Pascal André

Gilles Ardourel

Christian Attiogbé

Adaptation for Hierarchical Components and Services

Keywords: Adaptation, Components, Services, Behavioural Interface Description, Hierarchisation

Introduction

Coordination is the process of building programs by gluing together active software parts [START_REF] Gelernter | Coordination Languages and their Significance[END_REF][START_REF] Papadopoulos | Coordination Models and Languages[END_REF]. Usually the glue adheres on access points and when it does not, one uses adaptation techniques to make it adhere. Software adaptation [START_REF] Yellin | Protocol Specifications and Component Adaptors[END_REF][START_REF] Heineman | An Evaluation of Component Adaptation Techniques[END_REF][START_REF] Brogi | On the Specification of Software Adaptation[END_REF] includes the detection of interaction mismatches and their correction when it is possible. The correction can be either a dynamic adaptation at running time or the insertion of static adaptors (or transformers).

Adaptation and coordination may be considered from various perspectives. From the component perspective (the Component Based Software Engineering approach) [START_REF] Szyperski | Component Software: Beyond Object-Oriented Programming[END_REF][START_REF] Medvidovic | A Classification and Comparison Framework for Software Architecture Description Languages[END_REF][START_REF] Bergner | A Formal Model for Componentware[END_REF][START_REF] Heineman | Component-Based Software Engineering, 8th International Symposium, CBSE'2005[END_REF] the access points are interfaces, ports, services or operations. From the service perspective (the Service Oriented approach) [START_REF] Papazoglou | Service-Oriented Computing: Concepts, Characteristics and Directions[END_REF][START_REF] Papazoglou | Introduction to Service-Oriented Computing[END_REF][START_REF] Beyer | Web Service Interfaces[END_REF] the access points are interfaces, services or operations.

In a wide acceptance, a software architect would integrate software components from any provider and therefore with a non-restricted range of models. It means that the components can be components à la CBSE or services, assuming that there are many different component models and many service models. In such a context, the software architect needs a language that helps her/him either to define clearly what she/he needs or to find components on the shelf and appropriate adaptation mechanisms. Usually, such a language applies at an interface level and should be • abstract, expressive and formal to hide model specific features and implementation considerations; to provide enough information for both the component designer and the component client (the architect); to ensure consistency and to support the verification of properties such as service or component composability;

• flexible to allow partial use of components, partial descriptions of services, optional use of subservices,

• scalable to allow the combination of small elements (services, components, adaptations) into higher level components.

However, a component model may provide interfaces which are not restricted only to simple synchronous call/response operations; interacting services may be provided through the component interface, this leading to hierarchically structured interfaces. Furthermore, support for adaptation facilities increase the component model reusability.

In this article, we address these needs with a Hierarchical Behavioural IDL that is used for our Kmelia component model [START_REF] Attiogbé | Checking Component Composability[END_REF]. For (re)usability purpose we investigate adaptation issues for such a model and propose some adaptation techniques.

The article is organised as follows: Section 2 motivates and presents the hierarchical behavioural interface description language of our component model. In Section 3 we consider adaptation problems that are either introduced by the hierarchisation level or solved using specific features of our model. We conclude with the perspectives of this work in Section 4.

Hierarchical Behavioural IDL using Kmelia

This section introduces an extension to Behavioural Interface Definition Languages (BIDL) in order to handle complex service interactions and service composition, called a Hierarchical BIDL. The section motivates the use of hierarchisation for component documentation, service composition and service adaptation. The model is illustrated using the Kmelia language.

Structuring Component Interfaces

Formal and abstract descriptions are valuable to design and reason on CBSE system, especially at the interface level [START_REF] Poizat | Formal Methods for Component Description, Coordination and Adaptation[END_REF]. We assume any component model with provided and required services in which the interface specifies the component interactions with its environment [START_REF] Allen | A Formal Basis for Architectural Connection[END_REF][START_REF] Medvidovic | A Classification and Comparison Framework for Software Architecture Description Languages[END_REF].

