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Abstract. We give here an explicit example of an algebraic family of folia-
tions of CP 2 which is topologically trivial but not analytically trivial. This
example underlines the necessity of some assumptions in Y. Ilyashenko’s rigid-
ity theorem.

Institut de Recherche Mathématique Avancée
Université de Strasbourg (France)

1. Introduction and presentation of the result

The aim of this article is to provide examples of algebraic foliations of CP 2 which
are not topologically rigid. A foliation on CP 2 is defined in an affine chart C2 by
a differential equation

P (x, y) y′ = Q (x, y)(1.1)

where P and Q are complex polynomials. The space Cd of all such foliations with
P and Q of a fixed degree d is a complex projective space of finite dimension, en-
dowed with the natural topology. A theorem of Yu. S. Ilyashenko [I] states that
except maybe for a residual set, all foliations which are topologically conjugate are
in fact analytically (thus homographically) conjugate, i.e. the generic foliation is
topologically rigid. This result was later enhanced by various authors. In [S] A.
Scherbakov showed that the set of topologically rigid foliations contains at least the
complement of a real analytic set of Cd. An improvement was given by X. Gómez-
Mont and L. Ortíz-Bobadilla [GO], then by L. Neto, P. Sad and P. Scárdua [NSS],
showing that the set of all topologically rigid foliation is at least a Zariski-dense
open set of Cd. The argument boils down to proving that non-solvable holonomy
representation is the typical behaviour, then applying Nakai’s theorem [N] or using
other results on density of orbits of (pseudo-)groups of local diffeomorphisms.

Examples of foliations of CP 2 which are not topologically rigid do not abound.
First examples of non-rigid foliations of CP 2 can be deduced from the work of
N. Ladis [L], where the topological classification of generic homogeneous equations
(1.1) is achieved.

We wish to present rather simple foliations which are not rigid. They belong
to the class of Liouville-integrable foliations, whose holonomy representation is
solvable. The main purpose of this paper is to prove their non-rigidity “by hand”,
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by building explicitely homeomorphisms between each members of the following
family :

Theorem. Let Ω ⊂ C be the domain defined by Ω :=
{

α ∈ C : |α| < 1
10

√

π
2

}

.

Each member of the family of linear differential equations in C
2 :

x3y′ = y + x2 + αx3 , α ∈ Ω(1.2)

induces a foliation of CP 2 which is not topologically rigid. More precisely, they all
are topologically conjugate to each other whereas two equations with different α’s
are not locally analytically conjugate near (0, 0).

In fact, a part of the second statement is given by P. M. Elizarov’s result [E],
where he describes the local topological classification of saddle-node equations,
and by Martinet-Ramis’ one [MR] about their local analytical classification. The
cornerstone of the proof here is to build an homeomorphism of C2 which extends to
the whole of CP 2, which was not possible using Elizarov’s purely local construction.
For technical reasons and the sake of briefness it was necessary to choose Ω as given
above, though the result should be valid for all α ∈ C\ {±1}. As a real map, the
homeomorphisms introduced here are piece-wise affine but could be chosen C∞

outside {x = 0} by taking small perturbations. Yet according to a rigidity result of
S. M. Voronin [V] the homeomorphism cannot be made C1 in any neighbourhood
of this line since otherwise the differential equations would be locally analytically
conjugate.

Remark. This family of differential equations is not an unfolding in the sense of
J.-F. Mattéi [M] since if there existed some germ of a holomorphic function R such
that x3dy−

(

y + x2 + αx3
)

dx+R (x, y, α)dα be integrable (as a 1-form) then one
would obtain

x3
∂R

∂x
+
(

y + x2 + αx3
) ∂R

∂y
=

(

1 + 3x2
)

R− x6 .

On the one hand this equation admits a unique formal solution [T]. On the other
hand so is the case for the differential equation x3f ′ =

(

1 + 3x2
)

f − x6. Taking
R (x, y, α) := f (x) thus yields the only possible solution. Unfortunately the latter
power series is divergent.

