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ABSTRACT

Climate feedback analysis constitutes a useful framework to compare the global mean surface temperature responses to an external forcing predicted by general circulation models (GCMs). Nevertheless, the contributions of the different radiative feedbacks to global warming (in equilibrium or transient conditions) and their comparison with the contribution of other processes (e.g. the ocean heat uptake) have not been quantified explicitly. Here we define these contributions from the classical feedback analysis framework, and we quantify them for an ensemble of 12 CMIP3/IPCC-AR4 coupled atmosphere-ocean GCMs. In transient simulations, the multi-model mean contributions to global warming associated with the combined water vapor -lapse rate feedback, cloud feedback and ocean heat uptake are comparable. However, inter-model differences in cloud feedbacks constitute by far the primary source of spread of both equilibrium and transient climate responses simulated by GCMs. The spread associated with inter-model differences in cloud feedbacks appears to be roughly three times larger than that associated either with the combined water vapor -lapse rate feedback, the ocean heat uptake or the radiative forcing.

Introduction

The spread of the equilibirum or transient surface temperature response to a CO 2 doubling as predicted by atmosphere-ocean coupled models is still large [START_REF] Meehl | Global climate projections[END_REF]) and an open question is to identify the primary sources of this spread. Global warming estimates depend on radiative forcing, on feedback processes that may amplify or dampen the climate response and, in the transient case, on the ocean heat uptake. For individual models, it has been suggested that atmospheric processes were the most critical factors for estimating global temperature changes in transient simulations (e.g. [START_REF] Williams | Transient climate change in the Hadley Centre models: The role of physical processes[END_REF][START_REF] Meehl | Factors affecting climate sensitivity in global coupled models[END_REF][START_REF] Collins | The sensitivity of the rate of transient climate change to ocean physics perturbations[END_REF]). Here our purpose is to investigate whether these results extend to multi-model ensembles, and how much the various feedbacks and the ocean heat uptake contribute to the multi-model mean and spread of global warming estimates. The main radiative feedbacks are associated with changes in water vapor, temperature lapse rate, clouds and surface albedo. The associated feedback parameters have been diagnosed for some multi-model ensembles (e.g. [START_REF] Colman | A comparison of climate feedbacks in general circulation models[END_REF][START_REF] Soden | An assessment of climate feedbacks in coupled ocean atmosphere models[END_REF][START_REF] Webb | On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles[END_REF]) but they have not been translated into temperature changes. It makes it difficult to compare the temperature change associated with each feedback with that from other processes such as the ocean heat uptake.

In this paper we show that it is possible to decompose, and thus to compare, the contributions of the different climate feedbacks, and eventually of the ocean heat uptake, to the global temperature response to a specified forcing. After a brief presentation of the feedback analysis framework (section 2), the decomposition methodology is presented (section 3) and, after gathering the required data (feedback parameters, radiative forcing and ocean heat uptake) (section 4), this methodology is applied to an ensemble of models that participated in the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) in support of the IPCC AR4 (section 5). There is very little in this paper that is entirely new. Rather we propose a new presentation of existing results that allows us to quantify in a more straightforward way the relative contribution of different processes to inter-model differences in global mean temperature changes.

The feedback analysis framework

Let us consider a steady state climate, with a time average value F o t = 0 of the global mean net flux at the top of the atmosphere (TOA) and a time average value T o s of the global mean surface temperature. Let us impose to the climate system a radiative forcing, such as a change in the greenhouse gas concentration or in the TOA incoming solar radiation. In the absence of surface temperature change, this forcing translates into a radiative flux perturbation ∆Q t at the TOA, called radiative forcing. In response to this disequilibrium, the surface temperature changes. It appears that at any time, the anomalies ∆T s and ∆F t of the surface temperature and the TOA flux from their unperturbed initial steady state are approximatively related through the following equation:

∆T s = ∆F t -∆Q t λ . ( 1 
)
where λ is called the "climate feedback parameter", and the fluxes are positive downward. This relationship holds both for transient and equilibrium conditions. If the temperature changes until a new equilibrium is reached, the TOA net flux reaches its steady state value (∆F t = 0) and the equilibrium temperature change is

∆T e s = -∆Q t λ . (2) 
The total feedback parameter is commonly split as the sum of 5 terms

λ = λ P + λ w + λ L + λ c + λ α (3)
which are respectively the Planck (P ), water vapor (w), lapse rate (L), cloud (c) and surface albedo (α) feedback parameters. In this approach it is assumed that everything is linear (see for instance the appendix of [START_REF] Bony | How well do we understand and evaluate climate change feedback processes?[END_REF] for more details on this approach and for a discussion of the approximations).

