
HAL Id: hal-00423555
https://hal.science/hal-00423555

Submitted on 12 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of Multiple faults in an Inertial
Measurement Unit

Cédric Berbra, Sylviane Gentil, Suzanne Lesecq

To cite this version:
Cédric Berbra, Sylviane Gentil, Suzanne Lesecq. Identification of Multiple faults in an Inertial Mea-
surement Unit. ACD 2009 - 7th European Workshop on Advanced Control and Diagnosis, Nov 2009,
Zielona Gora, Poland. 6p. �hal-00423555�

https://hal.science/hal-00423555
https://hal.archives-ouvertes.fr


Identification of Multiple faults in an
Inertial Measurement Unit

C. Berbra ∗ S. Gentil ∗ S.Lesecq ∗∗

∗Gipsa-lab, Control Systems Department, UMR-5216 BP.46, St
Martin d’Heres, 38402, France(e-mail:

author@gipsa-lab.grenoble-inp.fr).
∗∗ Commissariat a l’Energie Atomique (CEA-LETI MINATEC) 17,

rue des Martyrs, 38054 Grenoble, France. e-mail:
suzanne.lesecq@cea.fr

Abstract: This paper deals with the diagnostic design of an Inertial Measurement Unit (IMU).
IMU are widely used for system positioning. Their goal is to sense the attitude (or orientation)
of a rigid body on which the IMU is embedded. In this paper, the sensors used in the IMU
are a tri-axis accelerometer, a tri-axis magnetometer and 3 rate gyros. The diagnostic method
proposed in this paper is independent of the physical system in which the IMU is embedded. This
makes the diagnostic results very robust to disturbances or to imprecise knowledge of physical
parameters. Moreover, the method proposed allows multiple faults isolation and identification.
The simulation results are obtained with Matlab/Simulink.
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1. INTRODUCTION

This paper deals with the diagnostic design of an Iner-
tial Measurement Unit (IMU). An IMU is an electronic
device that measures and reports on a vehicle velocity,
orientation, and gravitational forces, using a combina-
tion of accelerometers, magnetometers and rate-gyros. An
IMU senses the current rate of acceleration using one or
more accelerometers, and detects changes in rotational
attributes such as pitch, roll and yaw angles using one or
more rate-gyros and magnetometers. The data collected
from the IMU sensors allows a computer to track a rigid
body position and attitude (orientation). IMUs are typ-
ically used to maneuver aircrafts, including Unmanned
Aerial Vehicles (UAVs), among many others, and space-
crafts, including shuttles, satellites and landers. Besides
navigational purposes, low-cost IMUs are also used nowa-
days as orientation sensors in the field of human motion.
They are for instance frequently used for sports technol-
ogy, patient or senior monitoring, capture technology and
animation. Nevertheless, they are not very robust and
can present many kinds of faults. It is thus interesting
to develop Fault Detection and Isolation (FDI) for IMUs
together with Fault Tolerant Control (FTC) for systems
that embed IMUs.

GIPSA-lab has developed a quadrotor as a test-bench for
advanced control and diagnostic techniques. A quadro-
tor is an UAV with four rotors, each motor driving a
blade. This quadrotor is equipped with an IMU. From its
measurements, the attitude of the quadrotor is computed
and then used in a state observer and a control loop
(Guerrero-Castellanos et al. (2008), Guerrero-Castellanos
et al. (2005)). UAV diagnosis has also been intensely stud-

ied during the last few years. For instance, FDI techniques
have been applied to autonomous aircrafts (Simani et al.
(2006))(Bonfe et al. (2009)), or to small autonomous he-
licopters (Heredia et al. (2008)). In (Henry (2008), Issury
and Henry (2009), Patton et al. (2006)), FDI techniques
are applied in aeronautics and aerospace areas. Our team
has also proposed some solutions to the diagnostic problem
of UAV (Tanwani et al. (2007), Berbra et al. (2008a)), be-
ing aware that the most important quadrotor component
likely to fail is the IMU. FTC solutions have also been
proposed (Berbra et al. (2008b)).

