
HAL Id: hal-00423690
https://hal.science/hal-00423690v1

Submitted on 12 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Analysis Toolbox for the Kmelia Component
Model

Pascal Andre, Gilles Ardourel, Christian Attiogbé

To cite this version:
Pascal Andre, Gilles Ardourel, Christian Attiogbé. A Formal Analysis Toolbox for the Kmelia Com-
ponent Model. ProVeCS 2007 - Satellite Event of TOOLS Europe, Jun 2007, Zürich, Switzerland.
pp.10-25. �hal-00423690�

https://hal.science/hal-00423690v1
https://hal.archives-ouvertes.fr

ProVeCS Workshop, TOOLS Europe, Zürich, 2007

A Formal Analysis Toolbox for the Kmelia

Component Model

Pascal André, Gilles Ardourel, Christian Attiogbé 1

LINA CNRS FRE 2729
University of Nantes

France

Abstract

We present in this paper the COSTO toolbox that supports the Kmelia abstract component model. First, an
overview of the COSTO toolbox is given. Then the abstract component model Kmelia is presented. One main
feature of the toolbox is the connection with existing tools in order to perform the analysis of specification
properties. We present this approach for the dynamic aspect analysis; an example of the connection with
the CADP toolbox to check Kmelia service behavioural compatibility is used as an illustration.

Keywords: Property Verification Toolbox, Components, Services, Model Checking

1 Introduction

It is an important challenge to deliver correct software components on demand,

from various development frameworks and for various problem requirements. Some

identified parameters for the success of such enterprise are the availability of reli-

able, proof-certified and interoperable components. This is tightly related with the

availability of tools to help in the design, development and analysis of the compo-

nents.

Component Based Software Engineering emphasises the development of com-

ponents and their assemblies to build large scale software. However, in practice

the existing component model proposals, both in industry and academia, do not

propose provably-correct components and they are quite different and even not in-

teroperable. This motivates our work. For instance a given abstract component

model, proved to have desired properties, may be refined into code with respect to

various executable platforms. The obtained codes may be used in various software.

This work contributes to assist the user, with a toolbox, in the development of

correct components and assemblies from their abstract specifications. Correctness is

considered from various points of view: in this article we deal with the behavioural

interaction between components.

In the article we present the Component Study Toolbox (COSTO) which is de-

signed to support the Kmelia abstract component model. The toolbox is currently

an experimental prototype not yet publicly available. We give an overview of the

modules that compose the toolbox. Instead of presenting in details all the modules

we focus on the ones concerned by the verification of dynamic properties and espe-

cially the LOTOS Module. It illustrates an important principle in COSTO: the use

of adequate languages and tools to perform verifications.

1 pascal.andre@univ-nantes.fr, gilles.ardourel@univ-nantes.fr,christian.attiogbe@univ-nantes.fr

1

mailto:pascal.andre@univ-nantes.fr
mailto:gilles.ardourel@univ-nantes.fr
mailto:christian.attiogbe@univ-nantes.fr

P. Andre, G. Ardourel, C. Attiogbe

The article is organised as follows. In Section 2 we give an overview of COSTO,

our formal analysis toolbox for components. We present the Kmelia abstract compo-

nent model based on services in Section 3; this model serves as the component model

for property verification. Section 4 is devoted to the analysis of one property related

to the dynamic aspect of components: behavioural compatibility. We present the

principle of connecting the COSTO toolbox with existing tools by translating Kmelia

specifications into targeted formalisms. In Section 5 we illustrate one component of

the toolbox: the connection with CADP to check behavioural compatibility. Finally

some perspectives are given in Section 6.

2 An Overview of the COSTO Toolbox

Considering that mechanisation is a means to assess design and development tech-

niques based on formal methods, we start the development of a prototype named

COSTO to support design and analysis of component using the Kmelia Abstract

component model. The Kmelia abstract component model and the specification

language named Kmelia are briefly described in Section 3.

One of the main features of COSTO is the definition of bridges to existing formal

analysis frameworks and their integration in a verification process.

2.1 COSTO Main Modules

The COSTO prototype is composed of several modules written in Java. Most of

them can be used in command-line, through their API or using the COSTO Eclipse

plugins. Figure 1 shows the main COSTO modules.

Architectural
Verification
Classes

uses COSTO Core
Module

uses

uses uses

uses

uses

Verification

Module

Export
Mec Analysis

Lotos Analysis

Module

Module

Fig. 1. An overview of the COSTO Toolbox

The Core module is the main COSTO module used by all the other modules.

It contains a parser for Kmelia textual specifications based on ANTLR, and an API

for manipulating the resulting Kmelia Object Models. Syntax analysis and basic

typing checks are done during and after parsing.

The Verification module contains a verification framework that is used to

define verification processes, execute them on Kmelia Object Models and manipulate

verification results. Architectural properties analysis such as the correct composition

of components according to their service signatures and interfaces are defined using

this framework.

Consistency checks such as Component Interface consistency, Service consis-

tency and Consistency between Services Interfaces and Behaviours rely on an earlier

version of this module and they are currently being integrated in the verification

framework to add more flexibility.