In climate feedback studies, temperature responses are often compared to the basic equilibrium temperature response ∆T s,P that would be obtained if the temperature change was horizontally and vertically uniform and was only modifying the infrared emission through a change in the Planck function (e.g. [START_REF] Hansen | Climate sensitivity: Analysis of feedback mechanisms[END_REF]:

∆T s,P = - ∆Q t λ P (4)
As the total feedback parameter may be decomposed as λ = λ P +

x =P λ x (cf. Eq. 3), at equilibrium (∆F t = 0) equation ( 1) reads:

∆T s = 1 1 - x =P g x ∆T s,P (5) 
where g x = -λ x λ P is called the feedback gain for the variable x. If the total feedback gain

g = x =P g x (6)
is positive (negative), the temperature change ∆T s is larger (smaller, respectively) than the temperature change ∆T s,P associated with the Planck response.

3. Relative contribution of each feedback to the global temperature change a. Equilibrium temperature change

When only one feedback loop x is active in addition to the Planck response, the equilibrium temperature change due to this feedback is simply and uniquely defined from Eq. 5 as the difference δ 1 T s,x between the temperature change with and without this feedback x:

δ 1 T s,x = 1 1 -g x ∆T s,P -∆T s,P (7) 
When several feedbacks are active, various approaches may be used. A first one is to quantify, as previously, the effect of each feedback as the difference between the temperature change with and without this feedback x (Eq. 7). A second possibility is to quantify this effect as the difference δ 2 T s,x between the temperature change when all the feedbacks are active and when all the feedbacks but x are active:

δ 2 T s,x = 1 1 -g - 1 1 -(g -g x ) ∆T s,P (8) 
In this definition, the effect of a feedback loop x on the temperature change depends both on its gain g x and on the gain g of all feedbacks (e.g. [START_REF] Hansen | Climate sensitivity: Analysis of feedback mechanisms[END_REF][START_REF] Hall | The role of water vapour feedback in unperturbed climate variability and global warming[END_REF] and thus it can not be defined independently of the rest of the system. The temperature change obtained with these two definitions may be very different.

As there is no unique way to define the effect of individual feedbacks on the temperature change, we reformulate the question as: knowing the global temperature change, what is the part of this temperature change that is due to each feedback? In other words, we impose that the sum of the different temperature changes ∆T s,x associated with each feedback x plus the temperature change ∆T s,P associated with the Planck response equals the total temperature change ∆T s :

∆T s = ∆T s,P +

x =P ∆T s,x . (9) 
From Eq. 5, it follows that:

∆T s,x = g x 1 -g ∆T s,P = g x ∆T s for x = P. (10) 
This expression can also be directly obtained by noting that ∆T s (Eq. 5) can not be directly decomposed into additive contributions associated with each feedback, whereas the difference ∆T s -∆T s,P can. This new definition leads to partial temperature changes that have some interesting properties. If the feedback parameter λ x of a feedback x is multiplied by a factor α and the total gain g is unchanged (in this case, other feedback parameters have also to be modified), the temperature change ∆T s,x associated with this feedback x is multiplied by α.

If the feedback parameters of two feedbacks x and y are both multiplied by a factor α, the ratio ∆Ts,x ∆Ts,y is not modified. If the feedback parameters of all the feedbacks are multiplied by a same factor α, the ratio ∆Ts,x P y =P ∆Ts,y , i.e. the relative fraction of the temperature change due to each feedback x is not modified. Therefore this definition of the partial temperature change allow us to compare and to add the contribution of the various feedbacks to the temperature response.

