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On the image of Euler's totient function

Euler's totient function φ is the function defined on the positive natural numbers N * in the following way:

where (x, n) is the pgcd of x and n. Thus φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, and so on. The principle aim of this article is to study certain aspects of the image of the function φ.

Elementary properties

Clearly φ(p) = p -1, for any prime number p and, more generally, if α ∈ N * , then φ(p α ) = p αp α-1 . This follows from the fact that the only numbers which are not coprime with p α are multiples of p and there are p α-1 such multiples x with 1 ≤ x ≤ p α .

It is well-known that φ is multiplicative, i.e., if m and n are coprime, then φ(mn) = φ(m)φ(n). If n ≥ 3 and the prime decomposition of n is

n = p α1 1 . . . p αs s ,
then from what we have seen

φ(n) = s i=1 (p αi i -p αi-1 ) = n s i=1 (1 - 1 p i ).
Notice that p αp α-1 = p α-1 (p -1).

This implies that, if p is odd or p = 2 and α > 1, then p αp α-1 is even. Hence, for n ≥ 3, φ(n) is even. Thus the image of φ is composed of the number 1 and even numbers.

The following property is simple but very useful. proof If m is odd, then (2, m) = 1 and so

φ(2m) = (2 -1)φ(m) = φ(m). If m is even, then (2, m) = 1, hence φ(2m) = 2φ(m) = φ(m)
. This ends the proof. 2

2 Bounds on φ -1 (m)

Let m ∈ N * and consider the inverse image φ -1 (m) of m, i.e.

φ -1 (m) = {n ∈ N * : φ(n) = m}.
There are several questions we might ask. First, is the set φ -1 (m) empty and, if not is it finite. It is easy to see that φ -1 (1) = {1, 2} and as we have already seen, φ -1 (m) is empty if m is odd. It remains to consider the case where m is an even number. The following result, due to H. Gupta [START_REF] Gupta | Euler's totient function and its inverse[END_REF], helps us to answer these questions.

Proposition 2.1 Suppose that m is an even number and let us set

A(m) = m p-1|m p p -1 , where p is prime. If n ∈ φ -1 (m), then m < n ≤ A(m).
proof Clearly, if φ(n) = m, then m < n. On the other hand, if φ(n) = m and n = p α1 1 . . . p αs s , then

m = n s i=1 p i -1 p i =⇒ n = m s i=1 p i p i -1 .
However, if p|n, then from the first section we know that p -1|φ(n) and it follows that, for each p i , p i -1|m. Hence n ≤ A(m). 2

The proposition shows that the inverse image of an element m ∈ N * is always finite. It also enables us to determine whether a given number m is in the image of φ: we only need to determine A(m), and then calculate φ(n) for all integers n in the interval (m, A(m)].

Examples 1. The divisors of 4 are 1,2 and 4. Adding 1 to each of these numbers we obtain 2, 3 and 5, all of which are prime numbers. Thus A(4

) = 4 • 2 1 • 3 2 • 5 4 = 15.
To find the inverse image of 4, it is sufficient to consider numbers between 5 and 15. In fact, φ -1 (4) = {5, 8, 10, 12}. 2. The divisors of 14 are 1, 2, 7 and 14. However, if we add 1 to each of these numbers we only find a prime number in the first two cases. Thus A(14) = 14 • 2 1 • 3 2 = 42. If we consider the numbers n between 15 and 42, we find φ(n) = 14 and so φ -1 (14) = ∅.

Remark The example m = 14 shows that there are even numbers which are not in the image of φ.

A is a function defined on {1} ∪ 2N * . Let us look at the first values of A with the corresponding values of φ (when defined): From the table we see that A(m) may be odd, even or a fraction and that A is not increasing (A(12) > A( 14)). Also, we may have φ(A(m)) = m or φ(A(m)) > m.

m A(m) φ(A(m)) 1 2
It is interesting to consider the special case m = 2 k . The only divisors of 2 k are 1, 2, 2 2 . . . , 2 k . If we add 1 to each of these numbers, we obtain numbers of the form 2 i + 1, where 0 ≤ i ≤ k. For i ≥ 1, such numbers are prime only if i is a power of 2. A number of the form

F n = 2 2 n + 1 is said to be a Fermat number. Therefore A(2 k ) = 2 k • 2 • F n F n -1 = 2 k+1 • F n F n -1 ,
where the product is taken over Fermat numbers F n which are prime and such that F n -1|2 k . For example, if m = 2 5 = 32, then F 0 , F 1 and F 2 are the only Fermat numbers F n such that F n -1|m. In addition these Fermat numbers are all prime. Therefore A(m) = 64