Diagnosis includes fault detection and isolation (FDI) but
another important point is fault identification. Fault iden-
tification consists in estimating the fault amplitude and
its temporal behavior, which is helpfull for the FTC of
a system. In our previous works (Tanwani et al. (2007),
Berbra et al. (2008a)), a bank of observers has been used
to design structured residuals based on the quadrotor state
estimation. The major difficulty in the solutions proposed
in the latter papers is that the diagnostic algorithm is
sensitive to the quadrotor model uncertainty or to distur-
bances on the quadrotor. Moreover, fault identification and
multiple fault detection is not possible. These drawbacks
constituted the motivation of the work presented in the
present paper.

The simulation results have been obtained with Mat-
lab/Simulink to simulate the quadrotor model, its control,
observation and diagnosis. In order to postpone real ex-
periments until everything has been carefully checked, an
effcient way to simulate a system whose safety is critical is
a hardware-in-the-loop approach. Such an experiment has
been conducted for the quadrotor (Berbra et al. (2009)).



This paper is organized as follow: section 2 briefly presents
the Inertial Measurement Unit model. Section 3 describes
the diagnostic algorithm that has been developed for the
IMU and that is completely independent of the experi-
ment. The residual generation is fully described and some
simulation results are discussed. Section 4 concludes this
paper.

2. DESCRIPTION OF THE INERTIAL
MEASUREMENT UNIT

2.1 Description of a rigid body orientation

Fig. 1. Definition of the coordinate frames

To depict the orientation of a rigid body subject to move-
ments, two frames are considered (see Fig. 1): the inertial
frame R(ex, ey, ez) and the body frame B(e1, e2, e3). The
inertial frame is attached to the earth and a classical choice
is the NED frame (North, East, Down). The body frame
is attached to the structure with its origin at the centre of
mass of the body.

In the following paragraphs, the focus is done on orien-
tation, also named attitude. Orientation can be expressed
by three angles yaw-pitch-roll (φ, θ, ψ) or by a unitary
quaternion q ∈ <4 (Chou (1992))

q = [q0 −→q T ]T , ‖q‖2 = 1 (1)

The advantage of using q for the attitude representation
is to avoid singularities that appear with classical angular
representations (Euler angles or Cardan angles). Moreover,
q is an elegant and efficient attitude representation from a
computational point of view, which is of great importance
for embedded systems. The quaternion representation is
chosen in the present paper to perform computations.
However, the simulation results will be presented in the
roll-pitch-yaw formulation because it is more intuitive and
thus easier to interpret the curves.

A coordinate change from −→r in the reference frame to −→c
in the body frame is expressed with

c = q−1 ⊗ r ⊗ q = q ⊗ r ⊗ q (2)

where r = [0 −→r T ]T , c = [0 −→c T ]T . q = [q0 − −→q T ] is the
conjugate of q and ⊗ is the quaternion multiplication.

Moreover, the coordinate change can be represented with
matrix C(q) that is expressed as

C(q) = (q20 −−→q T−→q )I + 2(−→q −→q T − q0[q×]) (3)
−→c = C(q)−→r (4)

with

[q×] =

( 0 −q3 q2
q3 0 −q1
−q2 q1 0

)
(5)

2.2 Inertial Measurement Unit (IMU) modeling

The estimation of attitude (or orientation) and of rota-
tional speed of a rigid body (the quadrotor for example)
is a pre-requisite for its attitude control. An IMU can be
embedded in the system in order to provide measurements
that will be fused to estimate the attitude. The IMU con-
sists of a tri-axis accelerometer (a1, a2, a3), a tri-axis mag-
netometer (m1,m2,m3) and three rate gyros (g1, g2, g3)
mounted at right angles.

Rate Gyro modeling The angular velocity ω is measured
in the body frame B with the three rate gyros. The
measurements delivered by these sensors are affected by
noise. Theoretically, the integral of ω could give the
relative orientation but the presence of noise generates
errors that are accumulated over time. As a consequence,
state observers are prefered. The sensor measurements are
modeled as

ωg = ω + ηgyro (6)

where ωg ∈ <3 are the sensor readings, ω ∈ <3 represents
the system angular velocity and ηgyro is assumed to be
a zero-mean white noise of appropriate dimension. Note
that ηgyro = 0.01 rad/s.

