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The polynomial closure Pol(L) of a class of languages L of A∗ is the set of
languages that are finite unions of marked products of the form L0a1L1 · · · anLn,
where the ai are letters and the Li are elements of L.

The main result of this paper gives an equational description of Pol(L), given
an equational description of L, when L is a lattice of regular languages closed
under quotients, or a quotienting algebra of languages, as we call it in the sequel.
The term “equational description” refers to a recent paper [5], where it was
shown that any lattice of regular languages can be defined by a set of profinite
equations. More formally, our main result can be stated as follows:

If L is a quotienting algebra of languages, then Pol(L) is defined by

the set of equations of the form xωyxω 6 xω, where x, y are profinite

words such that the equations x = x2 and y 6 x are satisfied by L.

As an application of this result, we establish a set of profinite equations defining
the class of languages of the form L0a1L1 · · · anLn, where each language Li is
either of the form u∗ (where u is a word) or A∗ (where A is the alphabet) and we
prove that this class is decidable. Let us now give the motivations of our work
and a brief survey of the previously known results.

Motivations. The polynomial closure occurs in several difficult problems on
regular languages. For instance, a language has star-height one if and only if it
belongs to the polynomial closure of the set of languages of the form F or F ∗,
where F is a finite language. Although this class is known to be decidable, it
is still an open problem to find profinite equations for this class. Such a result
could serve, in turn, to discover a language of generalized star-height > 1, a
widely open problem.

The polynomial closure is also one of the two operations appearing in the
definition of the concatenation hierarchy over a given set L of regular languages,
defined by induction on n as follows. The level 0 is L and, for each n > 0, the
level 2n + 1 is the polynomial closure of the level 2n and the level 2n + 2 is the
Boolean closure of the level 2n +1. The simplest hierarchy is built on the initial
set L = {∅, A∗}. A nice result of Thomas [15] shows that a regular language is of
level 2n + 1 in this hierarchy if and only if it is definable by a Σn+1-sentence of

⋆ The authors acknowledge support from the AutoMathA programme of the European
Science Foundation and the projects ISFL-1-143 and PTDC/MAT/69514/2006 of
CAUL, financed by FCT and FEDER.



first order logic in the signature {<, (a)a∈A}, where a is a predicate giving the
positions of the letter a. Similar logical interpretations hold for other hierarchies,
but unfortunately, only the very low levels of such hierarchies are known to be
decidable and in general, this type of decidability problems is considered to be
difficult. Our result certainly does not solve the problem in general, but it gives
an algebraic approach that can be successful in some particular cases, like the
one considered in Section 3, which does not follow from the results of [9].

Known results. A similar result was known when L is a variety of languages,
that is, a class of regular languages closed under Boolean operations, quotients
and inverse of morphisms, but depended on the conjunction of two theorems.
The first theorem [11] relied on Eilenberg’s theory of varieties, which gives a
bijective correspondence between varieties of languages and varieties of finite
monoids. It stated, in essence, that the polynomial closure corresponds, on the
monoid level, to a certain Mal’cev product of varieties. The second result [10]
gave identities for the Mal’cev product of two varieties of finite monoids. These
results have been extended in [7] to positive varieties of languages and in [9]
to quotienting algebras closed under inverse of length-preserving morphisms.
However, all these proofs relied on the original proof of [11] and required the use
of Mal’cev products and relational morphisms.

In summary, our new result is more general than all the previously known
results. Further, our new proof combines various ideas from the above-mentioned
papers, but avoids the use of Mal’cev products, a major difference with the
original proof, although the experienced reader will still recognize their ghost in
this paper. This could be a decisive advantage for potential extensions to other
structures, like words over linear orders or finite trees.

1 Definitions and background

1.1 Languages, monoids and syntactic order

Let A be a finite alphabet. A lattice of languages is a set of regular languages of
A∗ containing the empty language, the full language A∗ and closed under finite
intersection and finite union. We denote by Lc the complement of a language L
of A∗.

Let L be a language of A∗ and let u be a word. The left quotient of L by u is
the language u−1L = {v ∈ A∗ | uv ∈ L}. The right quotient Lu−1 is defined in
a symmetrical way. A quotienting algebra of languages is a lattice of languages
closed under the operations L 7→ u−1L and L 7→ Lu−1, for any word u.

