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Abstract

This paper deals with quadratic equivalence, nor-
mal forms of observability, characteristic matrices and
normal quadratic numbers for nonlinear Single-Input
Single-Output (SISO) systems. We investigated both
cases; nonlinear systems linearly observable and non-
linear systems with one linear unobservable mode.
Particularly, the e¤ect of the normal quadratic num-
bers on the observer design is pointed out. Finally, a
faster observability analysis is proposed using char-
acteristic matrices and normal quadratic numbers.
Throughout the paper, academic examples as well as
bio-reactor example highlight our purpose.
Key Words: Observability, Poincaré�s normal form,
observability singularity.

1 Introduction

The fact of being able to write down explicit solu-
tions for linear di¤erential equations allows a com-
plete analysis of their behaviors. For this reason, the
linearization problem of nonlinear systems, at least in
the neighborhood of a singular point, is one approach
for studying nonlinear systems. A rigorous mathe-
matical technique which allows substantial progress
in this approach is the normal form method. This
method was �rst addressed by Poincaré (see [P]).
Poincaré�s theorem, which applies to analytic sys-
tems, shows that when certain non-resonance condi-
tions are satis�ed there is an analytic change of co-
ordinates which transforms a nonlinear system into
a linear one. For linearly controllable and uncontrol-
lable systems, homogeneous approximation was �rst
addressed by A. Krener in [K]. His idea is to apply
Poincaré�s technique by using not only a di¤eomor-
phism but also a state feedback. Lately, linearization
and Poincaré�s method have been used for observabil-
ity problems. More precisely, consider the following

system: � :
x = f(x)
y = h(x)

(1)

where vector �elds f : IR n ! IR n and h : IR n !
IRm are assumed to be smooth where f(0) = 0 and
h(0) = 0:
The observability problem is whether we can es-

timate the current state x(t) from past observations
y(s); s � t without measuring all state variables. It
is well-known that, by appropriate signal processing,
we are often able to obtain good estimates of all state
variables from measured outputs. The algorithm that
performs this signal processing is called an observer.
In the case of observable linear systems: f (x) = Ax
and h (x) = Cx where A 2 IR n�n and C 2 IRm�n

coupling the internal model and the innovation cor-
rection leads to the observer equations:� :bx = Abx+K(y � by)by = Cbx
where bx is the estimate state and by is the expected
observation, K is the observer gain matrix. The es-
timate error e := x � bx is driven by the following
equation:

:
e = (A�KC)e:

If the pair (A;C) is observable, then we can choose
the observer poles of A�KC such that : e(t)! 0 as
t! +1:
Motivated by these considerations, the observer lin-

earization problem was raised. Is it possible to �nd
a state neighborhood U of 0 in IR n, and a change of
state coordinates z = �(x) such that dynamic (1) is
linear driven by nonlinear output-injection:

:
z = Az � �(y): (2)

where � : IRm ! IR n is a smooth vector �eld.
Note that the output-injection term is canceled in
the observation error dynamic for system (2).
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The di¤eomorphism � must satisfy the following
�rst-order partial di¤erential equation:

@�
@x
(x)f(x) = A�(x)� �(h(x)): (3)

Krener and Isidori in [KI] showed that equation
(3) has a solution if and only if the following two
conditions are satis�ed:
i) the codistribution span

n
dh; dLfh; :::; dL

n�1
f h

o
is of rank n at 0;

ii)
h
� ; adkf�

i
= 0 for all k = 1; 3; :::; 2n�1 where � is

the vector �eld which ful�ls the following equations:

dLkfh(�) = 0 for 0 � k � n� 2
dLn�1f h(�) = 1

Moreover in [KR], Krener and Respondek relax the
above conditions by yielding a di¤eomorphism on the
output. Precisely, if

Condition 1 i) For n even, it is necessary that for
k = 1 : n� 1

[�1; �k] = 0 for k = 1 : n� 1 and
[�1; �n] = �(y)�1

ii) For n odd, it is necessary that for k = 1 : n� 1

[�1; �n] = [�1; �k] = [�2; �k] = 0 and
[�2; �n]� �(y)�1 2 Span (�1)

these conditions enable us to �nd a local di¤eomor-
phism on the output F (y). Then, we consider the
following dynamic system:� :

x = f(x)
y = F (y)

(4)

where the dynamic is the same as in (1) and the out-
put replaced by F (y) :Therefore, we say that system
(1) is linearizable in the sense of Krener-Respondek
if and only if system (4) is linearizable in the sense
of Krener-Isidori.

Remark 2 This paper deals with system (1) when
the Condition 1 is not veri�ed and with system (4)
when the Condition 1 is veri�ed. Consequently, the
proposed approach considers systems (1) or (4) which
is not exactly linearizable.

