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Abstract

The Kmelia component model is an abstract formal component model based on services. It is dedicated to
the speci�cation and development of correct components. This work enriches the Kmelia language to allow
the description of data, expressions and assertions when specifying components and services. The objective
is to enable the use of assertions in Kmelia in order to support expressive service descriptions, to support
client/supplier contracts with pre/post-conditions, and to enhance formal analysis of component-based
system. Assertions are used to perfom analysis of services, component assemblies and service compositions.
We illustrate the work with the veri�cation of consistency properties involving data at component and
assembly levels.
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1 Introduction

The Kmelia component model [?] is an abstract formal component model dedicated

to the speci�cation and development of correct components. A formal component

model is mandatory to check various kind of properties for component-based software

systems: correctness, liveness, safety; to �nd components and services in libraries

according to their formal requirements; to re�ne models or to generate codes.

The key concepts of the Kmelia model are services, component, component as-

sembly and component composition. One important feature of the Kmelia model is

the use of services as �rst class entities. A service has a state, a dynamic behaviour

which may include communication actions, an interface made of required, provided

and subservices. Component composition is based on the interaction between linked

services which form a component assembly. This use of services constitutes a bridge

to service oriented abstract models.

In [?] we introduced the syntax and semantics for the core model and language.

It has been incrementally enriched later. We mainly focused on the dynamic aspects

of composition: interaction compatibility in [?], component protocols with service
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composition in [?] and multipart interaction with synchronous communication and

shared services in [?]. Following this incremental approach, we consider in this article

an enrichment of the data and expressions in the kmelia model and its impact on

the language syntax, its semantics and the veri�cation of properties. Our guiding

objective is twofold: 1) enable the de�nition of assertions (with invariant, pre/post

conditions, and properties of services, components, and compositions), 2) to increase

the expressiveness of the action statements so as to deal with real size case studies.

Assertions are useful (i) to de�ne contracts on services; contracts increase the

con�dence in assembly correctness and they are a pertinent information when looking

for candidates for a required service, (ii) to ensure the consistency of components

respecting the invariant. The actions implement a functional part of the services

which should then be proved to be consistent with the contracts. Therefore the

correctness veri�cation aspects of the Kmelia model is enhanced.

Motivations. Modelling real life systems requires the use of data types to handle

states, actions and property descriptions. The state of the art shows that most of

the abstract components models [?,?,?,?,?] focus mainly on the dynamic features.

They enable various veri�cations of the interaction correctness but they lack ex-

pressiveness on the data types and do not provide assertions mechanisms and the

related veri�cation rules. As an example, in Wright the dynamic part based on CSP

is largely detailed (speci�cation and veri�cation) while the data part is minor [?].

In [?] the data types are de�ned using algebraic speci�cations, which are convenient

to marry with the symbolic model checking of state transition systems. But this

model does not support contracts and assertions.

Contribution. In this work, we enrich the model with data and assertions at

service and composition levels in order to deal with safe services, component consis-

tency and assembly contracts. First, the Kmelia language is enriched with data and

assertions so as to cover in an homogeneous way structural, dynamic and functional

correctness with respect to assertions. Second, we deal with state space visibility

and access through di�erent levels of nested components; in addition to service pro-

motion we de�ne variable promotions and the related access rules from component

state in component compositions. Last, feasibility of proving component correctness

using the assertions is presented. We show how structural correctness is veri�ed and

how the associated properties are expressed with the new data language.

The article is structured as follows. Section ?? gives an overview of the Kmelia

abstract model and introduces its new features. In Section ?? a working example is

introduced to illustrate the use of data and assertions. The formal analysis issue is

treated in Section ??; we present various analysis to be performed and we focus on

component consistency and on checking assembly links. Section ?? concludes the

article and draws some discussions and perspectives.

2 The Kmelia Model and its new Features

This section recalls the main features of Kmelia. The core concepts are component,

services, component assembly and composition [?]. Now, the Kmelia language allows

the description of datatypes, expressions and �rst order logic predicates. We describe

the Kmelia model, focusing on its new features.
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2.1 Data types and expressions

To design the Kmelia data language, we have established a trade o� between the

desired expressiveness of our language and the veri�cation concerns. We tried to en-

capsulate statements from other formal data languages such as Z, B, OCL or CASL,

with the idea to reuse existing tool supports for checking syntax and properties,

but this approach was not convincing due to expressiveness, syntax and semantics

con�icts between the used languages. To avoid the separation of analysis tools and

to work on the same abstract model, we advocate for an approach where both data

and dynamic part are integrated in a unique Kmelia language. We enrich the Kmelia

language by designing a small but expressive data language. This enables us to deal

homogeneously with the expression of the properties related to the component level

and to the composition level.

Basic types such as Integer , Boolean, Char, String with their usual operators and

standard semantics are permitted. Abstract data types like record, enumeration,

range and collection (arrays, sets) are allowed in Kmelia. User-de�ned record types

are built over the above basic types. Speci�c types and functions may be de�ned

and imported from libraries. A Kmelia expression is built with constants, variables

and elementary expressions built with standard arithmetic and logical operators.

An assignment is made of a variable at the left hand side and an expression at the

right hand side.

Assertions (pre-/post-conditions and invariants) are �rst order logic predicates.