It is important to note that the temperature change associated with the Planck response (Eq. 4) and the one associated with each feedback x (Eq. 10) are of different nature owing to the very specific role of the Planck response (the "basic" response on which the others are feedbacks). Equation 10may also be written as follow:

λ P ∆T s,x = -λ x ∆T s for x = P (11)
In this equation, the left hand side is the change of the TOA flux due to the partial temperature change ∆T s,x if the temperature change was uniform and affecting only the thermal emission. The right hand side is the change of the TOA flux ∆F t,x due to the total temperature change ∆T s through the feedback x. The temperature change ∆T s,x associated with a feedback x is the temperature change that would be necessary to produce the same perturbation ∆F t,x of the TOA flux through thermal emission. This illustrates how the Planck response compensates the flux disequilibrium associated with each feedback.

b. Transient temperature change

Without dealing with the complexity of the feedback analysis under transient conditions (e.g. [START_REF] Hallegatte | An elicitation of the dynamic nature of water vapor feedback in climate change using a 1D model[END_REF], we now consider the ocean response in a very simple way in order to quantify the feedback processes in transient runs using the same feedback framework as above. Following [START_REF] Gregory | The climate response to CO 2 of the Hadley Centre coupled AOGCM with and without flux adjustment[END_REF], we assume that in transient experiments in which the forcing increases regularly with time, the disequilibrium ∆F t of the net flux at the TOA is equal to the ocean heat uptake and is related to the surface temperature change ∆T s by: ∆F

t = -κ∆T s ( 12 
)
where κ is the ocean heat uptake efficiency (< 0). This assumption is common and useful despite its limited validity. For instance, it is valid neither when the climate tends toward equilibrium (∆T s increases slowly whereas ∆F t decreases to zero) nor immediately after applying an abrupt forcing (∆T s ≈ 0 whereas ∆F t ≈ ∆Q t ). Using Eq. 1 and 12, the transient temperature change (also called the transient climate response, TCR) can be expressed as

∆T t s = - ∆Q t λ + κ (13) 
Although the ocean heat uptake is not a feedback, the only difference between the expression of the equilibrium (Eq. 2) and transient (Eq. 13) temperature changes is that in the later one, the ocean heat uptake efficiency κ is added to the total feedback parameter λ . Using the same approach as for the equilibrium temperature, we thus require the total temperature change ∆T s to be the sum of the temperature change due to the Planck response, climate feedbacks and ocean heat uptake. We obtain the same equation as for the equilibrium temperature, except that the ocean uptake efficiency has to be added to the sum over x in Eq. 6 and 9. The contribution ∆T s,x of a feedback x to the global temperature change is then given by Eq. 10 where the gain g is replaced by g = g + g o with g o = -κ λ P and the contribution of the ocean heat uptake is given by ∆T s,o = go 1-g ∆T s,P . Because of the ocean heat uptake, g differs from g and the transient temperature change ∆T t s,x associated with a feedback x differs from that at equilibrium ∆T e s,x . The transient temperature change ∆T t s also differs from that at equilibrium ∆T e s , and a direct consequence of Eq. 10 is that the contribution of a feedback x to the global temperature change is the same in both equilibrium and transient conditions: 

∆T e s,x

CMIP3/AR4 AOGCMs

We now apply the above decomposition to the global surface temperature response to a CO 2 doubling predicted by an ensemble of 12 coupled atmosphere-ocean GCMs (AOGCMs) participating in the third Coupled Model Intercomparison Project (CMIP3-AR4) [START_REF] Meehl | Overview of the Coupled Model Intercomparison Project[END_REF]Randall et al. 2007a). For this purpose, we need for each model the global mean values of the radiative forcing, of the climate feedback parameters and of the ocean heat uptake efficiency.

a. 2×CO 2 radiative forcing

In this study we use the radiative forcing for a CO 2 doubling reported by [START_REF] Forster | Climate forcings and climate sensitivities diagnosed from coupled climate model integrations[END_REF] and Randall et al. (2007b). These forcings have been computed after stratospheric adjustment, in all sky conditions and are averaged over the globe and over a year (Table 1). For the 12 GCMs considered here, the multi-model average of the net radiative forcing (3.71W.m -2 ) is very close to previous [START_REF] Myhre | New estimates of radiative forcing due to well mixed greenhouse gases[END_REF] results, and the relative inter-model standard deviation is about 6% (Table 2).