An ordered monoid is a monoid M equipped with a partial order 6 com-
patible with the product on M : for all x, y, z ∈ M , if x 6 y then zx 6 zy and
xz 6 yz. For each x ∈ M , we set ↓x = {y ∈ M | y 6 x}. A morphism of ordered
monoids is an order-preserving monoid morphism.

The syntactic congruence of a language L of A∗ is the equivalence relation
on A∗ defined by u ∼L v if and only if, for every x, y ∈ A∗,

xvy ∈ L ⇐⇒ xuy ∈ L



The monoid M = A∗/∼L is the syntactic monoid of L and the natural morphism
η : A∗ → M is called the syntactic morphism of L. It is a well-known fact that
a language is regular if and only if its syntactic monoid is finite.

The syntactic preorder of a language L is the relation 6L over A∗ defined
by u 6L v if and only if, for every x, y ∈ A∗, xvy ∈ L implies xuy ∈ L.
The associated equivalence relation is the syntactic congruence ∼L. Further, 6L

induces a partial order on the syntactic monoid M of L. This partial order 6 is
compatible with the product and can also be defined directly on M as follows:
given u, v ∈ M , one has u 6 v if and only if, for all x, y ∈ M , xvy ∈ η(L) implies
xuy ∈ η(L). The ordered monoid (M, 6) is called the syntactic ordered monoid
of L.

1.2 Factorization forests

We review in this section an important combinatorial result of I. Simon on finite
semigroups. A factorization forest is a function F that associates with every
word x of A2A∗ a factorization F (x) = (x1, . . . , xn) of x such that n > 2 and
x1, . . . , xn ∈ A+. The integer n is the degree of the factorization F (x). Given
a factorization forest F , the height function of F is the function h : A∗ → N

defined recursively by

h(x) =

{
0 if |x| 6 1

1 + max {h(xi) | 1 6 i 6 n} if F (x) = (x1, . . . , xn)

The height of F is the least upper bound of the heights of the words of A∗.
Let M be a finite monoid and let ϕ : A∗ → M be a morphism. A factorization

forest F is Ramseyan modulo ϕ if, for every word x of A2A∗, F (x) is either of
degree 2 or there exists an idempotent e of M such that F (x) = (x1, . . . , xn)
and ϕ(x1) = ϕ(x2) = · · · = ϕ(xn) = e for 1 6 i 6 n. The factorization forest
theorem was first proved by I. Simon in [12–14] and later improved in [2–4, 6]:

Theorem 1.1. Let ϕ be a morphism from A∗ into a finite monoid M . There
exists a factorization forest of height 6 3|M | − 1 which is Ramseyan modulo ϕ.

1.3 Profinite monoids and equations

We briefly recall the definition of a free profinite monoid. More details can be
found in [1, 8]. A finite monoid M separates two words u and v of A∗ if there is
a morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v). We set

r(u, v) = min
{
Card(M) | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted by
Â∗. The product on A∗ can be extended by continuity to Â∗. This extended prod-
uct makes Â∗ a compact topological monoid, called the free profinite monoid.
Its elements are called profinite words.



Every finite monoid M can be considered as a discrete metric space for the
discrete metric d, defined by d(x, y) = 0 if x = y, and d(x, y) = 1 otherwise.
Now, every morphism ϕ from A∗ into a finite monoid is uniformly continuous
and therefore can be extended (in a unique way) into a uniformly continuous

morphism ϕ̂ from Â∗ to M .
Since A∗ embeds naturally in Â∗, every finite word is a profinite word. We

shall also use the operator x 7→ xω in Â∗, which is formally defined by the
formula xω = lim

n→∞
xn! and is justified by the fact that the sequence (xn!)n>0

is a Cauchy sequence in Â∗ and hence has a limit in Â∗. Let ϕ be a morphism
from A∗ onto a finite monoid M and let s = ϕ̂(x). Then the sequence (sn!)n>0 is
ultimately equal to sω, where ω is the least integer k such that for all t ∈ M , tk

is idempotent. Consequently, we obtain the formula ϕ̂(xω) = ϕ̂(x)ω , which gives
ground to the notation xω .