2. Local study of the saddle-node singularity

Definition 2.1. When we say that two foliations are locally topologically conjugate
(or simply topologically conjugate) near (0, 0) we mean that there exists an open
neighbourhood ∆ of (0, 0) and an orientation-preserving homeomorphism ϕ : ∆ →
ϕ (∆) fixing (0, 0) which sends a (trace on ∆ of a) leaf of one foliation into a leaf of
the other. If moreover ϕ is an analytic map we say that the vector fields are locally
analytically conjugate.

In the following we will study foliations F of CP 2 on subdomains ∆ of CP 2 and
we will implicitly mean that we consider the restriction of F to ∆, i.e. the foliation
whose leaves are the connected components of the trace on ∆ of the leaves of F .
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2.1. What is known. We first apply the linear change of variables (y, α) 7→
(

−iπy,
√

2
πα
)

in order to transform the family of equations (1.2) into

x3y′ = y − 1

iπ
x2 − α

i
√
2π
x3 .(2.1)

This change of variables is performed to simplify the upcoming computations. Let
us denote by ωα the differential 1-form representing (2.1) which, in the affine chart
C2 = {(x, y)}, can be written as

ωα (x, y) :=

(

y − 1

iπ
x2 − α

i
√
2π
x3
)

dx− x3dy .(2.2)

Such a differential form is integrable and induces a foliation on CP 2, which we
denote by Fα, of saddle-node type at (0, 0), having exactly one separatrix passing
through this point (namely {x = 0}). Notice that all leaves of the foliation are
transverse to the fibers of the natural projection

Π : (x, y) 7→ x

except for the separatrices {x = 0} ∪ {x = ∞}.
Let us recall two classical results which our argument is partly based upon.

Theorem 2.2. (Elizarov, [E]) Let E be the space of all saddle-node foliations given
by differential forms (y +R (x, y)) dx− x3dy, where R is a germ of a holomorphic
function at (0, 0) with R (0, 0) = 0 and ∂R

∂y (0, 0) = 0. This space splits into E1 and

E2 according to whether a given foliation has one or two separatrices through (0, 0).

(1) The quotient E1/top of local topological equivalence classes has cardinality
2.

(2) Two foliations in E2 are locally topologically conjugate if, and only if, so
are their “weak” holonomies, i.e. the holonomies computed on a transversal
Π−1 (x0) by lifting through Π a generator of the fundamental group of the
second separatrix.

In fact the differential form (2.2) has such a simple form that it is integrable by
quadrature, so its invariant of topological classification can be computed explicitly
in terms of α (see the end of [MR] for a similar computation, or [T] for a more general
one). It then turns out that when α2 6= 1 all foliations Fα, which belong to E1,
are mutually topologically conjugate. Besides F±1 belong to the other equivalence
class.

Theorem 2.3. (Martinet-Ramis, [MR]) The quotient E/ana of local analytic equiv-

alence classes is in one-to-one correspondence with the space C× (C× cC {c})2 /∼.
The invariant of Martinet-Ramis is thus a 5-tuple M := (µ, τ0, ϕ0, τ1, ϕ1) where

µ := ∂2R
∂x∂y (0, 0) is the formal invariant, τj are scalars and ϕj are germs of a van-

ishing holomorphic function at 0, modulo the equivalence relation (with evident

notations) : M ∼ M̃ if and only if µ = µ̃, τj = λτ̃j+k , ϕj (c) = ϕ̃j+k (λc) for some
λ ∈ C 6=0 not depending on j ∈ Z/2 and for some k ∈ Z/2.

Remark 2.4. The space E2 coincides with the space of foliations such that τ0 =
τ1 = 0.
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The same computations as above yields that α is an analytic invariant, as we
will see in the following section. More precisely one can choose M as follows :

τ0 := 1 + α

τ1 := 1− α

ϕj := 0 .

Hence Fα and Fβ are always topologically conjugate (under the hypothesis α, β /∈
{−1, 1}) whereas they are analytically conjugate if, and only if, α = β.
Remark 2.5.

(1) These invariants are not the “genuine” Martinet-Ramis invariants, which
are more conventionally seen as gluing maps in the sectorial space of leaves,
meaning the diffeomorphisms :

ψ∞
j : c 7→ c+ τj

ψ0
j : c 7→ c exp (iπµ+ ϕj (c)) .