In a post-condition of a service, the keyword old is used to distinguish the before and

after variable states. This is close to OCL's pre or Ei�el's old keywords. Guards

in the service behaviour (eLTS) are also predicates. All the assertions are governed

by an observability policy described in Section ??.

2.2 Components

A component is one element of a component type. A component is referenced with

a variable typed using the component type; for example c :C where c is a variable

and C a component type. The access to a state variable v of c is denoted c .v.

A component type C is a 9-tuple 〈W, Init,A,N ,M, I,D, ν, CS〉 with:
• W = 〈T, V, type, Inv〉 the state space where T is a set of types, V a set of variables,

type : V → T the function that map variables to types and Inv an invariant

de�ned on V .

• Init the initialisation of the variables of V .

• A a �nite set of elementary actions.

• N a �nite set of service names. Let NP (provided services) and NR (required

services) be two disjoint �nite sets of names 1 : N = NP ]NR.

• M a �nite set of message names.

• I = IP ]IR the component interface which is the union of two disjoint �nite sets

of names IP and IR such that IP ⊆ NP ∧ IR ⊆ NR.

1 ] denotes the disjoint union of sets
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• D is the set of service descriptions; it includes the provided services (DP ) and the

required services (DR).

• ν : N → D is the function mapping service names to service descriptions. More-

over there is a projection of the N partition on its image by ν:

s ∈ NP ⇒ ν(s) ∈ DP ∧ s ∈ NR ⇒ ν(s) ∈ DR

• CS is a set of constraints related to the services of the interface of C in order to

control the usage of the services.

Observability of the component state. In order to allow a context-independent

design and composition of components, we need the observability of component state

and we precise the associated rules. Thus in addition to the public interface of a

component, we propose its state to be observable by client services and by composite

components, through a subset of the component state variables. Therefore the state

variables (V ) are split into V O the subset of the observable variables and V NO

the subset of the non observable variables. The subsets form a partition of V .

Particularly, pre-/post-conditions and the state invariant Inv are composed of an

observable (InvO de�ned on V O) and a non-observable part.

2.3 Services

The behaviour of a component relies on the behaviours of its services. A (sub-)service

models a functionality activated by a call. A service may activate other services

during its evolution. Due to dependencies between services and interaction between

components, the actions of several activated services may interleave or synchronise.

Only one action of an activated service may be observed at time. Formally a service

s of a component type C 2 is de�ned by a 4-tuple 〈IS, lW, lInit,B〉 with:
• The service interface IS is de�ned by a 6-tuple 〈σ, µ, vW, P re, Post,DI〉 where
· σ is the service signature 〈name, param, ptype, res〉 with name ∈ N , param

a set of parameters, ptype : param → T the function mapping parameters to

types and res ∈ T the service result type;

· vW = 〈vT, vV, vtype, vInv〉 is a virtual state space with vT a set of types, vV

a set of variables, vtype : vV → vT the function mapping context variables to

types and vInv an invariant de�ned on vV ;

· µ is a set of message signatures 〈mname,mparam,mptype〉 wheremname ∈M,

mparam and mptype are similar to those of the service signature;

· Pre is a pre-condition de�ned on the union (∪) of the variables in V, vV, and

param: V ∪ vV ∪ param;

· Post is a post-condition de�ned on V ∪ vV ∪ param ∪ { result };
· DI is the service dependency ; it is composed by services on which the current

service depends on. DI is a 4-tuple 〈sub, cal, req, int〉 of disjoint sets where
sub ⊆ N P (resp. cal ⊆ NR, req ⊆ NR, int ⊆ N P ) contains the provided

services names (resp. the ones required from the caller, the ones required from

any component, the internal services) in the scope of s.

2 and by extension a service of a component c : C
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• lW = 〈lT, lV, ltype, lInv〉 is the local state space where lT is a set of types, lV

a set of local variables, ltype : lV → lT the function mapping local variables to

types and lInv a local state invariant de�ned on lV (mostly lInv = true).

• lInit the initialisation of the variables of lV .

• The behaviour B of a service s is an extended labelled transition system (eLTS),

detailed in [?,?,?]. A transition label is a combination of actions; it can be guarded.

The actions are either elementary actions from A or communication actions (to

call/to end a service, to send/to receive a message).

Virtual state spaces. As a required service is an abstraction of a service o�ered

by another component, it is necessary to describe this �imaginary� component. We

introduce the notion of a virtual state space vW in order to abstract a service from its

de�nition context which is a component. For a provided service this virtual context

is always empty.

Observability rules vs. service state space. Let s be a service of a component

type C. The distinction between observable and non-observable variables of the

component state space is revisited 3 according to the following table:

Service Variables Invariant
state space Observable part Non-observable part Observable part Non-observable part
Provided s V O V InvO Inv

Required s vV V vInv Inv

The pre-/post-conditions of s must respect the well-formedness rules related to

the observable, non-observable and virtual contexts according to the following table:

Service pre-condition post-condition
Assertions Observable Non-observable Observable Non-observable
scope PreO PreNO PostO PostNO

Provided s V O ∪ param none V O ∪ param ∪ { result } V ∪ param ∪ { result }
Required s vV ∪ param V ∪ param vV ∪ param ∪ { result } none

The other cases not detailed in the table are summarised in Figure ?? which de-

scribes: an abstract view of the variables of a component, their scopes and the

assertion scopes; it also depicts how these contexts are used in assembly and com-

position.