An Interface Definition Language (IDL) is commonly used for component interoperability. The IDL describes the signatures of provided services. However more details are required (1) on the required services to get modular components, (2) on possible contract definitions, (3) on the ordering of service invocations. The use of Behavioural IDL (BIDL) meets the requirement (3).

In the BIDL approaches [START_REF] Yellin | Protocol Specifications and Component Adaptors[END_REF][START_REF] Canal | On the Dynamic Adaptation of Component Behavior[END_REF][START_REF] Canal | Adding Roles to CORBA Objects[END_REF][START_REF] Bracciali | A Formal Approach to Component Adaptation[END_REF][START_REF] Pavel | A Java Implementation of a Component Model with Explicit Symbolic Protocols[END_REF], the interface specifies the ordering of service invocations and the dynamic behaviour using protocols. A protocol specifies the valid interactions between components. For example a protocol can be a state transition system [START_REF] Pavel | A Java Implementation of a Component Model with Explicit Symbolic Protocols[END_REF], a regular expression [START_REF] Plasil | Behavior Protocols for Software Components[END_REF], or a non-regular process type [START_REF] Südholt | A Model of Components with Non-regular Protocols[END_REF]. A protocol may be associated to a component, to an interface or to a connector 2 . In the first case the protocol merely controls the component lifecycle (like a process if there is only one protocol). In the second case the protocol controls the component interactions in some identified relations: an interface can hold on peerto-peer channels (one per connected component) or on view (like database views). In the last case the protocol controls the communications on a structural access point: it manages the communication aspects of the components or it can be an explicit adaptor. The semantics and usage are slightly different from one approach to another, especially if we have in mind the adaptation and coordination issues.

A common characterisation of the existing BIDL approaches is to consider services as atomic operations and service calls as message sends on an implicit or explicit channel. Such services are defined by a signature (name and parameters) and -if the component model supports assertions-a contract (pre/post conditions). But a service may be more complex than a simple message call: it can handle complex functionalities, it can require multiple interactions and it can also call other services.

Hierarchical BIDL (HBIDL) is a solution to introduce complex services. A HBIDL is characterised by the fact that services are first class entities: (1) services may be defined by a dynamic behaviour (a protocol) in addition to their signature and contract and (2) services may be composed of other services. Each service has an enhanced service interface which includes a service dependency composed of the provided services and the required services which are used in its context. Therefore, a HBIDL should support component protocols, component composition, service protocols and service composition.

The advantages of using a HBIDL are manyfold. It supports the definition and documentation of complex interacting services. The client-side documentation of a component has detailed information on the service usage. Indeed, the client gradually discovers the documentation of the components and services. First, the component interface shows the services that are accessible at a component level; then the specific interface of each provided service; therefore the client only gets step by step what she/he needs.

Furthermore, assembling components in HBIDL focuses on services, considering them as functional connecting points rather than structural connecting points (sometimes called gates or ports). This is a convenient view when one try to fulfil a complex required service.

HBIDL can smoothly support the notion of compatibility level (see below) for component connection because it induces a layered presentation of the interface: IDL only, IDL with protocols, IDL with hierarchy and protocols. Therefore compatiblity checking is preserved by HBIDL. Last, HBIDL due to its emphasis on services, can be a gateway to service oriented models in order to compose components and services (in the sense of the Service-Oriented Approach).

Defining compatibility levels helps when handling heterogeneous models. For example, Becker and al. consider four compatibility levels: syntax, behaviour, synchronisation, and quality of service [START_REF] Becker | Classifying Software Component Interoperability Errors to Support Component Adaption[END_REF]. The compatibility of services described with an HBIDL can be defined at five levels: signature matching, enhanced service interface conformity (including subservices), contract fulfilment, behavioural compatibility (the interactions -waiting for data, synchronisation-between the caller and called services are correct) and quality of service (non-functional requirements). For example, if a component A with an IDL interface only (e.g. a component à la CORBA Component Model) is composed with a component B with an HBIDL interface (e.g. a Kmelia component) then their compatibility can be checked only at the signature level.