Let L be a regular language of A∗, let (M, 6) be its syntactic ordered monoid

and let η : A∗ → M its syntactic morphism. Given two profinite words u, v ∈ Â∗,
we say that L satisfies the (profinite) equation u 6 v (resp. u = v) if η̂(u) 6 η̂(v)
(resp. η̂(u) = η̂(v)). By extension, we say that a set of languages L satisfies a
set of equations Σ if every language of L satisfies every equation of Σ.

2 Polynomial closure of lattices of languages

Let L be a set of languages of A∗. An L-monomial of degree n is a language of the
form L0a1L1 · · · anLn, where each ai is a letter of A and each Li is a language of
L. An L-polynomial is a finite union of L-monomials. Its degree is the maximum
of the degrees of its monomials. The polynomial closure of L, denoted by Pol(L),
is the set of all L-polynomials.

Our main result gives an equational description of Pol(L), given an equational
description of L, when L is a quotienting algebra of languages. To state this
result in a concise way, let us introduce a convenient notation. Given a set R of
regular languages, denote by Σ(R) the set of equations of the form xωyxω 6 xω ,

where x, y are profinite words of Â∗ such that the equations x = x2 and y 6 x
are satisfied by R. Note that the function mapping R to the class of languages
satisfying Σ(R) is monotonic for the inclusion. We can now state our main result:

Theorem 2.1. If L is a quotienting algebra of languages, then Pol(L) is defined
by the set of equations Σ(L).

The proof is divided into several parts. We first prove in Proposition 2.2
that Pol(L) satisfies the equations of Σ(L). To establish the converse of this
property, we consider a language K satisfying all the equations of Σ(L). We
convert this property into a topological property (Proposition 2.4) and then use
a compactness argument to show that K satisfies the equations of Σ(F), where F
is a finite sublattice of L (Proposition 2.5). The final part of the proof consists in
proving that K belongs to Pol(F). This is where the factorization forest theorem
arises, but a series of lemmas (Lemmas 2.6 to 2.11) are still necessary to find
explicitly a polynomial expression for K.



Proposition 2.2. If L is a lattice of languages, then Pol(L) satisfies the equa-
tions of Σ(L).

Proof. Since, by [5, Theorem 7.2] the set of languages satisfying Σ(L) is a
lattice of languages, it suffices to prove the result for any L-monomial. Let
L = L0a1L1 · · · anLn be an L-monomial and let η : A∗ → M be its syntactic
morphism. Let, for 0 6 i 6 n, ηi : A∗ → Mi be the syntactic morphism of Li.
Let x and y be two profinite words such that each Li satisfies the two equations
x = x2 and y 6 x.

Since A∗ is dense in Â∗, one can find a word x′ ∈ A∗ such that r(x′, x) >
max{|M0|, . . . , |Mn|, |M |}. It follows that η(x′) = η̂(x) and, for 0 6 i 6 n,
ηi(x

′) = η̂i(x). Similarly, one can associate with y a word y′ ∈ A∗ such that
η(y′) = η̂(y) and, for 0 6 i 6 n, ηi(y

′) = η̂i(y). It follows that each Li satisfies

the equations x′ = x′2 and y′ 6 x′ and that L satisfies the equation xωyxω 6 xω

if and only if it satisfies the equations x′ωy′x′ω 6 x′ω. In other terms, it suffices
to prove the result when x and y are words.

We need to establish the relation (∗) : η̂(xωyxω) 6 η̂(xω). Let k be an integer
such that k > n and η̂(xω) = η(xk). Since η̂(xωyxω) = η(xkyxk), proving (∗)
amounts to showing that xkyxk 6L xk. Let u, v ∈ A∗ and suppose that uxkv ∈ L.
Thus uxkv = u0a1u1 · · · anun, where, for 0 6 i 6 n, ui ∈ Li. Since k > n, one
can find h ∈ {0, . . . , n}, j ∈ {1, . . . , k} and u′

h, u′′
h ∈ A∗ such that uh = u′

hxu′′
h,

uxj−1 = u0a1u1 · · · ahu′
h and xk−jv = u′′

hah+1uh+1 · · ·anun. Since uh ∈ Lh and
Lh satisfies the equations x = x2 and y 6 x, one has u′

hxk−j+1yxju′′
h ∈ Lh,

and since uxkyxkv = u0a1u1 · · · ah(u′
hxk−j+1yxju′′

h)ah+1uh+1 · · · anun, one gets
uxkyxkv ∈ L. Thus xkyxk 6L xk, which completes the proof.