An analytical approach to solve equation (3) is used
by Kazantzis and Kravaris [KK2]. They considered
the restricted form of this problem, where the output-
injection is linear, �(y) = By: They showed, using

a particular form of the Lyapunov Auxiliary Theo-
rem [L] that (3) has a unique solution under certain
assumptions. Recently, under very general condi-
tions and for �(y) unspeci�ed, Krener and Xiao [KX]
proved the existence and uniqueness of this solution.
This allows us to design an observer for a larger class
of nonlinear systems.
In this paper and in the preliminary version

[BBBT1], by using quadratic transformations mod-
ulo input-output injection, we put linearly observable
and linearly unobservable in one direction systems in
particular normal forms. In particular, we are inter-
ested in the characterization of quadratic equivalence
modulo input-output injection of systems for which
we can design an observer. We show that every sys-
tem lies in an equivalence class and is characterized
by a list of relatively easy computable numbers. Rig-
orously speaking, our problem statement is as follows:
1) How can we characterize the fact that a system is

quadratically linearizable modulo an input-output in-
jection? If it is not the case, then what is its quadratic
normal form?
The answer to both questions is given in Theorem

12 for nonlinear systems linearly observable and in
Theorem 14 for nonlinear systems with one linear
unobservable mode.
2) How can we compute normal quadratic numbers,

i.e. quadratic coe¢ cients which are not equal to zero
in the quadratic normal form?
The answer to this question is given in Proposition

21 for nonlinear systems linearly observable and in
Proposition 27 for nonlinear systems with one linear
unobservable mode.
Our motivations to use this kind of observability nor-
mal forms are:
If the linear approximation is observable the pro-

posed observability normal form highlights the struc-
tural obstruction to transform the system in well
known injection form. Obviously the approximation
is only valid locally, but thanks to this form, it is pos-
sible to analyse which type of obstructions we have.
Nevertheless, the main interest of the proposed ob-
servability normal form is when the linear approxima-
tion is unobservable, in this case thanks to the nor-
mal form and more particularly due to the resonant
terms it is possible to determine if or not the system
is observable thanks to high order terms (see Remark
15). So from this analysis in the paper it is shown
that it is possible to design an observer (obviously
only locally valid). We think that such observability
bifurcation (or more simply observability singularity)
may be very well analysed by the observabilty normal
form and this not only at the point x = 0 and u = 0
but around all observabilty singularity point thanks
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to a coordinate change and output set up. The study
of such normal form around a manifold of observ-
abilty singularity must be one of our future works.
Nevertheless, the possibility to design an observer of
the same dimension as that of the system, instead of
searching for the information in the extra derivative
(see the de�nition of weakly locally observability), is
to keep the consistence with respect to a global ob-
server design (we have just to switch o¤ such observer
close to the singularity, but without dimension prob-
lem). The normal form may be also used to analyse
if the system stays or not in observability singularity
domain.

The paper is organized as follows. Notations and
the de�nition of the quadratic equivalence modulo
an input-output injection are presented in section
2. In section 3, we give homological equations and
quadratic normal forms for nonlinear systems in both
cases: nonlinear systems linearly observable and non-
linear systems with one linear unobservable mode. In
the same section, we give two illustrative examples.
In the last section, we give an algorithm to compute
normal quadratic numbers directly and an example
to check the e¢ ciency of this algorithm.

2 Notations and de�nitions

Throughout this paper, we consider in a state neigh-
borhood U � IR n of the origin, a nonlinear SISO
system in the following form:

�
_� = f(�) + g(�)u
y = C�

(5)

where, vector �elds f; g : U � IR n �! IR n are
assumed to be real and analytic. We assume that
0 is an equilibrium point i.e. f (0) = 0: We set by
de�nition A := @f

@� (0) and B := g(0). Then, system
(6) can be rewritten in the following form:

�
_z = Az +Bu+ f [2](z) + g[1](z)u+O3

y = Cz
(6)

where:

f [2] (z) =

0BBBB@
f
[2]
1 (z)

f
[2]
2 (z)
...

f
[2]
n (z)

1CCCCA ;

g[1] (z) =

0BBBB@
g
[1]
1 (z)

g
[1]
2 (z)
...

g
[1]
n (z)

1CCCCA and

O3 = O3 (z; u)

where for all 1 � i � n, f [2]i (z) and g[1]i (z) are re-
spectively homogeneous polynomials of degree 2, re-
spectively 1 in components of z.

De�nition 3
i) The component f [2](z)+g[1](z)u is the quadratic

part of system (6).
ii) A quadratic transformation is a di¤eomorphism

of the form:
x = z � �[2] (z)

where �[2] (z) =
�
�
[2]
1 (z) ; ::::::;�

[2]
n (z)

�T
and for all

1 � i � n; �
[2]
i (z) is a homogeneous polynomial of

degree two with respect to z:

Now consider the following vector spaces

E1 = IR
n [y] and E2 = IR

n
�
y2
�

whose elements are respectively

(d1; :::; dn)
T
y and (e1; :::; en)

T
y2

where

(e1; :::; en)
T and (d1; :::; dn)

T 2 IR n:

Finally, for a �xed input u we set E = E2 + uE1:
For solving the problem stated above, we need the

following assumption:

Assumption 4 The output is always taken equal to
the �rst state component. Consequently, the di¤eo-
morphism (x = z ��[2] (z)) is such that �[2]1 (z) = 0:

This assumption is legitimate as soon as for (1)
does not ful�l Krener-Respondek conditions. How-
ever, for system which ful�ls Condition 1 we do the
assumption for the new output y = F(y)

Page 3



De�nition 5
1) Consider a second system:� :

x = Ax+Bu+ �f [2](x) + �g[1](x)u+O3

y = Cx
: (7)

If here exists a quadratic transformation

x = z � �[2] (z)

such that, �f [2](x) + �g[1](x)u equals f [2](z) + g[1](z)u
modulo E, then we say that (7) and (6) are quadrat-
ically equivalent modulo input-output injections.
2) If �f [2](x)+�g[1](x)u is de�ned modulo an element

of E then we say that (6) and (7) are quadratically
equivalent modulo an input-output injection.
3) If �f [2](x) + �g[1](x)u 2 E we say that system (6)

is quadratically linearizable modulo an input-output
injection.

