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Boundary behavior of a constrained Brownian motion between reflecting-repellent walls

Stochastic variational inequalities provide a unified treatment for stochastic differential equations living in a closed domain with normal reflection and (or) singular repellent drift. When the domain is a polyhedron, we prove that the reflected-repelled Brownian motion does not hit the non-smooth part of the boundary. A sufficient condition for nonhitting a face of the polyhedron is derived from the one-dimensional case. A complete answer to the question of attainability of the walls of the Weyl chamber may be given for a radial Dunkl process.

Introduction

There have been many works about stochastic differential equations with reflection on the boundary of a domain. In some of them the domain is a convex polyhedron ( [START_REF] Harrison | Reflected Brownian motion on an orthant[END_REF], [START_REF] Varadhan | Brownian motion in a wedge with oblique reflection[END_REF], [START_REF] Williams | Reflected Brownian motion with skew symmetric data in a polyhedral domain[END_REF], [START_REF] Dai | Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedra[END_REF], [START_REF] Delarue | Hitting time of a corner for a reflected diffusion in the square[END_REF]]. A typical question in this setting is the following: does the continuous process hit the non-smooth part of the boundary? The answer depends on the drift and diffusion coefficients of the process and on the direction of reflection (normal or oblique). In particular, R.Williams [START_REF] Williams | Reflected Brownian motion with skew symmetric data in a polyhedral domain[END_REF] has proven that the Brownian motion with a skew symmetry condition on the direction of reflection does not touch the intersections of the faces of the polyhedron.

On the other hand there also exists an extensive literature about non-colliding Brownian particles ( [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], [START_REF] Bru | Wishart processes[END_REF], [START_REF] Hobson | Non-colliding Brownian motion on the circle[END_REF], [START_REF] Grabiner | Brownian motion in a Weyl chamber, non-colliding particles, and random matrices[END_REF], [START_REF] O'connell | Random matrices, non-colliding processes and queues[END_REF]). Most of these works originate in the study of the eigenvalues of Gaussian matrix processes. These eigenvalues are solutions to systems of stochastic differential equations with a singular drift that prevents the particles from colliding. Extensions of these systems are Dunkl processes [START_REF] Rösler | Markov processes related with Dunkl operators[END_REF] that have recently been developed in connection with harmonic analysis on symmetric spaces. The radial part of a Dunkl process may be considered as a Brownian motion perturbed by a singular drift which forces the process to live in a cone generated by the intersection of a finite set of half-spaces ( [START_REF] Chybiryakov | Processus de Dunkl et relation de Lamperti[END_REF], [START_REF] Chybiryakov | Dunkl processes and their radial parts relative to a root system[END_REF]). Depending on the values of some parameter, the process may touch the walls of the cone or not.

Actually it is possible to unify both theories of (normal) reflection and strong repulsion within a common framework. This is the role of stochastic variational inequalities, also called multivalued stochastic differential equations (MSDE) that were mainly developed by E. Cépa ([4], [START_REF] Cépa | Problème de Skorohod multivoque[END_REF]). These equations are associated to a convex function in a domain of R d .

Depending on the boundary behavior of this function the diffusion will (normally) reflect on the boundary, hit the boundary without local time, or live in the open domain. We shall here follow this way and concentrate on a Brownian motion living in a convex polyhedral domain, bounded or unbounded. To each face of the polyhedron is associated a repelling force with normal reflection when the repulsion is not strong enough. In this setting we shall ask whether the process may hit the various faces. Our first task will be to rule out the possibility of hitting the intersection of two faces. Once this is achieved, the problem is now basically one-dimensional and we may use the ordinary scale function of real diffusions.

In several previous works ( [START_REF] Inukai | Collision or non-collision problem for interacting Brownian particles[END_REF], [START_REF] Cépa | No multiple collisions for mutually repelling Brownian particles[END_REF]), this issue has been studied in the particular case of the hyperplanes H ij := {x = (x 1 , . . . , x d ) ∈ R d : x i = x j }, i = j and presented as the problem of collisions between Brownian particles. There is a simple collision if two coordinates coincide and a multiple collision if at least three coordinates coincide at the same time. Because the d-dimensional Brownian motion does not hit the intersection of two hyperplanes, one can guess that an additional drift does not change anything. However a rigorous proof is necessary because the singularity of the drift makes useless the usual Girsanov change of probability measure. The counterexample of Bass and Pardoux [START_REF] Bass | Uniqueness for diffusions with piecewise constant coefficients[END_REF] also showed that uniform nondegeneracy of the diffusion term does not preclude multiple collisions.