The rest of this section is devoted to showing the converse implication in Theo-
rem 2.1. Let us introduce, for each regular language L of A∗, the sets

EL =
{
(x, y) ∈ Â∗ × Â∗ | L satisfies x = x2 and y 6 x

}

FL =
{
(x, y) ∈ Â∗ × Â∗ | L satisfies xωyxω

6 xω
}
.

Recall that a subset of a topological space is clopen if it is both open and closed.

Lemma 2.3. For each regular language L of A∗, the sets EL and FL are clopen
in Â∗ × Â∗.

Proof. Let η : A∗ → M be the syntactic morphism of L. The formula α(x, y) =(
η̂(x), η̂(x2), η̂(y)

)
defines a continuous map α from Â∗×Â∗ into M3, considered

as a discrete space. Setting ∆ = {(s, t, u) ∈ M3 | s = t and u 6 s}, we get

EL =
{
(x, y) ∈ Â∗ × Â∗ | η̂(x) = η̂(x2) and η̂(y) 6 η̂(x)

}
= α−1(∆)

Now, since M is a discrete topological space, ∆ is clopen in M3 and thus EL is
a clopen subset of Â∗ × Â∗.

A similar argument, using the continuous map β : Â∗× Â∗ → M2 defined by
β(x, y) =

(
η̂(xωyxω), η̂(xω)

)
, would show that FL is clopen.



We now convert our equational conditions into a topological property. Recall
that a cover [open cover ] of a topological space X is a collection of subsets [open
subsets] of X whose union is X .

Proposition 2.4. Let F be a set of regular languages of A∗ and let K be a
regular language of A∗. The following conditions are equivalent:

(1) K satisfies the profinite equations of Σ(F),

(2) the set {FK} ∪ {Ec
L | L ∈ F} is an open cover of Â∗ × Â∗.

Proof. Indeed F satisfies the two profinite equations x = x2 and y 6 x if and only
if (x, y) ∈

⋂
L∈F EL or, equivalently, (x, y) /∈

⋃
L∈F Ec

L. Similarly, K satisfies the
equation xωyxω 6 xω if and only if (x, y) ∈ FK . Now, condition (1) is equivalent
to saying that (x, y) /∈

⋃
L∈F Ec

L implies (x, y) ∈ FK , which is another way to

say that {FK} ∪ {Ec
L | L ∈ F} is a cover of Â∗ × Â∗. Further, Proposition 2.3

shows that it is an open cover.

Proposition 2.5. If K satisfies the equations of Σ(L), there is a finite subset
F of L such that K satisfies the equations of Σ(F).

Proof. Proposition 2.4 shows that {FK} ∪ {Ec
L | L ∈ L} is a cover of Â∗ × Â∗.

Since Â∗ is compact, one can extract from this cover a finite cover, say {FK} ∪
{Ec

L | L ∈ F}. By Proposition 2.4 again, K satisfies the profinite equations of
the form xωyxω 6 xω such that all the languages of F satisfy the equations
x = x2 and y 6 x.

Let K be a regular language satisfying all the equations of Σ(L) and let
η : A∗ → M be its syntactic morphism. Let also F = {L1, . . . , Ln} be a finite
subset of L as given by Proposition 2.5. For 1 6 i 6 n, let ηi : A∗ → Mi be
the syntactic morphism of Li. Let µ : A∗ → M1 × · · · × Mn be the morphism
defined by µ(u) = (η1(u), . . . , ηn(u)). Finally, let V = µ(A∗) and, for 1 6 i 6 n,
let πi : V → Mi be the natural projection. We set S = {(η(u), µ(u)) | u ∈ A∗}.
Then S is a submonoid of M × V and the two morphisms α : S → M and
β : S → V defined by α(m, v) = m and β(m, v) = v are surjective. Further,
the morphism δ : A∗ → S defined by δ(u) = (η(u), µ(u)) satisfies η = α ◦ δ and
µ = β ◦ δ. The situation is summarized in the following diagram:

M VS

A∗

Mi
α β

η µ
δ

ηi

πi

We now arrive at the last step of the proof of Theorem 2.1, which consists in
proving that K belongs to Pol(F).