Fig. 1. State variables scope and assertion scope

3 it is not a partition here because of the supplementary variables in param and result
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The observable pre-/post-conditions will be used to check the assembly contracts

and the promotion contracts. Non-observable pre-conditions (resp. post-conditions)

are meaningless for a provided service (resp. required service) because they pre-

vent safe assembly and promotion contracts. The non-observable pre-condition of

a required service gives call conditions on the (caller) component state variables.

The non-observable post-condition of a provided service should establish the non-

observable part of the invariant.

The state space lW local to a service is used only in the service behaviour B but

not used in the assertions.

2.4 Assembly and Composition

An assembly is a set of components that are linked (horizontal composition) through

their services. An assembly is one element of an assembly type. An assembly link

associates a required service to a provided one. Considering the rich interface of

a Kmelia service (see ??), we need an explicit matching mechanism, to link prop-

erly the 6-tuples de�ning given services; therefore, additionally to signatures and

dependency (via sublinks) mapping we now de�ne context and message mappings.

When needed, message or service parameters re-ordering must be handled through

adaptation mechanisms [?].

Assembly context and message mapping. Consider a required service sr of a

component cr of type CR linked to a provided service sp of another component cp

of type CP . The virtual state space variables (vVsr) of sr must be �instantiated�

using the observable variables of sp (V O
CP ) by a mapping (total) function vmap :

vVsr → exp(V O
CP ) where exp(X) denotes an expression over the variables of X.

Each message name of sr is mapped to a message name of sp by a mapping (total)

function mmap : mnamesr → mnamesp.

A composition is the encapsulation of an assembly into a component (the compos-

ite) where some features (variables and services) of the nested components can be

promoted to the composite level. Promotion links are used to promote provided or

required services. The mappings and rules are similar to the ones of assembly, they

are not detailed here.

State variables promotion. An observable variable vo ∈ V O
C from a component

c : C can be promoted as a variable vp ∈ VCP of a composite component cp :
CP . Formally, there are a bijection prom : V O

C → VCP which establishes the

variable promotion, i.e. a bridge between the variable names. In the Kmelia syntax,

(vo, vp) ∈ prom, is written vp FROM c.vo. The promoted variables retain their types

(type(vp) = type(vo)) and are accessed (read-only at the composite level) in their

e�ective contexts using a service of the sub-component that de�nes the variables.

This guarantees the encapsulation principle.

Now Kmelia services are equipped with expressive means (pre-/post-conditions,

observability, virtual context) to describe contracts. Section ?? illustrates them on

a working example. They are used to check services and assemblies correctness as

described in Section ??.
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3 A Working Example

The example is a simpli�ed Stock Management application including a vending pro-

cess as a main service. This process manages product references (catalog) and prod-

uct storage (stock). Administrators have speci�c rights, they can add or remove

references under some consistency business rules such as: a new reference must not

be in the catalog or a removable reference must have an empty stock level.

����������	



Fig. 2. Simpli�ed Assembly of the Stock Case Study

The system is designed as a general reusable component StockSystem. As shown

in Fig. ?? it encapsulates an assembly of two components: a StockManager and a

Vendor. The former one is the core business component to manage references and

storage. The latter one is the system interface which main service, the vending

service, is promoted at the StockSystem level. In this paper we focus on the vending

and newReference services, the other services will not be more detailed further. With

respect to vending, a user may add a new item in the stock management system; a

new reference, and a quantity is required for the added item. In the design system

the Vendor component requires a service addItem which will get a new reference and

perform the update of the system. This simple functionality may fail if there is no

available new reference.

The required service addItem is ful�lled with the provided service newReference.

The links and sublinks are explicitly de�ned in the composition part of a composite

component, as detailed in the listing ??.

The nested services represent the service dependency DI. For example, the

required service addItem provides a special code subservice 4 . Similarly the provided

service newReference requires a ask_code service from its caller (see the calrequires
declaration in the interface of newReference in the listing ??).

Inside the components, the di�erent arrows represent various kind of calls: func-

tion call (with no side e�ects), service call (according to the service dependency).

The newReference service calls the primitive display function (declared in the prede-

�ned Kmelia library), an internal service getNewReference 5 and the ask_code service

4 In Kmelia, a subservice of a service s, is a service that belongs to the interface (subprovides) of s.
5 which is also a subservice because it is not exposed in the StockManager component interface
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required to its caller.

Data types in Kmelia. The data types are explicitly de�ned in a TYPES clause

or in the shared libraries (prede�ned or user-de�ned). As an example, the following

library (named Stocklib ) declares some speci�c types, functions and constants.

TYPES
Product I tem : : s t r u c t { i d : I n t e g e r ; desc : S t r i n g ; qu an t i t y : I n t e g e r } ;

CONSTANTS
maxRef : I n t e g e r := 100 ;
emptySt r i ng : S t r i n g := "" ;
noRe f e r ence : I n t e g e r := −1 ;
noQuant i ty : I n t e g e r := −1

This data types in this part are quite concrete; more abstract data types are in the

process to be included in the prede�ned library.