2

P. Andre, G. Ardourel, C. Attiogbe

The LOTOS Analysis module contains a translator of Kmelia specifications

to LOTOS specifications according to a context (this module is described in section

5). The generated LOTOS specifications can then be checked with CADP (a toolbox

with various analysis modules, [17]).

The MEC Analysis module contains an extractor which selects and trans-

forms parts of a Kmelia behaviour specification into MEC specifications according to

a context. It also generates properties to be checked with the MEC model checker.

It features a MEC feedback analyser which parses MEC results and generates docu-

mentation in order to correct the Kmelia specification. In order to go beyond simple

documentation, an automatic integration of this MEC feedback in the verification

framework is under development.

The Export module contains generators that help in the documentation of the

Kmelia specification. This module generates Kmelia component LATEX documen-

tation where service behaviours are exported into dot for graphical representation.

2.2 COSTO Eclipse Modules

In order to simplify the use of COSTO, several tools have been integrated to the

Eclipse Integrated Development Environment as plugins.

Specification

Kmelia

Verification

Kmelia Verification
Context CADP, MEC...

or user interaction
optional external calls

Creation Wizard
Checks configured for the Editor
Verification Wizards

Edition Creation Selection Tools Verification Tools

1a 2a

1 2 3

3c Feedback

2b

Verification Module

3b
Run Verification

3a

Feedback
Kmelia Editor

Fig. 2. Using Eclipse plugins to verify Kmelia components

The previously described COSTO modules (see Figure 1) are packed into the

coloss.costolib.base plugin.

Several tools have been built in the coloss.costolib.ui:

• A text editor for Kmelia specifications which shows results from syntactic and

consistency verifications;

• A tree-based view that outlines a Kmelia specification;

• Wizards for creating Kmelia components and assemblies;

• Menu actions for exporting a Kmelia specification to the various formats supported

in the COSTO Exports module (such as LATEX);

• Wizards for creating verification contexts and starting the verifications with MEC

or LOTOS.

Figure 2 illustrates a scenario of use of the COSTO plugins: starting with a

Kmelia specification, generated by a wizard or created with the editor, the user

selects or creates a verification process and its context with a wizard, then he runs

3

P. Andre, G. Ardourel, C. Attiogbe

the verification that may or may not rely on an external tool, and finally he gets

the verification result. The Kmelia examples from the following section have been

generated or checked with the COSTO prototype.

3 A Multi-Service Component Model: Kmelia

We present here the specification language Kmelia which is central to the COSTO

tool. Instead of presenting the language itself (syntax and semantics) we sketch a

quick overview of its concepts using examples.

Kmelia is an abstract formal component model based on services [7,3]. Its goal

is to describe component systems and to study their properties before any imple-

mentation. The interactions between components are described through services

and synchronous communications. The dynamic behaviour of services is formally

specified by labelled transition systems.

Related component models with dynamic behaviours (or protocols) are SOFA

[21], Fractal [11], Tracta [16], Wright [1] and others [22,6,13,20]. The main difference

between Kmelia and the above models and proposals is that Kmelia emphasises the

concept of service: (i) components are linked by their services rather than connected

by structural ports or gates; (ii) dynamic behaviours are associated to services rather

than to components 2 ; (iii) services are functionalities that define contracts; (iv)

services can be composed horizontally and vertically.

3.1 Components, Services and Assemblies

A Kmelia abstract component is a mathematical model of an open multi-service

system that supports synchronous communication with its environment. A Kmelia

component is defined through an abstract state model (made up with variables, an

invariant, and an initialisation), an interface (made up with provided and required

services) and a constraint definition (logic expressions). Yet, the property language

is an ad hoc typed first order logic; the planned evolution is a language suitable to

interact with existing theorem provers to check the expressions.

Let us illustrate the model with a simplified real-world problem: a bank Au-

tomatic Teller Machine (ATM). Since the case is very common, the details are

omitted here. The ATM provides bank services (withdrawal, money deposit, query

accounts...) to users. Figure 3 is a textual Kmelia specification of an ATM core com-

ponent. The component interface provides four usual bank services for exchanging

money and requires an external authorisation. The component state model manages

the ATM cash data.

Basically, a Kmelia service encodes a functionality; it is defined with an interface

and a behaviour. The service interface includes the service signature, the local

declarations, the assertions (pre/post conditions) and the service dependency (i.e

the list of services this service depends on). The service dependency of a service

si includes the references to provided subservices (they are the services which are

provided in the context of another service) and to required services (those required

in the context of si). The latter are required from the component itself, from the

calling component or from any components.

2 Additionally to provided services, Kmelia enables one to specify component protocols as special services.

4

P. Andre, G. Ardourel, C. Attiogbe

COMPONENT ATM_CORE
/* The ATM_CORE component is the central component for a bank cashier station.