In the case where χ ∈ E2, i.e. ψ∞
j = Id, its weak holonomy is analytically

conjugate to ψ0
0 ◦ ψ0

1 , which is a map tangent to e2iπµId.
(2) Elizarov’s topological moduli space of E1 is the set of all pairs (ε0, ε1) ∈

{0, 1}2 \ {(0, 0)} such that εj = 0 if, and only if, τj = 0 where (1, 0) and
(0, 1) are identified.

We propose here to build explicitly a local topological conjugacy between Fα
and F0 when |α| < 1

10 . In fact one could achieve the same construction for any
value of α but for the sake of concision we only retain this case. Before doing so
we begin with describing the setting for any value of α.

2.2. The sectorial decomposition and induced homemorphisms in the

spaces of leaves. We split C2 into three parts :

C
2 = V+ ∪ V− ∪ {x = 0}

where the sectors V± are, as usual, defined by

V± :=

{

(x, y) :
∣

∣

∣
arg x∓ π

2

∣

∣

∣
<

3π

4

}

.

We denote Fα the foliation induced on CP 2 by ωα and define F±
α as the restriction

of Fα to V±. We let y±α,c be the general solution of the differential equation ωα = 0
for c ∈ C :

y±α,c : x ∈ Π
(

V±
)

7→ exp

(

− 1

2x2

)(

c−
∫ x

±0i

(

1

iπ
+

α

i
√
2π
z

)

exp

(

1

2z2

)

dz

z

)

(2.3)

which are holomorphic functions. The integration here is done over a path linking
x to 0 in Π(V±) and tangent to the half-line ±iR≥0 at 0. Notice that the intersec-
tion V+ ∩ V− is included in the node-part

{

Re
(

x−2
)

> ε > 0
}

of the saddle-node
singularity of Fα, meaning that any leaf of F±

α , or of its restriction to any polydisc
∆ centered at (0, 0), accumulates on (0, 0) over these sectors. On the contrary only
one leaf accumulates on (0, 0) in the saddle-part

{

Re
(

x−2
)

< −ε < 0
}

. It is the

leaf corresponding to y±α,0 and we will call it the sectorial weak separatrix. Martinet-

Ramis invariants measure how going from one sector V± to the other changes the
value of c while remaining on the same global leaf of Fα. In the special case we are
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considering they simply consist in the Stokes coefficients of the linear differential
equation ωα = 0. One can easily check that

(∀Re (x) < 0) y+α,c (x) = y−α,c+1+α (x)

(∀Re (x) > 0) y−α,c (x) = y+α,c+1−α (x)

so that

τ0 = 1 + α

τ1 = 1− α .

Indeed the value of the difference y+α,c − y−α,c can be obtained through Hankel’s

integral representation of 1
Γ :

∫

γj

za exp

(

1

2z2

)

dz

z3
= − 2iπ

Γ (a/2)

(

1

2

)a/2

(−1)
aj

where γj is a circle tangent at 0 to iR centered at (−1)j .
We can assume without loss of generality that, up to changing slightly the aper-

ture of the source and target sectors, ϕ (V± ∩∆) ⊂ V±. Hence, following the same
argument as before, any homeomorphism ϕ conjugating Fα and F0 on some poly-
disc ∆ induces (unique) homeomorphisms ψ± from the sectorial spaces of leaves
of F±

α to the sectorial space of leaves of F±
0 . Since ϕ must send sectorial weak

separatrices of Fα onto those of F0 the homeomorphisms ψ± shall fix 0 and we
derive

ψ± : C → C

c 7→ ψ± (c)

0 7→ 0

such that

ϕ
({

y = y±α,c (x)
})

⊂
{

y = y±0,ψ±(c) (x)
}

and ψ± conjugate the actions of c 7→ c + τj . See figure 2.1. They will be called
transverse homeomorphisms in the sequel as they completely determine the change
in the transverse structure of the foliations.

On the converse our aim in the rest of Section 2 is to build special transverse
homeomorphims conjugating the Stokes translations in order that they be realized
in the (x, y)-space by a local homeomorphism ϕ. We will later extend it to the
whole CP 2 in Section 3.

