separation (BSS), Independent Component Analysis (ICA), Connectivity, In-Phase Coherence, Out- 
Of-Phase Coherence.  
 



 3

 

Introduction 
 
The functional organization of the brain at rest is currently conceived in terms of resting state 

networks (RSNs), clusters of brain regions, mostly cortical, inter-connected anatomically and 
functionally (Beckmann et al. 2005; Damoiseaux et al. 2006; Fox and Raichle 2007; Mantini et al. 
2007; van den Heuvel et al. 2008). The study of RSNs has shifted the focus in neuroimaging from the 
exact localization of specialized brain functions (looking for “things in a place”) to the understanding 
of the interplay of widespread brain structures.  

 
Regarding the study of RSNs by EEG, biophysical and neurophysiological studies suggest that 

each RSN may exhibit complex dynamic associated with multiple frequencies simultaneously (Mantini 
et al. 2007). Studying the distribution of scalp EEG power at rest, as in Chen et al. (2008), does not 
allow the study of RSNs by EEG because scalp voltage is a mixing of underlying source activity 
(volume conduction: see Nunez and Srinivasan 2006) and because scalp power is not a comprehensive 
measure of widespread coherent synchronization. Instead, it appears more appropriate extracting robust 
synchronizations all over the cortex and testing them altogether (the whole cohort) along the frequency 
dimension. The multivariate tool permitting such investigation in large samples of individuals is group 
independent component analysis (gICA) (Calhoun et al. 2001; Schmithorst and Holland 2004). 
Whereas ICA relies on high-order statistics, here we use another blind source separation (BSS) 
framework based on second-order statistics. We have previously argued that second-order BSS 
methods suits well EEG data (Congedo et al. 2008). Importantly, it allows us to address the problem of 
possible dependence among the extracted regions of coherent synchronization. 

Group BSS extracts scalp spatial maps and associated EEG time-courses, referred together to as 
components. We wish to extract components that can be found on a substantial proportion of normal 
individuals at rest. Since there is no way to establish a-priori how many of such components can be 
established, nor if they are reliable, we employ a test-retest strategy using two independent large 
sample normative databases (N=57 and N=84) and retain as many components as we can replicate, 
proceeding in descending order of explained variance; a similar strategy has been previously employed 
(Damoiseaux et al. 2006) in an fMRI study. Once robust normative components are extracted, we 
characterize the cortical structures involved in each component by a distributed source localization of 
the spatial maps (Greenblatt et al. 2005) and their spectral profile. We are able to replicate on the two 
databases seven components with nearly identical spatial and frequency distribution (detailed in a 
separate paper). In this paper we study the out-of-phase (lagged) coherence (dependence) of the 
extracted components using recent advances on connectivity measures adapted to EEG data. We are 
able to show the organization of the components in two networks. Within each network components 
oscillate coherently with multiple-frequency dynamics, whereas between networks they exchange 
information at non-random multiple time-lag rates.  

Material and Methods 

 It is well known that spectral EEG measures follow developmental equations, meaning that the 
frequency composition of the EEG reflects the maturational status of the brain (John et al. 1980). In 
order to avoid confounding age effects we consider in this study only adult individuals between 17 and 
30 y.o. Two independent normative databases previously acquired were used for this study. One is a 
subset of the normative database of the Brain Research Laboratory (BRL), New York University 
(N=57; age range 17-30) and the other the adult normative database of Nova Tech EEG (NTE), Inc., 
Mesa, AZ (N=84; age range 18-30). Exclusion criteria for the BRL database were known psychiatric or 
neurological illness, drug/alcohol abuse, current psychotropic/CNS active medications, history of head 
injury (with loss of consciousness) or seizures. Exclusion criteria for the NTE database were a 
psychiatric history in any relative and participant of drug/alcohol abuse, head injury (at any age, even 
very mild), headache, physical disability and epilepsy.  

 Recording procedures and settings were very similar for the two databases. In both cases about 3-
5 minutes of EEG was continuously recorded while participant sat with the eye-closed on a 
comfortable chair in a quiet and dimly lit room. EEG data were acquired at the 19 standard leads 
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prescribed by the 10-20 international system (FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, T5, 
P3, PZ, P4, T6, O1, O2) using both earlobes as reference and enabling a 60 Hz notch filter to suppress 
power line contamination. The impedance of all electrodes was kept below 5K Ohms. Data of the NTE 
database were acquired using the 12-bit A/D NeuroSearch-24 acquisition system (Lexicor Medical 
technology, Inc., Boulder, CO) and sampled at 128 Hz, whereas data of the BRL database were 
acquired using the 12-bit A/D BSA acquisition system (Neurometrics, Inc., New York, NY) and 
sampled at 100 Hz. For consistency, we subsequently up-sampled the BRL database to 128 Hz using a 
natural cubic spline interpolation routine (Congedo et al. 2002). In order to minimize inter-subject 
variability we removed from all data any biological, instrumental and environmental artifacts, paying 
particular attention to biological artifacts generated by the eyes, the hearth and the muscles of the neck, 
face and jaw. EEG recordings were visually inspected on a high-resolution screen and epochs 
containing visible artifacts were marked and ignored for ensuing analysis.  