As in [START_REF] Cépa | No multiple collisions for mutually repelling Brownian particles[END_REF] where the particular case of electrostatic repulsion was considered, our proof only uses basic tools from stochastic calculus, mainly McKean's martingale method [START_REF] Mckean | Stochastic integrals[END_REF] which was already used in [START_REF] Bru | Diffusions of perturbed principal component analysis[END_REF] to prove non-collision for the eigenvalues of Wishart processes. Another way could be to use the theory of Dirichlet forms as done in [START_REF] Inukai | Collision or non-collision problem for interacting Brownian particles[END_REF] where a general condition of non-collision has been obtained.

The paper is organized as follows. In Section 2 we introduce basic definitions and notations. The main features about stochastic variational inequalities are also recalled. Section 3 is devoted to non attainability of the edges of the polyhedron. In Section 4 we give a sufficient condition of non attainability of a single face. Section 5 presents some applications to Brownian particles with nearest neighbor interaction, Wishart processes and Dunkl processes.

Multivalued stochastic differential equation in a polyhedral domain

Let (Ω, F, (F t , t ≥ 0), P) be a filtered probability space endowed with the usual conditions and B = (B t ) be a (F t )-adapted d-dimensional Brownian motion starting from the origin. Let

Φ : R d → (-∞, +∞] (1) 
be a lower semi-continuous convex function such that

dom(Φ) := {x : Φ(x) < ∞} (2) 
has nonempty interior. Let D := Int(dom(Φ)) .

For simplicity of notation, we will assume that Φ is C 1 on D. If x ∈ ∂D, we say that the unit vector n(x) is a unit inward normal to

D at x if n(x).(x -z) ≤ 0 (4) 
for any z ∈ D. Based on the results in [START_REF] Cépa | Equations différentielles stochastiques multivoques[END_REF], the following theorem has been proved in [START_REF] Cépa | Diffusing particles with electrostatic repulsion[END_REF] (see also Theorem 2.2 in [START_REF] Cépa | Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited[END_REF]).

Theorem 1 For any F 0 -measurable random variable X 0 with values in D, there exist a unique continuous (F t )-adapted process X = {X t , 0 ≤ t < ∞} with values in D and a unique continuous (F t )-adapted non-decreasing process L = {L t , 0 ≤ t < ∞} such that

X t = X 0 + B t - t 0 ∇Φ(X s ) ds + t 0 n s dL s 0 ≤ t < ∞ L t = t 0 1 {Xs∈∂D} dL s 0 ≤ t < ∞ (5)
where n s is dL s -a.e. a unit inward normal to D at X s . For any 0 < T < ∞, T 0

1 {Xs∈∂D} ds = 0 (6) and T 0 |∇Φ(X s )| ds < ∞ . (7) 
From now on we concentrate on a particular polyhedral setting. Let I := {1, . . . , m} where m ≥ 1. We consider a convex function Φ of the following form

Φ(x) := i∈I φ i (x.n i -a i ) (8) 
where for any i ∈ I,

φ i is a convex l.s.c. function , φ i = +∞ on (-∞, 0), φ i is C 1 on (0, +∞) n i is a unit vector a i is a real number . (9) 
We may assume all n i are different. Then,

∇Φ(x) = i∈I n i φ ′ i (x.n i -a i ) D = {x ∈ R d : x.n i > a i ∀i ∈ I} D = {x ∈ R d : x.n i ≥ a i ∀i ∈ I} . ( 10 
)
As D is not empty, there exists a ball with center y ∈ D and radius b > 0 included in D. Let X t be the solution given by Theorem 1. For i ∈ I let

U i t := X t .n i -a i . (11) 
We will need a strengthening of inequality (7) ( [START_REF] Cépa | Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited[END_REF],Th.2.2).