Accelerometer modeling The 3-axis accelerometer senses
the inertial forces and gravity in B. The transformation
of accelerometer measurements from inertial frame R to
body frame B is computed as follows

bacc = C(q)(v̇ − g) + ηacc (7)

where bacc ∈ <3 corresponds to the measurements in
B, and ηacc is a zero-mean white noise of appropriate
dimension. The motion is supposed quasi-static so that
linear accelerations v̇ are neglected (i.e. ‖v̇‖ � ‖g‖). In this
way, accelerometers are only sensitive to the gravitational
field g. Note that measurements are normalized. Therefore
g = [0 0 1]T . Note that ηacc = 0.002 m/s2.

Magnetometer modeling The information provided by
the tri-axis magnetometer is added to the inertial mea-
surements. The magnetic field is sensed in B. It is defined
by

bmag = C(q)hm + ηmag (8)

where hm = [hmx 0 hmz]T and bmag ∈ <3 are the magnetic
field in R and B, respectively. For the experimentation,
hm = [ 12 0

√
3

2 ]T . Note that ηmag = 0.0007 mgauss.

Remark Note that the accelerometer and magnetometer
measurements are modeled by static non linear equations
(7)-(8) that depend on constant vectors g and hm and on
matrix C(q) which is a non-linear function of q.

2.3 Quadrotor control-loop

The diagnostic technique proposed in this paper is ex-
emplified on a quadrotor that is under development at
GIPSA-Lab. For this system, a non linear attitude ob-
server has been designed (Guerrero-Castellanos et al.
(2005)). The quaternion estimation qest is used in a feed-
back loop. The attitude reference is given by a quaternion
reference (see Fig. 2). The controller implemented for the
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Fig. 2. Quadrotor control-loop

attitude stabilization is detailed in (Guerrero-Castellanos
et al. (2008)). The quadrotor control loop performance
can be evaluated with the following scenario. The initial
attitude of the quadrotor is [φ θ ψ] = [−25 − 35 −
10]o where the unity is degrees. The reference attitude is
[0 0 0]o.

introduced in ax. This sensor fault is equivalent to 50%. Fig.
4 shows the real attitude of the quadrotor when the sensor
fault is not detected. As can be seen, the quadrotor crashed.
Therefore, it is obvious that FDI must be implemented. It is a
safety issue. In sections III and IV, two different FDI methods
for the IMU are presented.

Fig. 3. Real attitude of the quadrotor in fault-free case

Fig. 4. Real attitude of the quadrotor with a sensor fault in ax at t = 5s

B. Inertial Measurement Unit (IMU) model
The attitude and the quadrotor rotational speed are a pre-

requisite for attitude control. An IMU is embedded in the
quadrotor in order to provide measurements that will be
fused to estimate the attitude. The IMU consists of a triaxis
accelerometer (ax,ay,az), a triaxis magnetometer (mx,my,mz)
and three rate gyros (gx,gy,gz) mounted at right angle. Their
models are given by

ωg = ω +η1 (8)
bacc = C(q)(v̇−g)+ηacc (9)
bmag = C(q)hm +ηmag (10)

ηi, i = {1,acc,mag} are assumed to be Gaussian zero-
mean independent white noises. The motion is supposed quasi-
static so that linear accelerations v̇ are neglected. Moreover,
the Coriolis effect is not taken into account. In this way,
accelerometers are only sensitive to the gravitational field
g = 9.81ms−2. hm = [hmx 0 hmz]T and bmag are the three
components of the magnetic field in R and B, respectively.
Note that the accelerometer and magnetometer measurements
are modeled by static non linear equations that depend on
constant vectors g and hm and on matrix C(q) which is a non-
linear function of q.