A Kmelia component and observable state. The listing ?? is an extract from

the Kmelia speci�cation of the StockManager component. The state of StockManager

declares among the other variables, the observable variable catalog which can be

used for context mapping in the assembly links but also in promoted variables for

composite components. Two arrays ( plabels and pstock) are used to stock the labels

of current references and their available quantity. The invariant states that: the

catalog has an upper bound; all references in the catalog have a label and a quantity;

the unknown references have no entries in the two arrays pstock and plabels . The

assertions in Kmelia are possibly named predicates; the labels in front of the invariant

lines are names used in this speci�cation.

Listing 1: Kmelia speci�cation StockManager State
COMPONENT StockManager
INTERFACE

prov ides : { newRefe rence , r emoveRe fe rence , s t o r e I t em , o rd e r I t em }
r e qu i r e s : { a u t h o r i s a t i o n }

USES {STOCKLIB}
TYPES

Re f e r en c e : : range 1 . . maxRef
VARIABLES

vendorCodes : setOf I n t e g e r ; // a u t h o r i s e d a dm i n i s t r a t o r s
obs c a t a l o g : setOf Re f e r en c e ; // product i d = i n d e x o f the a r r a y s
p l a b e l s : ar ray [ Re f e r en c e ] o f S t r i n g ; // produc t d e s c r i p t i o n
ps tock : ar ray [ Re f e r en c e ] o f I n t e g e r // produc t q u an t i t y

INVARIANT
obs @borned : s i z e ( c a t a l o g ) <= maxRef ,
@re f e r e n c ed : f o r a l l r e f : Re f e r en c e | i n c l u d e s ( c a t a l o g , r e f ) i m p l i e s

( p l a b e l s [ r e f ] <> emptySt r i ng and ps tock [ r e f ] <> noQuant i ty ) ,
@no t r e f e r e n c ed : f o r a l l r e f : Re f e r en c e | e x c l u d e s ( c a t a l o g , r e f ) i m p l i e s

( p l a b e l s [ r e f ] = emptySt r i ng and ps tock [ r e f ] = noQuant i ty )
INITIALIZATION

c a t a l o g := emptySet ;
vendorCodes := emptySet ; // f i l l e d by a r e q u i r e d s e r v i c e
p l a b e l s:= a r r a y I n i t ( p l a b e l s , emptySt r i ng ) ; // c o n s i s t e n t w i th . .
ps tock := a r r a y I n i t ( p s tock , noQuant i ty ) ; // . . empty c a t a l o g

A Kmelia service with its assertions. The listing ?? gives the speci�cation of

the provided service newReference. It provides a new reference if its running goes

well. The pre-condition is that the catalog does not reach its maximal size. The

post-condition is decomposed into several observable/non-observable named parts.

It states that we may have a result ranging in 1. .maxRef or no reference at all, in

the latter case the catalog remains unchanged.
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Listing 2: Kmelia speci�cation Provided Service with assertions
prov ided newRefe rence ( ) : I n t e g e r // Re su l t = Produc t Id or noRe f e r ence
I n t e r f a c e

c a l r e q u i r e s : {ask_code} #r e q u i r e d from the c a l l e r
i n t r e q u i r e s : { getNewReference }

Pre
obs s i z e ( c a t a l o g ) < maxRef #the c a t a l o g i s not f u l l

Var i ab l e s # l o c a l to the s e r v i c e
c : I n t e g e r ; # c : i n pu t code g i v en by the u s e r
r e s : Re f e r en c e ;
d : S t r i n g ; # product d e s c r i p t i o n

I n i t i a l i z a t i o n
r e s := noQuant i ty ;

Behavior
I n i t i # the i n i t i a l s t a t e
F ina l f # a f i n a l s t a t e
{ i −− c := __CALLER ! ! ask_code ( ) −−> e1 ,

# ge t s the password on the ask_code ( s e r v i c e ) channe l
e1 −− [ not ( c i n vendorCodes ) ]

d i s p l a y (" add ing a r e f e r e n c e i s not a l l owed ") −−> end ,
e1 −− [ c i n vendorCodes ] __CALLER ? msg(d ) −−> e2 ,

# ge t s the p roduc t d e s c r i p t i o n
e2 −− [ d = emptySt r i ng ]

d i s p l a y (" add ing an EmptySet d e s c r i p t i o n i s not a l l owed ") −−> end ,
e2 −− [ d <> emptySt r i ng ] r e s := __SELF ! ! getNewReference ( ) −−> e4 ,
e4 −− { c a t a l o g := i n c l u d i n g ( c a t a l o g , r e s ) ; //add new r e f e r e n c e

ps tock [ r e s ] := 0 ; // d e f a u l t s t o ck i s n u l l
p l a b e l s [ r e s ] := d // produc t d e s c r i p t i o n i s the one p r o v i d ed

}−−> end ,
end −− __CALLER ! ! newRefe rence ( r e s ) −−> f

# the c a l l e r i s i n fo rmed from the Re s u l t and the s e r v i c e ends .
}
Post
obs @resu l tRange : ( ( Re s u l t >= 1 and Re su l t <= maxRef ) or ( Re s u l t = noRe f e r ence ) ) ,
obs @r e s u l tVa l u e : ( Re s u l t <> noRe f e r ence ) i m p l i e s ( no t I n ( o l d ( c a t a l o g ) , Re su l t )

and c a t a l o g = add ( o l d ( c a t a l o g ) , Re su l t ) ) ,
obs @no r e su l tVa l u e : ( Re s u l t = noRe f e r ence ) i m p l i e s Unchanged{ c a t a l o g } ,
@refAndQuant i ty : ( Re s u l t <> noRe f e r ence ) i m p l i e s

