
HAL Id: hal-00423697
https://hal.science/hal-00423697

Submitted on 12 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation for Hierarchical Components and Services
Pascal Andre, Gilles Ardourel, Christian Attiogbé

To cite this version:
Pascal Andre, Gilles Ardourel, Christian Attiogbé. Adaptation for Hierarchical Compo-
nents and Services. Electronic Notes in Theoretical Computer Science, 2007, 189, pp.5–20.
�10.1016/j.entcs.2007.05.045�. �hal-00423697�

https://hal.science/hal-00423697
https://hal.archives-ouvertes.fr

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Adaptation for Hierarchical Components and

Services

Pascal André, Gilles Ardourel, Christian Attiogbé 1

LINA CNRS FRE 2729
University of Nantes

France

Abstract

Software coordination and adaptation are tightly related to modular software entities and access points.
These entities (components or services) may be complex, dissimilar (various models) and designed at differ-
ent granularity levels. In order to allow interoperability we need rich interface descriptions including service
hierarchisation, flexible declarations and precise specifications. In this article we present a Hierarchical
Behavioural interface description language that enables the structuring of services, their encapsulation and
it also facilitates the use of component interfaces. We also investigate in this work the adaptation and
coordination for Hierarchical Behavioural IDL. We recall various adaptation problems and we introduce
modelling techniques and some solutions within hierarchical context considering precision of the interfaces,
their layering and flexibility.

Keywords: Adaptation, Components, Services, Behavioural Interface Description, Hierarchisation

1 Introduction

Coordination is the process of building programs by gluing together active software

parts [12,19]. Usually the glue adheres on access points and when it does not,

one uses adaptation techniques to make it adhere. Software adaptation [27,16,8]

includes the detection of interaction mismatches and their correction when it is

possible. The correction can be either a dynamic adaptation at running time or the

insertion of static adaptors (or transformers).

Adaptation and coordination may be considered from various perspectives.

From the component perspective (the Component Based Software Engineering ap-

proach) [26,18,5,15] the access points are interfaces, ports, services or operations.

From the service perspective (the Service Oriented approach) [20,21,6] the access

points are interfaces, services or operations.

In a wide acceptance, a software architect would integrate software components

from any provider and therefore with a non-restricted range of models. It means

1 Emails:pascal.andre@univ-nantes.fr, gilles.ardourel@univ-nantes.fr ,christian.attiogbe@univ-nantes.fr

1

http://www.math.tulane.edu/~entcs
mailto:pascal.andre@univ-nantes.fr
mailto:gilles.ardourel@univ-nantes.fr
mailto:christian.attiogbe@univ-nantes.fr

AAA

that the components can be components à la CBSE or services, assuming that there

are many different component models and many service models. In such a context,

the software architect needs a language that helps her/him either to define clearly

what she/he needs or to find components on the shelf and appropriate adaptation

mechanisms. Usually, such a language applies at an interface level and should be

• abstract, expressive and formal to hide model specific features and implemen-

tation considerations; to provide enough information for both the component

designer and the component client (the architect); to ensure consistency and to

support the verification of properties such as service or component composability;

• flexible to allow partial use of components, partial descriptions of services, op-

tional use of subservices,

• scalable to allow the combination of small elements (services, components, adap-

tations) into higher level components.

However, a component model may provide interfaces which are not restricted

only to simple synchronous call/response operations; interacting services may be

provided through the component interface, this leading to hierarchically structured

interfaces. Furthermore, support for adaptation facilities increase the component

model reusability.

In this article, we address these needs with a Hierarchical Behavioural IDL that

is used for our Kmelia component model [3]. For (re)usability purpose we investigate

adaptation issues for such a model and propose some adaptation techniques.

The article is organised as follows: Section 2 motivates and presents the hi-

erarchical behavioural interface description language of our component model. In

Section 3 we consider adaptation problems that are either introduced by the hier-

archisation level or solved using specific features of our model. We conclude with

the perspectives of this work in Section 4.

2 Hierarchical Behavioural IDL using Kmelia

This section introduces an extension to Behavioural Interface Definition Languages

(BIDL) in order to handle complex service interactions and service composition,

called a Hierarchical BIDL. The section motivates the use of hierarchisation for

component documentation, service composition and service adaptation. The model

is illustrated using the Kmelia language.

2.1 Structuring Component Interfaces

Formal and abstract descriptions are valuable to design and reason on CBSE system,

especially at the interface level [24]. We assume any component model with provided

and required services in which the interface specifies the component interactions

with its environment [1,18].