• 3 2 5 4 • 17 16 = 255 2 .
The Fermat numbers F 0 , . . . , F 4 are all prime; however F 5 , . . . , F 12 are composite numbers and it has been shown that for many other numbers n, F n is composite. In fact, up till now no Fermat number F n with n ≥ 5 has been found to be prime. If there are no prime Fermat numbers with n ≥ 5, then for 2 k ≥ 2 16 we have

A(2 k ) = 2 k+1 • F 0 2 • F 1 2 2 • F 2 2 4 • F 3 2 8 • F 4 2 16 = 2 k-30 F 0 F 1 F 2 F 3 F 4 ,
which is an integer for k ≥ 30.

Before closing this section, let us consider the upper bound on odd elements of φ -1 (m). From Corollary 1.1, we know that if n is odd and n ∈ φ -1 (m), then 2n ∈ φ -1 (m), therefore an upper bound on odd elements of φ

-1 (m) is A(m)
2 . We should also notice that at least half of the elements in φ -1 (m) are even. In fact, φ -1 (m) may be non-empty and contain very few odd numbers, or even none. For example, the only odd number in φ -1 (8) is 15 and φ -1 (2 32 ) contains only even numbers (see Theorem 5.2 further on).

The case m = 2p

We now consider in some detail the case where p is prime and m = 2p. Theorem 3.1 If p is a prime number, then 2p lies in the image of φ if and only if 2p + 1 is prime.

proof If 2p + 1 is prime, then φ(2p + 1) = 2p and so 2p ∈ Im φ.

Suppose now that 2p ∈ Im φ. If p = 2, then 2p = 4 ∈ Im φ, car φ(5) = 4 and 2p + 1 = 5, which is prime. Now suppose that p is an odd prime. As 2p ∈ Im φ, there exists n such that φ

(n) = 2p. If n = 2 k , then 2 k-1 = φ(2 k ) = 2p
, which is clearly impossible, because p is an odd number greater than 1. Hence there is an odd prime q such that n = qs. There are two cases to consider: 1. q |s, 2. q|s. We will handle each of these cases in turn, using Proposition 1.1.

Case 1. We have 2p = (q -1)φ(s) which implies that q -1|2p. The only divisors of 2p are 1, 2, p and 2p. As q = 2, the possible values for q -1 are 2, p or 2p and hence for q are 3, p + 1 or 2p + 1. However, p + 1 is not possible, because p + 1 is even and hence not prime. If q = 3, then φ(s) = p. As p is an odd number greater than 1, this is not possible. It follows that q = 2p + 1 and so 2p + 1 is prime. Case 2. Here we have 2p = qφ(s) and so q|2p. The possible values of q are 1, 2 , p or 2p. However, as q is an odd prime, we must have q = p. This implies that φ(s) = 2. Also, q|s and so q -1|φ(s). It follows that p = q = 3 and hence 2p + 1 = 7, a prime number.

As in both cases 2p + 1 is prime, we have proved the result.

2

Definition A prime number of the form 2p + 1, with p prime, is said to be a safe prime. In this case, the prime number p is said to be a Sophie Germain prime.

Remarks 1. The theorem does not generalize to odd numbers. Certainly, if s is odd and 2s + 1 is prime, then 2s ∈ Im φ. However, it may be so that 2s + 1 is not prime and 2s ∈ Im φ. For example, 54 = φ(81) and so 54 ∈ Im φ. However, 54 = 2 • 27 and 2 • 27 + 1 = 55, which is not prime.

2.

Let us now consider φ -1 (2p). From Theorem 3.1, the set φ -1 (2p) is empty if 2p + 1 is not prime. If 2p + 1 is prime, then we have

A(2p) = 2p • 2 1 • 3 2 • 2p + 1 2p = 6p + 3. Hence, if n ∈ φ -1 (2p), then 2p < n ≤ 6p + 3. It is worth noticing that φ(6p + 3) = φ(3)φ(2p + 1) = 2 • 2p = 4p. Corollary 3.1 If 2p ∈ Im φ, then 2 k p ∈ Im φ, for k ≥ 1.
proof For k = 1 the result is already proved, so suppose that k ≥ 2. As 2p + 1 is an odd prime, 2 k and 2p + 1 are coprime. Therefore

φ(2 k (2p + 1)) = φ(2 k )φ(2p + 1) = 2 k-1 2p = 2 k p.
This ends the proof. 2

Remarks 1. From the corollary we deduce that, for every prime p such that 2p + 1 is prime, there is an infinity of numbers a such that a ≡ 0(mod p) and a ∈ Im φ.