The main services of such a system are cash withdrawal, account query, deposit money
and transfer bank query.
The current specification focuses only on cash withdrawal. */

INTERFACE
provides : {withdrawal, account_query, deposit, transfer}
requires : {ask_authorization, ask_account_balance}

TYPES
CashCard : struct {code:Integer, id:Integer, limit:Integer} // record type

CONSTANTS
// constants definitions
available_cash : Integer := 100,
swallowed_size : Integer := 100

VARIABLES
// variables definitions
name : String,
swallowed_cards : Set,
available_notes : Integer

PROPERTIES
// predicates
cash_disp: available_notes >= 0,
card_capacity: size(swallowed_cards) <= swallowed_size
INITIALIZATION
// variables assignments
name := "ATM203";
swallowed_cards := emptySet;
available_notes := 10000;

SERVICES
// services from external files (currently only in the same directory) can be included
provided external account_query
provided external deposit
provided external transfer
provided withdrawal (card : CashCard)
// see the service withdrawal in Figure 4
...

//required services
required ask_authorization (id : Integer, code : Integer) : Boolean
...

//internal services
provided debit (c : CashCard, m : Integer)
...

END_SERVICES
// end of ATM_CORE specification

Fig. 3. Overview of the ATM CORE component specification

Figure 4 shows a specification of the withdrawal service of the core component

for the ATM system in Kmelia. The subprovides, calrequires, extrequires

clauses in the interface of the withdrawal service make explicit the hierarchy and

the dependencies between services: the withdrawal service provides an ident sub-

service and requires three other services, two of them being required from the com-

ponent which is calling withdrawal.

Component assemblies establish the communication channel used by the service

communication actions. Assembling Kmelia components consists in linking their

pairwise services: required services may be linked to provided services. An im-

plicit channel is associated to this link that supports the communication actions or

messages between the services (see section 3.2). The semantics of the links is not

straightforward because it must conform to the service interface hierarchy. Indeed

the services that appear in the subprovides and the calrequires clauses of the

service interface dependency must (i) share a common link (they are sublinks) and

(ii) their links must conform to the hierarchy levels. This constraint is recursive

on service inclusion. A component composition is the encapsulation of an assembly

within a component with a projection of services by promotion links. Promotion

links relate the composite services to the inner component services.

Figure 5 is a graphical view of a Kmelia model for the bank ATM. The as com-

5

P. Andre, G. Ardourel, C. Attiogbe

Provided withdrawal (card : CashCard)
/* The service withdrawal is available if there is enough money in the cash dispenser.

This services requires a bank credit card, a code, an amount to withdraw.
An authorization is required from the bank consortium.
This service provides an identification subservice if needed.

*/
Interface

subprovides : {ident}
calrequires : {ask_code, ask_amount} //required from the caller
extrequires : {ask_authorization}

Pre
//service available if there is enough money
available_notes >= available_cash

Variables
nbt : Integer, // nbt : number of authorized trials of code entering
c : Integer, // c : input code given by the user
a : Integer, // a : input amount given by the user
rep : Boolean, // rep : reply from the authorization request
success : Boolean // success : result of the withdrawal request

Behaviour
init i // i is the initial state
final f // i is a final state
{
... see the service behaviour in Figure 6

}
Post
available_notes <= pre(available_notes)
// (success && (available_notes = pre(available_notes) - a)) ||
// ((not success) && available_notes = pre(available_notes))

end

Fig. 4. Overview of the Kmelia service syntax

aac : AAC

lb : LOCAL_BANK

ui : USER_INTERFACEac : ATM_CORE

ask_id

as : ATM_SYSTEM

provided service

required service

service link

subservice link

service call
 calrequires extrequires

service call on
the caller componnentprovided subservice

subprovides

debit
eject_card
swallow_card
display

ask_
authorizationask_

autho
rization

ask_
account_balanceask_

account_
balance

balance

authorization

account_update

behaviour

ask_for_money

code

amount

query_account

behaviour

promotion link

withdrawal

account_query

ask_code

ask_amount

deposit

transfer

ident

deposit

Fig. 5. Assembly for an ATM System

ponent is a composition of an ATM CORE (ac) with an ATM user interface (ui).

The main provided service behaviour of the ui component drives the user com-

mands. For example, the user can ask for money (required service ask for money)

which is linked to the service withdrawal provided by the ATM core ac compo-

nent. According to Figure 5, the withdrawal service may call internal services

(debit,...), external services (ask authorization), external services required from

the caller (ask code, ask amount) and it provides the ident service in the con-

text of ask code. Note that the amount and code links are sublinks: they share

the ask for money-withdrawal link and its implicit communication channel. The

assembly links support the interactions specified in the service behaviours.
6

P. Andre, G. Ardourel, C. Attiogbe

3.2 Service Behaviour Description

In Kmelia, a service behaviour is an extended labelled transition system (eLTS)

where the states define the service evolution steps and the transitions are labelled

with possibly guarded combination of actions: [guard] action*. The actions are

either elementary actions or communication actions. An elementary action (e.g.

an assignment) does not involve other services; it does not use a communication

channel. A communication action is either a service call/response or a message

send/ receive.

The services run concurrently; the communications are synchronous. The com-

munication actions use either the standard communication primitives ! and ? for

sending/receiving simple messages or their extended forms !! and ?? to deal

with service calls and service responses. They are prefixed with a communica-

tion channel which can either denote the required service (service-name) or the

caller (CALLER) or the component itself (SELF). A communication channel that

is used in a service behaviour has to be established by a link. For example the

ask for money-withdrawal link (Figure 5) establishes the caller service of the

withdrawal service: CALLER = ask for money.