2.3. The construction on C2. The strategy to build such a ϕ consists in the
following three steps.

(1) Finding two transverse homeomorphisms ψ± such that



















ψ+ (c+ 1− α) = ψ− (c) + 1

ψ− (c+ 1 + α) = ψ+ (c) + 1

ψ+ (0) = ψ− (0) = 0

limc→0,∞
ψ±(c)
c = 1

.(2.4)
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0

0

ω
0

c+1+ α
c+1−α

0

0

ωα

ψ −

ψ +

c+1
c+1

Figure 2.1. The induced homeomorphisms ψ+ and ψ− between
spaces of leaves

Notice the three first conditions are necessarily satisfied by any pair of
induced homeomorphisms. Besides the first two relations imply that ψ± =
Id+ η± where η± is 2-periodic.

(2) Finding a lift ϕ± of ψ± in the ambient space V±∩D×C such that ϕ+ = ϕ−

in V+ ∩ V− (thus defining a homeomorphism ϕ on D 6=0 × C).
(3) Ensuring that ϕ extends continuously to {x = 0}. For this we need the last

condition in the above system.

To underline that fulfilling these three conditions is tricky we first prove the

Proposition 2.6. Assume that ϕ is a local topological conjugacy between Fα and
F0 such that ϕ preserves globally the fibers of Π. Then α = 0.

The meaning of this statement is that, unlike the analytical setting (see [MR]),
topological conjugacies between non-analytically conjugate saddle-node foliations
cannot be chosen of the form (x, y) 7→ (x, Y (x, y)), nor even of the form (x, y) 7→
(X (x) , Y (x, y)), which seriously complicates matters as we will see.

Proof. Let ∆ be a polydisc on which ϕ is realized. For any ω ∈ C 6=0 there exists

a sequence (xn)n ⊂ V+ such that exp
(

− 1
2x2

n

)

= ω and (xn)n converges towards

0 ; let y be given in order that (xn, y)n ⊂ ∆. By assumption ϕ takes the form
ϕ (xn, y) = (X (xn) , Y (xn, y)). Since

y+α,c (x)− y+α,0 (x) = c exp

(

− 1

2x2

)

(2.5)

does not depend on α we deduce, by setting c := yω−1,

Y (xn, y) = y+0,0 (X (xn)) +
ψ+
(

yω−1
)

y

(

y − y+α,0 (xn)
)

exp

(

− 1

2X (xn)
2

)

.

In particular the sequence
(

exp
(

− 1
2X (xn)

−2
))

n
converges towards some complex

number λ+ (ω) ∈ C. Therefore

ϕ (0, y) =
(

0, λ+ (ω)ψ+
(

yω−1
))

(2.6)
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1

g

t

0 η 2η 1 2

Figure 2.2. The function g.

and λ+ (ω) 6= 0. Obviously the same construction can be carried out on V−,
giving rise to a non-zero vanishing function ω 7→ λ− (ω) such that for all y one
has the same relation ϕ (0, y) =

(

0, λ− (ω)ψ−
(

yω−1
))

. Hence λ+ (ω)ψ+
(

yω−1
)

=

λ− (ω)ψ−
(

yω−1
)

for every (0, y) ∈ ∆. Now we fix ω small enough in order that

|ω|−1
∆ contain the points (0, y) ∈ ∆ and (0, y + 2) for at least one value of y.

Using the 2-periodicity of ψ± − Id we derive

λ+ (ω)ψ+ (y + 2) = λ− (ω)ψ− (y + 2) + 2
(

λ+ (ω)− λ− (ω)
)

,

meaning λ+ (ω) = λ− (ω). Therefore the first two conditions of (2.4) yields ψ+ (c+ 1 + α) =
ψ+ (c+ 1− α) for all c ∈ C. Since ψ+ is one-to-one the only possibility is α = 0. �

2.4. The transverse homeomorphisms. To go back to our purpose we first find
admissible ψ±.

Proposition 2.7. Let |α| < 1
10 and η := (1− |Re (α)|) /3. We define g as to be the

simplest piece-wise real affine map g on [0, 2] such that g|[0,η] := 0, g|[2η,2−2η] := 1
and g|[2−η,2] := 0. We still denote by g its 2-periodic extension to R. Then the
following functions

c 7→ ψ+ (c) := c+ αg (Re (c))

c 7→ ψ− (c) := c− α+ αg (1 +Re (c− α))

form a pair of homeomorphisms solution to (2.4). Moreover for all c ∈ C :

∣

∣

∣

∣

ψ± (c)

c
− 1

∣

∣

∣

∣

< min
(

1
6 ,

1
10|Re(c)|

)

.