Lemma 2 For any i ∈ I, for any 0 < t < ∞,

t 0 |φ ′ i (U i s )| ds < ∞ . (12) 
Proof. This is clear if

φ ′ i (0+) > -∞. Let J := {j ∈ I : φ ′ j (0+) = -∞} (13) 
and let 0 < ε < b be such that φ ′ j (u) < 0 for any j ∈ J and u ∈ (0, ε). For K ⊂ J let

A K := {x ∈ D : x.n j < a j + ε ∀j ∈ K, x.n j ≥ a j + ε ∀j ∈ J \ K} . ( 14 
)
Then for t > 0

t 0 1 A K (X s )| j ∈K n j φ ′ j (U j s )|ds ≤ j ∈K t 0 1 A K (X s )|φ ′ j (U j s )|ds < ∞ . (15) 
Using ( 7) we get

t 0 1 A K (X s )| j∈K n j φ ′ j (U j s )|ds < ∞ (16) 
and therefore

-(b -ε) j∈K t 0 1 A K (X s )φ ′ j (U j s ) ds ≤ t 0 1 A K (X s ) j∈K (y -X s ).n j |φ ′ j (U j s )|ds ≤ t 0 1 A K (X s )|y -X s | j∈K |φ ′ j (U j s )|ds < ∞ (17)
from the continuity of X on [0, t]. Then for any j ∈ J

t 0 |φ ′ j (U j s )| ds = t 0 1 {U j s <ε} |φ ′ j (U j s )| ds + t 0 1 {U j s ≥ε} |φ ′ j (U j s )| ds = j∈K⊂J t 0 1 A K (X s ) |φ ′ j (U j s )|ds + t 0 1 {U j s ≥ε} |φ ′ j (U j s )| ds < ∞ . ( 18 
)
For any J ⊂ I, J = ∅, we set

H J := {x ∈ R d : x.n j = a j ∀j ∈ J} K J := {x ∈ R d : x.n j = a j ∀j ∈ J, x.n j > a j ∀j ∈ J} σ J := inf{t > 0 : X t ∈ H J } τ J := inf{t > 0 : X t ∈ K J } . (19) Lemma 3 Let J ⊂ I and V := span{n j , j ∈ J}. If n(x) is a unit inward normal to D at x ∈ K J , then n(x) ∈ V .
Proof. Let v ⊥ V . For ε > 0 small enough,

z 1 = x + εv z 2 = x -εv satisfy z 1 .n j = a j ∀j ∈ J z 1 .n i > a i ∀i ∈ J z 2 .n j = a j ∀j ∈ J z 2 .n i > a i ∀i ∈ J . Then n(x).(x -z 1 ) ≤ 0 n(x).(x -z 2 ) ≤ 0 and therefore n(x).v = 0 .

Nonattainability of the edges

This section is devoted to the proof of the following theorem.

Theorem 4 For any J ⊂ I with card(J) ≥ 2,

P(σ J = ∞) = 1 .
Proof. a/ We first consider the initial condition X 0 . From [START_REF] Cépa | Diffusing particles with electrostatic repulsion[END_REF] we deduce that for any u > 0 there exists 0 < v < u such that X v ∈ D a.s. Using the continuity of paths and the Markov property we may and do assume that X 0 ∈ D in order to prove that σ J = ∞ a.s. b/ We will also assume that max

i∈I φ ′ i (0+) < 0 . (20) 
If not we introduce for any 0 < T < ∞ the equivalent probability measure Q defined on F T by dQ dP := exp{c(B T .

i∈I n i ) - 1 2 c 2 T | i∈I n i | 2 } where c > max i∈I φ ′ i (0+) .
The continuous process

B ′ t := B t -ct i∈I n i
is a Q-Brownian motion on [0, T ] and now

dX t = dB ′ t - i∈I n i ψ ′ i (X t .n i -a i )dt -n t dL t where ψ i (u) := φ i (u) -cu i ∈ I .
If Q(σ J < T ) = 0 then P(σ J < T ) = 0 and if this is true for any T we obtain P(σ

J = ∞) = 1.
c/ We are now going to prove that σ I = τ I = ∞ a.s. (with m ≥ 2). For any J ⊂ I let

V J := span{n j , j ∈ J} q J := dim V J π J := orthogonal projection onto V J . (21) 
If q I = 1, then m = 2, n 1 + n 2 = 0 and H I = K I = ∅. Assume now q I ≥ 2 and H I = ∅.