2. If 2p / ∈ Im φ, then we cannot say that 2 k p / ∈ Im φ for any k ≥ 2. For example, 14 / ∈ Im φ, but 28 ∈ Im φ.

Sets of elements of the form 2p

In this section we will need an important theorem due to Dirichlet: Theorem 4.1 If n ∈ N * and (a, n) = 1, then there is an infinite number of prime numbers p such that p ≡ a(mod n).

Chapman [START_REF] Chapman | Dirichlet's theorem: a real variable approach[END_REF] has recently given a relatively elementary proof of this result.

Let us consider the prime numbers p in the interval [ It is natural to ask whether there is an infinite number of distinct primes p such that 2p ∈ Im φ (resp. 2p / ∈ Im φ). Our question amounts to asking whether there is an infinite number of safe primes, or equivalently an infinite number of Sophie Germain primes. Up till now this question has not been answered. The largest known safe prime, found by David Undebakke in January, 2007, is 48047305725.2 172404 -1. We can say a lot more concerning numbers of the form 2p which are not in the image of φ.

Theorem 4.2 For any odd prime number p, there is an infinite set S(p) of prime numbers q such that 2q / ∈ Im φ and p|2q + 1.

proof If p is an odd prime, then p-1 2 is a positive integer and ( p-1 2 , p) = 1. From Dirichlet's theorem, we know that there is an infinite number of prime numbers of the form q = p-1 2 + kp, with k ∈ Z. Then

2q + 1 = 2 p -1 2 + kp + 1 = p + 2kp = p(1 + 2k).
From Theorem 3.1, we know that 2q / ∈ Im φ and clearly p|2q + 1. 2

Remark The sets S(p) may have common elements, but in general are distinct. For example, 14 is in S(3) and S(5), but not in S(7), 26 is in S(3), but not in S(5) and S(7) and 34 is in S(5) and S(7), but not in S(3).

The following result follows directly from the theorem.

Corollary 4.1 For every odd prime number p, there exists an infinite subset S(p) of N * such that a ≡ -1(mod p).

and a / ∈ Im φ, when a ∈ S(p).

Remark At least for the moment, we cannot say that there is an infinity of odd prime numbers p such 2p ∈ Im φ. However, we can say that that there is an infinity of odd numbers s such that 2s ∈ Im φ. Here is a proof. From Dirichlet's theorem, there is an infinity of prime numbers p such that p ≡ 3(mod 4). Thus, for each of these primes, there exists k ∈ Z such that

p = 3 + 4k = 1 + 2(1 + 2k). As 1 + 2(1 + 2k) is prime 2(1 + 2k) ∈ Im φ and of course 1 + 2k is odd. 5 Structure of φ -1 (m)
If n is an odd solution of the equation φ(n) = m, then 2n is also a solution (Corollary 1.1). It follows that the equation can have at most half its solutions odd. It is natural to look for cases where there are exactly the same number of odd and even numbers of solutions.

First let us consider the case where m = 2p and p is an odd prime. If p = 3, then 6 < n ≤ 21. A simple check shows that φ -1 (6) = {7, 9, 14, 18}. There are two odd and two even solutions of the equation φ(n) = 6. Proposition 5.1 If p is a prime number such that p ≥ 5 and 2p + 1 is prime, then φ -1 (2p) contains exactly one odd and one even element, namely 2p + 1 and 4p + 2.

proof If φ(n) = 2p, then, from Remark 2. following Theorem 3.1, 2p < n ≤ 6p + 3. The divisors of 2p are 1, 2, p and 2p and so the only possible prime divisors of n are 2, 3 and 2p + 1. If n = 2p + 1 or 4p + 4, then φ(n) = 2p and there can be no other multiple n of 2p + 1 such that φ(n) = 2p. If n is not a multiple of 2p + 1 and φ(n) = 2p, then n must be of the form n = 2 α • 3 β . If α ≥ 3, then 4|2p, which is impossible. Also, if β ≥ 2, then 3|2p. However, this is not possible, because p ≥ 5. Therefore α ≤ 2 and β ≤ 1. As n > 2p ≥ 10, the only possibility is n = 12. As φ(12) = 4, this is also impossible. The result now follows.2

We can generalize this result to odd numbers in general. We will write O(m) (resp. E(m)) for the set of odd (resp. even) solutions of the equation φ(n) = m. proof If the equation φ(n) = 2s has no solution, then there is nothing to prove, so suppose that this is not the case. If n is an odd solution of the equation, then 2n is also a solution. Hence O(2s) ≤ E(2s).

