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CNRS UMR 5142, B.P. 1155, 64013 Pau cédex, France

Abstract

A whole spectrum of subdifferentiability properties is delineated in which various degrees of uniformity
are present. Related properties are introduced for sets. Some characterizations in terms of monotonicity
properties are displayed.
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1 Introduction

While it is known thanks to Weierstrass that wild nonsmooth functions exist, it is of interest to select classes of
nonsmooth functions which have pleasant properties. Such an appraisal can be understood in different manners:
(1) one may hope to get properties close to the ones of convex or differentiable functions, (2) one may expect
stability properties with respect to the usual operations, (3) one may wish that the main concepts of nonsmooth
analysis coincide for such classes, (4) one may devote efforts to show that the regularization of such functions
is worthwhile.

Many works have been devoted to such aims.
Central concepts are the notions of approximately convex functions ([4], [26], [28]) and paraconvex (or

semiconvex) functions ([12], [13], [29], [44]-[48], [51]...). They can be given several variants. Directional variants
have been studied in [18], [19], in particular in connection with integration questions. Another line of research
appears in the works of Poliquin, Rockafellar, Thibault and their co-authors ([5], [6], [22], [40], [41], [42]...) . In
such works, the subjet of the function is heavily present, even if it is not put to the fore. It is the purpose of
the present paper to put it in clear light and to propose some variants. We keep in mind expectations (1)-(3),
in particular (3) and what has been called softness in [35] and lower regularity in [25]. We refer to [2], [10], [24],
[31], [43] and their references for the question of regularization. With [23], [22] and [27], the paper [31] has been
our starting point.

Our main thrusts consist in putting to the fore different localizations in the subjet of the function and in
clarifying the roles of different notions of uniform or equi-differentiability. Because the passages from functions
to sets and from sets to functions have been dealt with in several other papers ([11], [9], [16], [22], [28]-[31],
[43]...), for the sake of brevity, we do not explore all the possibilities but just present some of them.

2 Preliminaries

In the sequel X is a Banach space with dual space X∗ and F(X) (resp. S(X)) denotes the set of all functions
(resp. lower semicontinuous (l.s.c.) functions) from X to R∞ := R ∪ {+∞}. For more information about the
basic concepts of nonsmooth analysis we recall in this section, we refer to the recent monographs of Borwein
and Zhu ([9]), Mordukhovich [25], Rockafellar and Wets [43], Schirotzek ([49]) and Zalinescu [52].
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The lower directional derivative (or contingent derivative or Dini-Hadamard derivative) of f ∈ F(X) finite
at x is given by

fD(x, v) := lim inf
(t,w)→(0+,v)

1
t
(f(x + tw)− f(x)).

The Clarke-Rockafellar derivative [14], or circa-derivative of f ∈ S(X) at x is given by

fC(x, v) := sup
r>0

lim sup
(t,y)→(0+,x)

f(y)→f(x)

inf
w∈B(v,r)

1
t
(f(y + tw)− f(y)).

The directional (or Dini-Hadamard) subdifferential and the circa (or Clarke-Rockafellar) subdifferential are
associated to these derivatives by

∂Df(x) = {x∗ ∈ X∗ : x∗ ≤ fD(x, ·)},
∂Cf(x) = {x∗ ∈ X∗ : x∗ ≤ fC(x, ·)}.

The firm (or Fréchet) subdifferential of f ∈ F(X) at x is the set ∂F f(x) of x∗ ∈ X∗ such that for all ε > 0
there exists some δ > 0 for which

f(w)− f(x)− 〈x∗, w − x〉 ≥ −ε ‖w − x‖ ∀w ∈ B(x, δ).

Given an hyper-modulus π, i.e. a function π : R+ → R+ ∪ {+∞} such that limr→0+ π(r)/r = 0, π(0) = 0,
∂F f(x) contains the π-proximal subdifferential of f at x which is the set ∂πf(x) of x∗ ∈ X∗ such that

f(w)− f(x)− 〈x∗, w − x〉 ≥ −π(‖w − x‖) ∀w ∈ X.

For π(t) := t2, ∂πf(x) is just called the proximal subdifferential of f at x. In fact, ∂F f(x) is the union of the
π-proximal subdifferentials of f at x for π in the set of hyper-modulus.

The limiting subdifferential of f at x is defined as ∂Lf(x) := lim supy→f x ∂F f(y), where y →f x means that
y → x with f(y) → f(x), the limsup being taken in a sequential way with respect to the weak∗ topology.

As in [35], we say that f is soft at x if the limiting subdifferential ∂Lf(x) of f at x coincides with ∂F f(x).
We call subdifferential a multifunction ∂ : F(X) ×X ⇒ X∗ such that for all f ∈ F(X) and all x ∈ X one

has ∂F f(x) ⊂ ∂f(x) ⊂ ∂Cf(x). These inclusions imply that for all f ∈ F(X) the domain of ∂f is included in
the domain of f and that ∂f is locally bounded if f is locally Lipschitzian. The inclusion ∂F f ⊂ ∂f could be
relaxed into ∂πf ⊂ ∂f for some hyper-modulus π, but we require it for the sake of simplicity.