Choose some z ∈ H I and set

Z t := π I (X t -z) . (22) 
Then

Z t = Z 0 + C t - i∈I t 0 n i φ ′ i (U i s )ds + t 0 n s dL s ( 23 
)
where C is a q I -dimensional Brownian motion. Set

S t := |Z t | 2 .
Then

S t = S 0 + 2 t 0 Z s .dC s -2 i∈I t 0 U i s φ ′ i (U i s )ds + 2 t 0 Z s .n s dL s + q I t. (24) 
From Lemma 2 we deduce that on ∂D = ∪ J⊂I K J Z s .n s = (X sz).n s = 0 and thus

t 0 Z s .n s dL s = 0 . Let 0 < T < ∞. For t < τ I ∧ T , log S t = log S 0 + 2 t 0 Z s .dC s S s -2 i∈I t 0 U i s φ ′ i (U i s ) S s ds + (q I -2) t 0 ds S s . ( 25 
)
From the assumption made in b/ there exists 0 < c ≤ ∞ such that φ ′ i ≤ 0 on (0, c] and

- t 0 
U i s φ ′ i (U i s ) Ss ds ≥ - t 0 U i s φ ′ i (U i s ) Ss 1 {U i s ≥c} ds ≥ -1 c T 0 |φ ′ i (U i s )| ds > -∞ . ( 26 
)
We now proceed as in ( [START_REF] Mckean | Stochastic integrals[END_REF],p.47). As t → τ I ∧ T , the local martingale part in the r.h.s. of (25) either converges to a finite limit or oscillates between +∞ and -∞. Thus it does not converge to -∞ and a.s. S τ I ∧T > 0. Therefore P(τ I ≤ T ) = 0 and the conclusion follows since T is arbitrary.

d/ Let now J ⊂ I with 2 ≤ |J| ≤ m -1. We shall show by a backward induction on |J| that P(τ J = ∞) = 1. Remark that the backward induction assumption entails the equality σ J = τ J a.s.. As previously done we may assume q J ≥ 2 and K J = ∅. Select now z ∈ K J and set

Z t := π J (X t -z) = Z 0 + C t -j∈J t 0 n j φ ′ j (U j s )ds -i ∈J t 0 π J n i φ ′ i (U i s )ds + t 0 π J n s dL s ( 27 
)
where C is a q J -dimensional Brownian motion. Let again S t := |Z t | 2 . For ε > 0 and r > 0 we set

τ ε := inf{t > 0 : S t + min i ∈J (U i t ) 2 ≤ 2 ε 2 } ρ r = inf{t > 0 : |X t | ≥ r} . (28) 
From the induction assumption we infer that τ ε → ∞ as ε goes to 0. Let 0 < T < ∞. We introduce the equivalent probability measure Q defined on F T by

dQ dP = exp{ τε∧ρr∧T 0 i ∈J 1 {U i s ≥ε} φ ′ i (U i s ) n i .dC s -1 2 τε∧ρr∧T 0 | i ∈J 1 {U i s ≥ε} φ ′ i (U i s ) π J n i | 2 ds} . (29) 
Then

D t := C t - τε∧ρr∧T 0 i ∈J 1 {U i s ≥ε} φ ′ i (U i s )π J n i ds is a q J -dimensional Q-Brownian motion on [0, T ]. For t ≤ τ ε ∧ ρ r ∧ T , S t = S 0 + 2 t 0 Z s .dD s -2 i∈I t 0 U i s φ ′ i (U i s )ds -2 i ∈J t 0 1 {U i s <ε} Z s .n i φ ′ i (U i s ) ds +2 L⊂I,L ⊂J t 0 1 K L (X s ) Z s .n s dL s + q J t (30) 
and for t < σ J ∧ τ ε ∧ ρ r ∧ T , log S t = log S 0 + 2 t 0

Zs.dDs Ss

-2 j∈J t 0

U j s φ ′ j (U j s ) Ss ds -2 i ∈J t 0 1 {U i s <ε} φ ′ i (U i s ) Ss Z s .n i ds +2 L⊂I,L ⊂J t 0 1 K L (X s ) Zs.ns Ss dL s +(q J -2) t 0 ds Ss . (31)
From the induction hypothesis and the continuity of paths, if σ J < ∞ for any L ⊂ J there exists an interval (σ Jδ, σ J ] of positive length on which X s ∈ K L . Therefore -