If n is an even solution, then we may write n = 2 α t, with α ≥ 1 and t odd. If t = 1, then φ(n) is a power of 2, which is not possible. It follows that t ≥ 3. If we now suppose that α > 1, then φ(n) = 2 α-1 φ(t) and, as φ(t) is even, 4 divides φ(n) = 2s, which is not possible. Therefore α = 1 and so n = 2t. As φ(t) = φ(2t) = φ(n), we must have O(2s) ≥ E(2s) and the result now follows.

2

Corollary 5.1 There is an infinity of numbers m such that φ -1 (m) is non-empty and composed of an equal number of odd and even numbers.

proof It is sufficient to recall that there is an infinity of primes p such that p = 1 + 2s, with s odd (remark after Corollary 4.1). 2

At the other extreme is the case where φ -1 (m) is non-empty and composed entirely of even numbers. In considering this question, the following result due to Gupta [START_REF] Gupta | Euler's totient function and its inverse[END_REF], is useful. We will give a modified proof of it.

Theorem 5.2 O(2 k ) = 0 or O(2 k ) = 1.
proof If k = 0, then we have φ -1 (2) = {3, 4, 6} and the result follows. Suppose now that k > 0 and that φ(n) = 2 k , with n odd. If p is an odd prime such that p -1 divides 2 k , then p must be of the form 2 i + 1. The only primes of this form are Fermat numbers, hence if n = p α1 0 . . . p αr r is the decomposition of n as a product of primes, then each p i must be a Fermat number. If we allow α i = 0, then we may suppose that p i = F i . Thus

2 k = φ(F α0 0 ) . . . φ(F αr r ) = αi≥1 F αi-1 i (F i -1).
If α i > 1 for some i, then the product is not a power of 2, hence we must have α i = 0 or α i = 1, for all i, and so 2 k = α 0 2 2 0 . . . α r 2 2 r .

Clearly α 0 . . . α r is k written in binary form. Therefore there can be at most one odd number n such that φ(n) = 2 k . If α i = 1 only when F i is prime, then there exists n odd such that φ(n) = 2 k and s(k) = 1.

On the other hand, if there is an α i such that F i is not prime, then there does not exist an odd number n such that φ(n) = 2 k . 2

If k < 32, then k can be written in binary form as α 0 . . . α 4 . As F 0 , . . . F 4 are all primes, there exists an odd number n such that φ(n) = 2 k . However, for 2 32 , this is not the case, because F 5 is not prime. Up till now no Fermat number F n , with n ≥ 5, has found to be prime, so it would seem that, for k ≥ 5, there is no odd number in the set φ -1 (2 k ). This suggests that there is an infinity of numbers m for which φ -1 (m) is non-empty and only composed of even numbers.

Conclusion

We have seen that the inverse image φ -1 (m) is an empty set for any odd positive integer m > 1 and also for an infinite number of even positive integers. We have also seen that, when φ -1 (m) is non-empty, its cardinal can be odd or even and that it can have at most half of its members odd; it is also possible that all its members are even. Up till now no number m has been found such that φ -1 (m) contains only one element. Carmichael conjectured that such a case does not exist, but this is yet to be proved (or disproved). However, for k ≥ 2, Ford [START_REF] Ford | The number of solutions of φ(x) = m[END_REF] has shown that there is a number m such φ -1 (m) contains precisely k elements.

To close I would like to thank Dominique Duval and Mohamed El Methni for reading the text and offering helpful suggestions.

Proposition 1 . 1 2 Corollary 1 .

 1121 If p, m ∈ N * , with p prime, and n = pm, then φ(n) = (p -1)φ(m), if (p, m) = 1, and φ(n) = pφ(m), if (p, m) = 1. proof If (p, m) = 1, then we have φ(n) = φ(p)φ(m) = (p -1)φ(m).Now suppose that (p, m) = 1. We may write m = p α m ′ , with α ≥ 1 and (p, m ′ ) = 1. Thusφ(n) = φ(p α+1 )φ(m ′ ) = p α (p -1)φ(m ′ ). However φ(m) = p α-1 (p -1)φ(m ′ )and so φ(n) = pφ(m). 1 φ(2m) = φ(m), if and only if m is odd.

Theorem 5. 1

 1 If s is odd and s ≥ 3, then O(2s) = E(2s).