Figure 6 is a visual representation of the withdrawal service eLTS. This figure

has been produced with the COSTO toolbox. A withdrawal consists in reading the

given cash card. The user enters the password. The given password is compared

with the card password. If the verification succeeds, the card holder is authenticated

otherwise the password is requested again. When the verification fails three times,

the card is swallowed. After the card holder identification in the withdrawal service,

an authorisation is required from its ACD/ATM controller (AAC), which represents

the bank management.

If the AAC accepts the transaction, the withdrawal service asks for the amount

of cash, otherwise the card is ejected and the transaction ends. The user enters an

amount which is compared with the current card policy limit. If the allowed amount

is lower than the requested or if the current cash is not sufficient, the amount of

cash is asked again. Otherwise, the transaction proceeds. In any positive case the

withdrawal transaction ends after a card ejection.

In Kmelia, service behaviours may contain execution points (states or transitions)

where a subservice (declared in the service’s interface) can be called. These states or

transitions are annotated with Kmelia’s vertical structuring operators. For instance,

the label of node e1 in Figure 6 means that the ident optional service may be

called by a widthdrawal’s caller when the running reaches the e1 node. This

label features the <<>> operator that denotes an optional service call. Kmelia main

vertical operators are: optional service call <<>> , optional behaviour insertion <||>,

mandatory service call [[]], mandatory behaviour insertion [||]. An extended

LTS is one in which the states and transitions may be annotated with subservices.

These structuring mechanisms provide a means to reduce the LTS size, to share

common services or subservices and to master the complexity of service specifica-

tion. This hierarchical behaviour structuring is naturally reflected in the service

interfaces: this permits a precise description of the use of a subservice in the con-

7

P. Andre, G. Ardourel, C. Attiogbe

e4

f

__CALLER!!withdrawal(success)

i

e0

; nbt:=3;
 success:=false

e1<<__CALLER.ident>>

__CALLER!!ask_code()

e2

; display("Card
 swallowed,

 sorry");
 swallow_card()

display("Enteryourcardcode,please")

e3

rep:=_ask_authorization!!
 ask_authorization(card.id, c)

e2i

__CALLER!rdv()

e7

display("requiretoomuchmoney,
 pleaseentertheamountagain")

e8

; debit(c, m); eject_card()

e5

e6

__CALLER!!ask_amount()
; __CALLER??ask_code(c);

 nbt:=nbt-1

; display("Transaction
 refused");

 eject_card()

display("Enterthecashamount,
 please?")

__CALLER??ask_amount(a)

success:=true

Fig. 6. The withdrawal service eLTS (COSTO export)

text of the interaction with a service. Both hierarchies must be consistent. Going

one step further, they must be consistent with the link hierarchy of the component

assemblies. This point will be one aspect of the compatibility property that will be

discussed later in the paper.

The current version of the Kmelia language does not handle broadcast ; this point

and multi-way communications are subject to ongoing works. However we deal with

the case where several services run simultaneously, as an interleaved behaviour plus

synchronous communications on shared channels.

4 Dynamic Aspects Analysis within COSTO

In this section we focus on one dynamic property of components

assemblies: checking that components interact well through their services.

We choose this property because it is complex and it illustrates the principle of

connecting COSTO to others external powerful tools to run the effective verification

of the property.

4.1 Analysis of Component Dynamic Aspects

The starting point is an assembly of components.

The interaction between the linked services implies a concurrent

evolution of

the services; this evolution is considered as a dynamic aspect of the

component analysis.

Behavioural compatibility is about the correct

interaction between two or more components which are combined via some

of their services.

The behavioural compatibility analysis is performed by considering the

correct interaction between the eLTS of the involved services.

8

P. Andre, G. Ardourel, C. Attiogbe

It is a topic which is

studied with several approaches [22,14,6,10].

The main concern shared by these approaches is: checking that a given compo-

nent interacts

correctly with another one which may be provided by a third party developer.

In the Kmelia model, the interaction between components results in

an interaction between linked services of the components.

The interaction between components may involve not only two but many com-

ponents.

But we consider only one caller service and one called service at the same time.

Therefore the component interacts correctly with its environment if its

services are compatible with the other services with which they

are linked.

The behavioural compatibility analysis is precisely formalised in

[7]. We recall here the main idea.

A service is compatible with another if either their eLTSs evolve

independently, in an interleaved way, or they perform complementary commu-

nication actions.

That is the basis of our compatibility analysis approach;

we check that a given eLTS that models the behaviour of one service matches

with a second

eLTS that models the linked service behaviour.

A complete interaction between the services of several components results in a

pairwise local analysis between the eLTS of a caller and that of the called service.

Two eLTS interact from their initial state until a terminal

state according to a set of rules that we have defined.

The rules indicate the correct evolutions of the eLTS according to the current

states of involved services and the labels of their transitions.

If the transitions are labelled with independent elementary actions, we

have an interleaving of the independent actions of the

transition systems.