Given a subdifferential ∂, recall that the ∂-subjet (in short subjet) of f ∈ F(X) is the set

J∂f := {(x, x∗, f(x)) : x ∈ X, f(x) < +∞, x∗ ∈ ∂f(x)}.
This notion generalizes the concept of one-jet classically used in differential geometry. It will play a crucial role
in [21], [36], [37] and in what follows.

3 A spectrum of subdifferentiable functions

In the sequel, f ∈ S(X), i.e. f : X → R∞ is a l.s.c. function and x ∈ dom f := {x ∈ X : f(x) < +∞}. The
first concept of the following definition has been introduced (in a slightly different but equivalent form) in [22]
in the case ∂ is the limiting subdifferential under the name of weakly regular function (WR) at x relative to x̂∗.
The third one has been used in [1] and [38]. The fourth one is a variant of a notion introduced and studied in
[31], where ∂ = ∂F and a quantitative estimate is required. The last one appears in [20]. The other ones seem
to be new.

Definition 1 (a) The function f is said to be equi-(∂)-subdifferentiable at (x, x̂∗), where x̂∗ ∈ ∂f(x), if there
exists some ρ > 0 such that for any ε > 0 one can find some δ > 0 such that

〈x∗, w − x〉 ≤ f(w)− f(x) + ε ‖w − x‖ (1)
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for all x∗ ∈ ∂f(x) ∩B(x̂∗, ρ) and all w ∈ B(x, δ).
(b) The function f is said to be boundedly equi-(∂)-subdifferentiable at x if ∂f(x) is nonempty and if for any

bounded subset B∗ of X∗ and any ε > 0 one can find some δ > 0 such that (1) holds for all x∗ ∈ ∂f(x) ∩ B∗

and all w ∈ B(x, δ).
(c) The function f is said to be equi-(∂)-subdifferentiable at x if ∂f(x) is nonempty and if for any ε > 0

one can find some δ > 0 such that (1) holds for all x∗ ∈ ∂f(x) and all w ∈ B(x, δ).
(d) The function f is said to be uniformly ∂-subdifferentiable around (x, x̂∗), where x̂∗ ∈ ∂f(x), if there

exists some ρ > 0 such that for any ε > 0 one can find some δ > 0 such that

〈x∗, y − x〉 ≤ f(y)− f(x) + ε ‖y − x‖ (2)

for all (x, x∗, f(x)) ∈ J∂f ∩B((x, x̂∗, f(x)), ρ) and all y ∈ B(x, δ).
(e) The function f is said to be boundedly uniformly ∂-subdifferentiable around x if ∂f(x) is nonempty and

if there exists some ρ > 0 such that for any bounded subset B∗ of X∗ and for any ε > 0 one can find some
δ > 0 such that (2) holds for all (x, x∗, f(x)) ∈ J∂f ∩ (B(x, ρ)×B∗ ×B(f(x), ρ)) and all y ∈ B(x, δ).

(f) The function f is said to be uniformly ∂-subdifferentiable around (x, f(x)) if ∂f(x) is nonempty and
if there exists some ρ > 0 such that for any ε > 0 one can find some δ > 0 such that (2) holds for all
(x, x∗, f(x)) ∈ J∂f ∩ (B(x, ρ)×X∗ ×B(f(x), ρ)) and all y ∈ B(x, δ).

(g) Given a subset S of X, f is said to be uniformly ∂-subdifferentiable on S if ∂f(x) is nonempty for all
x ∈ S and if for any ε > 0 one can find some δ > 0 such that (2) holds for all (x, x∗, f(x)) ∈ J∂f ∩ (S×X∗×R)
and all y ∈ B(x, δ) ∩ S.

(h) f is said to be uniformly ∂-subdifferentiable around x if there exists some neighborhood of x on which f
is uniformly ∂-subdifferentiable.

Remarks. (a) When f is equi-∂-subdifferentiable at (x, x̂∗) and ρ is as in assertion (a) one has ∂f(x) ∩
B(x̂∗, ρ) ⊂ ∂F f(x). When f is boundedly equi-∂-subdifferentiable at x, one has

∂f(x) = ∂F f(x).

Similar assertions hold for the other notions. For such a reason, when the mention of ∂ is omitted in the sequel,
that means that ∂ = ∂F .

(b) The preceding assertions can be formulated by using hyper-modulus or modulus. Here, as usual, a
modulus is a function µ : R+ → R+ ∪ {+∞} which is continuous at 0, with µ(0) = 0; π : R+ → R∞ is an
hypermodulus if, and only if µ given by µ(t) := π(t)/t for t > 0, µ(0) = 0 is a modulus. Thus, a quantitative
form can be given to the preceding notions, as in [31].