σ J ∧τε∧ρr∧T 0 1 K L (X s ) Z s .n s S s dL s > -∞ . ( 32 
)
For s < τ ε , if U i s < ε for some i ∈ J, then S s ≥ ε 2 and we obtain as well

- σ J ∧τε∧ρr∧T 0 1 {U i s <ε} φ ′ i (U i s ) S s Z s .n i ds > -∞ . ( 33 
)
The other terms behave as in c/ and thus

0 = Q(σ J ≤ τ ε ∧ ρ r ∧ T ) = P(σ J ≤ τ ε ∧ ρ r ∧ T ) . ( 34 
)
Letting ε go to 0, r and T to ∞ we get

P(σ J = ∞) = 1
and we are done.

Keeping off from a wall

We first recall some facts in the one-dimensional setting [START_REF] Lépingle | Equations différentielles stochastiques multivoques unidimensionnelles[END_REF]. Let φ : R → (-∞, +∞] be a convex lower semicontinuous function. Assume φ = +∞ on (-∞, 0) and C 1 on (0, +∞). Consider the one-dimensional equation

dY t = dB t -φ ′ (Y t )dt + 1 2 dL 0 t Y t ≥ 0 (35)
where L 0 is the local time of Y at 0. There are three types of boundary behavior:

repulsion φ(0) < ∞ weak: local time not zero φ(0) = ∞, 0+ exp{2φ} < ∞ middle: local time zero φ(0) = ∞, 0+ exp{2φ} = ∞ strong: boundary not hit
We shall check the behavior of the multidimensional process X accords with this classification in the neighborhood of the faces of the polyhedron. For any i ∈ I we respectively write H i , K i , σ i , τ i in place of H {i} , K {i} , σ {i} , τ {i} .

Proposition 5 For any i ∈ I such that φ i (0) = ∞ and any t > 0,

t 0 1 H i (X s ) dL s = 0 . ( 36 
)
Proof. From the occupation times formula and Lemma 1 we obtain

∞ 0 L a t (U i ) |φ ′ i (a)| da = t 0 |φ ′ i (U i s )| ds < ∞ (37)
and from φ i (0) = ∞ and the continuity of a → L a t (U i ) we deduce

L 0 t (U i ) = 0 . ( 38 
) Thus 0 = U i t -(U i t ) + = t 0 1 H i (X s )n i .dB s - t 0 1 H i (X s ) j∈I φ ′ j (U j s ) n i .n j ds + t 0 1 H i (X s ) n i .n s dL s = t 0 1 K i (X s ) n i .n s dL s = t 0 1 K i (X s ) dL s = t 0 1 H i (X s ) dL s . (39) 
We now set for any i ∈ I and x ≥ 0

p i (x) := x 1 exp{2(φ i (u) -φ i (1))} du .
Theorem 6 For any i ∈ I such that p i (0) = -∞ or equivalently

0+ exp{2φ i } = ∞ , (40) then P 
(σ i = ∞) = P(τ i = ∞) = 1.
Proof. From Ito formula and Proposition 5 we obtain

p i (U i t ) = p i (U i 0 ) + t 0 p ′ i (U i s )[dC i s - j =i n i .n j φ ′ j (U j s )ds + j =i 1 K j (X s ) n i .n j dL s ] (41) 
where C i = B.n i is a one-dimensional Brownian motion. As in the proof of Theorem 2, let

τ ε := inf{t > 0 : U i t + min j =i (U j t ) ≤ 2 ε} ρ r = inf{t > 0 : |X t | ≥ r} . (42) 
Let 0 < T < ∞. We again introduce the equivalent probability measure Q defined on F T by

dQ dP = exp{ τε∧ρr∧T 0 j =i 1 {U j s ≥ε} φ ′ j (U j s ) n i .n j dC i s -1 2 τε∧ρr∧T 0 | j =i 1 {U j s ≥ε} φ ′ j (U j s ) n i .n j | 2 ds} . (43) 
Then