The use of the previous compatibility levels impacts on the adaptation techniques. One can either restrict the adaptation at one or more compatiblity levels or extend the adaptation to cover the missing compatibility levels in the considered components.

Hierarchies of Components and Services in Kmelia

The Kmelia model [START_REF] Attiogbé | Checking Component Composability[END_REF] is a simple, formal and abstract component model based on services. It uses the HBIDL features exposed in the previous section. The simplicity relies on the few number of concepts that are used to describe the components and their assembies. The notion of service is central to Kmelia and a component interface describes mainly services. This means that the components are connected via their services (functional connections). The interaction model is therefore simple: required services are directly linked to provided services. A component specification language named Kmelia and a prototype toolbox (COSTO: Component Study Toolbox) support the Kmelia model and property verification. The remainder of the section is an overview of the Kmelia model illustrated on a bank Automatic Teller Machine (ATM) example and its withdraw service.

A Kmelia component is defined through an abstract state model (made up with variables, an invariant, and an initialisation), an interface (made up with provided and required services) and a constraint definition (logic expressions). Figure 1 shows a specification of an ATM core component in Kmelia.

Basically, a Kmelia service encodes a functionality; it is defined with an interface and a behaviour. The service interface includes the service signature, the local declarations, the assertions (pre/post conditions) and the service dependency (related to service composition). The service dependency includes the references to i) provided subservices: they are the services which are provided in the context of another service and to ii) required services. The latter are required from the component itself, from the calling component or from any components. Figure 2 shows a specification of the withdrawal service of the core component for the ATM system in Kmelia.

The subprovides, calrequires, extrequires clauses in the interface of the withdrawal service make explicit the hierarchy and the dependencies between services: the withdrawal service offers an ident subservice and requires three other services, two of them being required from the component which is calling withdrawal.

Component assemblies establish the communication channel used by the communication actions. Assembling Kmelia components consists in linking their pairwise services: required services may be linked to provided services. An implicit channel is associated to this link that supports the communication actions or messages between the services. The semantics of the links is not straightforward because it must conform to the service interface hierarchy. Indeed the services that appear in the subprovides and the calrequires clauses of the service interface dependency must (i) share a common link (they are sublinks) and (2) their links must conform to the hierarchy levels. This constraint is recursive on service inclusion. A component composition is the encapsulation of an assembly within a component with a projection of services by promotion links. Promotion links relate the composite services to the inner component services. The main provided service behaviour of the ui component drives the user commands. For example, the user can ask for money (required service ask for money) which is linked to the service withdrawal provided by the ATM core ac component. According to Figure 3, the withdrawal service may call internal services (debit,...), external services (ask authorization), external services required from the caller (ask code, ask amount) and it provides the ident service in the context of ask code. Note that the amount and code links are sublinks: they share the ask for money-withdrawal link and its implicit communication channel.

The component and service usages are flexible:

• An assembly may be valid for one service only, provided that its dependency chain is fulfilled. For example, all the required services that are only needed by the unused transfer provided service have not to be fulfilled for the ATM SYSTEM assembly to be correct.

• A service can provide optional subservices. For example, the ask code service can be linked to a service that does not need identification (ident service). Similarly the ask for money service can be linked to a withdraw service that does not need code (code service).

• Provided subservices may be included as services with explicit service call or only as behaviours without a service call (see next section).

Hierarchy of Behaviours in Kmelia

The hierarchy of service interfaces is naturally reflected in the service behaviour: this permits a precise description of the use of a subservice in the context of the interaction with a service. In Kmelia, a service behaviour is an extended labelled transition system (eLTS) [START_REF] Attiogbé | Checking Component Composability[END_REF] where the states define the service evolution steps and the transitions are labelled with possibly guarded combination of actions: [guard] action*. The actions are either elementary actions or communication actions. An elementary action, an assignment for example, does not involve other services; it does not use a communication channel.

The communication actions use either the standard communication primitives ! and ? for sending/receiving simple messages or their extended forms !! and ?? to deal with service calls and service responses. They are prefixed with a communication channel which can either denote the required service or the caller. A communication channel to be used in a behaviour has to be established by a link like the ask for money-withdrawal link in Figure 3.