 

Frequency-domain statistics 

 
All statistics used in this study are summarized in the complex hermitian Fourier cross-spectral 

matrices E E
f

⋅∈ℂS , where f is the discrete frequency index and E the number of electrodes 

(Bloomfield 2000). We can write f f fi= +S C Q , where i= 1− . Symmetric E E
f

⋅∈ℜC , referred to as 

the cospectral matrix, holds in the main diagonal the power spectra and in the off-diagonal elements 
the in-phase (or with a half cycle phase shift, i.e., opposite sign) dependency structure. Antisymmetric 

E E
f

⋅∈ℜQ , referred to as the quadrature spectral matrix, holds in the off-diagonal elements the out-of-

phase (a quarter cycle in either direction) dependency structure. Both dependency structures are of 
second order. The cospectral matrix is equivalent to the covariance matrix of the data band-pass filtered 
for its discrete frequency: by Parseval’s theorem the sum of all co-spectral matrices is equivalent to the 
data covariance matrix. We estimate individual cross-spectral matrices as the average obtained by Fast 
Fourier Transform (FFT) on 50% sliding overlapping 2-seconds windows tapered using the function 
introduced by Welch (1967). Finally, we obtain group average cospectral matrices as the grand average 
across individuals.  

 

Group Blind Source Separation 

 
For E scalp sensors and M≤E EEG dipolar fields to be estimated, the BSS linear model employed 

describes the superposition principle, i.e., we state 
( ) ( )t t=v As ,     (1) 

where ( ) Et ∈ℜv is the sensor measurement vector, E M⋅∈ℜA is a time-invariant non-singular mixing 

matrix and ( ) Mt ∈ℜs holds the time-course of the source components. Note that model (1) describes 

the instantaneous (in-phase) diffusion of current source over measurement sites, in fact describing the 
effect of direct current and volume conduction (Congedo et al. 2008). Our source estimation is given 
by 

ˆ( ) ( )t t=s Bv ,     (2)  

where separating matrix M E⋅∈ℜB is what we wish to estimate by BSS assuming no knowledge of A 
and weak assumptions on s.  
 

A wide array of BSS/ICA methods exist. In this work we use a method based on the approximate 
joint diagonalization (AJD) of Fourier cospectral matrices, which is a robust and computationally fast 
approach (Congedo et al. 2008). We diagonalize grand-average cospectral matrices in the frequency 
range 0.5-30 Hz only, which is the range with highest signal-to-noise ratio. This results in F=60 
frequencies with 0.5 Hz resolution (0.5, 1, 1.5, …, 30 Hz). This approach is analogous to the averaging 
group ICA approach described for fMRI by Schmithorst and Holland (2004). The weak assumption on 
the source process we need to solve the BSS problem with this approach is that sources are 
uncorrelated and have non-proportional power spectrum (Congedo et al. 2008). 

 
In order to estimate M<E source components the matrix B is found with a classical two-stage 

process, which allows the estimation of the M most energetic components while reducing the noise. 
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This involves first whitening the grand-average cospectral structure and then finding a matrix B best 
diagonalizing (AJD) all reduced cospectra. To solve the AJD problem we use an iterative algorithm 
previously developed (Pham and Congedo 2009), which is computationally fast. The reader is referred 
to (Congedo et al. 2008) for further details on AJDC. 
 

Lagged Coherence 

 
We estimate the lagged (out-of-phase) coherence between all 21 pairs of the seven components for 

all frequencies in between 0.5 and 55 Hz. To obtain source coherence let ( )fc x  be the xth diagonal 

element of T
fBC B , ( )fc xy  the off-diagonal elements of T

fBC B  and ( )fq xy  the off-diagonal 

elements of T
fBQ B . The well-known squared coherence at discrete frequency f  is  

( )2 22( ) ( ) ( )( )f f f ffxy q xy c x c yc xyρ = + ,   (3) 

Such measure can be conceived as the frequency-domain analogous of the coefficient of determination, 
the square of the Pearson product-moment correlation coefficient, but describes both in-phase and out-
of-phase correlation. The measure is comprised between 0 (no correlation at discrete frequency f ) and 
1 (full correlation at discrete frequency f ). It has been intensely used in EEG literature to describe the 
dependency between two scalp locations, however it is inflated by the artificial in-phase (zero-lag) 
correlation engendered by volume conduction (Nunez and Srinivasan 2006). Recently Nolte et al. 
(2004) proposed to consider instead the “imaginary part” of the coherency (the non-squared coherence)  