Remark 6 If (A;C) is an observable pair, then we
can transform system (6) into the following form [B]:8<: _z = Aobsz +Bobsu+ f

[2](z) + g[1](z)u+O3

+O3 (z; u)
y = Cobsz

(8)
where:

Aobs =

0BBBBBB@

a1 1 0 � � � 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
an�1 0 � � � 0 1
an 0 � � � 0 0

1CCCCCCA ;

Bobs =

0BBBBBB@

b1
b2
...
...
bn

1CCCCCCA and

Cobs =
�
1 0 ::: 0

�
Remark 7 If (A;C) has one unobservable real mode,
then we can transform system (6) into the following
form [B]:8>>><>>>:

_~z = Aobs~z +Bobsu+ ~f [2](z) + ~g[1](z)u
+O3 (z; u)

_zn = �nzn +
Pn�1

i=1 �izi + bnu+ f
[2]
n (z)

+g
[1]
n (z)u+O

3 (z; u)
y = Cobs~z

(9)

where:

~z =

0BBBBBB@

z1
z2
...
...

zn�1

1CCCCCCA ; z =
�

~z
zn

�
;

Aobs =

0BBBBBB@

a1 1 0 � � � 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
an�2 0 � � � 0 1
an�1 0 � � � 0 0

1CCCCCCA ;

Bobs =
�
b1 b2 ::: bn�1

�T
and

Cobs =
�
1 0 ::: 0

�
:

Throughout the paper, we deal with systems in
forms (8) and (9).

The following gives a de�nition of what we will call
quadratic normal forms throughout this paper.

De�nition 8
1)We say that system (8) is in its quadratic normal

form if:
for 1 � j � n� 1:(
�
[2]
fgj

=
Pn

i=2 k1;ixiu and

�
[2]
fgn

=
Pn

j�i=2 hi;jxixj +
Pn�1

i=2 kn;ixiu
(10)

where �[2]fgj = f
[2]
j (z) + g

[1]
j (z)u:

Coe¢ cients: hi;j for 2 � i � j � n and kn;i for
2 � i � n� 1 are called normal quadratic numbers.
2) Through an abuse of language1 , we say that sys-

tem (9) is in its normal form if:
for 1 � j � n� 2;:8>>>><>>>>:
�
[2]
fgj

=
Pn

i=2 k1;ixiu and

�
[2]
fgn�1

=
Pn

j�i=2 hi;jxixj + h1;nx1xn

+
Pn

i=2 kn�1;ixiu;

�
[2]
fgn

=
Pn

j�i=2 li;jxixj +
Pn

j=2 l1;jx1x

+
Pn

i=2 kn;ixiu

(11)

Coe¢ cients: hi;j for 2 � i � j � n and kn�1;i for
2 � i � n� 1 are called normal quadratic numbers:

Throughout this work we will use matrix calculus
to compute normal quadratic numbers, for this reason
we adopt the following notations:

1The linear unobservable part has not yet been reduced.
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�
[2]
i (z) = zT�iz and f

[2]
i (z) = zT fiz :

where for all 1 � i � n; �i and fi are symmetric ma-
trices. We make the notational �[2]i (z) and f

[2]
i (z) for

all 1 � i � n of indicating quadratic functions and
the notational �i and fi of indicating the correspond-
ing matrices. In the same way, for all 1 � i � n, the
1 � n vectors gi = (gi;1; ::::; gi;n) are associated with
functions g

[1]
i (z) i.e. g[1]i (z) = zT gi = gTi z: With

those notations, we have:

� = (�1; :::::;�n)
T ; f = (f1; ::::; fn)

T

and g = (g1; :::::; gn)
T :

3 Quadratic Normal Forms

In this section we will state two theorems concern-
ing the setting of systems (8) and (9) in their nor-
mal forms (10) and (11) respectively. Each theorem
is followed by an illustrative example. The end of
this section is devoted to the necessary and su¢ cient
conditions to cancel the quadratic terms in the last
dynamic of normal form (11). With these intentions,
we will start by giving the necessary and su¢ cient
algebraic conditions under which two systems in the
form of (6) are quadratically equivalent modulo an
input-output injection.