In another intercomparison study, [START_REF] Collins | Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)[END_REF] obtained for 16 GCMs an intermodel spread of the net radiative forcing as large as 15% (Randall et al. 2007a). These forcing have been computed at 200hPa, for a unique atmospheric profile (mid latitude summer climatological conditions), in clear sky conditions and without any stratospheric adjustment. When compared with [START_REF] Forster | Climate forcings and climate sensitivities diagnosed from coupled climate model integrations[END_REF] results, the relative values of the inter-model standard deviation of the longwave (LW) forcing are similar in both studies (8%, Table 1). This is not the case in the shortwave (SW) domain and the difference is even larger for the net radiative forcing. In the results of [START_REF] Collins | Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)[END_REF], as reported by Randall et al. (2007a), the standard deviation of the net forcing is larger than the quadratic sum of the standard deviation of the SW and LW forcings, which indicates that the SW and LW inter-model differences are positively correlated. The opposite is found in [START_REF] Forster | Climate forcings and climate sensitivities diagnosed from coupled climate model integrations[END_REF], which indicates that the error in the SW and LW domains are anti-correlated, and the stratospheric adjustment can explain part of it. We believe that the inter-model spread of the forcing reported by [START_REF] Forster | Climate forcings and climate sensitivities diagnosed from coupled climate model integrations[END_REF] is the most relevant for our study because the global warming estimates are derived from global simulations including clouds and a stratospheric temperature response.

All contributions to the global warming ∆T s are proportional to ∆T s,P (Eq. 10), and therefore to the forcing ∆Q t (Eq. 4). Part of inter-model differences in these contributions may thus arise from inter-model differences in the radiative forcing. To quantify this part, for each model we compute ∆T s,P for a reference forcing value ∆Q r t (set to the multi-model mean forcing estimate, namely 3.71W.m -2 , Table 1) and we add a term which represents the impact on ∆T s of the discrepancy δQ t between the actual forcing of each model and the reference value:

∆T s = 1 1 -g -∆Q r t λ P + 1 1 -g -δQ t λ P (15) 
b. Feedback parameters

As reviewed by different authors (e.g. [START_REF] Soden | On the use of cloud forcing to estimate cloud feedback[END_REF][START_REF] Stephens | Cloud feedbacks in the climate system: a critical review[END_REF][START_REF] Bony | How well do we understand and evaluate climate change feedback processes?[END_REF]), several approaches have been followed to decompose the total feedback parameter into its several components (water vapor, clouds, surface albedo...), each method having its own strengths and weaknesses. [START_REF] Soden | An assessment of climate feedbacks in coupled ocean atmosphere models[END_REF] computed these feedback parameters for 12 CMIP3/AR4 models (Table 1), using the SRES-A1B simulations, and their results are fairly consistent with previous results obtained by [START_REF] Colman | A comparison of climate feedbacks in general circulation models[END_REF] with older GCMs (cf. [START_REF] Bony | How well do we understand and evaluate climate change feedback processes?[END_REF]. The multi-model mean and standard deviation of the total feedback parameters ( λ = -1.3 W.m -2 , σ λ = 0.3 W.m -2 , Table 3) are consistent with the values obtained by [START_REF] Forster | Climate forcings and climate sensitivities diagnosed from coupled climate model integrations[END_REF] for a larger set of CMIP3/AR4 models and for different ensembles of runs: When analyzing the 1%yr -1 increase of CO 2 simulations performed by 20 AOGCMs, they found a multi-model mean value of the total feedback parameter λ = -1.4 W.m -2 and a standard deviation σ λ = 0.3 W.m -2 . When considering another set of experiments, namely doubled CO 2 equilibrium runs from 11 atmospheric GCMs coupled to slab oceans, they found a mean value λ = -1.2 W.m -2 and a standard deviation σ λ = 0.3 W.m -2 .

c. Ocean heat uptake efficiency

We computed the ocean heat uptake efficiency κ using Eq. 12. For each model, the TOA flux F t and the surface air temperature T s were averaged over the 20-year period centered at the time of CO 2 doubling, that is year 70 for the 1%yr -1 simulation. The differences with the corresponding period of the control simulation were performed and the values of κ reported in Table 1.

d. Representativity of the ensemble of models considered

Using the values reported in Table 1, the equilibrium and transient temperature changes are computed for each of the 12 models as ∆T e s = -∆Q t /λ and ∆T t s = -∆Q t /(λ + κ) respectively. This leads to a multi-model mean ± 1 standard deviation of the equilibrium temperature change of 3.1 ± 0.7 • C. These numbers are comparable with those of the AR4 equilibrium climate sensitivity estimates derived from 18 atmospheric GCMs coupled to slab oceans (3.3 ± 0.7 • C, [START_REF] Meehl | Global climate projections[END_REF]). For the transient temperature change, we obtain 2.0 ± 0.3 • C, which is closed to the AR4 values reported on the basis of 19 coupled atmosphere-ocean GCMs: (1.8 ± 0.3 • C, [START_REF] Meehl | Global climate projections[END_REF]). As far as global temperature change is concerned, the sub-set of 12 models considered here is therefore representative of the larger set of CMIP3/AR4 models.