If the transitions are labelled with communication labels involving

the same channels, and the actions are complementary (an emission and a

reception) then we have a synchronous communication involving the

complementary actions.

If the labels are communication actions but not complementary, we get an in-

compatibility.

After a final state of a called service, the caller may continue with

its independent transitions or with transitions that involve other

(sub)services. After a final state of the caller the called service may

continue only with elementary actions or with communication actions that do

not need a complementary action from the terminated caller, otherwise we

9

P. Andre, G. Ardourel, C. Attiogbe

get an incompatibility.

Practically, several points need to be considered to check the behavioural com-

patibility: various kinds of interactions, synchronous or asynchronous communica-

tions, atomic actions or composite ones.

Technically, checking the behavioural compatibility often relies on checking

the behaviour of a (component based) system through the construction and the

analysis of a global finite state automaton.

However the state explosion limitation is a flaw of such an approach.

We tackle this problem by considering local pairwise

verification of behavioural compatibility:

as a component provides several services in its interface,

one has to select the service to be checked. Therefore only the links

and sublinks of this service will be considered within a compatibility

checking. Each service behaviour being encoded with an eLTS, we check only

the

eLTSs of the involved services.

This local verification process may be iterated for each (linked) pair of

services of the component assembly to perform a global checking.

4.2 Principle of Open Property Verification in COSTO

The effective verification of specification properties may require powerful systems

such as model checkers or theorem provers.

Implementing such tools requires much effort.

One major principle we adopted when building the COSTO toolbox is to open

it to other languages, tools and environment in order to delegate various function-

alities.

The application of this principle to the verification of dynamic

properties currently leads to the LOTOS Analysis module and the MEC

Analysis module (see Figure 1).

The current section illustrates this principle.

The analysis of properties which are specific to the Kmelia model are

implemented as modules inside the COSTO toolbox; for example the

composability of components is specific to Kmelia components, therefore

composability checking is implemented as a specific COSTO tool.

But the analysis of general properties or properties that can be

translated into general ones is handled with available external tools.

For example the behavioural compatibility of two eLTS is a general

property that can be checked using existing tools such as MEC

[5] or LOTOS [17].

For that purpose, connections with these tools are

achieved. The part of the Kmelia specifications to be verified is

translated into the input formalism of the targeted tool. The

verification is then performed within the target environment. When possible,

the feedback of such an external analysis is related to

10

P. Andre, G. Ardourel, C. Attiogbe

the Kmelia specification to help the specifier.

We conducted various experiments with the reuse of existing tools.

We used the MEC

model checker [5] to deal with behavioural part of Kmelia services.

Using MEC we can focus specifically on service behaviours during

preliminary analysis (where data is ignored). Some feedback from this

analysis can help to correct the submitted specification.

As far as two linked services (a caller and a callee) are concerned, we

translate the LTS of each service into MEC automata, then the

MEC synchronous product of both automata is built and then we search for

deadlock freeness. The absence of deadlock implies the compatibility of

the services.

This experimentation with MEC has been reported in [2].

We have also used the LOTOS/CADP toolbox [15,17] as an external tool to

conduct

experiments on Kmelia specifications. We detail the connection between

COSTO and CADP in the following section.

5 An External Module to Verify Service Interactions

In this section we explain how the CADP toolbox is connected to COSTO and

how behavioural analysis is performed. Considering services to be checked for be-

havioural compatibility, the components that embody these services are first parsed

by the Kmelia parser which generates their internal representation; the services

involved in the analysis are extracted from the internal representation; then the

extracted services are translated as LOTOS processes. To deal with behavioural

compatibility we use the LOTOS selective parallel operator |[...]| to compose

the generated LOTOS processes. This selective parallel composition operator is

used because its semantics corresponds to our behavioural compatibility between

services (see section 4.1); that is a synchronisation on specific selected actions and

the interleaving of the other actions.

The result of the translation and the composition of the processes are used as

input of CADP tools.

5.1 LOTOS and CADP

LOTOS [19] is an ISO standard formal specification language. It is initially designed

for the specification of network interconnection (OSI) but it is also suitable for con-

current and distributed systems. LOTOS extends the process algebra CCS and CSP

and integrates algebraic abstract datatypes. A LOTOS specification is structured

with process behaviours. It has the main behaviour description operators of the

basic process algebra CCS and CSP. LOTOS uses the ”!” and ”?” operators of CSP

which denote respectively emission and reception. The salient features of LOTOS

are: the powerful multi-way synchronisation; the use of communication channels

called gates; the synchronous interaction of processes; the use of algebraic data

types to model data part of systems; the availability of a toolbox (CADP [15,17]).

CADP (Construction and Analysis of Distributed Processes) is the toolbox associ-

11

P. Andre, G. Ardourel, C. Attiogbe

ated to LOTOS; it enables one to apply its various model checking techniques on

the described processes which are first compiled into labelled transition systems.

5.2 Translating the Kmelia Services into LOTOS Processes

Remind that the behaviour of each Kmelia service is modelled with an eLTS; the

transitions of which are labelled with service calls, elementary actions, guarded

actions and communication actions. Each state of the eLTS has an identifier. Some

of the states are additionally labelled with a list of service names.