Proposition 9 System (6) is quadratically equiva-
lent modulo an input-output injection to system (7),
if and only if the following two homological equations
are satis�ed:

i) A�[2](z)� @�[2]

@z
Az = �f [2](z)� f [2](z) modulo E2

ii) � @�[2]

@z
B = �g[1](z)� g[1](z) modulo E1

where @�[2]

@z Az :=

�
@�

[2]
1 (z)
@z Az; ::::::;

@�[2]n (z)
@z Az

�T
and

for all 1 � i � n
@�

[2]
i (z)

@z is the Jacobian matrix of

�
[2]
i (z) :

Now we will express these homological equations
in terms of matrices, this allows us to compute in
section 4 normal quadratic numbers. For this, we set
by de�nition

8<:
AT� :=

�
AT�1; :::::; A

T�n
�
;

BT� :=
�
BT�1; :::::; B

T�n
�
;

and �A := (�1A; :::::;�nA)

Let � = (�1; :::::; �n)
T and  = (1; :::::; n)

T

where for all 1 � i � n, we shall frequently make
the notational abuse

�i : =

0BBBB@
�1;i 0 ::: 0

0 0
. . . 0

...
...
. . .

...
0 0 ::: 0

1CCCCA and

i : =
�
1;i; 0; :::::; 0; 0

�
where �i and i 2 IR . With this notation we have:
�1;iy

2 = zT�iz 2 E2 and 1;iy = iz 2 E1:
The next result gives the matrix version of Propo-

sition 9.

Corollary 10 System (6) is quadratically equivalent
modulo an output-input-injection to system (7), if and
only if there exist � and  such that:

���
�
AT�+ �A

�
= �f � f + �

�2BT� = �g � g + 

where
i) in the observable case

�� = (�2; :::::;�n; 0) ;

ii) in the unobservable case

�� =
�
�2; :::::;�n�1; 0; ��n

�
with ��n =

Pn
i=2 �i�i:

Proof. Consider the homological equations:

i) �f [2](z)� f [2](z) + �[2] (z1) = A�[2](z)� @�[2]

@z
Az

ii) �g[1](z)� g[1](z) + [1](z1) = � @�[2]

@z
B

Using matrix notations:

�[2](z) =
�
zT�1z; ::::; z

T�nz
�T
and

�
[2]
(z) = A�[2](z):

i) As in the linearly observable case

A =

0BBBBBB@

a1 1 0 � � � 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
an�1 0 � � � 0 1
an 0 � � � 0 0

1CCCCCCA ;
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then ��[2](z) =
�
�
[2]
2 (z); :::::;�

[2]
n (z); 0

�
because

�
[2]
1 (z) = 0:

ii) For the unobservable case

A =

0BBBBBBBB@

a1 1 0 � � � 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
an�2 0 � � � 0 1
an�1 0 � � � 0 0
a1 �2 � � � � � � �n

1CCCCCCCCA
;

we obtain

��(z) =
�
�
[2]
2 (z) ; :::::;�

[2]
n�1 (z) ; 0;

��[2]n (z)
�

where

��[2]n =
nX
i=2

�i�
[2]
i :

Now,

@�[2](z)

@z
Az =

 
@�

[2]
1 (z)

@z
Az; :::;

@�
[2]
n (z)

@z
Az

!T
;

as for all i 2 [1; n];

�
[2]
i (z) = z

T�iz

then

@�[2](z)

@z
Az =

0B@ zTAT�1z + z
T�1Az

...
zTAT�nz + z

T�nAz

1CA
T

which by de�nition is:

@�[2](z)

@z
Az = zT (AT�+ �A)z:

In the same way we have

@�
[2]
i (z)

@z
B = BT�iz + z

T�iB = 2B
T�iz

because �i is symmetric. Using previous results, in
homological equations of Proposition 9, we obtain
equations stated in Corollary 10:

f � f + � = ���
�
AT�+ �A

�
�g � g +  = �2BT�

3.1 Nonlinear systems linearly ob-
servable case

In this subsection, we will compute quadratic normal
form for linearly observable systems. It is clear from
the structure of the quadratic normal form (10) that
a system is quadratically linearizable if and only if
all its normal quadratic numbers are equal to zero.
Thus, a system in the form (8) is quadratically lin-
earizable if and only if its quadratic part satis�es the
homological equations of Corollary 10 where f = 0
and g = 0. Now, under the Assumption 4 and thanks
to the structure of matrix Aobs; homological equa-
tions for a quadratically linearizable system which is
linearly observable are:8<:

(a.1) for i 2 [2; n]
�i =

�
ATobs�i�1 +�i�1Aobs

�
+�fi�1

(a.2) 0 =
�
ATobs�n +�nAobs

�
+�fn

and8<:
(b.1) �g1 + 1 = 0

(b.2) for i 2 [2; n] ; 2BT�i +�gi = 0

where �fj = �fj + �j and �gj = �gj + j :
Equation (a:1) gives explicitly �i for all 2 � i � n:

Then all quadratic terms in the (n�1) �rst dynamics
are deleted.

Remark 11 Moreover, equation (a:2) is equivalent
to the following equation:

n�1X
s=0

0@ sX
j=0

Csj
�
AT
�s�j �

�fn�s
�
Aj

1A = 0

and equations (b:1) and (b:2) are re-written as fol-
lows:8<:

(b.1) � g1 + 1 = 0
(b.2) for i 2 [2; n]
2BT Pi�2

k=0

Pk
j=0 C

k
j

�
AT
�k�j

�fi�1�kA
j +�gi = 0

Under Assumption 4, using Proposition 9, we ob-
tain the following theorem which gives normal forms
for nonlinear linearly observable systems.