( p s tock [ R e s u l t ] = 0 and p l a b e l s [ R e s u l t ] <> emptySt r i ng and
( f o r a l l i : Re f e r en c e | ( i <> Re su l t ) i m p l i e s

The behaviour of a service is a set of transitions. A transition is labelled and

links two states like in e1 −−−label−−−> e2. A transition label is a combi-

nation of actions. A label can be guarded with the notation [guard] action∗.
The Kmelia syntax of a communication action (inspired by the Hoare's CSP) is:

channel( ! | ? | !! | ?? ) message(param∗). _CALLER stands for the caller channel,

_SELF stands for an internal channel, _rs stands for a required service rs chan-

nel. In this article we will not consider further the behaviour. Nevertheless the

actions are necessary to check the consistency of the behaviour with respect to the

pre-/post-conditions.

Context and message mappings. The context and message mappings (see ??)

are speci�ed in assembly links. In the listing ??, variables of the virtual context

of addItem are associated with an expression on the variables of the context of

newReference i.e. the observable state variables of the component sm. In this ex-

ample, there are no message mapping because only the prede�ned overloaded msg

message is used.

Listing 3: Kmelia speci�cation StockSystem
COMPONENT StockSystem

INTERFACE

prov ides : { vend ing }
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r e qu i r e s : { a u t h o r i s a t i o n }

SERVICES

END_SERVICES

COMPOSITION

Assembly

Components

sm : StockManager ;

ve : Vendor

Links // ////////// assemb ly l i n k s //////////

l r e f : p−r sm . newRefe rence , ve . addItem

con t e x t mapping

ve . cata logEmpty == empty (sm . c a t a l o g ) ,

ve . c a t a l o g F u l l == s i z e (sm . c a t a l o g ) = MaxInt

s u b l i n k s : { l c od e }

l c od e : r−p sm . ask_code , ve . code

. . .

End // assemb ly

Promotion

L inks // ////////// promot ion l i n k s //////////

l v end : p−p ve . vend ing , SELF . vend ing

l a u t : r−r sm . a u t h o r i s a t i o n , SELF . a u t h o r i s a t i o n

END_COMPOSITION

In the next section, we show how this Kmelia speci�cation is analysed using our

COSTO 6 tool and a speci�c veri�cation approach using the B method and tools.

4 Formal Analysis and Experimentations

Components, assemblies and compositions should be analysed according to various

facets. Tables ?? and ?? give an overview of the veri�cation requirements that we

consider to validate a Kmelia speci�cation. Some of them was achieved before, in

particular the behavioural compatibility of services and components, treated in [?]:

it was achieved using model-checking techniques provided by existing tools (Lotos/-

CADP 7 and MEC 8 ); the involved parts of the Kmelia speci�cations were translated

into the input languages of these tools and checked.

In this section, we address aspects related to data type checking and assertion

checking; the main goal is to analyse parts of a Kmelia speci�cation using its new

features such as the assertions. Formal veri�cation tools are necessary to check

assertions consistency. Our approach consists in reusing existing tools such as the

6 COmponent Sudy TOolkit dedicated to the Kmelia language
7 http://www.inrialpes.fr/vasy/cadp/
8 http://altarica.labri.fr/wiki/tools:mec_4

10

http://www.inrialpes.fr/vasy/cadp/
http://altarica.labri.fr/wiki/tools:mec_4


Andre et al.

B tools and especially the Rodin 9 framework. We design a systematic veri�cation

method that enables us to reuse the proof obligations generated by the B tools for

our speci�c purpose.

Analysis Status

Static rules: Scope + name resolution + type-checking done
Observability rules (see ??) in progress
Component interface consistency done
Services dependency consistency:

DI well-formed vs. I and D (component) done
DI vs. B (eLTS)
Simple constraint checking (parameters, query, protocol, . . . ) in progress
Local eLTS checking (deadlocks, guard, subprovides, . . . ) in progress
Invariant consistency vs. pre/post conditions:

provided services : InvO ∧ PreO ⇒ PostO ∧ InvO experimental (a)
Inv ∧ Pre⇒ PostNO ∧ Inv experimental (b)

required services : vInv ∧ PreO ⇒ PostO ∧ vInv experimental (c)
Consistency between service assertions and eLTS: not yet
eLTS vs. Post the post condition should be established
required service R calls vs. PreR the context must ensure the precondition
(local+virtual)
eLTS vs. subprovided service SP annotations PreSP the context must
ensure the precondition (local)

Table 1
Formal analysis of a simple Kmelia component

Analysis State

Static rules: Scope + name resolution + type-checking done
Observability rules: promoted variables done
Link/sublink consistency: assembly and composition done
signature matching
service dependency matching (subprovides, callrequires)
context mapping (cm function) and observability rules
message mapping
Assembly Link Contract correctness:

cm(PreO
R)⇒ PreO

P experimental (d)
PostOP ⇒ cm(PostOR) experimental (e)
Provided Promotion Link Contract correctness: PP is at the composite
level
cm(PreO

P P )⇒ PreO
P experimental (f)