We start with three auxiliary lemmas. The first one states that every down-
ward closed language recognized by µ belongs to L and relies on the fact that L
is a quotienting algebra of languages. The second one gives a key property of S
and this is the only place in the proof where we use the equations of Σ(L). The
third one is an elementary, but useful, observation.

Lemma 2.6. Let t ∈ V . Then the language µ−1(↓ t) belongs to L.

Proof. Let t = (t1, . . . , tn) and let z be a word such that µ(z) = t. Then ti = ηi(z)
and µ−1(↓ t) =

⋂
16i6n η−1

i (↓ ti). Moreover, one gets for each i ∈ {1, . . . , n},

η−1
i (↓ ti) = {x ∈ A∗ | ηi(x) 6 ηi(z)} = {x ∈ A∗ | x 6Li

z} =
⋂

(u,v)∈Ei

u−1Liv
−1

where Ei = {(u, v) ∈ A∗ × A∗ | uzv ∈ Li}. Since Li is regular, there are only
finitely many quotients of the form u−1Liv

−1 and hence the intersection is finite.
The result follows, since L is a quotienting algebra of languages.

Lemma 2.7. For every idempotent (e, f) ∈ S and for every (s, t) ∈ S such that
t 6 f , one has ese 6 e.

Proof. Let x and y be two words such that δ(x) = (e, f) and δ(y) = (s, t). Then
η(x) = e, µ(x) = f , η(y) = s and µ(y) = t and since f is idempotent and t 6 f ,
F satisfies the equations x = x2 and y 6 x. Therefore K satisfies the equation
xωyxω 6 xω . It follows that η̂(xωyxω) 6 η̂(xω), that is ese 6 e.

Before we continue, let us point out a subtlety in the proof of Lemma 2.7.
It looks like we have used words instead of profinite words in this proof and
the reader may wonder whether one could change “profinite” to “finite” in the
statement of our main result. The answer is negative for the following reason: if
F satisfies the equations x = x2 and y 6 x, it does not necessarily imply that L
satisfies the same equations. In fact, the choice of F comes from the extraction
of the finite cover and hence is bound to K.

We now set, for each idempotent f of V , L(f) = µ−1(↓f).

Lemma 2.8. For each idempotent f of V , one has L(1)L(f)L(1) = L(f).

Proof. Since 1 ∈ L(1), one gets the inclusion L(f) = 1L(f)1 ⊆ L(1)L(f)L(1).
Let now s, t ∈ L(1) and x ∈ L(f). Then by definition, µ(s) 6 1, µ(x) 6 f and
µ(t) 6 1. It follows that µ(sxt) = µ(s)µ(x)µ(t) 6 1f1 = f , whence sxt ∈ L(f).
This gives the opposite inclusion L(1)L(f)L(1) ⊆ L(f).

We now come to the combinatorial argument of the proof. By Theorem 1.1,
there exists a factorization forest F of height 6 3|S| − 1 which is Ramseyan
modulo δ. We use this fact to associate with each word x a certain language
R(x), defined recursively as follows:

R(x) =






L(1)xL(1) if |x| 6 1

R(x1)R(x2) if F (x) = (x1, x2)

R(x1)L(f)R(xk) if F (x) = (x1, . . . , xk), with k > 3 and

δ(x1) = · · · = δ(xk) = (e, f)



In particular R(1) = L(1), since L(1) is a submonoid of A∗.
Denote by E the finite set of languages of the form L(f), where f is an idem-

potent of V . We know by Lemma 2.6 that E is a subset of L. Let us say that an
E-monomial is in normal form if it is of the form L(1)a0L(f1)a1 · · · L(fk)akL(1)
where f1, . . . , fk are idempotents of V .