Theorem 12 There exists a quadratic di¤eomor-
phism which transforms the quadratic part of system
(8) into the quadratic normal form (10) modulo E:

Let us consider an example to illustrate the above
theorem:
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Example 13 Consider the following system:8><>:
:
z1 = a1z1 + z2 + k1z

2
2 + l1z

2
3

:
z2 = a2z1 + z3 + k2z

2
2 + l2z

2
3

:
z3 = a3z1 + k3z

2
2 + l3z

2
3

y = z1:

(12)

Homological equations of Proposition 9 for system
(12) are:8>><>>:

�
[2]
1 (z) = 0

�
[2]
2 (z) = �k1z22 � l1z23 + �1;1z21
�
[2]
3 (z) = 2�1;1z1 (a1z1 + z2)� 2k1z2 (a2z1 + z3)

�2l1a3z1z3 � k2z22 � l2z23 + �1;2z21

then by choosing:

�1;1 = l1a3a1 + 2k1a2 + l2a3
and
�1;2 = �3�1;1a1 + k1a2a1 + k2a2 + k1a3;

the quadratic normal form of system (12) is:8>>><>>>:
:
x1 = a1x1 + x2 + �1;1x

2
1 +O

3

:
x2 = a2x1 + x3 + �1;2x

2
1 +O

3

:
x3 = a3x1 +

�
k3 � 2�1;1 + 2k1a2

�
x22 + �1;3x

2
1

+(2l1a3 + 2k2)x2x3 + (l3 + 2k1)x
2
3 +O

3

y = x1:

3.2 Nonlinear systems with one linear
unobservable mode case

In the same way as in the above subsection, under As-
sumption 4 and Proposition 9 we obtain the following
result.

Theorem 14 There is a quadratic transformation
which transforms the quadratic part of system (9) in
to the quadratic normal form (11).

Now we are ready to highlight the the usefulness of
our normal form to analyze the observability.

Remark 15
1) We call the unobservability submanifold the sub-

set Sn�1 of U given by:

Sn�1 =

8<:
x 2 U; such that
n�1P
i=1

hi;nxi + 2hn;nxn + kn�1;nu = 0

9=;
Thus, for a �xed input u; when system evolves on

Sn�1 we lose the linear and quadratic observability.
2) If x 2 Sn�1 and kn�1;n 6= 0; then with an ap-

propriate change of input u (universal input [GB]),
we can modify Sn�1 to locally restore the quadratic
observability. Moreover if kn�1;n = 0 and if there

exists i 2 [1; n] such that ki;n 6= 0, then quadratic
observability is restored.
3) If x 2 Sn�1 such that u is not a function of xn

and for all i 2 [1; n] we have ki;n = 0; then we use
coe¢ cient �n to study the detectability propriety. For
this we distinguish three cases:
a) if �n < 0 then the state xn is detectable,
b) if �n > 0 then xn is unstable and consequently

undetectable,
c) if �n = 0 we can use the center manifold theory

in order to analyze stability or instability of xn and
consequently its detectability or undetectability.

Remark 16 Let �[2](x) =
�
0; ::::;�

[2]
n (x)

�
be the

quadratic part of the di¤eomorphism which gives the
above theorem. The di¤eomorphism �

[2]
2 (x) is well

determined from f
[2]
1 (x) and for all 3 � i � n � 1,

�
[2]
i (x) is determined from f

[2]
i (x) and the derivatives

of �[2]j (x) and f
[2]
j (x) for 2 � j � i � 1: However,

the choice of �[2]n (x) is free. So it is interesting to
use �[2]n (x) to cancel quadratic terms in the last _xn
dynamic. For this �[2]n (x) must ful�l the following
equation:

�n�
[2]
n (x) +

n�1X
i=1

�i�
[2]
i (x) =

@�
[2]
n

@x
Aobsx+�

[2]
fn

(13)
where �[2]fj = �f

[2]
j (x) + �

[2]
j (x1):

Unfortunately, the above equation is not ful�lled
for arbitrary �n and (ai)1�i�n ; as we will show in
the next example.

Example 17 Consider the following system:

8>>><>>>:
:
z1 = a1z1 + z2 + k1z

2
2 + l1z

2
3

:
z2 = a2z1 + k2z

2
2 + l2z

2
3

:
z3 = �1z1 + �2z2 + �3z3 + k3z

2
2

+l3z
2
3

y = z1

: (14)

The homological equations of Proposition 9 for system
(14) are:�

�
[2]
1 (z) = 0

�
[2]
2 (z) = �k1z22 � l1z23 + �1;1z21

rewriting �[2]3 (z) = z
T�3z where:

�3 =

0@ �1;1 �1;2 �1;3
�1;2 �2;2 �2;3
�1;3 �2;3 �3;3

1A
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then, if �3 6= 0 and a2 6= 0 we obtain:0@ �1;3
�2;3
�3;3