TABLE I
FAULT SIGNATURE TABLE

fax fay faz fmx fmy fmz

R1 [100000] [111111] [111111] [111111] [111111] [111111]
R2 [111111] [010000] [111111] [111111] [111111] [111111]
R3 [111111] [111111] [001000] [111111] [111111] [111111]
R4 [111111] [111111] [111111] [000100] [111111] [111111]
R5 [111111] [111111] [111111] [111111] [000010] [111111]
R6 [111111] [111111] [111111] [111111] [111111] [000001]

III. FDI ALGORITHM BASED ON OPTIMISATION
TECHNIQUE

A bank of estimators/observers is used to perform the
diagnosis of the quadrotor [9]. Therefore, structured residuals
are obtained. Only accelerometer or magnetometer sensor
faults are considered in the present paper. In [2] and [19], FDI
algorithms for rate-gyro or actuator faults respectively, have
been presented. Fig.5 shows the principle of the procedure

Fig. 5. Residuals generation for sensor faults

implemented here. The attitude is represented with a unitary
quaternion for computation convenience, the underlying Jaco-
bian being linear in the unknown q. Moreover, the non-linear
optimization can be performed with ”classical” (i.e. without
constraints) tools when the quaternion is parameterized with
Generalized Rodrigues Parameters. The accelerometer and
magnetometer measurements satisfy the non-linear equations
(9)-(10). The detection procedure is performed in three steps.
Firstly, the attitude (q̂)i, i = 1 : 6, is estimated from 5 over 6
measurements (measurement i discarded, see Fig.5). q̂i is the
solution of a non linear optimization problem with constraint
‖q‖= 1. Then, q̂i, together with the model measurements (9)-
(10) provides the measurement estimates that are insensitive to
the discarded measurement. Lastly, the residual vector Ri ∈ℜ6

is computed in a classical way. Note that this residual is
sensitive to faults in all the sensors but the discarded one.
The fault signature table is given in Table I.

Ri, i = 1 : 6, is the set of residuals obtained without
ax,ay,az,mx,my,mz respectively. In column, faults in the var-
ious sensors are considered. [111111] means that the corre-
sponding residuals are sensitive to the corresponding fault
while [100000] corresponds to residuals computed without
the faulty sensor. Consider a failure in accelerometer ax (first
column in Table I). Fig. 6 shows R1 computed without sensor
ax. As expected, only the first component of R1 is sensitive to
the fault. Fig. 7 depicts R6 computed without sensor ax. All
the components of R6 are sensitive to the fault because ax is
taken into account in the computation of R6.
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Fig. 3. Real attitude in the fault-free case

Fig. 3 shows the real attitude of the quadrotor in the fault-
free case. The reference attitude is reached after 2.5 s.
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Fig. 4. Real attitude with a failure in a1 at time t = 5 s

Fig. 4 shows the real attitude of the quadrotor when
a bias of 0.5 is introduced in a1 at time t = 5 s
(additive fault). When the sensor fault is not detected,
the quadrotor crashes. Therefore, it is obvious that FDI
must be implemented for safety issue.

3. DIAGNOSIS

To perform the diagnosis of the IMU, a bank of estima-
tors/observators is implemented (Isermann (2006)),(Chen
and Patton (1999)). Note that the technique proposed here
is totally independent of the system in which the IMU is
embedded. The residual generator is decomposed into two
parts:

• Procedure 1: generation of the residuals that detect
the accelerometer and magnetometer sensor faults. In
this case, the rate gyro measurements are not used;

• Procedure 2: generation of the residuals that detect
the rate-gyro sensor faults. In this case, the result ob-
tained by the previous FDI algorithm for accelerom-
eter and magnetometer faults is used to perform this
diagnosis.

3.1 Procedure 1: accelerometers and magnetometers

Fig. 5 shows the structure of the procedure implemented
here. The accelerometer and magnetometer measurements
satisfy the set of six non-linear equations (7)-(8). The
residuals are generated as follow:

(1) the attitude q̂i, i = 1 : 6, is estimated from 5
over 6 measurements, where i corresponds to the
measurement discarded (see Fig. 5). Therefore, q̂i is
the solution of a non linear optimization problem
with constraint ‖q‖ = 1 (Berbra et al. (2008a)) or
(Tanwani et al. (2007));

(2) with q̂i, the measurements are estimated with the
measurement model (7)-(8);

(3) the residual vector Ri ∈ <6 is computed in a classi-
cal way (difference between measurements and their
estimates).
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Fig. 5. Residuals generation for accelerometer and magne-
tometer sensors

Note that Ri is sensitive to faults in all the sensors used
to compute q̂i. Thus Ri is insensitive to faults in sensor i.
The fault signature table is given in Table 1.