An Interface Definition Language (IDL) is commonly used for component inter-

operability. The IDL describes the signatures of provided services. However more

details are required (1) on the required services to get modular components, (2) on

possible contract definitions, (3) on the ordering of service invocations. The use of

2

AAA

Behavioural IDL (BIDL) meets the requirement (3).

In the BIDL approaches [27,9,10,7,22], the interface specifies the ordering of

service invocations and the dynamic behaviour using protocols. A protocol specifies

the valid interactions between components. For example a protocol can be a state

transition system [22], a regular expression [23], or a non-regular process type [25].

A protocol may be associated to a component, to an interface or to a connector
2 . In the first case the protocol merely controls the component lifecycle (like a

process if there is only one protocol). In the second case the protocol controls the

component interactions in some identified relations: an interface can hold on peer-

to-peer channels (one per connected component) or on view (like database views).

In the last case the protocol controls the communications on a structural access

point: it manages the communication aspects of the components or it can be an

explicit adaptor. The semantics and usage are slightly different from one approach

to another, especially if we have in mind the adaptation and coordination issues.

A common characterisation of the existing BIDL approaches is to consider ser-

vices as atomic operations and service calls as message sends on an implicit or

explicit channel. Such services are defined by a signature (name and parameters)

and –if the component model supports assertions– a contract (pre/post conditions).

But a service may be more complex than a simple message call: it can handle com-

plex functionalities, it can require multiple interactions and it can also call other

services.

Hierarchical BIDL (HBIDL) is a solution to introduce complex services.

A HBIDL is characterised by the fact that services are first class entities: (1)

services may be defined by a dynamic behaviour (a protocol) in addition to their

signature and contract and (2) services may be composed of other services. Each

service has an enhanced service interface which includes a service dependency com-

posed of the provided services and the required services which are used in its context.

Therefore, a HBIDL should support component protocols, component composition,

service protocols and service composition.

The advantages of using a HBIDL are manyfold. It supports the definition

and documentation of complex interacting services. The client-side documentation

of a component has detailed information on the service usage. Indeed, the client

gradually discovers the documentation of the components and services. First, the

component interface shows the services that are accessible at a component level;

then the specific interface of each provided service; therefore the client only gets

step by step what she/he needs.

Furthermore, assembling components in HBIDL focuses on services, consider-

ing them as functional connecting points rather than structural connecting points

(sometimes called gates or ports). This is a convenient view when one try to fulfil

a complex required service.

HBIDL can smoothly support the notion of compatibility level (see below) for

component connection because it induces a layered presentation of the interface:

IDL only, IDL with protocols, IDL with hierarchy and protocols. Therefore com-

patiblity checking is preserved by HBIDL.

2 A short comparison of protocols in component models is given at
lina.atlanstic.net/fr/equipes/team10/Kmelia/

3

lina.atlanstic.net/fr/equipes/team10/Kmelia/

AAA

Last, HBIDL due to its emphasis on services, can be a gateway to service oriented

models in order to compose components and services (in the sense of the Service-

Oriented Approach).

Defining compatibility levels helps when handling heterogeneous models. For

example, Becker and al. consider four compatibility levels: syntax, behaviour, syn-

chronisation, and quality of service [4]. The compatibility of services described with

an HBIDL can be defined at five levels: signature matching, enhanced service in-

terface conformity (including subservices), contract fulfilment, behavioural compat-

ibility (the interactions -waiting for data, synchronisation- between the caller and

called services are correct) and quality of service (non-functional requirements).

For example, if a component A with an IDL interface only (e.g. a component à

la CORBA Component Model) is composed with a component B with an HBIDL

interface (e.g. a Kmelia component) then their compatibility can be checked only

at the signature level.

The use of the previous compatibility levels impacts on the adaptation tech-

niques. One can either restrict the adaptation at one or more compatiblity levels

or extend the adaptation to cover the missing compatibility levels in the considered

components.

2.2 Hierarchies of Components and Services in Kmelia

The Kmelia model [3] is a simple, formal and abstract component model based on

services. It uses the HBIDL features exposed in the previous section. The simplicity

relies on the few number of concepts that are used to describe the components and

their assembies. The notion of service is central to Kmelia and a component inter-

face describes mainly services. This means that the components are connected via

their services (functional connections). The interaction model is therefore simple:

required services are directly linked to provided services. A component specifica-

tion language named Kmelia and a prototype toolbox (COSTO: Component Study

Toolbox) support the Kmelia model and property verification. The remainder of the

section is an overview of the Kmelia model illustrated on a bank Automatic Teller

Machine (ATM) example and its withdraw service.

A Kmelia component is defined through an abstract state model (made up with

variables, an invariant, and an initialisation), an interface (made up with provided

and required services) and a constraint definition (logic expressions). Figure 1 shows

a specification of an ATM core component in Kmelia.