D i t := C i t - t∧τε∧ρr 0 j =i 1 {U j s ≥ε} φ ′ j (U j s ) n i .n j ds (44) is a Q-Brownian motion on [0, T ] and for t ≤ τ ε ∧ ρ r ∧ T , p i (U i t ) = p i (U i 0 ) + t 0 p ′ i (U i s )[dD i s - j =i 1 {U i s <ε} n i .n j φ ′ j (U j s )ds + j =i 1 K j (X s ) n i .n j dL s ] . (45) 
As in the proof of Theorem 2, for any j = i,

- σ i ∧τε∧ρr∧T 0 1 {U i s <ε} p ′ i (U i s ) n i .n j φ ′ j (U j s ) ds > -∞ (46) 
and

+ σ i ∧τε∧ρr∧T 0 1 K j (X s ) p ′ i (U i s ) n i .n j dL s > -∞ (47) 
and then

0 = Q(σ i ≤ τ ε ∧ ρ r ∧ T ) = P(σ i ≤ τ ε ∧ ρ r ∧ T ) (48) 
meaning that P(σ i = ∞) = 1.

Applications

Brownian particles with nearest neighbor repulsion

H.Rost and M.E.Vares [START_REF] Rost | Hydrodynamics of a one-dimensional nearest neighbor model[END_REF] have considered the following system:

dX 1 t = dB 1 t + φ ′ (X 2 t -X 1 t ) dt dX i t = dB i t + (φ ′ (X i+1 t -X i t ) -φ ′ (X i t -X i-1 t )) dt i = 2, . . . , n -1 dX n t = dB n t -φ ′ (X n t -X n-1 t ) dt (49) 
where X 1 t < . . . < X n t and φ is a positive convex function on (0, ∞) satisfying

φ(0) = ∞ , φ(∞) = 0 , 1 0 (φ ′ (x)) 2 e -2φ(x) dx < ∞ . (50) 
This is a MSDE where function Φ is given by [START_REF] Cépa | No multiple collisions for mutually repelling Brownian particles[END_REF] with

φ i (x) = φ( √ 2 x), n i = 1 √
2 (e i+1e i ), a i = 0 for i = 1, . . . , n -1 and e j the j-th basis vector. Condition (50) for non-collision is stronger than (40) as can be seen from Schwarz inequality:

∞ = (φ(0) -φ(1)) 2 ≤ 1 0 (φ ′ ) 2 e -2φ 1 0 e 2φ .

Wishart and Laguerre processes

Wishart processes have been introduced in [START_REF] Bru | Diffusions of perturbed principal component analysis[END_REF] and [START_REF] Bru | Wishart processes[END_REF]. If B is a n × n Brownian matrix, a Wishart process with parameters n and δ ≥ n + 1 may be obtained as a solution to the matrix-valued SDE

dS t = S t dB t + dB ′ t S t + δ I n dt . (51) 
The eigenvalues process (λ 1 t , . . . , λ n t ) of {S t } satisfies

dλ i t = 2 λ i t dW i t + (δ + j =i λ i t + λ j t λ i t -λ j t ) dt 1 ≤ i ≤ n , (52) 
and the square roots

r i t = λ i t dr i t = dW i t + 1 2 δ -n r i t dt + 1 2 j =i ( 1 
r i t + r j t + 1 
r i t -r j t ) dt (53) 
where (W i , . . . , W n ) is a n-dimensional Brownian motion. N.Demni [START_REF] Demni | Radial Dunkl processes: existence and uniqueness, hitting time, beta processes and random matrices[END_REF] has remarked that this system is a MSDE with

Φ(r 1 , . . . , r n ) = - 1 2 [(δ -n) i log r i + i>j log(r i + r j ) + i>j log(r i -r j )] (54) 
on {0 < r 1 < . . . < r n } and ∞ elsewhere. The system (53) has a strong solution for δ > n.

If δ = n, we must add to the right hand side of (53) a local time at 0 that disappears in (52). It has been proven in [START_REF] Bru | Wishart processes[END_REF] that the eigenvalues never collide and if moreover δ ≥ n + 1 the smallest one never vanishes. This is in accordance with Theorem 6. Laguerre processes are Hermitian versions of Wishart processes. Only constants are changed in (52), ( 53) and (54).