Lemma 2.9. For each x ∈ A∗, R(x) is equal to an E-monomial in normal form
of degree 6 2h(x).

Proof. We prove the result by induction on the length of x. The result is true
if |x| 6 1. Suppose that |x| > 2. If F (x) = (x1, x2), then R(x) = R(x1)R(x2)
otherwise R(x) = R(x1)L(f)R(xk). We treat only the latter case, since the first
one is similar. By the induction hypothesis, R(x1) and R(xk) are equal to E-
monomials in normal form. It follows by Lemma 2.8 that R(x) is equal to an
E-monomial in normal form, whose degree is lesser than or equal to the sum
of the degrees of R(x1) and R(xk). The result now follows from the induction
hypothesis, since 2h(x1) + 2h(xk) 6 21+max{h(x1),...,h(xk)} 6 2h(x).

Lemma 2.10. For each x ∈ A∗, one has x ∈ R(x).

Proof. We prove the result by induction on the length of x. The result is trivial
if |x| 6 1. Suppose that |x| > 2. If F (x) = (x1, x2), one has x1 ∈ R(x1) and x2 ∈
R(x2) by the induction hypothesis and hence x ∈ R(x) since R(x) = R(x1)R(x2).
Suppose now that F (x) = (x1, . . . , xk) with k > 3 and δ(x1) = · · · = δ(xk) =
(e, f). Then R(x) = R(x1)L(f)R(xk). Since x1 ∈ R(x1) and xk ∈ R(xk) by the
induction hypothesis and µ(x2 · · ·xk−1) = f , one gets x2 · · ·xk−1 ∈ L(f) and
finally x ∈ R(x1)L(f)R(xk), that is, x ∈ R(x).

If R is a language, let us write η(R) 6 η(x) if, for each u ∈ R, η(u) 6 η(x).

Lemma 2.11. For each x ∈ A∗, one has η(R(x)) 6 η(x).

Proof. We prove the result by induction on the length of x. First, applying
Lemma 2.7 with e = f = 1 shows that if (s, t) ∈ S and t 6 1, then s 6 1. It
follows that η(R(1)) = η(L(1)) = η(µ−1(↓1)) 6 1.

If |x| 6 1, one gets R(x) = L(1)xL(1) and η(R(x)) = η(L(1))η(x)η(L(1)) 6

η(x) since η(L(1)) 6 1. Suppose now that |x| > 2. If F (x) = (x1, x2), then
R(x) = R(x1)R(x2) and by the induction hypothesis, η(R(x1)) 6 η(x1) and
η(R(x2)) 6 η(x2). Therefore, η(R(x)) = η(R(x1))η(R(x2)) 6 η(x1)η(x2) =
η(x). Finally, suppose that F (x) = (x1, . . . , xk) with k > 3 and δ(x1) = · · · =
δ(xk) = (e, f). Then R(x) = R(x1)L(f)R(xk). By the induction hypothesis,
η(R(x1)) 6 e and η(R(xk)) 6 e. Now, if u ∈ L(f), one gets µ(u) 6 f . Since
(η(u), µ(u)) ∈ S, it follows from Lemma 2.7 that the relation eη(u)e 6 e holds
in M . Finally, we get η(R(x)) = η(R(x1))η(L(f))η(R(xk)) 6 eη(L(f))e 6 e =
η(x).

We can now conclude the proof of Theorem 2.1. We claim that K =
⋃

x∈K R(x).
The inclusion K ⊆

⋃
x∈K R(x) is an immediate consequence of Lemma 2.10. To



prove the opposite inclusion, consider a word u ∈ R(x) for some x ∈ K. It follows
from Lemma 2.11 that η(u) 6 η(x). Since η(x) ∈ η(K), one gets η(u) ∈ η(K)
and finally u ∈ K. Now, by Lemma 2.9, each language R(x) is an E-monomial
of degree 6 2h(x). Since h(x) 6 3|S| − 1 for all x, and since E is finite, there are
only finitely many such monomials. Therefore K is equal to an E-polynomial.
Finally, Lemma 2.6 shows that each E-polynomial belongs to Pol(L), and thus
K ∈ Pol(L).