We call an output transition of a given state a transition going from this state to

another one. An input transition is a transition coming from any one state and

entering another considered state.

The general principle of the translation (or encoding) is as follows. The input

of the translation is the internal form of the transition system which describes a

service. The internal form is the output of the Kmelia specification parser (CORE

module). The input is translated into a LOTOS process.

We define a set of semantic encoding rules to support the translation of the com-

ponent services into LOTOS. These semantic rules permit a systematic translation.

Three kinds of encoding rules are defined: service interface translation, state transla-

tion rules (denoted by the LotosEncoding procedure) and transition label translation

rules (denoted by the LotosEncodingL procedure). We do not give a full description

of these rules (please see [4]), but we give some illustrations of the approach used.

The translation of the data part of the Kmelia service results in LOTOS data

types. To deal with communication, each service has a default channel with the

same name as the service.

The translation of a transition system is achieved as follows. One main process

is associated to the initial state of a transition system of a service and several

related sub-processes are associated to the other states of the service. The processes

have at least one parameter which is the default channel of the translated service;

the abstract actions are collected as an alphabet that complements the process

parameter.

A service without formal parameters (servName()) is called by sending its name

on the default channel of the service; it is translated by:

process servName[servName_chan, ...]: exit :=

servName_chan? varx: MsgTypeservName;[varx = servName];

A service with formal parameters is translated by a process which waits for the

encoded service name and its parameters.

Thus a service servName(p1: T1, p2: T2, ...) is translated by:

process servName[servName_chan, ...]: exit :=

servName_chan? snx: MsgTypeservName;

? p1: MsgTypeservName;

?p2: msgTypeservName; [snx = servName] ->

...

From each state of the service there are one or several output transitions.

A state with several output transitions is translated by a non-deterministic choice

12

P. Andre, G. Ardourel, C. Attiogbe

between the translations of the output transitions; it results in a choice between as

many process behaviour as possible in the LOTOS process. The translation into

LOTOS of the transitions S0--act1-->fs1, S0--act2-->fs2 is the encoding of

the S0 state:

LotosEncoding(s0) =

(LotosEncodingL(act1); LotosEncoding(fs1)

[] LotosEncodingL(act2); LotosEncoding(fs2))

A state with more than one input transition is translated by a sub-process.

Indeed, having more than one input transition means that the state can be reached

from several transitions, therefore the sub-process is reused from different state

translations.

A state annotated with a list of service names is translated by a non-deterministic

choice between several sub-processes. Each sub-process corresponds to the interac-

tion with one of the listed services. Consider the branching state S0 < <subserv1>

>< <subserv2>>; if the service subserv1 is called, then the current service proceeds

with the initial state in the subserv1. The encoding into LOTOS of S0 is as follows:

LotosEncoding(S0) =

Process SP_Process_S0[...]: exit :=

(chan_subserv1?fprm: MsgTypesubserv1 [fprm = subserv1];

LotosEncoding(initial_State(subserv1))

[] chan_subserv2?fprm: MsgTypesubserv2 [fprm = subserv2];

LotosEncoding(initial_State(subserv2))

)

Endproc

The translation of labels is as follows. An elementary action is translated with

an abstract action that will be an element of the process alphabet. As far as the

guarded actions are concerned, first the guard is abstracted as an atomic element

and then the guarded action gives a sequence of actions. Activations of service are

treated as communication primitives. Communication actions are translated with

LOTOS communication operators ! and ?.

According to the previous statements, we have formalised a specific semantic en-

coding (namely LotosEncoding) of the service specifications. Briefly, the encoding

into LOTOS of service specifications is inductively performed by considering: ser-

vice interface without formal parameters; service interface with formal parameters;

service states (initial, final, intermediary and annotated) and service transitions.

For the translation of the data part of Kmelia services into LOTOS, we use

enumerated types or bytes as data abstractions; the data values are then restricted

in order to limit the state explosion problem. For each service, we define a specific

LOTOS data type which has a constructor named with respect to the service; this

permits the call of the service by sending its name on the convenient channel.

Besides, all the messages which are sent to the default channel associated to a

service are used as constructors of the data type associated to this service. The

expressions used within actions are translated as abstract actions of the alphabet

of the LOTOS process.

13

P. Andre, G. Ardourel, C. Attiogbe

After the translation process, we get full LOTOS processes which are used to

check behavioural compatibility; they can also be analysed using various CADP

verification modules.

5.3 Experimentation Results

The formal analysis using CADP starts after the generation of the LOTOS processes

from the parsed Kmelia specifications of the involved components that embody the

services.

To check the behavioural compatibility of a pair of services, the LOTOS pro-

cesses resulting from their translation are composed with the |[alph]| operator to

form a specific interacting system; alph is the action alphabet used for the synchro-

nisation of the processes. The system obtained by composing the service processes is

compiled with the CADP compiler caesar which also checks for the consistent use

of the parallel composition operator. If the compilation is successful then the com-

position is correct hence the behavioural compatibility. If we have a deadlock from

the compilation process due to communication actions mismatch then the processes

are not compatible. This result is provided as feedback to the Kmelia specifier.