Proof. The fact that (ψ+, ψ−) is solution to the system (2.4) is clear enough. Be-
sides |α| < 1

10 so

sup
t∈[−1,1]

∣

∣

∣

∣

g (t)

t

∣

∣

∣

∣

≤ 1

2η
<

5

3
,

while for |t| ≥ 1 one has g (t) ≤ 1. Hence

∣

∣

∣

∣

ψ+ (c)

c
− 1

∣

∣

∣

∣

< |α|min

(

5

3
,

1

|Re (c)|

)

.
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The same kind of estimate arises for the other map, where if |Re (c)| ∈ [0, 1] :
∣

∣

∣

∣

ψ− (c)

c
− 1

∣

∣

∣

∣

=
∣

∣

∣

α

c
(g (1−Re (α) + Re (c))− 1)

∣

∣

∣

<
5

3
|α| < 1

6

since 1 +Re (α)− η > 3
5 . To end the proof we only need to notice that ψ± − Id is

1
6 -Lipschitz, thus one-to-one and onto C. �

2.5. The homeomorphism ϕ. We look now for ϕ on D×C as we’ll extend it to
the entire projective plane in the next section. As was noticed in Proposition 2.6
we cannot preserve globally the x-variable in the four directions

{

cos arg x2 = 0
}

.
Hence we build a new (sectorial) variableX± (x, y) which will mostly be the identity
except in the neighbourhood of those forbidden directions. We define

X± (x, y) := x
(

1− 2x2 log f±
(

x, c± (x, y)
))−1/2

where f± is a functional parameter which will be adjusted in the sequel to suit our
needs, and where c± is the function holomorphic on V± defined by the relation

yα,c±(x,y) (x) = y .

For any fixed x the partial function y 7→ c± (x, y) is a diffeomorphism of C.
In order to send a leave of F±

α into a leave of F±
0 while changing the transverse

structure we take the new y-variable as being the following

Y ± (x, y) := y±0,0
(

X± (x, y)
)

+ f±
(

x, c± (x, y)
)

ψ±
(

c± (x, y)
)

exp

(

− 1

2x2

)

and set

ϕ± (x, y) :=
(

X± (x, y) , Y ± (x, y)
)

.(2.7)

If we want that ϕ+ and ϕ− glue on each connected component of V+∩V− we must
require that for all c ∈ C :

{

f+ (x, c) = f− (x, c+ 1 + α) , ∀Re (x) < 0

f− (x, c) = f+ (x, c+ 1− α) , ∀Re (x) > 0
.

If we moreover wish that ϕ± extend to Id on {x = 0} the parameters f± must
satisfy the additional condition that for all y0 :

lim
(x,y)→(0,y0)

f±
(

x, c± (x, y)
) ψ± (c± (x, y))

c± (x, y)
= 1 .

The following lemma is straightforward to prove :

Lemma 2.8. Let (χ1, χ2) be the simplest non-negative affine partition of unity of
the circle S1 ≃ R/2πZ such that χ1

(

π
4 + k π2

)

= 1 for any k ∈ Z/4Z, χ2 (θ) = 1
whenever |cos (2θ)| > δ for some small, fixed δ > 0 and χ1 + χ2 = 1. Define the
functions

f± (x, c) := χ1 (arg x)
c

ψ± (c)
+ χ2 (arg x) .

These functions satisfy the following properties :

(1) |f± (x, c)− 1| < 1
5 and

∣

∣2x2 log f± (x, c)
∣

∣ < 3
5 |x|

2 whenever |x| ≤ 1,

(2) f± is continuous on D× C,
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(3) f± is constant to 1 on V+ ∩ V−,

(4) lim(x,y)→(0,y0) f
± (x, c± (x, y))

ψ±(c±(x,y))
c±(x,y) = 1 for all y0 ∈ C,

(5) for all fixed x the maps c 7→ f± (x, c)ψ± (c) are homeomorphisms of the
complex line.