Basically, a Kmelia service encodes a functionality; it is defined with an inter-

face and a behaviour. The service interface includes the service signature, the local

declarations, the assertions (pre/post conditions) and the service dependency (re-

lated to service composition). The service dependency includes the references to

i) provided subservices: they are the services which are provided in the context

of another service and to ii) required services. The latter are required from the

component itself, from the calling component or from any components. Figure 2

shows a specification of the withdrawal service of the core component for the ATM

system in Kmelia.

The subprovides, calrequires, extrequires clauses in the interface of the

4

AAA

COMPONENT ATM_CORE
/* The ATM_CORE component is the central component for a bank cashier station.

...
*/
INTERFACE
provides : {withdrawal, account_query, deposit, transfer}
requires : {ask_authorization, ask_account_balance}

TYPES
CashCard : struct {code:Integer, id:Integer, limit:Integer} // record type

CONSTANTS
// constants definitions
...

VARIABLES
// variables definitions
name : String,
swallowed_cards : Set,
available_notes : Integer
...

PROPERTIES
// predicates
cash_disp: available_notes >= 0
...

INITIALIZATION
// variables assignments
...

SERVICES
provided withdrawal (card : CashCard)
// see the service withdrawal in Figure 2
required ask_authorization (id : Integer, code : Integer) : Boolean
...

end

Fig. 1. Overview of the Kmelia component syntax

Provided withdrawal (card : CashCard)
/* The service withdrawal is available if there is enough money in the cash dispenser.

This services requires a bank credit card, a code, an amount to withdraw.
An authorization is required from the bank consortium.
This service provides an identification subservice if needed.

*/
Interface

subprovides : {ident}
calrequires : {ask_code, ask_amount} //required from the caller
extrequires : {ask_authorization}

Pre
available_notes >= available_cash

Variables
nbt : Integer, // nbt : number of authorized trials of code entering
c : Integer, // c : input code given by the user

...
Behaviour
init i
final f
... // see the service behaviour in Figure 4

Post
available_notes <= pre(available_notes)
// (success && (available_notes = pre(available_notes) - a)) ||
// ((not success) && available_notes = pre(available_notes))

end

Fig. 2. Overview of the Kmelia service syntax

withdrawal service make explicit the hierarchy and the dependencies between

services: the withdrawal service offers an ident subservice and requires three

other services, two of them being required from the component which is calling

withdrawal.

Component assemblies establish the communication channel used by the commu-

nication actions. Assembling Kmelia components consists in linking their pairwise

services: required services may be linked to provided services. An implicit chan-

nel is associated to this link that supports the communication actions or messages

between the services. The semantics of the links is not straightforward because it

5

AAA

must conform to the service interface hierarchy. Indeed the services that appear in

the subprovides and the calrequires clauses of the service interface dependency

must (i) share a common link (they are sublinks) and (2) their links must conform

to the hierarchy levels. This constraint is recursive on service inclusion. A com-

ponent composition is the encapsulation of an assembly within a component with

a projection of services by promotion links. Promotion links relate the composite

services to the inner component services.

aac : AAC

lb : LOCAL_BANK

ui : USER_INTERFACEac : ATM_CORE

ask_id

as : ATM_SYSTEM

provided service

required service

service link

subservice link

service call
 calrequires extrequires

service call on
the caller componnentprovided subservice

subprovides

debit
eject_card
swallow_card
display

ask_
authorizationask_

autho
rization

ask_
account_balanceask_

account_
balance

balance

authorization

account_update

behaviour

ask_for_money

code

amount

query_account

behaviour

promotion link

withdrawal

account_query

ask_code

ask_amount

deposit

transfer

ident

deposit

Fig. 3. Assembly for an ATM System

Figure 3 is a graphical view of a Kmelia model for the bank ATM. The as com-

ponent is a composition of an ATM CORE (ac) with an ATM user interface (ui).

The main provided service behaviour of the ui component drives the user com-

mands. For example, the user can ask for money (required service ask for money)

which is linked to the service withdrawal provided by the ATM core ac compo-

nent. According to Figure 3, the withdrawal service may call internal services

(debit,...), external services (ask authorization), external services required from

the caller (ask code, ask amount) and it provides the ident service in the context

of ask code. Note that the amount and code links are sublinks: they share the

ask for money-withdrawal link and its implicit communication channel.

The component and service usages are flexible:

• An assembly may be valid for one service only, provided that its dependency

chain is fulfilled. For example, all the required services that are only needed by

the unused transfer provided service have not to be fulfilled for the ATM SYSTEM

assembly to be correct.