Let us compare the preceding notions. The assertions of the following proposition are displayed for the
convenience of the reader. They are either obvious or easy consequences of a compactness argument. Let us
recall that f is said to be quiet at x ∈ dom f if −f is calm at x, i.e. if there exist c > 0 and r > 0 such that
f(x)− f(x) ≤ c ‖x− x‖ for all x ∈ B(x, r). We observe that ∂F f(x) is bounded when f is quiet at x.

Proposition 2 The preceding properties are ranked in increasing strength.
If X is finite dimensional, f is boundedly equi-(∂)-subdifferentiable at x if, and only if, it is equi-(∂)-

subdifferentiable at (x, x̂∗) for all x̂∗ ∈ ∂F f(x).
If f is continuous at x, f is uniformly ∂-subdifferentiable around (x, f(x)) if, and only if, f is uniformly

∂-subdifferentiable around x.
If f is quiet at x, f is boundedly equi-(∂)-subdifferentiable at x if, and only if, it is equi-(∂)-subdifferentiable

at x.
If f is Lipschitzian around x, f is boundedly uniformly ∂-subdifferentiable around x if, and only if, it is

uniformly ∂-subdifferentiable around (x, f(x)).

Example. The distinctions of Definition 1 may appear superfluous. However, even for differentiable func-
tions, they exist. If f is differentiable at x, it is obviously equi-subdifferentiable at x but it is not necessarily
uniformly subdifferentiable around x. This last property is satisfied if the derivative Df of f is uniformly
continuous on some neighborhood of x.

3



Example. Let f : R→ R be given by f(x) := √
x+, where x+ := max(x, 0). Then, as noted in [22, Example

1], f is equi-∂F -subdifferentiable at (0, 0). In fact, it is boundedly equi-∂C-subdifferentiable at x. But it is not
equi-∂F -subdifferentiable at 0, as easily seen. It is also boundedly uniformly ∂-subdifferentiable around x = 0,
but not uniformly ∂-subdifferentiable around x = 0.

Example. Suppose f admits a lower approximation s : X → R at x, i.e. that there exists a modulus
µ such that f(x + u) ≥ f(x) + s(u) − ‖u‖µ(u) for all u ∈ X. Then, if s is sublinear and continuous, for
every x̂∗ ∈ int(∂s(0)), f is equi-∂F -subdifferentiable at (x, x̂∗). Conversely, if f is equi-∂F -subdifferentiable at
(x, x̂∗), then f admits a lower approximation s at x which is sublinear and continuous: one can define s by
s(u) := sup{〈x∗, u〉 : x∗ ∈ ∂f(x) ∩B(x̂∗, ρ)}, where ρ is as in Definition 1 (a).

Obviously, convex functions satisfy all the conditions of Definition 1. In fact, property (h) of this definition
corresponds to a well known class of functions.

Theorem 3 (Duda and Zaj́ıček [20]) Let f be continuous on some neighborhood of x. Then the following
assertions are equivalent:

(a) f is uniformly ∂-subdifferentiable around x and f is subdifferentiable around x;
(b) there exists a neighborhood V of x such that for all ε > 0 one can find some δ > 0 such that for all x ∈ V

one can find some x∗ ∈ X∗ satisfying (2) for all y ∈ V ∩B(x, δ);
(c) f is semiconvex around x in the sense that there exist some neighborhood U of x and some modulus µ

such that for all x, y ∈ U, t ∈ [0, 1]

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y) + t(1− t)µ(‖x− y‖) ‖x− y‖ .

On the other hand, property (a) of the preceding definition is satisfied under a weak convexity assumption.

Definition 4 ([27]) A function f ∈ F(X) finite at x, is said to be approximately starshaped at x if for any
ε > 0 there exists δ > 0 such that for any x ∈ B(x, δ), t ∈ [0, 1], one has

f((1− t)x + tx) ≤ (1− t)f(x) + tf(x) + εt(1− t) ‖x− x‖ . (3)

Proposition 5 If f is approximately starshaped at x and if f is ∂D-subdifferentiable at x, then f is equi-∂D-
subdifferentiable at x and ∂Df(x) = ∂F f(x).

Proof. Given ε > 0, let δ ∈ (0, 1) be such that relation (3) is satisfied for any x ∈ B(x, δ), t ∈ (0, 1]. Then,
for all w ∈ B(x, δ), dividing by t and taking the limit inferior as (t, x) → (0+, w), one gets

fD(x, w − x) ≤ f(w)− f(x) + ε ‖w − x‖ .

Thus, for all x∗ ∈ ∂Df(x) (1) is satisfied. The equality ∂Df(x) = ∂F f(x) is obvious. ¤
Remark. When f is approximately convex at x in the sense of [26], one has a property which is intermediate
between properties (a) and (h) of the preceding definition: for any ε > 0 one can find some δ > 0 such that (2)
holds for all (x, x∗, f(x)) ∈ J∂f ∩ (B(x, δ)×X∗ × R) and all y ∈ B(x, δ).