The services run concurrently; the communications are synchronous. For example Figure 4 is a visual representation of the withdrawal service eLTS; this figure is produced by the COSTO toolbox. In Kmelia, service behaviours may contain execution points (states or transitions) where a subservice (declared in the service's interface) can be called. These states or transitions are annotated with Kmelia's vertical structuring operators. For instance, the label of the node e1 in Figure 4 expresses that an optional service ident may be called by widthdrawal's caller when the running reaches node e1. This label features the <<>> operator that denotes an optional service call. Kmelia main vertical operators are:

• optional behaviour insertion: <||>,

• mandatory service call: [[]],

• mandatory behaviour insertion: [||].

These structuring mechanisms provide a means to reduce the LTS size, to share common services or subservices and to master the complexity of service specification.

All these structuring operators are defined in such a way that formally the unfolding of an eLTS results in a LTS (in a recursive way). The formal semantics of the structuring mechanisms can be found in [START_REF] André | Defining Component Protocols with Service Composition[END_REF].

Adaptation Problems and Solutions

The following categories of adaptation problems are especially relevant in HBIDL:

• Classic adaptation problems that can be seen through the lens of the new language and benefit from its expressiveness.

• Granularity mismatch in HBIDL: adapting services which hierarchy is organised differently. Having more expression power allows to describe precise constraints relevant for a specific context but that must be adapted when a service or a component is used in a different environment.

• Granularity mismatch between a HBIDL and a BIDL: having a more expressive language does not mean every model uses the expressiveness to the full extent. For a new language to be effective, differences of levels of detail must be dealt with, as well as interoperability with models expressed in languages which intersect with the new one. Problems from this category can be treated like granularity mismatches in HBIDL by considering BIDL models as flat HBIDL models.

In the following we describe the process that is used to detect adaptation problems in a HBIDL architecture and we provide solutions in the Kmelia model.

Adaptation Process with Kmelia and COSTO

The COSTO prototype features several verification algorithms that check compatibility of components and services at different levels: signature, interface, dependencies, behavioural compatibility. Behavioural compatibility is checked by exporting our Kmelia models to Mec [START_REF] Griffault | Contribution à l'étude des systèmes communicants et des algorithmes d'exclusion mutuelle[END_REF] or Lotos [START_REF] Lotos | A Formal Description Technique Based on The Temporal Ordering of Observational Behaviour[END_REF] and reusing their respective model checking tools. We assume that the matching between names (of different components, services or messages) has already been established, either manually or automatically (e.g. by ontology-based approaches).

For each mentioned adaptation problem we use the following pattern.

• First we indicate the earliest compatibility level at which the problem occurs.

• Next we specify how we identify which kind of adaptation problem it belongs to.

• Then we explain how to generate systematically an adaptor and verify that it ensures compatibility. Depending on the constraints of the running environment, the adaptor can take several forms: a component inserted between two mismatching components, a proxy service delegating to one of the services, or an alternative interpretation of a behaviour. We will focus here on the first one.

• Last, we precise if the adaptation problem could have been avoided at minimal cost using the Kmelia structuring operators.

We believe that designers of components and services should anticipate different uses, provided that their specification language helps them to do so at a minimal cost in design time and verification time. We name implicit adaptation this inherent ability of a service or a component to be compatible with many others by construction. At a message or service signature level, implicit adaptation focuses on optional arguments, default values, compatible subtypes for arguments and result. At a hierarchical service interface level, it includes optional subservices, implicit linking to services or subservices. At a service assertion level, it means that the compatibility between provided and required pre/post conditions is ensured via propagations from the previous levels. At a service behaviour level, all the above adaptations apply together with possible alternate behaviours (w.r.t. observational equivalence: the behaviour of the service is not changed from the point of view of client services) using the behaviour insertion operators introduced in Section 2.3.