As a consequence the map ϕ thus defined is a continuous map from D × C

conjugating the foliations Fα and F0 on this domain.

Proposition 2.9. The map ϕ is one-to-one and thus defines a homeomorphism
from D × C onto its image W × C which, up to rescaling ϕ in the first coordinate
for both source and target spaces, contains D× C.

Proof. Firstly we shall prove the latter claim. Let us write ϕ = (X,Y ). Because of
the first statement of the previous lemma we have

∣

∣

∣

∣

X (x, y)

x
− 1

∣

∣

∣

∣

≤ A |x|2

for some A > 0 and all |x| ≤ 1. This implies that for |x| < δ small enough
ϕ (V± ∩ δD× C) contains a sectorW± :=

{

x : |x| < r ,
∣

∣arg x∓ π
2

∣

∣ < 3π
4 − θ

}

, where
θ can be chosen as small as we wish by decreasing δ. Up to rescalling the x− and
X−coordinates we can then assume that D ⊂ X

(

D× C
)

. Because of (5) we also
derive that ϕ (V± ∩ δD× C) contains a sector of lesser aperture W± × C, so that
D× C ⊂ ϕ

(

D× C
)

as required.
To prove that ϕ is one-to-one we first notice that since ϕ preserves the sector

decomposition of D × C and since each leaf of the sectorial foliations F±
α is the

graph of a function holomorphic on W±, we only need to prove that the restriction
of ϕ± to some transversal {x = x0} is one-to-one. Let us choose x0 := ±1, so that
f± (x0, c) = 1. We thus have that

ϕ± (x0, y) =

(

x0, y0,0 (x0) + ψ±
(

c± (x0, y)
)

exp

(

− 1

2x20

))

,

which completes the proof. �

3. Extending the homeomorphism

The foliations under consideration have exactly three singularities, located in
homogeneous coordinates at [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0]. We will use the
following three affine charts of CP 2 :

C
2 = {(x, y)} = {[x : y : 1]}

C
2 = {(s, t)} = {[1 : t : s]}

C
2 = {(u, v)} = {[u : 1 : v]}

with transition maps

y = tx , 1 = sx , x = uy , 1 = vy , v = us , 1 = ut .

The singular point [0 : 0 : 1] has been extensively studied in the previous sections
and this study gave rise to a topological conjugacy between the foliations F0 and
Fα from D× C onto its image.

Lemma 3.1. One can extend ϕ to a homeomorphism of C × C such that the
extension, still noted ϕ, preserves each fiber of Π outside D×C and still conjugates
F0 and Fα.
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Proof. This result is straightforward. Choose 0 < r < 1 and consider the simplest
affine non-negative partition of unity (ξ1, ξ2)of R≥0 where ξ1 = 1 on [0, r], ξ2 = 1
outside [0, 1] and ξ1 + ξ2 = 1. By setting

(

∀ (x, c) ∈ D× C
)

f̂± (x, c) := f± (x, c) ξ1 (|x|) + ξ2 (|x|)
(

∀ (x, c) /∈ D× C
)

f̂± (x, c) := 1

and defining ϕ by (2.7) the reader can easily show that our claim is true, as in
Proposition 2.8. �

Once this is stated we have to check that ϕ extends to a homeomorphism of
CP 2. It is only a matter of writing things in appropriate charts since as expected
ϕ extends to Id along the line at infinity {s = 0} ∪ {v = 0}.
Proposition 3.2. ϕ extends to a global homeomorphism of CP 2, which implies
that the main theorem is true.

Proof. Let us write ϕ in the chart (s, t) near {0} × C :

ϕ̃ (s, t) :=

(

s, s

(

y±0,0

(

1

s

)

+ ψ±
(

c̃± (s, t)
)

exp

(

−s
2

2

)))

where as before c̃± is uniquely defined on V± by

y±α,c̃±(s,t)

(

1

s

)

=
t

s
,

for all (s, t) ∈ C 6=0 × C. Following (2.3) we have

y±α,0

(

1

s

)

= − exp

(

−s
2

2

)
∫ ±∞i

s

(

1 +
α

z

)

exp

(

z2

2

)

dz

z

so that

lim
s→0

sy±α,0

(

1

s

)

= 0 .