• A service can provide optional subservices. For example, the ask code service can

be linked to a service that does not need identification (ident service). Similarly

the ask for money service can be linked to a withdraw service that does not

need code (code service).

• Provided subservices may be included as services with explicit service call or only

as behaviours without a service call (see next section).

6

AAA

2.3 Hierarchy of Behaviours in Kmelia

The hierarchy of service interfaces is naturally reflected in the service behaviour:

this permits a precise description of the use of a subservice in the context of the

interaction with a service.

In Kmelia, a service behaviour is an extended labelled transition system

(eLTS) [3] where the states define the service evolution steps and the transitions are

labelled with possibly guarded combination of actions: [guard] action*. The actions

are either elementary actions or communication actions. An elementary action, an

assignment for example, does not involve other services; it does not use a commu-

nication channel.

The communication actions use either the standard communication primitives

! and ? for sending/receiving simple messages or their extended forms !! and

?? to deal with service calls and service responses. They are prefixed with a

communication channel which can either denote the required service or the caller.

A communication channel to be used in a behaviour has to be established by a link

like the ask for money-withdrawal link in Figure 3.

The services run concurrently; the communications are synchronous. For exam-

ple Figure 4 is a visual representation of the withdrawal service eLTS; this figure

is produced by the COSTO toolbox.

e4

f

__CALLER!!withdrawal(success)

i

e0

; nbt:=3;
 success:=false

e1<<__CALLER.ident>>

__CALLER!!ask_code()

e2

; display("Card
 swallowed,

 sorry");
 swallow_card()

display("Enteryourcardcode,please")

e3

rep:=_ask_authorization!!
 ask_authorization(card.id, c)

e2i

__CALLER!rdv()

e7

display("requiretoomuchmoney,
 pleaseentertheamountagain")

e8

; debit(c, m); eject_card()

e5

e6

__CALLER!!ask_amount()
; __CALLER??ask_code(c);

 nbt:=nbt-1

; display("Transaction
 refused");

 eject_card()

display("Enterthecashamount,
 please?")

__CALLER??ask_amount(a)

success:=true

Fig. 4. The withdrawal service eLTS

In Kmelia, service behaviours may contain execution points (states or transi-

tions) where a subservice (declared in the service’s interface) can be called. These

states or transitions are annotated with Kmelia’s vertical structuring operators. For

instance, the label of the node e1 in Figure 4 expresses that an optional service

ident may be called by widthdrawal’s caller when the running reaches node e1.

This label features the <<>> operator that denotes an optional service call. Kmelia

main vertical operators are:

• optional service call : <<>> ,

7

AAA

• optional behaviour insertion: <||>,

• mandatory service call : [[]],

• mandatory behaviour insertion: [||].

These structuring mechanisms provide a means to reduce the LTS size, to share

common services or subservices and to master the complexity of service specification.

All these structuring operators are defined in such a way that formally the

unfolding of an eLTS results in a LTS (in a recursive way). The formal semantics

of the structuring mechanisms can be found in [2].

3 Adaptation Problems and Solutions

The following categories of adaptation problems are especially relevant in HBIDL:

• Classic adaptation problems that can be seen through the lens of the new language

and benefit from its expressiveness.

• Granularity mismatch in HBIDL: adapting services which hierarchy is organised

differently. Having more expression power allows to describe precise constraints

relevant for a specific context but that must be adapted when a service or a

component is used in a different environment.

• Granularity mismatch between a HBIDL and a BIDL: having a more expressive

language does not mean every model uses the expressiveness to the full extent. For

a new language to be effective, differences of levels of detail must be dealt with,

as well as interoperability with models expressed in languages which intersect

with the new one. Problems from this category can be treated like granularity

mismatches in HBIDL by considering BIDL models as flat HBIDL models.

In the following we describe the process that is used to detect adaptation prob-

lems in a HBIDL architecture and we provide solutions in the Kmelia model.

3.1 Adaptation Process with Kmelia and COSTO

The COSTO prototype features several verification algorithms that check compati-

bility of components and services at different levels: signature, interface, dependen-

cies, behavioural compatibility. Behavioural compatibility is checked by exporting

our Kmelia models to Mec [13] or Lotos [17] and reusing their respective model

checking tools. We assume that the matching between names (of different com-

ponents, services or messages) has already been established, either manually or

automatically (e.g. by ontology-based approaches).

For each mentioned adaptation problem we use the following pattern.

• First we indicate the earliest compatibility level at which the problem occurs.

• Next we specify how we identify which kind of adaptation problem it belongs to.