( )( ) ( ) ( )f f f fxy q xy c x c yϕ = ,    (4) 

which is not affected by volume conduction since it reflects only lagged correlation. Finally, Pascual-
Marqui (2007) showed that the standard coherence (3) can be split in two additive parts: an 
instantaneous (in-phase) and a lagged (out-of-phase) part. The correct lagged coherence is given by 

( )2 2 2( ) ( ) ( ) ( )f f f f fxy q xy c x c y c xyφ  = −  .  (5) 

Such measure is particularly adapted in this context since our BSS method assumes null zero-lag 
correlation among sources. When applied in the source space, as we are doing, lagged coherence can be 
interpreted as the amount of cross-talk between the regions contributing to the source activity. Since 
the two components oscillate coherently with a lag, the cross-talk can be interpreted as information 
sharing by axonal transmission. The discrete Fourier transform decomposes the signal in a finite series 
of cosine and sine waves (in-phase and out-of-phase carrier waves, respectively, forming the real and 
imaginary part of the Fourier decomposition) at the so-called Fourier frequencies (Bloomfield, 2000). 
The lag of the cosine waves with respect to their sine counterparts is inversely proportional to their 
frequency and amounts to a quarter of the period; for example, the period of a sinusoidal wave at 10 Hz 
is 100 ms. The sine is shifted a quarter of a cycle (25 ms) with the respect to the cosine. Then the 
lagged coherence (5) at 10 Hz indicates coherent oscillations with a 25 ms delay, while at 20 Hz the 
delay is 12.5 ms, etc. 
 
The Φf

2 threshold of significance for a given α value is given by (Pascual-Marqui 2007) 

( ) ( ) ( )( )( )1 22
1 1

1f
F N

th e
χ αφ α

−− −
= − ,    (6) 

where ( )( )1 2
(1) 1F χ α− −  is the inverse CDF of a chi-square random variable with one degree of 

freedom.  

Results 
 

Figure 1 (left and center) shows the estimated lagged squared coherence (5) obtained on the two 
databases for all component pairs along frequencies, with significant results at the 0.2 level plotted 
using thick lines. The profiles appear clearly non-random and seem to concentrate in discrete frequency 
regions of high-communication rate, interleaved by regions of low-communication rate. The coherence 
profile displays peaks occurring at nearly identical frequencies in the two databases, although with 
inconsistent relative amplitude. The communication protocol among components displays a dynamic 
functioning with most component pairs interplaying at multiple frequencies (multiple time-lags) 
simultaneously, although most pairs prefer a narrow-band communication window. Almost all peaks 
found in the BRL databases can be found in the NTE database and viceversa. Figure 1 (right) shows the 
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average between the two databases. Although no smoothing along adjacent frequencies has been 
performed, due to the size of our sample the coherence profiles show an acceptable signal-to-noise 
ratio. For the combined coherence (N=141) we computed asymptotic significant values for type II error 
(α) equal to 0.2, 0.1 and 0.05. Significant coherences are reported in Fig. 2 in the form of a 
connectivity graph. We see that the seven components are organized in two independent (both in-phase 
and out-of-phase) networks, whereas significant out-of-phase cross-talk exists within each network.  

 

Discussion 
 

In this study we have shown that  
1) an adequate BSS method not only allows canceling the volume conduction effect, i.e., the 

isolation of the relevant brain sources generating the observed scalp EEG, but also the study of residual 
(out-of-lag) cross-talk between such sources, unbiased by volume conduction. 

2) group BSS can be purposefully used in EEG as group ICA is used in fMRI; we can replicate a set 
of seven components with nearly identical spatial and spectral content (data not shown). Furthermore, 
the organization of these components in networks communicating by specific frequency and time-lag 
protocols is also replicable. 

 
In our two databases the significant cross-talk appears at low frequencies (≤11 Hz), which is in line 

with the role of such frequencies in the long-(spatial) range co-ordination (Broyd et al. 2008; Fox and 
Raichle 2007). In fact both networks solicit simultaneously anterior and posterior regions and more in 
general regions far apart several centimeters from each other (data not shown), corroborating the 
hypothesis that axonal transmission is at the origin of the observed interplay. 
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Figure 1. Lagged squared coherence (5) in the 0.5-55 Hz range (0.5 Hz resolution) for all pair-wise couples of 
the seven components of Fig. 2 for the BRL database (left), NTE database (center) and the 
combination of the two (right). The coherence profiles of significant (p<0.2) component pairs are 
drawn using a thick line. 

 

 

 

 

 

 

 

 

 

Figure 2. Significant lagged coherence (5) for three type II error rates (α). Components with at least two 
significant connections at the 0.1 level and at least three significant connections at the 0.2 level are 
marked as “hubs”. The seven components organize in two fully independent networks.  

 