Proposition 6 If, for all x̂∗ ∈ ∂F f(x), f is equi-subdifferentiable at (x, x̂∗), then ∂F f(x) is locally closed. If
f is equi-subdifferentiable at x, then ∂F f(x) is weakly∗ closed.

Proof. Given x̂∗ ∈ ∂f(x) and ρ > 0 as in Definition 1 (a), the assertion follows from a passage to the limit in
relation (1) over a sequence (x∗n) in ∂F f(x) ∩B(x̂∗, ρ) converging to some x∗. When f is equi-subdifferentiable
at x, one can take an arbitrary weakly∗ converging net in ∂F f(x). ¤
Remark. In [22, Thm 4.2] it is stated that f is soft at x (i.e. ∂Lf(x) = ∂F f(x)) whenever f is equi-
subdifferentiable at x when X is finite dimensional. The following counter-example shows that such an assertion
is not true.
Example. Given a sequence (rn) → 0+ let f : R→ R be given by f(rn) := 0 for all n ∈ N and f(x) := x2 for
x ∈ R\{rn : n ∈ N}. Then ∂F f(0) = {0}, so that f is equi-subdifferentiable at x but ∂Lf(0) = R, so that f is
not soft at 0.

On the other hand the implication (ii)⇒(i) of [22, Thm 4.2] can be given a weaker form.
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Proposition 7 If f is continuous at x and boundedly uniformly subdifferentiable around x, then f is soft on
some neighborhood V of x. If moreover X is an Asplund space, then f is firmly regular on V in the sense that
∂Cf(x) = ∂F f(x) for all x ∈ V, hence is regular in the sense of [14] that ∂Cf(x) = ∂Df(x) for all x ∈ V.

Proof. Here ∂ := ∂F . Let ρ > 0 be such that for any bounded subset B∗ of X∗ and for any ε > 0 one can
find some δ > 0 such that (2) holds for all (x, x∗, f(x)) ∈ J∂f ∩ (B(x, ρ)×B∗×B(f(x), ρ)) and all y ∈ B(x, δ).
Let x ∈ V := B(x, ρ′), x∗ ∈ ∂Lf(x), where ρ′ ∈ (0, ρ] is small enough to ensure that f(w) ∈ B(f(x), ρ) for all
w ∈ B(x, ρ′). Let ((xn, x∗n, f(xn)) be a sequence of J∂f converging to (x, x∗, f(x)). Taking for B∗ a bounded
subset containing {x∗n : n ∈ N}, for every ε > 0 one can find some δ > 0 such that

∀y ∈ B(xn, δ) 〈x∗n, y − xn〉 ≤ f(y)− f(xn) + ε ‖y − xn‖
for n large enough to ensure ‖xn − x‖ < ρ′. Passing to the limit on n in this inequality one gets

〈x∗, y − x〉 ≤ f(y)− f(x) + ε ‖y − x‖
for all y ∈ B(x, δ). Thus x∗ ∈ ∂F f(x) and f is soft at x.

When X is an Asplund space, ∂Cf(x) is the weak∗ closed convex hull of ∂Lf(x). Thus, every element of
∂Cf(x) satisfies the preceding relation, hence belongs to ∂F f(x). ¤

4 Stability properties

We first consider the stability of the classes defined above under usual operations.

Theorem 8 Let f = supi∈I fi, where (fi)i∈I is a finite family of functions which are equi-∂D-subdifferentiable
at x. Then f is equi-∂D-subdifferentiable at x.

Proof. We first prove that for I(x) := {i ∈ I : fi(x) = f(x)} we have

∂Df(x) = cl∗co(
⋃

i∈I(x)

∂Dfi(x)).

It suffices to show that the support functions of both sides are equal, what follows from the equality

fD(x, u) = max
i∈I(x)

fD
i (x, u),

which can be easily shown. Now, for every i ∈ I(x), ε > 0, one can find some δi > 0 such that

∀x∗i ∈ ∂Dfi(x), ∀x ∈ B(x, δi) 〈x∗i , x− x〉 ≤ fi(x)− fi(x) + ε ‖x− x‖ .

Setting δ := mini∈I(x) δi, taking convex combinations, one gets that

∀x∗ ∈ co(
⋃

i∈I(x)

∂Dfi(x)), ∀x ∈ B(x, δ) 〈x∗, x− x〉 ≤ f(x)− f(x) + ε ‖x− x‖ .

Taking a weak∗ converging net, one sees that the preceding inequality remains valid for all x∗ ∈ ∂Df(x) and all
x ∈ B(x, δ). Thus, f is equi-∂D-subdifferentiable at x. ¤

The following stability result completes [26, Thm 3.8]. It has some similarities with [31, Cor 2] but the
assumptions and the conclusions are different. Note that here h is not supposed to be convex but the qualification
condition is stronger than the Robinson qualification condition.

Theorem 9 Let X and Y be Banach spaces, let W be an open subset of X and let f := h◦g, where g : W → Y
is differentiable at x ∈ W and h : Y → R∞ is finite at y := g(x). Suppose A := Dg(x) is surjective and g is
open at x with a linear rate.