• Then we explain how to generate systematically an adaptor and verify that it

ensures compatibility. Depending on the constraints of the running environment,

the adaptor can take several forms: a component inserted between two mismatch-

ing components, a proxy service delegating to one of the services, or an alternative

interpretation of a behaviour. We will focus here on the first one.

8

AAA

• Last, we precise if the adaptation problem could have been avoided at minimal

cost using the Kmelia structuring operators.

We believe that designers of components and services should anticipate different

uses, provided that their specification language helps them to do so at a minimal

cost in design time and verification time. We name implicit adaptation this in-

herent ability of a service or a component to be compatible with many others by

construction.

At a message or service signature level, implicit adaptation focuses on optional

arguments, default values, compatible subtypes for arguments and result. At a hi-

erarchical service interface level, it includes optional subservices, implicit linking to

services or subservices. At a service assertion level, it means that the compatibil-

ity between provided and required pre/post conditions is ensured via propagations

from the previous levels. At a service behaviour level, all the above adaptations

apply together with possible alternate behaviours (w.r.t. observational equivalence:

the behaviour of the service is not changed from the point of view of client services)

using the behaviour insertion operators introduced in Section 2.3.

3.2 Adaptation in HBIDL: Parameters vs messages

This problem is an example of a standard BIDL adaptation problem taken in a

HBIDL context. In the Parameters vs messages problem, there are different treat-

ments for data exchanges between related components: according to a service, one

component may use parameters where the other uses messages to send the data value

for the service. It is a variant of theMultiple action correspondence [7]. Based on dif-

ferent interpretations of an imprecise textual specification such as ”The client must

communicate an account number and an amount to the service deposit”, one service

could use parameters while another could use message sends. This is illustrated in

Figure 5. Given that the correct data is ”communicated”, the communication has

to be adapted when a client of the service deposit uses a different interpretation.

deposit!!deposit()

USER_INTERFACE.behaviour() =

e10

e11

deposit!account(12)

deposit!amount(100)

ATM_CORE.deposit(int account,
 double amount) =

e12

e13

i

deposit amount
on account

depositdeposit

Fig. 5. Differences in communication of parameters

In Figure 5 the behaviour service from USER INTERFACE calls the deposit ser-

vice from ATM CORE to credit the account number 12 by 100. The signature of

deposit is deposit(int account, double amount) but the call from behaviour

does not contain parameters and it is followed by two messages containing the pa-

rameters.

The parameter vs messages problem is detected at level 1: signature mismatch

9

AAA

between the deposit provided service of ATM CORE and the deposit required service

of USER INTERFACE.

deposit!!deposit()

USER_INTERFACE.behaviour() =

e10

e11

deposit!account(12)

deposit!amount(100)

ATM_CORE.deposit(int account,
 double amount) =

e12

e13

i

deposit amount
on account

ADAPTER.deposit() =

a2

CALLER?account(ac)

a3

a4

CALLER?amount(m)

i

ARdeposit!!deposit(ac,m)

deposit

APdeposit

ARdepositdeposit ARdeposit <|>APdeposit

Fig. 6. Adapting differences in communication of parameters

The adaptability is checked in COSTO using a simple graph traversal algorithm

which looks for an unavoidable sequence of message sends in the caller’s behaviour

that matches the parameters and that takes place between the service call and

any other communication with the service. If such sequence is found, the prob-

lem is diagnosed as a Parameters vs messages and can be solved. Figure 6 shows

an adaptor component between the deposit provided service of ATM CORE and

the deposit required service of USER INTERFACE. This adaptor illustrates another

Kmelia operator: channel<|>channel . This operator redirects communications

from a channel to another one, thus simplifying the writing of some adaptors that

require pre-processing before reverting to normal communication, like an incor-

rect order of messages. Furthermore, unidirectional versions of this operator exist

(channel<|channel and channel|>channel). An adaptor can be automatically

generated by matching with a sequence of receptions the sequence of calls found in

the diagnosis phase, adding a call to the service with its parameters, then adding

the redirection operator.

The parameter vs messages problem can be further complicated by the use of

parameters with types of different granularity in the client and in the provider, for

instance the deposit service could have had a structured type in its signature while

the caller would have used primitive types in its call. The complexity of the detection

and the generation is related to the complexity of the data structures used in the

parameters (data might have to be constructed or decomposed) and the similarity

metrics used for identifying the parameters. The diagnosis algorithm of COSTO for

the parameter vs messages problem is parametrised with an identification method

which have to be changed to incorporate the variants of the problem.

3.3 Adapting Hierarchical Mismatch

When a component expects to call a service which is not hierarchical and is con-

nected to one where part of the functionality is described as a subservice, a Hierar-

chical Mismatch occurs.