When there is no communication mismatch, caesar generates an internal graph

(corresponding to the LTS) from which various analysis are available. For example

the EVALUATOR module of CADP is used to model-check temporal properties

(written in µ-calculus) that express safety or liveness properties on the service de-

scriptions. More generally, all the analysis modules provided by the CADP tools

are now made available due to the connection we have made through the translation

into LOTOS. But in this case the specifier should move to the CADP environment.

6 Conclusion and Perspectives

We have presented an overview of the COSTO toolbox which supports the

Kmelia abstract component model. The input of COSTO is Kmelia

specifications.

Several modules are available within

COSTO for parsing, behaviour visualisation, service or component

interactions analysis.

The result of the Kmelia specification parsing is either used with

the specific tools of COSTO or translated into the input formalisms of external

tools.

We have emphasised the connection between COSTO and CADP by illustrating

with the analysis of the behavioural compatibility analysis with the

caesar compiler of the CADP

toolbox after a translation of Kmelia service specifications into

LOTOS processes.

The COSTO toolbox is then connected to the CADP analysis framework

after the generation of LOTOS processes.

At the current stage of the COSTO development we focus on the use of model

checking tools with respect to the behaviours of Kmelia

services. Connections are made with the MEC tool and the CADP toolbox.

14

P. Andre, G. Ardourel, C. Attiogbe

However, Kmelia component and service specifications are equipped with

properties that appear as logical assertions. Therefore we begin a

bridging with theorem proving tools such as that of the B Method.

For example, we have

introduced protocols as user guides in the Kmelia model[3]; they

are treated as specific services but their consistency is being

studied using the assertions of the services which are to be translated

in first order logic and proved correct with theorem proving.

Most of the tools related to components and verification deal with dynamic

checking techniques and use very abstract labelled transition systems or automata.

Compared to Kmelia services, their descriptions are less expressive, this facilitates

the related compatibility analysis; however they cover some aspects not yet covered

by our framework. The VeSTA tool [9] checks the correct integration of a com-

ponent (LTS) into a composite timed system. The SynCo tool [18] (Synchronized

Component-based System Checker) implements a compositional analysis of the re-

finement of synchronized component-based systems (Automata). Weak and strict

refinement relations are defined on components to allow proved transformations to

code. The CHIC tool 3 checks component interface compatibility in the sense of

[14]. A refinement relation is defined in their approach but the tool is limited to be-

havioural compatibility checking with pushdown systems.The SOFA 2 4 component

system provides an ADL-based design and a complete framework supporting all the

stages of distributed applications lifecycle from development to execution. But the

SOFA tools are specific to the SOFA component model [21] even if an integration

to Fractal [12] has been studied. The Vercors platfom [8] has a similar approach

to ours; its is yet more mature than the COSTO toolbox. However the input com-

ponent models of COSTO and Vercors are quite different and they need specific

processing; for example, LOTOS specifications are directly used as component be-

haviour in Vercors whereas LOTOS specifications are generated for the services

described with the Kmelia model. Moreover the Kmelia model and the related tools

consider a correct development of components from their abstract specifications.

The perspectives of this work are:

the bridging with the SOFA approach in order to share modules through

our toolbox;

the bridging with theorem proving tools to complement the property

verification aspect for data-intensive systems and

the enhancement of the data and assertion language of the Kmelia

model for scalability. A methodological analysis process is needed

to integrate the various verification modules; for example the combination of

a mismatch detection with a module to guide the correction is viewed as

the integration of a compatibility analysis tool with an adaptation tool.

Furthermore we are working on a translation of a subset of Kmelia into

the Fractal component model which has a Java execution environment but

3 http://www.eecs.berkeley.edu/∼arindam/Chic/
4 http://sofa.objectweb.org/

15

P. Andre, G. Ardourel, C. Attiogbe

lacks property verification means.

We expect some simulation facilities that will be complementary with the formal

analysis aspect provided by Kmelia.

References

[1] Allen, R. and D. Garlan, A Formal Basis for Architectural Connection, ACM Transactions on Software
Engineering and Methodology 6 (1997), pp. 213–249.

[2] André, P., G. Ardourel and C. Attiogbé, Vérification d’assemblage de composants logiciels
Expérimentations avec MEC, in: M. Gourgand and F. Riane, editors, 6e conférence francophone de
MOdélisation et SIMulation, MOSIM 2006 (2006), pp. 497–506.
URL http://www.lina.sciences.univ-nantes.fr/coloss/download/mosim06.ps.zip

[3] André, P., G. Ardourel and C. Attiogbé, Defining Component Protocols with Service Composition:
Illustration withe Kmelia Model, in: 6th International Symposium on Software Composition, SC’07,
LNCS to appear (2007), pp. –.
URL http://www.lina.sciences.univ-nantes.fr/coloss/download/sc07.ps.zip

[4] André, P., G. Ardourel, C. Attiogbé, H. Habrias and C. Stoquer, A Service-Based Component Model:
Formalism, Analysis and Mechanization, Technical Report RR05.08, LINA (2005).