(a) If h is equi-subdifferentiable at (y, ŷ∗), then f is equi-subdifferentiable at (x, x̂∗), for x̂∗ := ŷ∗ ◦Dg(x).
(b) If h is boundedly equi-subdifferentiable at y, then f is boundedly equi-subdifferentiable at x.
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Proof. (a) Because g is open at x with a linear rate, one can easily show that

∂F f(x) = ∂F h(y) ◦Dg(x).

Moreover, there exists some c > 0 such that for every x∗ ∈ ∂F f(x) there exists some y∗ ∈ ∂F h(y) such that
x∗ = y∗ ◦Dg(x) and ‖y∗‖ ≤ c ‖x∗‖ . In fact, if c > 0 is such that BY ⊂ A(cBX) for A := Dg(x), then for every
x∗ ∈ AT (Y ∗) there exists a unique y∗ ∈ Y ∗ such that x∗ = y∗ ◦ Dg(x) and ‖y∗‖ ≤ c ‖x∗‖ . The uniqueness
stems from the surjectivity of A; the estimate is a consequence of the fact that for every y ∈ BY there exists
some x ∈ cBX satisfying y = A(x).

Let ρ > 0 be such that for all ε > 0 one can find some δ := δ(ε) > 0 such that

〈y∗, y − y〉 ≤ h(y)− h(y) + ε ‖y − y‖

for all y∗ ∈ ∂F h(y) ∩B(ŷ∗, ρ) and all y ∈ B(y, δ). Let c′ > ‖A‖ := ‖Dg(x)‖ and let ρ′ := ρ/c′. Since g is differ-
entiable at x, given ε ∈ (0, c′−‖A‖), there exists γ := γ(ε) ∈ (0, δ(ε)/c′) such that ‖g(w)− g(x)−A(w − x)‖ ≤
ε ‖w − x‖ for all w ∈ B(x, γ). Then, for all w ∈ B(x, γ) and for all x∗ ∈ ∂F f(x) ∩ B(x̂∗, ρ′) one has
‖g(w)− g(x)‖ ≤ c′ ‖w − x‖ ≤ c′γ ≤ δ(ε) and x∗ := y∗ ◦A with y∗ ∈ ∂F h(y) ∩B(ŷ∗, ρ), so that

〈x∗, w − x〉 = 〈y∗, A(w − x)〉 ≤ 〈y∗, g(w)− g(x)〉+ ‖y∗‖ .ε ‖w − x‖
≤ h(g(w))− h(g(x)) + ε ‖g(w)− g(x)‖+ ‖y∗‖ .ε ‖w − x‖
≤ f(w)− f(x) + ε (c′ + c ‖x̂∗‖+ ρ) ‖w − x‖ .

Since ε is arbitrarily small, these inequalities show that (1) is satisfied.
The proof of assertion (b) is similar, taking into account the fact shown above that for every bounded subset

B∗ of AT (Y ∗) there exists a bounded subset C∗ of Y ∗ such that B∗ = AT (C∗). ¤
The proof of the following statement is obvious. When ∂ = ∂L, its second hypothesis can be ensured by

assuming some compactness condition and some asymptotic subdifferential condition.

Theorem 10 Let f := f1 + f2, where f1 and f2 are equi-∂-subdifferentiable at x. Suppose ∂f(x) = ∂f1(x) +
∂f2(x). Then f is equi-∂-subdifferentiable at x.

5 Subdifferential characterizations

A number of classes of generalized convex functions on an Asplund space X have been given subdifferential
characterizations ([4], [16], [18], [28], [29]...). In the present section we examine whether the same can be done
for the classes we defined above.

In this section, X is an Asplund space and ∂ stands for the Fréchet subdifferential. We say that a multimap
(or multifunction) M : X ⇒ X∗ is semimonotone if there exists a modulus µ such that

∀(x, x∗), (y, y∗) ∈ gph(M) 〈x∗ − y∗, x− y〉 ≥ −µ(‖x− y‖) ‖x− y‖ .

It is said to be submonotone at x ∈ X if there exists a modulus µ such that

∀x∗ ∈ M(x), (y, y∗) ∈ gph(M) 〈x∗ − y∗, x− y〉 ≥ −µ(‖x− y‖) ‖x− y‖ .

We start with a qualitative reformulation of [31, Thm 4] which is a result of quantitative nature.

Theorem 11 For a l.c.s. function f on X and x̂∗ ∈ ∂F f(x) the following assertions are equivalent:
(a) f is uniformly ∂-subdifferentiable around (x, x̂∗);
(b) there exists ρ > 0 such that, for V := B((x, x̂∗, f(x)), ρ), the multimap M : X ⇒ X∗ given by

gph(M) := {(x, x∗) : (x, x∗, f(x)) ∈ J∂f ∩ V },

is semimonotone.
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The proof of the next result is much simpler. It relies on the following version of the Mean Value Theorem.