Being designed with different granularity levels in mind, the services withdrawal

and behaviour from Figure 7 are not compatible: in behaviour, identification is

a simple communication made in the context of the withdrawal service but the

10

AAA

ui:USER_INTERFACE behaviour() =

e10

e11

withdrawal!!withdrawal()

withdrawal() =

e12

e13

i

withdrawal?identifier(i)

<ident>

withdrawal!amount(10)

CALLER?amount(m)

ident() =

i

CALLER!identifier(id)

withdrawal

ident

ac:ATM_CORE withdrawal

Fig. 7. Differences in communication granularity

identification is considered to be managed by the ident service in withdrawal’s

component, probably because it is meant to be used in the context of several other

services of the component.

This mismatch can be detected by a behavioural compatibility analysis using

COSTO tools. For instance, the results of the analysis with MEC gives the following

information :

transition_system Verif_ATM_CORE_withdrawal
< width = 2; list = (ATM_CORE_withdrawal, USER_INTERFACE_behaviour)>
...
deadlock = { e(i.e11) }
unavoidable = { e(init.init), e(init.e10), e(i.e11) }

Fig. 8. Extract of a result from the compatibility analysis using MEC

It detects a deadlock at the state i of withdrawal and at the state e11 of

behaviour. This incompatibility can be diagnosed as a Hierarchical Mismatch

problem because one of the states (i of withdrawal) where the deadlock occurs

offers a subservice which starts with the identification message that matches

the one following e11 of behaviour. This diagnostic is confirmed by taking the

following steps 3 :

• A call to the ident subservice just before the identification message is added

to a copy of the LTS of behaviour

• The compatibility check is run again. It should give another deadlock cor-

responding to the lack of waiting for the result of ident in behaviour

(withdrawal??ident).

• The wait for the result of identis added in the copy of the LTS before the newly-

found deadlock.

• If the compatibility check passes, the problem is correctly diagnosed and can be

solved.

3 We use several optimisations reducing the LTS size that are outside the scope of this paper.

11

AAA

arwithdrawal?identifier(i)

behaviour() =e10

e11

withdrawal!!withdrawal()

withdrawal() =

e12

e13

i

ADAPTER.withdrawal() =

a2

a3

a4

CALLER?amount(m)

a1

arwithdrawal!!ident()

withdrawal?identifier(i)

<ident>

withdrawal!amount(10)

arwithdrawal!!withdrawal()

arwithdrawal!amount(m)

CALLER?amount(m)

ident() =

i

CALLER!identifier(id)

arwithdrawal

withdrawal
ident

ident

ac:ATM_CORE withdrawal
withdrawal

arwithdrawal??ident()
a5

CALLER!identifier(i)

ui:USER_INTERFACE

Fig. 9. Adapting differences in communication granularity

Figure 9 shows an adaptor that solves the problem. The service behaviour

from ui is now linked with the withdrawal service of the adaptor, which depends

on a required service arwithdrawal that is linked to the withdrawal service of

ac. Calls should be read from right to left, following the required-provided links:

when it is called, the withdrawal service of the adaptor calls withdrawal from

ac; then it calls the subservice ident in withdrawal’s context (hence the channel

arwithdrawal); then it waits for the identification message; then it transmits the

identification message to its initial caller (ui’s behaviour).

The adaptor is created by generating a LTS that starts the called service

(withdrawal from ac), relay all communication from the caller that happens be-

fore the deadlock (in our example we start directly with the deadlock), starts the

subservice and relay communication again.

• First, the LTS obtained from the diagnosis phase is reused (it has been restricted

to communications on the withdrawal channel and reduced).

• The withdrawal channel is renamed with the name of the required service for the

adaptor (in our case arwithdrawal).

• Transitions that call and wait for the subservice are inserted at the points dis-

covered in the diagnosis (initial and second deadlocks).

• Every other communication on the channel is forwarded:

· A transition is added after every message that is sent by the ini-

tially called service (withdrawal) for sending the information to the

adaptor’s caller (for instance, CALLER!identifier(i) is inserted after

arwithdrawal?identifier(i)).

· A transition is added before every message that is sent to the initially called

service (withdrawal) for receiving the information from the adaptor’s caller

(for instance, CALLER?amount is inserted before arwithdrawal!amount).

The behavioural compatibility between ui’s behaviour, the adaptor’s

withdrawal and the withdrawal and ident services of ac can be checked using

COSTO.

This Hierarchical Mismatch can be avoided using implicit adaptation when the

12

AAA

creation of the service ident is coming from a refactoring of the service withdrawal.