PostOP ⇒ cm(PostOPP ) experimental (g)
Required Promotion Link Contract correctness: RR is at the composite
level
cm(PreO

R)⇒ PreO
RR experimental (h)

PostORR ⇒ cm(PostOR) experimental (i)
eLTS (behaviour) compatibility [?] done

Table 2
Formal analysis of a Kmelia assembly and compositions

Event-B and Rodin framework. Rodin is a framework made of several tools

dedicated to the speci�cation and proof of Event-B models. Event-B [?] extends

the classical B method [?] with speci�c constructions and usage; it is intended to the

9 http://rodin-b-sharp.sourceforge.net
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modelling of general purpose systems and for reasoning on them. Proof obligations

(POs) are generated to ensure the consistency of the considered model, i.e. the

preservation of the INVARIANT by the EVENTS. Other POs ensure that a re�ned

model is consistent, i.e. the abstract INVARIANT is preserved and the re�ned events

do not contradict their abstract counterparts.

POs can be discharged automatically or interactively, using the Rodin provers.

Verifying Kmelia speci�cations using Event-B. The main idea is, �rst to con-

sider a part of the Kmelia speci�cation involved in the property to be veri�ed (a

service, a component, a link of an assembly, an assembly, etc), then to build from

this part of the speci�cation, a set of (Event-)B models in such a way that the POs

generated for them correspond to the speci�c obligations we needed to check the

Kmelia speci�cation assertions. Using B to validate components assembly contracts

has been investigated in [?,?].

We systematically build some Event-B models, with an appropriate structure

as explained below, to check some of the proof obligations presented in Tables ??

and ??.

(i) For each component and its provided services, we generate an Event-B model.

The proof of the consistency of this model ensures the proof of the rules (a)

and (b) for the invariant consistency at the Kmelia level.

(ii) For each required service (and its �virtual context�) we have to generate an

Event-B model. Its B consistency establishes the rule (c).

(iii) For each assembly link between a required service req� and an provided one

prov�, we give an Event-B model of the observable part of prov, which re�nes

the Event-B model of the required service req� previously checked.
• the consistency proof of the Event-B model ensures the rule (a) for the in-

variant consistency at the Kmelia level;
• the re�nement proof establishes both the rules (d) and (e) for the Kmelia

assembly correctness.

We are not going to deal in this article with the details of the translation proce-

dure. Kmelia invariant and pre-condition translations are quite systematic, whereas

the post-condition concept does not exist into the B language. Therefore we abstract

the post-condition by using an ANY substitution that satis�es the post-condition

(once translated) as proposed in the context of UML/OCL to B translations [?].

Figure ?? depicts the Event-B translation into Rodin of the service newReference of

StockManager.

Experimental results. Consider the case study presented in Section ??; apply-

ing our method, we obtain the Event-B models structured as depicted in Fig ??.

These models are studied within Rodin. We can verify the Kmelia components

StockManager and Vendor before checking the assembly StockSystem. The Event-B

model StockManager is used to prove the preservation of the invariant assertions

by the provided services. The re�nement v_addItem_sm_newReference is used to

check the assembly link between the services newReference and addItem. The Ta-

ble ?? gives an idea about the number of POs that are to be discharged to ensure

12
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Fig. 3. Rodin

the correctness of the Kmelia speci�cation.

Studying the example within Rodin, reveals some errors in our initial Kmelia

speci�cation. For example, the post-condition of newReference was wrong; one of

the associated POs could not be discharged. After the feedback in our Kmelia spec-

i�cations, the error was corrected.

Fig. 4. Event-B Models

Auto. Manual Total

StockManager 16 3 19

Vendor_addItem 2 1 3

v_addItem_sm
_newReference

22 1 23

Table 3
Rodin Proof obligations

In a general manner, the assertions associated to Kmelia services help us to ensure

the correctness of the assembly link by considering the required-provided relationship

as a re�nement from the required service to the provided one. When the assertions

are wrong, the proofs fail, which means the assembly link is wrong.

13
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5 Discussion and Conclusion

In this article we have presented enrichments to the Kmelia abstract component

model: a data language for Kmelia expressions and predicates; visibility features for

component state in the context of composite components; contracts in the compo-

sition of services. The formal speci�cation and analysis of the model are revisited

accordingly. The syntactic analysis of Kmelia is e�ective in the COSTO tool that

supports the Kmelia model. We have proposed a method to perform the necessary

assertions veri�cation using B tools: the contracts are checked through preliminary

experimentations using the Rodin framework. We have illustrated the contribution

with a complete case study which is speci�ed in Kmelia and veri�ed using Rodin.

Discussion. Our work is more related to abstract and formal component models

like SOFA or Wright, rather than to the concrete models like Corba, EJB or .NET.

The Java/A [?] or ArchJava [?] models do not allow the use of contracts. We have

already emphasized (see ??) the fact that most of the abstract models deal mainly

with the dynamic part of the components. Some of them [?,?] take datatypes and

contracts into account but not the dynamic aspects. Some other ones [?,?] delay

the data part to the implementation level.

In [?] may/must constraints are associated to the interactions de�ned in the

component interfaces to de�ne behavioural contracts between client and suppliers.

In Kmelia, the distinction between a supplier constraint and the client is done from

a methodological point of view rather than a syntactic rule. The use of B to check

component contracts has been studied in [?,?] in the context of UML components.