Lemma 12 Let f be a l.c.s. function on X and let x, y ∈ dom f. Then there exist t ∈ (0, 1], sequences
(zn) → z := x + t(y − x), (z∗n) such that z∗n ∈ ∂f(zn) for all n ∈ N and

lim inf
n

〈z∗n, x− y〉 ≥ f(x)− f(y), (4)

lim inf
n

〈z∗n, z − zn〉 ≥ 0. (5)

Theorem 13 For a l.c.s. function f on X and x ∈ dom ∂f, the following assertions are equivalent:
(a) f is uniformly ∂-subdifferentiable around x;
(b) there exists ρ > 0 such that for V := B(x, ρ)×X∗ × R, the multimap M : X ⇒ X∗ given by

gph(M) := {(x, x∗) : (x, x∗, f(x)) ∈ J∂f ∩ V }, (6)

is semimonotone.

Proof. (a)⇒(b) Let ρ > 0 be such that for any ε > 0 one can find some δ > 0 such that for all (x, x∗, f(x)) ∈
J∂f ∩ V , with V := B(x, ρ)×X∗ × R, and all y ∈ B(x, δ) one has

〈x∗, y − x〉 ≤ f(y)− f(x) + ε ‖y − x‖ . (7)

In particular, if (x, x∗, f(x)) ∈ J∂f ∩V and (y, y∗, f(y)) ∈ J∂f ∩V are such that ‖x− y‖ < δ, one has a similar
relation by interchanging (x, x∗) with (y, y∗). Adding sides by sides the two relations, one gets

〈x∗ − y∗, y − x〉 ≤ 2ε ‖y − x‖ ,

so that M is semimonotone.
(b)⇒(a) Let ρ > 0, V and M be as in assertion (b), so that, for every ε > 0 there exists δ := δ(ε) > 0 such

that for all (x, x∗), (y, y∗) ∈ gph(M) satisfying ‖x− y‖ < δ one has

〈x∗ − y∗, y − x〉 ≤ ε ‖x− y‖ .

Given ε > 0, let δ′ := min(δ(ε), ρ/2). Let V ′ := B(x, ρ/2) ×X∗ × R. Then, for every (x, x∗, f(x)) ∈ J∂f ∩ V ′

and y ∈ B(x, δ′) one has y ∈ B(x, ρ). When f(y) = +∞, relation (7) is trivially satisfied. Thus, we may suppose
f(y) < +∞ and apply the preceding lemma: there exist t ∈ (0, 1] and sequences (zn) → z := x + t(y − x), (z∗n)
such that z∗n ∈ ∂f(zn) for all n ∈ N satisfying (4), (5). Then

〈x∗, y − x〉+ f(x)− f(y) ≤ 〈x∗, y − x〉+ lim inf
n

〈z∗n, x− y〉
≤ 〈x∗, y − x〉+ lim inf

n
(〈x∗, x− y〉+ 〈z∗n − x∗, t−1(x− z)〉)

≤ lim inf
n

t−1(〈z∗n − x∗, x− zn〉+ 〈z∗n − x∗, zn − z〉)
≤ lim inf

n
t−1(ε ‖x− zn‖+ 〈z∗n, zn − z〉) ≤ t−1ε ‖x− z‖ = ε ‖x− y‖ .

Thus, (7) is satisfied. ¤
Now we give a variant of [22, Thm 7.1]; here we use the Fréchet subdifferential instead of the limiting

subdifferential and f is not supposed to be locally Lipschitzian.

Proposition 14 Let f be a l.c.s. function on X, finite at x, with ∂F f(x) nonempty. If ∂F f is submonotone
at x, then f is equi-subdifferentiable at x.

Proof. By assumption, for every ε > 0 there exists δ > 0 such that for all x∗ ∈ ∂F f(x), (y, y∗) ∈ gph(∂F f)
satisfying ‖x− y‖ < δ one has

〈x∗ − y∗, y − x〉 ≤ ε ‖x− y‖ .
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Let us show that, for all x∗ ∈ ∂f(x) and all y ∈ B(x, δ),

〈x∗, y − x〉 ≤ f(y)− f(x) + ε ‖y − x‖ . (8)

Given x∗ ∈ ∂f(x) and y ∈ B(x, δ)∩ dom f, Lemma 12 yields t ∈ (0, 1], sequences (zn) → z := x + t(y− x), (z∗n)
with z∗n ∈ ∂f(zn) for all n ∈ N, such that relations (4), (5) hold. Then zn ∈ B(x, δ) for n large enough and, by
these relations,

〈x∗, y − x〉 = lim
n

(1/t)〈x∗, zn − x〉 ≤ lim inf
n

(1/t)(〈z∗n, zn − x〉+ ε ‖zn − x‖)
≤ lim inf

n
(1/t)(〈z∗n, z − x〉+ ε ‖z − x‖)

≤ lim sup
n

(〈z∗n, y − x〉+ ε ‖y − x‖)

≤ f(y)− f(x) + ε ‖y − x‖ .