In such a situation the designer should be conscious that while identifying, naming

and factorising some part of behaviour are good from the readability point of view,

that breaks compatibility with client services that predate the change. The <||>

operator is a vertical composition operator that could have been used instead of

the <<>> operator in the example. This operator allows to branch to the subservice

either by calling it or without the call in order to be compatible with both new

clients and older clients 4 .

login

logout

[|login|]

[|logout|]

withdrawProtocol()

withdrawProtocol

f

e1 <|withdrawal|>

i

[|withdrawal|]

withdrawal

ident

e0 <|account_queryl|>

account_query

ac:ATM_CORE_BIS

Fig. 10. Implicit Adaptation in a Protocol

Figure 10 illustrates its use with another Kmelia operator: [||]. Thismandatory

service or behaviour call operator is used for describing protocols that control the

correct ordering of service calls. We added the login and logout services to the

ATM CORE component in order to describe a very simple protocol. The users of the

component call the protocol withdrawprotocol then they have to call the other

services in its context (i.e under its control) or have interactions that match those

of the services under the control of the component.

The <||> and [||] operators are useful for implicit adaptation, but they cannot

always replace their less flexible counterparts: for instance, if the mandatory ser-

vice call operator [[]] had been used in the protocol of Figure 10, then the services

withdrawal and account query could not have begun with the same communica-

tion action without being ambiguous at the state e0.

4 Conclusion

In this article we have presented the Hierarchical Behavioural

Interfaces Description Language (HBIDL) that is used in the Kmelia

abstract Component Model.

The interface hierarchisation appeared through the interfaces of

components which are complemented with the interfaces of services.

The Kmelia component model is based on services and it provides several

structuring mechanisms: horizontal structuring mechanisms especially

4 It is not as powerful as using adaptors because it does not work for several classes of services (for instance,
services with parameters).

13

AAA

based on the linking of services and their related subservices;

vertical structuring operators to enable the

description of large services with encapsulated or shared (sub)services.

An example of an ATM was used to illustrate the structuring of

component and service specifications with hierarchical interfaces.

We have considered adaptation problems encountered in BIDL and also

related to our HBIDL: hierarchy mismatch and parameter vs message

mismatch. We motivated and showed what solutions are used for these

problems in our Kmelia model. The vertical structuring

mechanisms help to tackle the adaptation problems.

Compared to BIDL related works, we have emphasised the impact of the

hierarchical BIDL on the adaptation problems and we have shown that the use

of structuring mechanisms may simplify design and verification of both services and

adaptors.

Overall, we are concerned with the verification of components with

respect to their dynamic and functional properties and their preservation after

adaptation.

We plan the integration of adaptation techniques into the COSTO prototype

which already handles verification of components, services and compatibility of the

assemblies. The investigated process is the following: after a failed compatibility

verification, a module will attempt to diagnose the incompatibility as an adapta-

tion problem and to generate an adaptor and launch the verification again. This

integration of adaptation with verification techniques is an open field:

the detection of mismatches must be connected with the proposition of adap-

tations and the decision process. A research direction could be the specification

of adaptation problems and their solutions in a language that uses HBIDL and

coordination patterns.

References

[1] Allen, R. and D. Garlan, A Formal Basis for Architectural Connection, ACM Transactions on Software
Engineering and Methodology 6 (1997), pp. 213–249.

[2] André, P., G. Ardourel and C. Attiogbé, Defining Component Protocols with Service Composition, in:
6th International Symposium on Software Composition, LNCS (2007), p. to appear.

[3] Attiogbé, C., P. André and G. Ardourel, Checking Component Composability, in: 5th International
Symposium on Software Composition, LNCS 4089 (2006), pp. 18–33.

[4] Becker, S., S. Overhage and R. Reussner, Classifying Software Component Interoperability Errors to
Support Component Adaption, in: I. Crnkovic, J. A. Stafford, H. W. Schmidt and K. C. Wallnau,
editors, CBSE, LNCS 3054 (2004), pp. 68–83.

[5] Bergner, K., A. Rausch, M. Sihling, A. Vilbig and M. Broy, A Formal Model for Componentware,
in: G. T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Systems, Cambridge
University Press, New York, NY, 2000 pp. 189–210.
URL citeseer.ist.psu.edu/article/bergner99formal.html

[6] Beyer, D., A. Chakrabarti and T. Henzinger, Web Service Interfaces, in: 14th international conference
on World Wide Web, WWW’05 (2005), pp. 148–159.

[7] Bracciali, A., A. Brogi and C. Canal, A Formal Approach to Component Adaptation., Journal of Systems
and Software 74 (2005), pp. 45–54.