Adaptation in HBIDL: Parameters vs messages

This problem is an example of a standard BIDL adaptation problem taken in a HBIDL context. In the Parameters vs messages problem, there are different treatments for data exchanges between related components: according to a service, one component may use parameters where the other uses messages to send the data value for the service. It is a variant of the Multiple action correspondence [START_REF] Bracciali | A Formal Approach to Component Adaptation[END_REF]. Based on different interpretations of an imprecise textual specification such as "The client must communicate an account number and an amount to the service deposit", one service could use parameters while another could use message sends. This is illustrated in Figure 5. Given that the correct data is "communicated", the communication has to be adapted when a client of the service deposit uses a different interpretation. In Figure 5 the behaviour service from USER INTERFACE calls the deposit service from ATM CORE to credit the account number 12 by 100. The signature of deposit is deposit(int account, double amount) but the call from behaviour does not contain parameters and it is followed by two messages containing the parameters.

The parameter vs messages problem is detected at level 1: signature mismatch between the deposit provided service of ATM CORE and the deposit required service of USER INTERFACE. The adaptability is checked in COSTO using a simple graph traversal algorithm which looks for an unavoidable sequence of message sends in the caller's behaviour that matches the parameters and that takes place between the service call and any other communication with the service. If such sequence is found, the problem is diagnosed as a Parameters vs messages and can be solved. Figure 6 shows an adaptor component between the deposit provided service of ATM CORE and the deposit required service of USER INTERFACE. This adaptor illustrates another Kmelia operator: channel<|>channel . This operator redirects communications from a channel to another one, thus simplifying the writing of some adaptors that require pre-processing before reverting to normal communication, like an incorrect order of messages. Furthermore, unidirectional versions of this operator exist (channel<|channel and channel|>channel). An adaptor can be automatically generated by matching with a sequence of receptions the sequence of calls found in the diagnosis phase, adding a call to the service with its parameters, then adding the redirection operator.

The parameter vs messages problem can be further complicated by the use of parameters with types of different granularity in the client and in the provider, for instance the deposit service could have had a structured type in its signature while the caller would have used primitive types in its call. The complexity of the detection and the generation is related to the complexity of the data structures used in the parameters (data might have to be constructed or decomposed) and the similarity metrics used for identifying the parameters. The diagnosis algorithm of COSTO for the parameter vs messages problem is parametrised with an identification method which have to be changed to incorporate the variants of the problem.

Adapting Hierarchical Mismatch

When a component expects to call a service which is not hierarchical and is connected to one where part of the functionality is described as a subservice, a Hierarchical Mismatch occurs.

Being designed with different granularity levels in mind, the services withdrawal and behaviour from Figure 7 are not compatible: in behaviour, identification is a simple communication made in the context of the withdrawal service but the identification is considered to be managed by the ident service in withdrawal's component, probably because it is meant to be used in the context of several other services of the component. This mismatch can be detected by a behavioural compatibility analysis using COSTO tools. For instance, the results of the analysis with MEC gives the following information :

transition_system Verif_ATM_CORE_withdrawal < width = 2; list = (ATM_CORE_withdrawal, USER_INTERFACE_behaviour)> ... deadlock = { e(i.e11) } unavoidable = { e(init.init), e(init.e10), e(i.e11) } Fig. 8. Extract of a result from the compatibility analysis using MEC It detects a deadlock at the state i of withdrawal and at the state e11 of behaviour. This incompatibility can be diagnosed as a Hierarchical Mismatch problem because one of the states (i of withdrawal) where the deadlock occurs offers a subservice which starts with the identification message that matches the one following e11 of behaviour. This diagnostic is confirmed by taking the following steps3 :

• A call to the ident subservice just before the identification message is added to a copy of the LTS of behaviour

• The compatibility check is run again. It should give another deadlock corresponding to the lack of waiting for the result of ident in behaviour (withdrawal??ident).

• The wait for the result of identis added in the copy of the LTS before the newlyfound deadlock.