Fractal [?] proposes di�erent approaches based on the separation of concerns: the

common structural features are de�ned in Fractal ADL [?] ; dynamic behaviours are

implemented by Vercors [?] or Fractal/SOFA [?] and the use of assertions are studied

in ConFract [?]. In ConFract contracts are independent entities which are associated

to several participants, not to services and links as in our case; their contracts

support a rely/guarantee mechanism with respect to the (vertical) composition of

components.

Perspectives. Several aspects remain to deal with regarding assertions and the

related properties, composition and correctness of component assemblies. First, we

need to implement the full chain of assertion veri�cation especially the translation

KmlToB which is necessary to automatically derive the necessary Event-B models

to check the assertions and the assemblies. Second, we will integrate high level

concepts and relations for data types. Especially we plan to integrate some kind of

objects and inheritance in the type system but also component types. Assertions in

this context are more di�cult to specify and to verify.

Another challenging point is the support for interoperability with other compo-

nent models. We assume that in real component applications, a component assembly

is built on components written in various speci�cation languages. When connect-

ing services (or operations) we can at least check the matching of signatures. If

the speci�cation language of the corresponding services or components accepts con-

tracts (resp. service composition, service behaviour) we can provide corresponding

veri�cation means.
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A The Vendor Component Partial Speci�cation

Listing 4: Kmelia speci�cation Vendor
COMPONENT Vendor

INTERFACE

prov ides : { vend ing }

r e qu i r e s : { addItem , removeItem , i n c r e a s e I t em , de c r e a s e I t em }

USES {STOCKLIB}

CONSTANTS

obs noID : I n t e g e r := −1 ;

VARIABLES

obs o r d e r s : setOf Product I tem ; # ob s e r v a b l e u s e r ca rd

v endo r I d : I n t e g e r # vendor p e r s o n a l code

INITIALIZATION

o r d e r s := emptySet ;

v endo r I d := noID

SERVICES

########### prov i d ed s e r v i c e s

# The main ( p r o v i d ed ) s e r v i c e i s vend ing .

prov ided vend ing ( )

I n t e r f a c e

ex t r equ i r e s : { addItem , removeItem , i n c r e a s e I t em , de c r e a s e I t em }

Pre t r u e

Var i ab l e s # l o c a l to the s e r v i c e

c ho i c e : CommandChoice ; # command cho i c e : addItem , . . .

r e f : I n t e g e r ; # product r e f e r e n c e g i v en by the u s e r

qty : I n t e g e r ; # product q u an t i t y g i v en by the u s e r

desc : S t r i n g ; # product d e s c r i p t i o n g i v en by the u s e r

p i : I n t e g e r ;

Behavior // The behav i ou r i s s p e c i f i e d as an i n f i n i t e l oop

I n i t i # i i s the i n i t i a l s t a t e

F ina l f # f i s a f i n a l s t a t e

{ i −− {

d i sp layMenu ( ) ; # c a l l an i n t e r n a l a c t i o n

d i s p l a y (" P l e a s e e n t e r your c ho i c e ") ;

cho i c e := readCommandChoice ( ) # c a l l an i n t e r n a l a c t i o n

} −−> e0 ,

e0 −−[ c h o i c e = s top ] d i s p l a y (" bye bye ") −−> f ,

// f i n a l s t a t e = end o f vend ing

e2 −−[ c h o i c e = add ] _addItem ! ! addItem ( ) −−> e10 ,

e0 −−[ c h o i c e <> s top ] d i s p l a y (" Product r e f e r e n c e ") −−> e1 ,
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e1 −− r e f:=r e a d I n t ( ) −−> e2 ,

e2 −−[ c h o i c e = remove ] _removeItem ! ! removeItem ( r e f ) −−> e20 ,

e2 −−[ c h o i c e = s t o r e ] { _ inc r ea s e I t em ! ! i n c r e a s e I t em ( r e f , r e a d I n t ( ) ) } −−> e30 ,

e2 −−[ c h o i c e = o r d e r ] _decrease I tem ! ! de c r e a s e I t em ( r e f , r e a d I n t ( ) ) −−> e40 ,

//−−−− add Item

e10 <<code>>, #su b s e r v i c e code i s a v a i l a b l e he r e

e10 −− { desc:=r e a dS t r i n g ( ) ; // product d e s c r i p t i o n

_addItem ! msg( desc ) } −−> e11 ,

e11 −− _addItem ?? addItem ( p i ) −−> e12 ,

e12 −− { i f ( p i <> noRe f e r ence )

then d i s p l a y ("New r e f e r e n c e : "+a s S t r i n g ( p i ) )

e n d i f } −−> i
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B The derived Event-B models

B.1 StockLib
CONTEXT StockLib

EXTENDS Default

CONSTANTS

References
MaxRef
NullInt
NoQuantity
NoReference

AXIOMS

axm5 : References = 1 . . MaxRef
axm1 : MaxRef = 100
axm2 : NullInt = −1
axm3 : NoQuantity = −2
axm4 : NoReference = −3