14

citeseer.ist.psu.edu/article/bergner99formal.html

AAA

[8] Brogi, A., C. Canal and E. Pimentel, On the Specification of Software Adaptation (2003), in
FOCLASA’03, ENTCS, 90 (in press).
URL citeseer.ist.psu.edu/brogi03specification.html

[9] Canal, C., On the Dynamic Adaptation of Component Behavior, in: Canal et al. [11], pp. 81–88, iSBN
: 84-688-6782-9.

[10] Canal, C., L. Fuentes, E. Pimentel, J. M. Troya and A. Vallecillo, Adding Roles to CORBA Objects,
IEEE Trans. Softw. Eng. 29 (2003), pp. 242–260.

[11] Canal, C., J. M. Murillo and P. Poizat, editors, “Issues on Coordination and Adaptation Techniques:
Proceedings of the First International Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT’04),” Technical Report, Oslo, Norway, 2004, iSBN : 84-688-6782-9.

[12] Gelernter, D. and N. Carriero, Coordination Languages and their Significance, Commun. ACM 35

(1992), p. 96.

[13] Griffault, A., “Contribution à l’étude des systèmes communicants et des algorithmes d’exclusion
mutuelle,” Ph.D. thesis, Université de Bordeaux I (1989).

[14] Gschwind, T., U. Aßmann and O. Nierstrasz, editors, “Software Composition, 4th Int. Workshop, SC
2005,” LNCS 3628, Springer, 2005.

[15] Heineman, G. T., I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski and K. C. Wallnau,
editors, “Component-Based Software Engineering, 8th International Symposium, CBSE’2005,” LNCS
3489, Springer, 2005.

[16] Heineman, G. T. and H. Ohlenbusch, An Evaluation of Component Adaptation Techniques (1999),
technical Report WPI-CS-TR-98-20, Worcester Polytechnic Institute, February.
URL citeseer.ist.psu.edu/article/heineman99evaluation.html

[17] LOTOS, I., “A Formal Description Technique Based on The Temporal Ordering of Observational
Behaviour,” International Organisation for Standardization - Information Processing Systems - Open
Systems Interconnection, Geneva, 1988.

[18] Medvidovic, N. and R. N. Taylor, A Classification and Comparison Framework for Software
Architecture Description Languages, IEEE Transactions on Software Engineering 26 (2000), pp. 70–93.

[19] Papadopoulos, G. A. and F. Arbab, Coordination Models and Languages, in: 761, Centrum voor
Wiskunde en Informatica (CWI), ISSN 1386-369X, 1998 p. 55.
URL citeseer.ist.psu.edu/article/papadopoulos98coordination.html

[20] Papazoglou, M. P., Service-Oriented Computing: Concepts, Characteristics and Directions, in: WISE
(2003), pp. 3–12.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1254461

[21] Papazoglou, M. P. and D. Georgakopoulos, Introduction to Service-Oriented Computing, Commun.
ACM 46 (2003), pp. 24–28.

[22] Pavel, S., J. Noyé, P. Poizat and J. Royer, A Java Implementation of a Component Model with Explicit
Symbolic Protocols, in: Gschwind et al. [14], pp. 115–124.

[23] Plasil, F. and S. Visnovsky, Behavior Protocols for Software Components, IEEE Transactions on SW
Engineering 28 (2002).
URL citeseer.ist.psu.edu/plasil02behavior.html

[24] Poizat, P., J.-C. Royer and G. Salaün, Formal Methods for Component Description, Coordination and
Adaptation, in: Canal et al. [11], pp. 89–100, iSBN : 84-688-6782-9.

[25] Südholt, M., A Model of Components with Non-regular Protocols, in: Gschwind et al. [14], pp. 99–113.

[26] Szyperski, C., “Component Software: Beyond Object-Oriented Programming,” Addison Wesley
Publishing Company, 1997.

[27] Yellin, D. and R. Strom, Protocol Specifications and Component Adaptors, ACM Transactions on
Programming Languages and Systems 19 (1997), pp. 292–333.

15

citeseer.ist.psu.edu/brogi03specification.html
citeseer.ist.psu.edu/article/heineman99evaluation.html
citeseer.ist.psu.edu/article/papadopoulos98coordination.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1254461
citeseer.ist.psu.edu/plasil02behavior.html

	Introduction
	Hierarchical Behavioural IDL using Kmelia
	Structuring Component Interfaces
	Hierarchies of Components and Services in Kmelia
	Hierarchy of Behaviours in Kmelia

	Adaptation Problems and Solutions
	Adaptation Process with Kmelia and COSTO
	Adaptation in HBIDL: Parameters vs messages
	Adapting Hierarchical Mismatch

	Conclusion
	References