1A =

0@ �2
l3+�1l1

�3
l3+�1l1
�3a2

(�a1�2 � �1)
� l3+�1l1

�3

1A :
If �3 6= 0, a2 6= 0 and (�3�a1)(�23�2�3a1�4a2) 6= 0,
then:0@ �1;1
�1;2
�2;2

1A =

0@ (�3 � 2a1) �2a2 0
�1 (�3 � a1) �a2
0 �2 �3

1A�1

�

0@ 2�1�1;3 � �2�1;1 + �1;2
�2�1;3 + �1�2;3
2�2�2;3 + �2k1 + k3

1A
and �[2]3 (z) cancels all quadratic terms in _z3: Finally,
choosing �1;1 = k1a2 we obtain:8>>><>>>:

:
x1 = a1x1 + x2 + �1;1x

2
1 +O

3

:
x2 = a2x1 + k2x

2
2 + (2l1�3 + l2)x

2
3 + 2l1�1x1x3

+2l1�2x2x3 +
�
�2a1�1;1 + �1;2

�
x21 +O

3

:
x3 = �1x1 + �2x2 + �3x3 +O

3

y = x1

Thus, for �3 6= 0, a2 6= 0 and

(�3 � a1)(�23 � 2�3a1 � 4a2) 6= 0

there is �[2]3 (x) which ful�ls (13).

4 Computation algorithm of
normal quadratic numbers

In this section, we give an easily implementable al-
gorithm in order to compute normal quadratic num-
bers of quadratic normal forms (10) and (11): This
allows us to de�ne the observability quadratic equiv-
alence class of a system without formally solving ho-
mological equations 9. For this, we introduce what
we call characteristic matrices, of which some coef-
�cients are the normal quadratic numbers. We con-
sider again Example 13 to show the power of this
algorithm. Moreover, for the linearly unobservable
case we point out normal quadratic numbers which
allow us to recover, at least locally, the quadratic ob-
servability, and so to be able to design an observer.
At the end of this section, we highlight our purpose
by the bio-reactor example.

4.1 Nonlinear systems linearly ob-
servable case

The next theorem explicitly gives the matrix family
(�i)1�i�n and (�i)1�i�n which transforms the system
into its quadratic normal form.

Theorem 18
i) The family (�i)1�i�n viewed as real numbers, is

the solution of the following algebraic linear system:

D

0BBBBBB@

�1;1
�1;2
...
...
�1;n

1CCCCCCA = (CF )
T (15)

where

D =

0BBBBBB@

d1;1 � � � � � � d1;n�1 1
... : : 1 0
... : : 0 0

dn�1;1 1 0 0 0
1 0 0 0 0

1CCCCCCA ;

F : =

n�1X
s=0

0@ sX
j=0

Csj
�
AT
�s�j

fn�sA
j

1A and

C = (1; 0:::::; 0) ;

and for all 1 � k � n we have0BBBBBBBBBB@

d1;k
d2;k
...
1
0
...
0

1CCCCCCCCCCA
=

0BBBBBBBBBB@

d1;k
d2;k
...

dn�(k�1); k
0
...
0

1CCCCCCCCCCA
=

n�kX
j=0

Cn�kj

�
AT
�j
×An�k�jCT

where

×=

0BBBB@
1 0 ::: 0

0 0
. . . 0

...
...
. . .

...
0 0 ::: 0

1CCCCA :
ii) For 2 � i � n, matrices �i which ful�lled equa-

tion (a:1) are:

�i =

i�2X
k=0

kX
j=0

Ckj
�
AT
�k�j �

�fi�1�k
�
Aj (16)

Remark 19 If matrix family (�i)1�i�n and
(�i)1�i�n which are given in Theorem 18 below ful�l
equations (a:2), (b:1) and (b:2) then system (8) is
fully quadratically linearizable. However, in general
these equations do not admit solutions. We use their
left members to give the following de�nition:
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De�nition 20 We call characteristic matrices asso-
ciated with system (8) the following matrices:

M =
Pn�1

s=0

�Ps
j=0 C

s
j

�
AT
�s�j �

�fn�s

�
Aj
�

N1 = �g1 + 1;

and for i 2 [2; n]
Ni = 2B

T Pi�2
k=0

Pk
j=0 C

k
j

�
AT
�k�j

�fi�1�kA
j

+�gi

(17)

We call characteristic numbers; coe¢ cients
of characteristic matrices which are not generically
equal to zero.

Now we can state the link between normal
quadratic numbers and elements of characteristic ma-
trices.

We know from Remark 19 thatM = 0 and Nl = 0
for 1 � l � n are the conditions of the full quadratic
linearization, thus we have:

Proposition 21 Quadratic normal numbers of nor-
mal form (10) are given by:
8i; j 2 [2; n] and l 2 [2; n]8><>:

hi;j = �2Mi;j for i 6= j
hi;i = �Mi;i

k1;j = �N1;j

kl;j = �Nl;j

where Mi;j is the ith row and the jth column ele-
ment of characteristic matrix M; and Nl;j is the jth

element of the row vector Nl:

Remark 22
1) The fact that M1;j = 0 for all 1 � j � n is

equivalent to the algebraic linear system (15).
2) In the normal form (10) we have at most n(n�1)2

normal quadratic numbers xixj and n (n� 1) normal
quadratic numbers xiu. In fact, we have
i) nn(n+1)2 constraints given by the n symmetric

matrices (fi)1�i�n,
ii) n2 constraints given by the n matrices (gi)1�i�n,

iii) (n� 1) n(n+1)2 symmetric matrices �i 2 � i �
n which are completely given by the (n � 1) �rst dy-
namics and
iv) n degrees of freedom given by output injections