Table 1. Fault signature table to isolate ac-
celerometer and magnetometer sensor faults

fa1 fa2 fa3 fm1 fm2 fm3

R1 [10..0] [1..1] [1..1] [1..1] [1..1] [1..1]

R2 [1..1] [010..0] [1..1] [1..1] [1..1] [1..1]

R3 [1..1] [1..1] [001000] [1..1] [1..1] [1..1]

R4 [1..1] [1..1] [1..1] [000100] [1..1] [1..1]

R5 [1..1] [1..1] [1..1] [1..1] [0..010] [1..1]

R6 [1..1] [1..1] [1..1] [1..1] [1..1] [0..01]

Ri, i = 1 : 6, is the set of vectorial residuals obtained when
q̂i is estimated without a1, a2, a3,m1,m2,m3 respectively.
The columns of Table 1 represent the faults in the six
sensors. [111111] means that the residual elements are



computed with a faulty sensor (i.e. the faulty sensor is in
the set of sensors used to estimate q̂i). [100000] corresponds
to residual elements computed without the faulty sensor.
Therefore, the faulty sensor can be isolated.

Consider a fault in a1 identical to the one in section (2.3).
For the sake of place, only two over six residual vectors
are presented. Fig. 6 shows R1 computed without sensor
a1. As expected, only the first element in R1 is sensitive
to the fault (see the first column in Table 1). Note that
the magnitude of the first component in R1 is equal to the
magnitude of the fault introduced. Therefore, the sensor
fault is detected, isolated and identified. Fig. 7 depicts
R6 computed without m3. All the components of R6 are
sensitive to the fault because a1 is taken into account for
the estimation of q̂6.
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Fig. 6. Residual vector R1 in presence of a fault in a1 at
time t = 5 s
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Fig. 7. Residual vector R6 in presence of a fault in a1 at
time t = 5 s

3.2 Procedure 2: FDI for rate gyros

The rate-gyro measurements satisfy the dynamic non-
linear equation

q̇ =
(
q̇0
−̇→q

)
=

1
2

(
−−→q T

I3q0 + [−→q ×]

)
ω (9)

Eq. (9) is approximated to provide the diagnosis of rate
gyros. The diagnostic procedure implemented is depicted
in Fig. 8. It is summarized hereafter:

(1) the FDI algorithm proposed in section (3.1) to obtain
an unfaulty estimate of the attitude (i.e. the quater-
nion q̂i computed without faulty sensor) is first used.
Denote q̂(k) this attitude computed at time kTe;

(2) q̂(k) is filtered to reduce the noise. The filter is
designed as follows:

H(z) =
(1− α)z−1

1− αz−1
(10)

with α = e
−Te
τ , and Te = 10 ms the sampling period;

(3) the filtered attitude is derived to obtain ˙̂q. This
derivative is obtained with the following approxima-
tion:

dq̂

dt
≈ q̂filter(k)− q̂filter(k − 1)

Te
(11)

(4) With q̂ and ˙̂q, solve (9) in a least squares sense to
compute ω̂i;

(5) the residual vector rωi, i = 1 : 3, is the difference
between the measurements and their estimates.
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Fig. 8. Residual generation for rate gyros

Note that this procedure allows simultaneous rate gyro
sensor faults detection, isolation and identification. The
associated fault signature table is given in table 2.