3 A case study

The density of a language L ⊆ A∗ is the function which counts the number of
words of length n in L. More formally, it is the function dL : N → N defined by
dL(n) = |L ∩ An|. See [16] for a general reference. If dL(n) = O(1), then L is
called a slender language. A regular language of A∗ is slender if and only if it
is a finite union of languages of the form u0v

∗u1, where u0, v, u1 ∈ A∗ (see [16,
Theorem 3.6]). A language is sparse if it is of polynomial density. One can show
that a regular language is sparse if and only if it is a finite union of languages
of the form u0v

∗
1u1 · · · v∗nun, where u0, v1, . . . , vn, un are words.

We shall also use the following characterization of regular nonslender lan-
guages, in which i(u) denotes the first letter (or initial) of a word u.

Proposition 3.1. A regular language L is nonslender if and only if there exist
words p, q, r ∈ A∗ and u, v ∈ A+ such that i(u) 6= i(qv) and pu∗qv∗r ⊆ L.

p q r

u v

If |A| 6 1, every regular language is slender, but if |A| > 2, the full language
A∗ is not slender and thus regular slender languages do not form a lattice of
languages. However, the regular languages that are either slender or full form
a quotienting algebra of languages, denoted by S in the sequel. Two sets of
profinite equations for S were given in [5]. We shall just mention the second one,
which requires a convenient writing convention. Let L be a regular language of
A∗ and let η : A∗ → M be its syntactic morphism. If x is a profinite word of Â∗,
we say that L satisfies the equation x 6 0 [x = 0], if the monoid M has a zero,
denoted by 0, and if η̂(x) 6 0 [η̂(x) = 0].

Proposition 3.2. Suppose that |A| > 2. A regular language of A∗ is slender or
full if and only if it satisfies the equations x 6 0 for all x ∈ A∗ and the equations
xωuyω = 0 for each x, y ∈ A+, u ∈ A∗ such that i(x) 6= i(uy).

We are interested in the polynomial closure of S. The languages of Pol(S) are
finite unions of languages of the form L0a1L1 · · · anLn, where the ai are letters



and the Li are languages of the form A∗ or u∗ for some word u.3 In particular,
Pol(S) contains all regular sparse languages but it also contains the nonsparse
language A∗ if |A| > 2.

The main result of this section is an equational description of Pol(S). Let us
denote by Σ′(S) the set of equations of the form

(xωyω)ωz(xωyω)ω
6 (xωyω)ω

where z ∈ A∗ and x, y ∈ A+ and i(x) 6= i(y).

Theorem 3.3. A regular language of A∗ belongs to Pol(S) if and only if it
satisfies the equations of Σ′(S).

Proof. Let us first settle a trivial case. If |A| 6 1, every regular language belongs
to Pol(S), but on the other hand, the set Σ′(S) is empty because the condition
i(x) 6= i(y) is never satisfied! We suppose now that |A| > 2.

We show that every language of Pol(S) satisfies the equations of Σ′(S) by
applying Theorem 2.1. It suffices to verify that, if i(x) 6= i(y), S satisfies the

equations (xωyω)ω =
(
(xωyω)ω

)2
and z 6 (xωyω)ω. But this is trivial, since we

know by Proposition 3.2 that S satisfies the equations xωyω = 0 (take u = 1 in
the equation xωuyω = 0) and z 6 0.

Let K be a regular language satisfying the equations of Σ′(S) and let η :
A∗ → M be its syntactic morphism. We immediately derive from Σ′(S) a more
comprehensible property, which is the counterpart of Lemma 2.7 in the proof of
Theorem 2.1.

Lemma 3.4. Let e be an idempotent of M . Then either η−1(e) is slender, or
for all s ∈ M , ese 6 e.