Reflection groups and Dunkl processes

We only give a short introduction to this topic and refer to [START_REF] Humpreys | Reflection groups and Coxeter groups[END_REF] and [START_REF] Rösler | Markov processes related with Dunkl operators[END_REF] for more details. For α ∈ R N \ {0} we denote by s α the orthogonal reflection with respect to the hyperplane H α perpendicular to α:

s α (x) = x -2 α.x |α| 2 . ( 55 
) A finite subset R ⊂ R N \ {0} is called a root system if for all α ∈ R R ∩ Rα = {α, -α} ; s α (R) = R . (56) 
The group W ⊆ O(N ) which is generated by the reflections {s α , α ∈ R} is called the reflection group associated with R. Each hyperplane H β := {x ∈ R N : β.x = 0} with β ∈ R N \∪ α∈R H α separates the root system R into R + and R -. Such a set R + is called a positive subsystem and defines the positive Weyl chamber C by

C := {x ∈ R N : α.x > 0 ∀α ∈ R + } . (57) 
A subset S of R + is called simple if S is a vector basis for span(R). The elements of S are called simple. Such a subset exists, is unique and we actually get

C = {x ∈ R N : α.x > 0 ∀α ∈ S} . (58) 
A function k : R → R on the root system is called a multiplicity function if it is invariant under the natural action of W on R. If the multiplicity function k is positive on R + , we define the radial Dunkl process X W as the C-valued continuous path Markov process whose generator is given by on C and Φ = ∞ elsewhere. It was proved in ( [START_REF] Chybiryakov | Processus de Dunkl et relation de Lamperti[END_REF], [START_REF] Chybiryakov | Dunkl processes and their radial parts relative to a root system[END_REF]) that this equation has a unique strong solution and if moreover k(α) ≥ 1/2 for any α ∈ R then the process never hits the walls H α of the Weyl chamber. In [START_REF] Demni | Radial Dunkl processes: existence and uniqueness, hitting time, beta processes and random matrices[END_REF], it is proved that if k(α) < 1/2 for a simple root α, then the process hits H α a.s. As a consequence of this result and of Theorem 6 (see also the statement at the bottom of p.117 in [START_REF] Chybiryakov | Dunkl processes and their radial parts relative to a root system[END_REF]), we are in a position to classify the boundary behavior of the radial Dunkl process in the Weyl chamber.

L W k u(x) = 1 2 ∆u(x) + α∈R + k(α) α.∇u(x) α.x ( 
Proposition 7 For any α ∈ R + let σ α := inf{t > 0 : X W t ∈ H α }.

• If α ∈ R + \ S, then P(σ α = ∞) = 1,

• If α ∈ S and k(α) ≥ 1/2, then P(σ α = ∞) = 1,

• If α ∈ S and k(α) < 1/2, then P(σ α < ∞) = 1.

Trigonometric and hyperbolic interactions

Others interactions have been studied in [START_REF] Cépa | Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited[END_REF].

The trigonometric system ( [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], [START_REF] Hobson | Non-colliding Brownian motion on the circle[END_REF], [START_REF] Spohn | Dyson's model of interacting Brownian motions at arbitrary coupling strength[END_REF]) reads

dX j t = dB j t + γ 2 k =j cot X j t -X k t 2 1 ≤ j ≤ n X 1 t ≤ X 2 t ≤ . . . ≤ X n t ≤ X 1 t + 2π (61) 
This can be interpreted as the solution to the MSDE associated with 

It has been proved in [START_REF] Cépa | Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited[END_REF] there exist a.s. collisions if γ < 1/2. The hyperbolic system ( [START_REF] Norris | Brownian motions of ellipsoids[END_REF], [START_REF] Schapira | The Heckman-Opdam Markov process[END_REF]) is

dX j t = dB j t + γ k =j coth (X j t -X k t ) 1 ≤ j ≤ n X 1 t ≤ X 2 t ≤ . . . ≤ X n t . (64) 
In this case Φ(x) = 

  59)for u ∈ C 2 (C) with the boundary condition α.∇u(x) = 0 for x ∈ H α . Then X W may be viewed as the solution to the MSDEdY t = dB t -∇Φ(Y t ) dtwhere B is a Brownian motion and Φ(y) = α∈R + k(α) log(α.y) (60)

Φ

  

  collisions occur with positive probability if γ < 1/2.