(�i)1�i�n;
v) n degrees of freedom given by output injections

(i)1�i�n:
Thus, the number of normal quadratic numbers is:

n
n(n+ 1)

2
� (n� 1) n(n+ 1)

2
� 2n+ n2 = 3

2
n(n� 1):

Example 23 Let us consider again (12) to highlight
the power of the characteristic matrices to compute
quadratic normal forms.( :

z1 = a1z1 + z2 + k1z
2
2 + l1z

2
3

:
z2 = a2z1 + z3 + k2z

2
2 + l2z

2
3

:
z3 = a3z1 + k3z

2
2 + l3z

2
3 :

(18)

From Theorem 18, we obtain:8><>:
�1;1 = l1a3a1 + 2k1a2 + l2a3
�1;2 = �3�1;1a1 + k1a2a1 + k2a2 + k1a3
�1;3 = �3a21�1;1 � �1;1a2 � 2a1�1;2

�
�
a21 + a2

�
�1;1 + 2a

2
2k1 + 2a

2
3l1

then8>><>>:
M1;j = 0 for all 1 � j � 3
M2;2 = �2a2k1 � k3 + 2�1;1
M2;3 =M3;2 = �a3l1 � k2
M3;3 = �l3 � 2k1

:

By Proposition 21 the normal quadratic numbers
are: 8><>:

h1;1 = h1;2 = h1;3 = 0
h2;2 = 2a2k1 + k3 � 2�1;1
h2;3 = 2a3l1 + 2k2
h3;3 = l3 + 2k1

So, the quadratic normal form associated to (18)
is:8><>:

:
x1 = a1x1 + x2 + �1;1x

2
1 +O

3

:
x2 = a2x1 + x3 + �1;2x

2
1 +O

3

:
x3 = a3x1 +

�
k3 � 2�1;1 + 2k1a2

�
x22

+ (l3 + 2k1)x
2
3 + (2l1a3 + 2k2)x2x3 +O

3:

Conditions of the full quadratic linearization are

Mi;j = 0 for all 2 � i � j � 3:

4.2 Nonlinear systems with one linear
unobservable mode case

In this subsection, as previously for the linear observ-
able case, �rstly we introduce and compute character-
istic matrices of (11), we deduce normal quadratic
numbers and �nally we discuss the quadratic ob-
servability and stability properties. For this, setting
�f = 0 and g = 0 in homological equations of Corollary
10, we obtain:

�i =
�
AT�i�1 +�i�1A

�
+�fi�1| {z }

and for i2[2;n�2]
0 =

�
AT�n�1 +�n�1A

�
+�fn�1

=
Pn�2

s=0

Ps
j=0 C

s
j

�
AT
�s�j �

�fn�s

�
Aj

�n�n = �
Pn�1

i=1 �i�i +
�
AT�n +�nA

�
+�fn

The following is corresponding result to Theorem
18 for linearly unobservable case.
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Theorem 24
i) The family (�i)1�i�n�1 viewed as real numbers,

is the solution of the following algebraic linear system:

�D

0BBBBBB@

�1;1
�1;2
...
...

�1;n�1

1CCCCCCA = (CF )
T

where

�D =

0BBBBBB@

d1;1 � � � � � � d1;n�1 1
... : : 1 0
... : : 0 0

dn�1;1 1 0 0 0
1 0 0 0 0

1CCCCCCA ;

F : =

n�2X
s=0

0@ sX
j=0

Csj
�
AT
�s�j

fn�1�sA
j

1A and

C = (1; 0:::::; 0) ;

and for all 1 � k � n� 1; we have0BBBBBBB@

d1;k
d2;k
...
1
0
0

1CCCCCCCA
=

0BBBBBBB@

d1;k
d2;k
...

dn�1�(k�1); k
0
0

1CCCCCCCA
=

n�1�kX
j=0

Cn�1�kj

�
AT
�j
×An�1�k�jCT

where

×=

0BBBB@
1 0 ::: 0

0 0
. . . 0

...
...
. . .

...
0 0 ::: 0

1CCCCA
:

ii) For 2 � i � n � 1, matrices �i which satisfy
equation (a:1) are:

�i =
i�2X
k=0

kX
j=0

Ckj
�
AT
�k�j �

�fi�1�k
�
Aj

Remark 25 If �n�1 satis�es the equation (a:2) i.e.

n�2X
s=1

s�1X
j=0

Cs�1j

�
AT
�s�j �

�fn�s
�
Aj+1 +�fn�1 = 0

and �n satis�es the following equation

�n�n = �
n�1X
i=1

�i�i +
�
AT�n +�nA

�
+�fn

and if

(b.1) � g1 + 1 = 0
(b.2) and for i 2 [2; n]
2BT Pi�2

k=0

Pk
j=0 C

k
j

�
AT
�k�j

�fi�1�kA
j +�gi = 0

then system (9) is fully quadratically linearizable.