• If the compatibility check passes, the problem is correctly diagnosed and can be solved. Figure 9 shows an adaptor that solves the problem. The service behaviour from ui is now linked with the withdrawal service of the adaptor, which depends on a required service arwithdrawal that is linked to the withdrawal service of ac. Calls should be read from right to left, following the required-provided links: when it is called, the withdrawal service of the adaptor calls withdrawal from ac; then it calls the subservice ident in withdrawal's context (hence the channel arwithdrawal); then it waits for the identification message; then it transmits the identification message to its initial caller (ui's behaviour).

The adaptor is created by generating a LTS that starts the called service (withdrawal from ac), relay all communication from the caller that happens before the deadlock (in our example we start directly with the deadlock), starts the subservice and relay communication again.

• First, the LTS obtained from the diagnosis phase is reused (it has been restricted to communications on the withdrawal channel and reduced).

• The withdrawal channel is renamed with the name of the required service for the adaptor (in our case arwithdrawal).

• Transitions that call and wait for the subservice are inserted at the points discovered in the diagnosis (initial and second deadlocks).

• Every other communication on the channel is forwarded:

• A transition is added after every message that is sent by the initially called service (withdrawal) for sending the information to the adaptor's caller (for instance, CALLER!identifier(i) is inserted after arwithdrawal?identifier(i)).

• A transition is added before every message that is sent to the initially called service (withdrawal) for receiving the information from the adaptor's caller (for instance, CALLER?amount is inserted before arwithdrawal!amount).

The behavioural compatibility between ui's behaviour, the adaptor's withdrawal and the withdrawal and ident services of ac can be checked using COSTO.

This Hierarchical Mismatch can be avoided using implicit adaptation when the creation of the service ident is coming from a refactoring of the service withdrawal.

In such a situation the designer should be conscious that while identifying, naming and factorising some part of behaviour are good from the readability point of view, that breaks compatibility with client services that predate the change. The <||> operator is a vertical composition operator that could have been used instead of the <<>> operator in the example. This operator allows to branch to the subservice either by calling it or without the call in order to be compatible with both new clients and older clients4 . . This mandatory service or behaviour call operator is used for describing protocols that control the correct ordering of service calls. We added the login and logout services to the ATM CORE component in order to describe a very simple protocol. The users of the component call the protocol withdrawprotocol then they have to call the other services in its context (i.e under its control) or have interactions that match those of the services under the control of the component.

The <||> and [||] operators are useful for implicit adaptation, but they cannot always replace their less flexible counterparts: for instance, if the mandatory service call operator [[]] had been used in the protocol of Figure 10, then the services withdrawal and account query could not have begun with the same communication action without being ambiguous at the state e0.

Conclusion

In this article we have presented the Hierarchical Behavioural Interfaces Description Language (HBIDL) that is used in the Kmelia abstract Component Model. The interface hierarchisation appeared through the interfaces of components which are complemented with the interfaces of services. The Kmelia component model is based on services and it provides several structuring mechanisms: horizontal structuring mechanisms especially

Fig. 3 .

 3 Fig. 3. Assembly for an ATM System

Figure 3

 3 Figure3is a graphical view of a Kmelia model for the bank ATM. The as component is a composition of an ATM CORE (ac) with an ATM user interface (ui). The main provided service behaviour of the ui component drives the user commands. For example, the user can ask for money (required service ask for money) which is linked to the service withdrawal provided by the ATM core ac component. According to Figure3, the withdrawal service may call internal services (debit,...), external services (ask authorization), external services required from the caller (ask code, ask amount) and it provides the ident service in the context of ask code. Note that the amount and code links are sublinks: they share the ask for money-withdrawal link and its implicit communication channel.The component and service usages are flexible:

Fig. 4 .

 4 Fig. 4. The withdrawal service eLTS

Fig. 5 .

 5 Fig. 5. Differences in communication of parameters

Fig. 6 .

 6 Fig. 6. Adapting differences in communication of parameters

Fig. 7 .

 7 Fig. 7. Differences in communication granularity

Fig. 9 .

 9 Fig. 9. Adapting differences in communication granularity

Fig. 10 .