When y ∈ B(x, δ)\dom f, inequality (8) is trivial. ¤

6 Nice sets and functions

We devote the present section to the passages from functions to sets. It appears that when the subjets of the
functions are involved, these passages are nicer than the corresponding ones in the case of approximate functions
or paraconvex functions (see [28], [29]). We recall that the firm or Fréchet normal cone to a subset E of X at
some point x of E is NF (E, x) := ∂F ιE(x), where the indicator function ιE of E is defined by ιE(x) = 0 for
x ∈ E, ιE(x) := +∞ for x ∈ X\E. The following results complete [31, Thm 2].

Theorem 15 Let E be a closed subset of X and let x ∈ E, x̂∗ ∈ NF (E, x)∩BX∗ . The following assertions are
equivalent:

(a) The set E is equi-normal at (x, x̂∗) in the sense that its indicator function ιE is equi-subdifferentiable at
(x, x̂∗);

(b) The distance function dE is equi-subdifferentiable at (x, x̂∗).

Proof. (a)⇒(b) Assumption (a) can be expressed as: there exists some ρ ∈ (0, 1) such that for all ε > 0
there exists δ > 0 for which

∀x ∈ E ∩B(x, δ), ∀x∗ ∈ NF (E, x) ∩B(x̂∗, ρ) 〈x∗, x− x〉 ≤ ε ‖x− x‖ . (9)

Given ε > 0, let w ∈ B(x, δ/2) and let x∗ ∈ ∂F dE(x) ∩ B(x̂∗, ρ). One can find a sequence (xn) in E such that
(‖xn − w‖) → dE(w) and ‖xn − w‖ ≤ ‖w − x‖ . Then xn ∈ B(x, δ) since ‖xn − x‖ ≤ ‖xn − w‖ + ‖w − x‖ ≤
2 ‖w − x‖ . Since x∗ ∈ ∂F dE(x) = NF (E, x) ∩BX∗ , relation (9) ensures that

〈x∗, w − x〉 ≤ lim sup
n

(〈x∗, xn − x〉+ ‖x∗‖ . ‖xn − w‖)

≤ lim sup
n

(ε ‖xn − x‖+ ‖xn − w‖) ≤ 2ε ‖w − x‖+ dE(w).

Since ε > 0 is arbitrary, this shows that dE is equi-subdifferentiable at (x, x̂∗).
(b)⇒(a). Let ρ ∈ (0, 1) be such that for all ε > 0 there exists δ > 0 for which

∀w ∈ B(x, δ), ∀x∗ ∈ ∂F dE(x) ∩B(x̂∗, ρ) 〈x∗, w − x〉 ≤ dE(w) + ε ‖w − x‖ . (10)

Then, for all x ∈ E ∩B(x, δ) and for all x∗ ∈ NF (E, x) ∩B(x̂∗, ρ2), we have

y∗ := (1 + ρ)−1x∗ ∈ NF (E, x) ∩ (1 + ρ)−1(1 + ρ2)BX∗ ⊂ ∂F dE(x),

‖y∗ − x̂∗‖ ≤ (1 + ρ)−1 ‖x∗ − x̂∗‖+ ρ(1 + ρ)−1 ‖x̂∗‖ ≤ (1 + ρ)−1ρ2 + ρ(1 + ρ)−1 = ρ,

so that, by (10), 〈y∗, x− x〉 ≤ ε ‖x− x‖ and 〈x∗, x− x〉 ≤ (1 + ρ)ε ‖x− x‖ ≤ 2ε ‖x− x‖ so that (9) holds with
ρ replaced with ρ2 and ε replaced by 2ε. ¤

The following consequence stems from the fact that for x̂∗ ∈ NF (E, x)\{0}, E is equi-normal at (x, x̂∗) if,
and only if, E is equi-normal at (x, û

∗
) where û

∗
:= ‖x̂∗‖−1

x̂∗.
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Corollary 16 For x in a closed subset E of X the following assertions are equivalent:
(a) The indicator function ιE of E is equi-subdifferentiable at (x, x∗) for every x∗ ∈ NF (E, x);
(b) The distance function dE is equi-subdifferentiable at (x, x∗) for every x∗ ∈ ∂F dE(x).

The proofs of the next equivalences are simpler than the preceding one since it suffices to use the relation
∂F dE(x) = NF (E, x) ∩BX∗ and the fact that dE is continuous.

Theorem 17 Let E be a closed subset of X and let x ∈ E. The following assertions are equivalent:
(a) The set E is boundedly normal at x in the sense that its indicator function ιE is boundedly equi-

subdifferentiable at x;
(b) The distance function dE is equi-subdifferentiable at x.

Theorem 18 Let E be a closed subset of X and let x ∈ E. The following assertions are equivalent:
(a) The set E is uniformly boundedly normal around x in the sense that its indicator function ιE is uniformly

boundedly subdifferentiable around x;
(b) The distance function dE is uniformly subdifferentiable around x.