END

B.2 StockManager

MACHINE StockManager

SEES StockLib

VARIABLES

vendorCodes
catalog obs
plabels
pstock
Result newReference obs

INVARIANTS

inv5 : vendorCodes ⊆ Z
inv2 : catalog ∈ P(References)
obs

inv7 : finite(catalog)
obs

inv3 : plabels ∈ 1 . . MaxRef → String
inv4 : pstock ∈ 1 . . MaxRef → Z
• borned : card(catalog) ≤ MaxRef
obs
• referenced : ∀ref1 ·(ref1 ∈ References ∧ ref1 ∈ catalog⇒plabels(ref1 ) 6= EmptyString ∧ pstock(ref1 ) 6=

NoQuantity)
• notreferenced : ∀ref2 ·(ref2 ∈ References ∧ ref2 /∈ catalog⇒plabels(ref2 ) = EmptyString ∧ pstock(ref2 ) =

NoQuantity)
inv6 : Result newReference ∈ Z
obs

EVENTS

Initialisation

begin
act1 : vendorCodes := ∅
act2 : catalog := ∅
act3 : plabels := (1 . . MaxRef )× {EmptyString}
act4 : pstock := (1 . . MaxRef )× {NoQuantity}
act5 : Result newReference := 0

end

Event newReference =̂

any
new Result
new catalog
new pstock
new plabels

where
grd8 : card(catalog) < MaxRef
obs

grd1 : new Result ∈ Z
obs
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grd2 : new catalog ∈ P(References)
obs

grd11 : finite(new catalog)
obs

grd3 : new plabels ∈ 1 . . MaxRef → String
grd4 : new pstock ∈ 1 . . MaxRef → Z
grd5 : (new Result > 0 ∧ new Result ≤ MaxRef ) ∨ new Result = NoReference
obs

grd6 : new Result 6= NoReference⇒
new Result /∈ catalog
∧ new catalog = catalog ∪ {new Result}

obs
grd7 : new Result = NoReference⇒ new catalog = catalog
obs

grd9 : new Result 6= NoReference⇒
new pstock(new Result) = 0 ∧
new plabels(new Result) 6= EmptyString ∧
(∀ii ·(ii ∈ 1 . . MaxRef ∧ ii 6= new Result ⇒

new pstock(ii) = pstock(ii) ∧
new plabels(ii) = plabels(ii)

))
grd10 : new Result = NoReference⇒

new pstock = pstock ∧
new plabels = plabels

then
act1 : Result newReference := new Result
act2 : catalog := new catalog
act3 : pstock := new pstock
act4 : plabels := new plabels

end

END

B.3 Vendor_addItem

MACHINE Vendor addItem

SEES StockLib

VARIABLES

catalogFull
catalogEmpty
Result addItem

INVARIANTS

inv1 : catalogFull ∈ BOOL
inv2 : catalogEmpty ∈ BOOL
• notFullEmpty : ¬ (catalogEmpty = TRUE ∧ catalogFull = TRUE)
inv4 : Result addItem ∈ Z

EVENTS

Initialisation

begin
act1 : catalogFull := FALSE
act2 : catalogEmpty := TRUE
act3 : Result addItem :∈ Z

end

Event addItem =̂

any
new Result
new catalogEmpty
new catalogFull

where
pre addItem : ¬ (catalogFull = TRUE)
grd2 : new Result ∈ Z
grd6 : new catalogEmpty ∈ BOOL
grd5 : new catalogFull ∈ BOOL
Post addItem : new Result 6= NoReference⇒

new catalogEmpty = FALSE ∧
new catalogFull ∈ BOOL

Post addItem2 : new Result = NoReference
⇒
new catalogEmpty = catalogEmpty ∧
new catalogFull = catalogFull

then
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addItem result : Result addItem := new Result
addItem empty : catalogEmpty := new catalogEmpty
addItem full : catalogFull := new catalogFull

end

END

B.4 v_addItem_sm_newReference

MACHINE v addItem sm newReference

REFINES Vendor addItem

SEES StockLib

VARIABLES

catalogEmpty
catalogFull
Result addItem
catalog

INVARIANTS

inv1 : catalog ∈ P(References)
inv6 : finite(catalog)
borned : card(catalog) ≤ MaxRef
assemblyEmpty : catalogEmpty = bool(card(catalog) = 0 )
assemblyFull : catalogFull = bool(card(catalog) = MaxRef )

EVENTS

Initialisation
extended

begin
act1 : catalogFull := FALSE
act2 : catalogEmpty := TRUE
act3 : Result addItem :∈ Z
act4 : catalog := ∅

end

Event newReference =̂

re�nes addItem

any
new Result
new catalog

where
pre newReference : card(catalog) < MaxRef
grd11 : new Result ∈ Z
grd64 : new catalog ∈ P(References)
grd10 : finite(new catalog)
post newRef1 : ((new Result > 0 ∧ new Result ≤ MaxRef )

∨
new Result = NoReference)

post newRef2 : new Result 6= NoReference⇒
new Result /∈ catalog

∧ new catalog = catalog ∪ {new Result}
post newRef3 : new Result = NoReference⇒ new catalog = catalog

with
new catalogEmpty : new catalogEmpty = bool(card(new catalog) = 0)
new catalogFull : new catalogFull = bool(card(new catalog) = MaxRef)

then
addItem result : Result addItem := new Result
addItem empty : catalogEmpty := bool(card(new catalog) = 0 )
addItem full : catalogFull := bool(card(new catalog) = MaxRef )
act34 : catalog := new catalog

end

END
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