Table 2. Fault signature table to isolate rate-
gyro sensor faults

fg1 fg2 fg3

rω1 1 0 0

rω2 0 1 0

rω3 0 0 1

As an example, consider a bias failure of 0.1 rad/s =
5.7 o/s on the rate gyro g3 that appears at t = 5 s. Fig. 9
shows the real attitude of the quadrotor if this sensor fault
is not detected. It is clear that for safety reason, the rate
gyro sensor faults must be diagnosed.
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Fig. 9. Real attitude of the quadrotor with a fault in g3 at
time t = 5 s

Fig. 10 shows the residual vector rω expressed in rad/s
. As expected, only the residual rω3 is sensitive to this
sensor fault.
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Fig. 10. Residual vector to detect rate-gyro sensor faults

Consider the following scenario: the reference attitude is
first equal to [φ θ ψ] = [0 0 0]o. At time t = 5 s, the
reference attitude becomes [φ θ ψ] = [10 − 20 5]o. Fig. 11
shows the real attitude of the quadrotor in the fault-free
case. The first reference attitude is reached after 2.5 s and
the new attitude is attained after 1.5 s. Now consider that
at the time the reference changes, two rate gyro sensor
faults appear simultaneously: a bias failure of 0.5 rad/s is
added on g3 and a drift failure of 0.5 rad/s appears on g1.

Fig. 12 shows the real attitude if these faults are not
detected. The φ angle is very different from its nominal
value and the system will crash.

0 1 2 3 4 5 6 7 8 9 10
-40

-20

0

20

time[s]

de
gr

es
s 

[°
]

 

 

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

t[seconds]

 

 
V1
V2
V3
v4

θ

φ
ψ

Fig. 11. Real attitude in the fault-free case
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Fig. 13 shows the residual vector rω. As can be seen, rω1 is
sensitive only to the drift failure in g1 and its magnitude is
equal to the magnitude of the fault. In the same way, rω3

is sensitive only to the bias failure in g3 and its magnitude
is equal to the magnitude of the failure. rω2 is insensitive
to both failures. Moreover, all residuals are insensitive to
a reference change.

3.3 FDI results in the presence of a disturbance

A complex problem tackled by the diagnostic commu-
nity is developing residual generators insensitive to model
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Fig. 13. Residual vector to detect simultaneous rate-gyro
sensors faults

uncertainty and real disturbances acting on the system
to diagnose while remaining sensitive to faults. A step
disturbance of 2o in applied on each angle. The objective
is to evaluate the robustness of the residual generator
proposed in the present paper against disturbances. Theses
disturbances could represent a gust of wind.

Fig. 14 shows the residual vector R1 in the presence of
the disturbances. Remind that R1 is computed without
a1. Fig. 15 shows the residual vector rω. As can be seen,
the proposed FDI algorithm is totally insensitive to these
disturbances because it does not rely on the dynamic
model of the rigid body on which the IMU is fixed.
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Fig. 14. R1 in the presence of a disturbance
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4. CONCLUSION AND PERSPECTIVES

A new method to perform FDI of an Inertial Measurement
Unit is proposed in this paper. A bank of estimators
has been implemented that take advantage of information
redundancy. Actually there is no sensor redundancy, but
the various sensors sense complementary and redundant
information. From the attitude estimate and the mea-
surement models, the residuals can be computed as the
difference between the measurements and their estimates.
A strongly isolating table is obtained. Contrary to (Berbra
et al. (2008a)) or (Tanwani et al. (2007)), the method pro-
posed in the present paper is insensitive to a disturbance
applied on the rigid body in which the IMU is embedded.
Moreover, it is insensitive to an uncertainty in the dynamic
model of the rigid body, for instance an uncertainty in the
inertia matrix of the rigid body. This nice property exists
because the model of the rigid body is no more used for
diagnosis. Additionally, with the method proposed, the
fault identification can be performed and simultaneous
sensors faults can be considered. It is important to note
that the FDI procedures proposed here are general ones
and can be applied to any system that makes use an
Inertial Measurement Unit to estimate attitude.

This new algorithm must now be tested for the quadrotor
application. Note that a first step will be to use an
”hardware in the loop” experiment (Berbra et al. (2009))
because the system embeds a network on which the data
from the IMU as transmitted to the processor unit.

For the quadrotor application, a Fault Tolerant Control
could be implemented to take into account the sensor
faults. As the magnitude of the residuals are the same
as the magnitude of the faults, the FTC can be expected
to be easier. Moreover, when faulty sensors are isolated,
only the unfaulty measurements could be used by the state
observer. Due to redundancy in the information sensed by
the sensors, this observer can be exploited with partial
measurement loss (Lesecq et al., 2009). Thus the control
law would not need to be modified.
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