De�nition 26 Characteristic matrices of the observ-
able part of (9) are given by:

M =
Pn�2

s=0

Ps
j=0 C

s
j

�
AT
�s�j �

�fn�1�s

�
Aj ;

N1 = �g1 + 1
and for i 2 [2; n� 1]
Ni = 2B

T Pi�2
k=0

Pk
j=0 C

k
j

�
AT
�k�j

�fi�1�kA
j +�gi

Now, from the previous de�nition we present rela-
tions between normal quadratic numbers of (11) and
elements of its characteristic matrices.

Proposition 27 Quadratic normal numbers associ-
ated with the observable part of normal form (11) are:
8i; j 2 [2; n] and l 2 [2; n� 1]8>>>><>>>>:

h1;n = �2M1;n

hi;j = �2Mi;j for i 6= j 2 [2; n]
hi;i = �Mi;i

k1;j = g1 � 1
kl;j = �Nl;j

Remark 28 In the same way as for Remark 22; in
the (n� 1) �rst dynamics of normal form (11) we
have at most n(n�1)

2 + 1 normal quadratic numbers
xixj and (n� 1)2 normal quadratic numbers xiu.
Thus, the number of normal quadratic numbers is:

n(3n� 5)
2

+ 2 = (n� 1) n(n+ 1)
2

� (n� 2) n(n+ 1)
2

� (n� 1) + n (n� 1)� (n� 1) :

Now, in order to highlight the usefulness of normal
form in the observability analysis and the observer
design, we chose to deal with the following bio-reactor
dynamics.

Example 29 Consider the following bio-reactor dy-
namics [R]: 8<:

:

� =

�
1
�1
k

�
�(�2)�1

y = �1

(19)
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where state � = (�1;�2)
T represent respectively the

concentration of biomass (�1) and of substrate (�2),
and the �(�2) = r�2(1 �

�2
c ) is the growing function.

In this example, the interesting equilibrium point with
respect to the observability singularity is not at � =
(0; 0) but at �0 = (0; c)

T .
After changing coordinate z = � � �0, we obtain:8<: _z1 = �rz1z2 +O3 (z)

_z2 =
r
kz1z2 +O

3 (z)
y = z1

This system is not linearly observable. Using the
above notations

A =

�
0 0
0 0

�
; �1 =

�
�1;1

r
2

r
2 0

�
and �2 =

�
�1;2 � r

2k

� r
2k 0

�
;

then the characteristic matrix of the �rst dynamic
is

M =

�
�1;1

r
2

r
2 0

�
with �1;1 = 0

and normal quadratic numbers are:

h1;2 = �r and h2;2 = 0 :

For the last dynamic we obtain:

l1;2 =
r
k and l2;2 = 0 :

Then, observable normal form associated to the bio-
reactor is: (

_x1 = �rx1x2 +O3 (x)
_x2 = r

k
x1x2 +O

3 (x)
y = x1

In [R] a solution was proposed, here our purpose is
just to highlight the e¢ ciency of the observable nor-
mal form, for this we propose the following sliding
mode observer:�

_̂x1 = �rx1x̂2 + �1sign(y � ŷ) + �(y � ŷ)3
_̂x2 = r

k
x̂2x1 + E1�2(~x2 � x̂2)

where ~x2 = x̂2 + E1Es
�1sign(y�ŷ)

rx1
, ŷ = x̂1 and if

jx1j < " then E1 = 0 else E1 = 1, in the same way
if e1 = x1 � x̂1 is not on the constrained manifold
(e1 = 0) then E2 = 0 else E2 = 1. Moreover, � ,
�1 and �2 are chosen in order to ensure at least the
stability. However using the Remark 15, the subman-
ifold observability singularity is S1 = fx 2 U; such
that h1;2x1 = 0g. So, the asymptotic stability is not

guaranteed for x1(t) = 0 for all t, then in order to take
into account, we set Es = 1 if x1 6= 0 else Es = 0.
This example shows that the observability singular-

ity can be overcome thanks to quadratic normal form
and its normal quadratic numbers which may contain
information for the observer design. Here, observa-
tion information is given by rx1x2 (the term h1;nx1xn
of the normal form).

5 Conclusion

In this paper, for nonlinear systems linearly observ-
able and nonlinear systems with one linear unob-
servable mode, a particular quadratic normal form
is given for observer design and detectability analysis
around an equilibrium point. Using Poincaré�s nor-
mal forms, we point out normal quadratic numbers
that ensure the local observability. Moreover, in or-
der to analyze the observability without transforming
the systems in their normal forms, we have introduced
what we have called characteristic matrices. Some of
them are linked to the quadratic part of the drift and
they characterize the quadratic observability without
input. Others are linked to the so-called universal
input and de�ne the choice of this input to preserve
the observability. These matrices inform us about the
quadratic observability before we begin the design of
an observer. There are many areas where this study
may be implemented; the synchronization of chaotic
systems [NM], sensorless control of induction motors
[CYBMM].
Nevertheless, some of these cases need an extra de-

velopment of our method. For the synchronization
of chaotic systems [BBBT2, BBBT3] some modi�ca-
tions to the output-injection will be considered and
for the sensorless control of induction motors a gen-
eralization of the approach to multi-output systems
will be necessary.
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