Results

a. Decomposition of equilibrium temperature changes

The multi-model mean of the equilibrium temperature change and the contributions associated with the Planck response (Eq. 4) and each feedback (Eq. 10), computed for a reference radiative forcing, are shown in Fig. 1-a and reported in Table 3. On average, for the set of models considered here, the Planck response represents about a third of the total temperature response (1.2 • C vs 3.1 • C), whilst climate feedbacks account for two thirds of it.

The increase of water vapor with warming enhances the absorption of longwave radiation and enhances the warming by 1.7 • C. Lapse rate changes are associated with a negative feedback, owing to the moist adiabatic structure of the tropical atmosphere. Due to the strong anticorrelation between these two feedbacks, it is convenient to consider the sum of both of them (WV+LR) [START_REF] Soden | An assessment of climate feedbacks in coupled ocean atmosphere models[END_REF]. This combined feedback increases the temperature by 0.9 • C, slightly less than the Planck response. The cloud feedback's contribution to the warming is, on average, slightly weaker than that of the WV+LR feedback, and the surface albedo feedback's contribution is the smallest.

However Fig. 2 shows that for each feedback there are some inter-model differencies, especially for the cloud feedback contribution, and that the amplitude of the equilibrium temperature change is primarily driven by the cloud feedback component. This appears also clearly when considering the inter-model standard deviation of the temperature change due to each feedback normalized by the inter-model standard deviation of the total temperature change (Fig. 1-b). The standard deviation due to cloud feedback represents nearly 70% the standard deviation of the total temperature change. The temperature spread due to the radiative forcing is comparable to the spread due to the WV+LR feedback and the spread due to the surface albedo feedback is the smallest.

b. Decomposition of transient temperature changes

The transient temperature changes (or transient climate responses, TCR) from individual GCMs, as well as the contribution of the various feeedbacks are displayed in Fig. 3. The multi-model mean and standard deviation are displayed in Fig. 4 and reported in Table 3. The temperature damping due to the ocean heat uptake is about -0.4 • C and its absolute value is comparable to the multi-model contributions of the WV+LR (0.6 • C) and cloud (0.4 • C) feedback. The mean transient temperature change is nearly 2/3 of that at equilibrium, therefore the transient temperature changes associated with each feedback scale with it (cf. Eq. 14). The inter-model standard deviation of the temperature change due to cloud feedback represents nearly 90% the standard deviation of the total temperature change (Fig. 4-b). Like for the equilibrium case, cloud feedbacks thus constitute the main source of spread of the transient temperature response among GCMs. The WV+LR feedback, the ocean heat uptake and the radiative forcing constitute secondary and roughly comparable sources of spread and the surface albedo feedback constitutes the smallest one.

The inter-model standard deviation of the global temperature change may also be normalized with the multi-model mean global temperature change. This relative standard deviation is comparable in both equilibrium and transient conditions, the spread in equilibrium being slightly larger (23 % vs 16%). The same olds for the relative standard deviation of the temperature change associated with each feedback. Therefore the contribution of the various feedbacks to the total spread is, in relative terms, as important in the transient case than in the equilibrium case.