Proof. Let L = η−1(e). Since L is not slender, Proposition 3.1 tells us that
one can find words p, q, r ∈ A∗ and u, v ∈ A+ such that i(u) 6= i(qv) and
pu∗qv∗r ⊆ L. Further, since e is idempotent, L is a semigroup and we have in
fact (pu∗qv∗r)+ ⊆ L. It follows that

p(u∗(qvrp)∗)∗qr ⊆ p(u∗(qv∗rp)∗)∗u∗qv∗r ⊆ (pu∗qv∗r)+ ⊆ L

Setting x = u, y = qvrp and t = qr, we get i(x) 6= i(y) and p(x∗y∗)∗t ⊆ L. It
follows in particular that

η̂
(
p(xωyω)ωt

)
= e (1)

Let s ∈ M and let w be a word such that η(w) = s. Since L satisfies the equations
of Σ′(S), it satisfies in particular the equation (xωyω)ωtwp(xωyω)ω 6 (xωyω)ω

and hence also p(xωyω)ωtwp(xωyω)ωt 6 p(xωyω)ωt. This means that

η̂
(
p(xωyω)ωtwp(xωyω)ωt

)
6 η̂

(
p(xωyω)ωt

)
(2)

3 To see this, it suffices to replace each word ui = a1 · · · ak by 1∗

a11
∗

a21
∗

· · · 1∗

ak1∗

in each monomial of the form u0v
∗

1u1 · · · v
∗

nun.



Now, using (1), (2) and the relation η(w) = s, we get ese 6 e.

The end of the proof is similar to that of Theorem 2.1, with the major difference
that we do not use the morphisms δ and µ anymore. By Theorem 1.1, there
exists a factorization forest F of height 6 3|M | − 1 which is Ramseyan modulo
η. We associate with each idempotent e ∈ M the language L(e) equal to η−1(e)
if this language is slender, and to A∗ otherwise. Let us denote by E the set of
languages of the form L(e). By definition, every language of E is slender or full.
We also associate with each word x a language R(x), defined as follows:

R(x) =






L(1)xL(1) if |x| 6 1

R(x1)R(x2) if F (x) = (x1, x2)

R(x1)L(e)R(xk) if F (x) = (x1, . . . , xk), with k > 3 and

η(x1) = · · · = η(xk) = e

The proof now consists in adapting Lemmas 2.8, 2.9, 2.10 and 2.11 to our new
definitions. We just give here a sketch of these proofs (detailed proofs can be
found in the Appendix). For Lemma 2.8, one needs to prove that, for each
idempotent e ∈ M , L(1)L(e)L(1) = L(e). The key observation is that if η−1(e) is
slender, then η−1(1) is slender: indeed η−1(1)η−1(e) ⊆ η−1(e) and if the density
of η−1(1) is not bounded, the density of η−1(e) cannot be bounded. Therefore,
if η−1(e) is slender, one can follow the original proof. If η−1(e) is not slender,
then L(e) = A∗ and the result is trivial, since 1 ∈ L(1).

The proofs of Lemmas 2.9 and 2.10 are unchanged. The proof of Lemma 2.11
requires a slight modification in the case where F (x) = (x1, . . . , xk) with k > 3,
η(x1) = · · · = η(xk) = e and η−1(e) nonslender. Then R(x) = R(x1)A

∗R(xk)
and by the induction hypothesis η(R(x1)) 6 e and η(R(xk)) 6 e. Further,
Lemma 3.4 shows that, for all s ∈ M , ese 6 e. Therefore, for each s1 ∈ η(R(x1)),
sk ∈ η(R(xk)) and s ∈ M , one gets s1ssk 6 ese 6 e. It follows that η(R(x)) 6 e,
which completes the proof, since η(x) = e.

The rest of the proof is unchanged and shows that K is equal to an E-
polynomial. Since each E-monomial is itself in Pol(S), it follows that K ∈
Pol(S).

Corollary 3.5. There is an algorithm to decide whether a given regular lan-
guage belongs to Pol(S).

Proof. Let L be a regular language and let η : A∗ → M be its syntactic mor-
phism. By Theorem 3.3, L belongs to Pol(S) if and only if it satisfies the equa-
tions of Σ′(S). Setting

F =
⋃

a,b∈A
a6=b

η(a)M × η(b)M

it suffices to verify that the property (xωyω)ωz(xωyω)ω 6 (xωyω)ω holds for
all (x, y) ∈ F and all z ∈ M . Since M and F are finite, this property is
decidable.
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