 10 Fig. 10. Implicit Adaptation in a ProtocolFigure 10 illustrates its use with another Kmelia operator: [||]. This mandatory service or behaviour call operator is used for describing protocols that control the correct ordering of service calls. We added the login and logout services to the ATM CORE component in order to describe a very simple protocol. The users of the component call the protocol withdrawprotocol then they have to call the other services in its context (i.e under its control) or have interactions that match those of the services under the control of the component.The <||> and [||] operators are useful for implicit adaptation, but they cannot always replace their less flexible counterparts: for instance, if the mandatory service call operator [[]] had been used in the protocol of Figure10, then the services withdrawal and account query could not have begun with the same communication action without being ambiguous at the state e0.

 The service withdrawal is available if there is enough money in the cash dispenser. This services requires a bank credit card, a code, an amount to withdraw. An authorization is required from the bank consortium.

	COMPONENT ATM_CORE	
	/* The ATM_CORE component is the central component for a bank cashier station.
	...	
	*/	
	INTERFACE	
	provides : {withdrawal, account_query, deposit, transfer}
	requires : {ask_authorization, ask_account_balance}
	TYPES	
	CashCard : struct {code:Integer, id:Integer, limit:Integer} // record type
	CONSTANTS	
	// constants definitions
	...	
	VARIABLES	
	// variables definitions
	name : String,	
	swallowed_cards : Set,
	available_notes : Integer
	...	
	PROPERTIES	
	// predicates	
	cash_disp: available_notes >= 0
	...	
	INITIALIZATION	
	// variables assignments
	...	
	SERVICES	
	provided withdrawal (card : CashCard)
	// see the service withdrawal in Figure 2
	required ask_authorization (id : Integer, code : Integer) : Boolean
	...	
	end	
		Fig. 1. Overview of the Kmelia component syntax
	Provided withdrawal (card : CashCard)
	/* This service provides an identification subservice if needed.
	*/	
	Interface	
	subprovides : {ident}
	calrequires : {ask_code, ask_amount} //required from the caller
	extrequires : {ask_authorization}
	Pre	
	available_notes >= available_cash
	Variables	
	nbt : Integer,	// nbt : number of authorized trials of code entering
	c : Integer,	// c : input code given by the user
	...	
	Behaviour	
	init i	
	final f	
	... // see the service behaviour in Figure 4
	Post	
	available_notes <= pre(available_notes)
	// (success && (available_notes = pre(available_notes) -a)) ||
	// ((not success) && available_notes = pre(available_notes))
	end	
		Fig. 2. Overview of the Kmelia service syntax

Emails:pascal.andre@univ-nantes.fr, gilles.ardourel@univ-nantes.fr ,christian.attiogbe@univ-nantes.fr

• optional service call: <<>> ,

We use several optimisations reducing the LTS size that are outside the scope of this paper.

It is not as powerful as using adaptors because it does not work for several classes of services (for instance, services with parameters).

based on the linking of services and their related subservices; vertical structuring operators to enable the description of large services with encapsulated or shared (sub)services. An example of an ATM was used to illustrate the structuring of component and service specifications with hierarchical interfaces. We have considered adaptation problems encountered in BIDL and also related to our HBIDL: hierarchy mismatch and parameter vs message mismatch. We motivated and showed what solutions are used for these problems in our Kmelia model. The vertical structuring mechanisms help to tackle the adaptation problems. Compared to BIDL related works, we have emphasised the impact of the hierarchical BIDL on the adaptation problems and we have shown that the use of structuring mechanisms may simplify design and verification of both services and adaptors.

Overall, we are concerned with the verification of components with respect to their dynamic and functional properties and their preservation after adaptation.

We plan the integration of adaptation techniques into the COSTO prototype which already handles verification of components, services and compatibility of the assemblies. The investigated process is the following: after a failed compatibility verification, a module will attempt to diagnose the incompatibility as an adaptation problem and to generate an adaptor and launch the verification again. This integration of adaptation with verification techniques is an open field: the detection of mismatches must be connected with the proposition of adaptations and the decision process. A research direction could be the specification of adaptation problems and their solutions in a language that uses HBIDL and coordination patterns.