Summary and conclusion

In this paper we propose a simple decomposition of the equilibrium and transient global temperature responses to an external forcing into a sum of contributions associated with the Planck response, the different climate feedbacks, and eventually the ocean heat uptake. This allows us to quantify how the various processes contribute to the multi-model mean and inter-model spread of the global temperature change. This is illustrated (Figures 1 to 4) using published results for the feedback parameters and the radiative forcings [START_REF] Soden | An assessment of climate feedbacks in coupled ocean atmosphere models[END_REF][START_REF] Forster | Climate forcings and climate sensitivities diagnosed from coupled climate model integrations[END_REF]Randall et al. 2007b) and diagnosing the ocean heat uptake efficiency from model outputs. In transient simulations, the absolute values of the contributions of the WV+LR feedback, the cloud feedbacks and the ocean heat uptake to the global temperature response appears to be comparable (Fig. 4-a). However, for the ensemble of models considered here, the spread of the transient temperature change due to inter-model differences appears to be primarily due to cloud feedback. The spread due to WV+LR feedback, ocean heat uptake or radiative forcing appears to be of the same order of magnitude and roughly one third of the spread due to the cloud feedback (Fig. 4-b). Note that the radiative forcing associated with non-CO 2 greenhouse gases and aerosols is more uncertain than that associated with CO 2 [START_REF] Forster | Changes in atmospheric constituents and in radiative forcing[END_REF]. Therefore, the intermodel spread of radiative forcing estimates might be larger for 20 th century simulations or for climate change simulations based on emission scenarios that include changes in aerosol concentrations than in this study. This difference is mitigated, however, by the fact that the relative contribution of aerosols vs greenhouse gases is likely to decrease in the future [START_REF] Dufresne | Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20 th and the21 st century[END_REF].

Our analysis shows that the contribution of each feedback and of the radiative forcing to inter-model differences in temperature change is roughly similar, in a normalized sense, in equilibrium and transient simulations (Fig. 1-b and4-b). In particular, cloud feedbacks appear to be the main source of spread in both cases. Inter-model differences in cloud feedbacks have been shown to arise primarily from the response of low level clouds [START_REF] Bony | Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models[END_REF][START_REF] Webb | On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles[END_REF][START_REF] Wyant | A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity[END_REF]. Understanding and evaluating the physical processes that control these cloud responses thus appears to be of primary importance to better assess the relative credibilty of climate projections from the different models. 
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 1234 Fig. 1. For a CO 2 doubling, (a) multi-model mean ± 1 standard deviation (thick line) and 5%-95% interval (thin line) of the equilibrium temperature change (∆T e s ), and contributions to this temperature change associated with the Planck response, combined water vapor and lapse rate (WV+LR) feedback, surface albedo feedback and cloud feedback. (b) inter-model standard deviation of the temperature change estimates associated with the radiative forcing, the Planck response and the various feedbacks normalized by the inter-model standard deviation of the equilibrium temperature change ∆T e s reported in (a).
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 1 ∆T t s .-2 ) (W.m -2 .K -1 ) (W.m -2 .K -1 ) 2×CO 2 radiative forcing ∆Q t , total feedback parameter λ and ocean heat uptake efficiency κ estimates of the 12 CMIP3/AR4 models used in this paper, and their multi-model mean and standard deviation. LW SW Net mean std. dev. mean std. dev. mean std. dev.

		∆Q t	λ	κ
	model (W.m CNRM-CM3 3.71	-1.17	-0.80
	GFDL-CM2.0	3.50	-1.18	-0.53
	GFDL-CM2.1	3.50	-1.37	-0.81
	GISS-ER	4.06	-1.64	-0.92
	INM-CM3.0	3.71	-1.46	-0.56
	IPSL-CM4	3.48	-0.98	-0.79
	MIROC3.2(medres)	3.60	-0.91	-0.77
	MRI-CGCM2.3.2	3.47	-1.50	-0.61
	ECHAM5/MPI-OM	4.01	-0.88	-0.57
	CCSM3	3.95	-1.62	-0.70
	PCM	3.71	-1.53	-0.62
	UKMO-HadCM3	3.81	-0.97	-0.59
	multi-model mean	3.71	-1.27	-0.69
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 2 Multi-model mean and inter-model standard deviation of the longwave (LW), shortwave (SW) and net radiative forcing (W.m -2 ) for a CO 2 doubling computed by GCMs in two inter-comparison studies, with two different numerical set-up (see text). In parenthesis, the standard deviation is computed relative to the mean.
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 3 Multi-model mean and inter-model standard deviation of total feedback parameter λ and its components λ x (W.m -2 .K -1 ), the ocean heat uptake efficiency κ (W.m -2 .K -1 ) and the 2×CO 2 radiative forcing ∆Q t (W.m -2 ), and their associated equilibrium and transient temperature changes ( • C). The multi-model mean and standard deviation of the equilibrium (∆T e s ) and transient (∆T t s ) temperature changes ( • C) are also given
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