On the other hand if (s, t) ∈ V± then t = s
(

y±0,0
(

1
s

)

+ c̃± (s, t) exp
(

−s2/2
))

so that
setting

ϕ̃ (0, t) := (0, t)

defines a continuous extension of ϕ̃ to C×C, because ψ± (c̃± (s, t))−c̃± (s, t) remains
bounded as (s, t) → (0, t0).

Finally we shall check that ϕ admits a limit at [0 : 1 : 0]. We write it in the chart
(u, v) as

ϕ̂ (u, v) :=
(

Û± (u, v) , V̂ ± (u, v)
)

where

X̂± (u, v) =
u

v
√

1− 2u
2

v2 log f±
(

u
v , ĉ

± (u, v)
)

V̂ ± (u, v) =
1

y±0,0

(

X̂± (u, v)
)

+ f±
(

u
v , ĉ

± (u, v)
)

ψ± (ĉ± (u, v)) exp
(

− v2

2u2

)

(3.1)

Û± (u, v) = V̂ ± (u, v) X̂± (u, v)
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and ĉ± (u, v) is uniquely defined by v−1 = yα,0 (u/v) + ĉ± (u, v) exp
(

−v2/2u2
)

for
(

u
v ,

1
v

)

∈ V±. Let us split C2
6=0 into the sets

C> : =
{

(u, v) :
∣

∣

∣

u

v

∣

∣

∣
> 1
}

C≤ :=
{

(u, v) :
∣

∣

∣

u

v

∣

∣

∣
≤ 1
}

.

We recall that f±
(

u
v , ĉ

± (u, v)
)

= 1 whenever (u, v) ∈ C>. On the other hand

X̂±
(

C≤
)

is bounded. Hence it suffices to show that V̂ ± (u, v) = O (v) as (u, v) → 0
in order to prove that ϕ̂ extends continuously to (0, 0) by ϕ̂ (0, 0) := (0, 0).

Because x 7→ y±0,0 (x) is smooth as a real map there exists a constant A > 0 such

that for all (u, v) ∈ C< one has
∣

∣

∣
y±0,0

(

X̂± (u, v)
)

− y±0,0

(u

v

)∣

∣

∣
≤ A

∣

∣

∣

∣

u3

v3

∣

∣

∣

∣

whereas this estimate is true with A := 0 when (u, v) ∈ C>. We then derive :
∣

∣

∣

∣

∣

1

V̂ ± (u, v)
− 1

v

∣

∣

∣

∣

∣

≤ A

∣

∣

∣

∣

u3

v3

∣

∣

∣

∣

+
∣

∣

∣
ĉ± (u, v)− f±

(u

v
, ĉ± (u, v)

)

ψ±
(

ĉ± (u, v)
)

∣

∣

∣

∣

∣exp
(

−v2/2u2
)∣

∣

∣

∣

∣

∣

∣

v

V̂ ± (u, v)
− 1

∣

∣

∣

∣

∣

≤ A |u|
∣

∣

∣

u

v

∣

∣

∣

2

+B |v|
∣

∣exp
(

−v2/2u2
)
∣

∣

for some B > 0. Hence there exists B> > 0 such that for all (u, v) ∈ C> :
∣

∣

∣

∣

∣

v

V̂ ± (u, v)
− 1

∣

∣

∣

∣

∣

< B> |v| .

Consider now (u, v) ∈ C≤. Clearly there exists B≤
+ > 0 such that if Re

(

u2

v2

)

≥ 0

then
∣

∣

∣

∣

∣

v

V̂ ± (u, v)
− 1

∣

∣

∣

∣

∣

< B≤
+ (|u|+ |v|)

while according to (3.1) there exists B≤
− > 0 such that if Re

(

u2

v2

)

< 0 then

∣

∣

∣
V̂ ± (u, v)

∣

∣

∣
< B≤

− |v| .

�
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