[5] Arnold, A., P. Crubillé and D. Bégay, “Construction and Analysis of Transition Systems with MEC,”
AMAST Series in Computing: Vol. 3, World Scientific, 1994, iSBN 981-02-1922-9.

[6] Attie, P. and D. H. Lorenz, Correctness of Model-based Component Composition without State
Explosion, in: ECOOP 2003 Workshop on Correctness of Model-based Software Composition, 2003,
pp. –.

[7] Attiogbé, C., P. André and G. Ardourel, Checking Component Composability, in: 5th International
Symposium on Software Composition, SC’06, LNCS 4089 (2006), pp. –.
URL http://www.lina.sciences.univ-nantes.fr/coloss/download/sc06.ps.zip

[8] Barros, T., A. Cansado, E. Madelaine and M. Rivera, Model-checking distributed components: The
vercors platform, in: International Workshop on Formal Aspects of Component Software (FACS’06)
(2006).

[9] Bellegarde, F., J. Julliand, H. Mountassir and E. Oudot, The tool VeSTA: Verification of Simulations
for Timed Automata, Technical Report RT2006-01, LIFC - Laboratoire d’Informatique de l’Université
de Franche Comté (2006).

[10] Bracciali, A., A. Brogi and C. Canal, A formal approach to component adaptation, Journal of Systems
and Software 74 (2005), pp. 45–54.

[11] Bruneton, E., T. Coupaye, M. Leclercq, V. Quéma and J.-B. Stefani, The fractal component model and
its support in java: Experiences with auto-adaptive and reconfigurable systems, Softw. Pract. Exper.
36 (2006), pp. 1257–1284.

[12] Bruneton, E., T. Coupaye and J.-B. Stefani, The Fractal Component Model, Technical Report 2.0-3,
ObjectWeb Consortium (2004), specification v2.
URL http://www.object.org/fractal

[13] Canal, C., L. Fuentes, E. Pimentel, J. M. Troya and A. Vallecillo, Adding Roles to CORBA Objects,
IEEE Trans. Softw. Eng. 29 (2003), pp. 242–260.

[14] de Alfaro, L. and T. A. Henzinger, Interface Automata, in: Proceedings of the Ninth Annual Symposium
on Foundations of Software Engineering (FSE) (2001), pp. 109–120.

[15] Fernandez, J.-C., H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M. Sighireanu, CADP: A
Protocol Validation and Verification Toolbox, in: R. Alur and T. A. Henzinger, editors, Proc. of the 8th
Conference on Computer-Aided Verification (CAV’96), LNCS 1102 (1996), pp. 437–440.

[16] Giannakopoulou, D., J. Kramer and S.-C. Cheung, Behaviour Analysis of Distributed Systems Using
the Tracta Approach., ASE 6 (1999), pp. 7–35.

[17] Hubert Garavel, R. M., Frédéric Lang, An overview of cadp 2001, (Also in European Association for
Software Science and Technology (EASST) Newsletter) RT-254, INRIA (2002).

[18] Kouchnarenko, O. and A. Lanoix, SynCo: a refinement analysis tool for synchronized component-based
systems, in: M. T., editor, FM’03 Tool Exhibition Notes, Pisa, Italie, 2003, pp. 47–51.

[19] LOTOS, I., “A Formal Description Technique Based on The Temporal Ordering of Observational
Behaviour,” International Organisation for Standardization - Information Processing Systems - Open
Systems Interconnection, Geneva, 1988.

16

http://www.lina.sciences.univ-nantes.fr/coloss/download/mosim06.ps.zip
http://www.lina.sciences.univ-nantes.fr/coloss/download/sc07.ps.zip
http://www.lina.sciences.univ-nantes.fr/coloss/download/sc06.ps.zip
http://www.object.org/fractal

P. Andre, G. Ardourel, C. Attiogbe

[20] Pavel, S., J. Noye, P. Poizat and J.-C. Royer, Java Implementation of a Component Model with Explicit
Symbolic Protocols, in: 4th International Symposium on Software Composition, SC’05, LNCS 3628
(2005), pp. 115–124.

[21] Plasil, F. and S. Visnovsky, Behavior protocols for software components (2002), iEEE Transactions on
SW Engineering, 28 (9), 2002.
URL citeseer.ist.psu.edu/plasil02behavior.html

[22] Yellin, D. and R. Strom, Protocol Specifications and Component Adaptors, ACM Transactions on
Programming Languages and Systems 19 (1997), pp. 292–333.

17

citeseer.ist.psu.edu/plasil02behavior.html

	Introduction
	An Overview of the COSTO Toolbox
	COSTO Main Modules
	COSTO Eclipse Modules

	A Multi-Service Component Model: Kmelia
	Components, Services and Assemblies
	Service Behaviour Description

	Dynamic Aspects Analysis within COSTO
	Analysis of Component Dynamic Aspects
	Principle of Open Property Verification in COSTO

	An External Module to Verify Service Interactions
	LOTOS and CADP
	Translating the Kmelia Services into LOTOS Processes
	Experimentation Results

	Conclusion and Perspectives
	References