Now let us turn to the links between a function f and its epigraph Ef . For x ∈ dom f we set xf := (x, f(x)).
We endow X ×R with a product norm, i.e. a norm for which the projections and the insertions x 7→ (x, 0) and
r 7→ (0, r) are nonexpansive.

Theorem 19 For f lower semicontinuous and x ∈ dom f, x̂∗ ∈ ∂f(x), the following assertions are equivalent:
(a) The function f is equi-subdifferentiable at (x, x̂∗);
(b) The epigraph Ef of f is equi-normal at (xf , (x̂∗,−1)).

Proof. (a)⇒(b) Let ρ ∈ (0, 1) be such that for all ε > 0 one can find some δ > 0 such that

〈x∗, w − x〉 ≤ f(w)− f(x) + ε ‖w − x‖ (11)

for all x∗ ∈ ∂f(x) ∩ B(x̂∗, ρ) and all w ∈ B(x, δ). Let ρE ∈ (0, 1/2) be such that 2ρE ≤ ρ(1 + ‖x̂∗‖)−1 and let
(x∗,−r) ∈ NF (E, xf ) ∩B((x̂∗,−1), ρE). Then one has r > 1/2 and x∗/r ∈ ∂F f(x) with

‖x∗/r − x̂∗‖ ≤ (1/r) ‖x∗ − x̂∗‖+ (1/r) |r − 1| ‖x̂∗‖ ≤ 2ρE(1 + ‖x̂∗‖) ≤ ρ.

Thus, for all (w, r) ∈ Ef ∩B(xf , δ), relation (11) yields

〈(x∗,−r), (w, r)− (x, f(x))〉 ≤ r (〈x∗/r, w − x〉 − (f(w)− f(x)))
≤ 2ε ‖w − x‖ ≤ 2ε ‖(w, r)− (x, f(x))‖ ,

so that Ef of f is equi-normal at (xf , (x̂∗,−1)).
(b)⇒(a). Let ρ ∈ (0, 1) be such that for all ε > 0 there exists γ > 0 for which

〈x∗, w − x〉 − r(r − f(x)) ≤ ε ‖(w, r)− (x, f(x))‖ (12)

whenever (w, r) ∈ B((x, f(x)), γ)∩Ef and (x∗,−r) ∈ NF (Ef , xf )∩B((x̂∗,−1), ρ). Let x∗ ∈ ∂F f(x)∩B(x̂∗, ρ),
so that (x∗,−1) ∈ NF (Ef , xf ) ∩ B((x̂∗,−1), ρ). Let c := ‖x̂∗‖ + 1 and let δ ∈ (0, γ/(c + 1)). Let w ∈ B(x, δ).
When r := f(x) + c ‖w − x‖ ≥ f(w) we have (w, r) ∈ B((x, f(x)), γ) ∩ Ef , hence

〈x∗, w − x〉 − (f(w)− f(x)) ≤ ε ‖(w, r)− (x, f(x))‖
≤ ε ‖w − x‖+ ε |r − f(x)| = ε(c + 1) ‖w − x‖ .

When f(x) + c ‖w − x‖ < f(w) we have

〈x∗, w − x〉 − (f(w)− f(x)) < 〈x∗, w − x〉 − c ‖w − x‖ ≤ 0.

In both cases relation (11) is satisfied with ε changed into ε(c + 1). ¤
The proof of the next result is similar.
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Theorem 20 Let f be lower semicontinuous and let x ∈ dom f. The following assertion (b) implies assertion
(a). If f is quiet at x, both assertions are equivalent:

(a) The function f is boundedly equi-subdifferentiable at x;
(b) The epigraph Ef of f is boundedly equi-normal at xf .

Proof. We just mention the necessary changes.
(b)⇒(a) Given a bounded subset B∗ of X∗ and ε > 0 one can find γ > 0 such that

〈x∗, w − x〉 − r(r − f(x)) ≤ ε ‖(w, r)− (x, f(x))‖
whenever (w, r) ∈ B((x, f(x)), γ) ∩ Ef and (x∗,−r) ∈ NF (Ef , xf ) ∩ (B∗ × {−1}) which is bounded. Let
c := sup{‖b∗‖ : b∗ ∈ B∗}+1 and let δ := γ/(c+1). Then, as in the preceding proof, for every x∗ ∈ ∂F f(x)∩B∗

and for every w ∈ B(x, δ), we get that relation (11) is satisfied with ε changed into ε(c + 1).
(a)⇒(b) when f is quiet at x. Let c > 0 and q > 0 be such that f(w)− f(x) ≤ c ‖w − x‖ for all w ∈ B(x, q).

Then the cone Q := {(u, r) ∈ X × R : r ≥ c ‖u‖} is contained in the tangent cone to Ef at xf . It follows that
NF (Ef , xf ) is contained in the polar cone of Q which is

Q0 = {(u∗,−r∗) ∈ X∗ × R : r∗ ≥ (1/c) ‖u∗‖}.
Let A∗ be a subset of NF (Ef , xf ) contained in the ball with center (0, 0) and radius a > 0. Since A∗ is contained
in Q0, for every (u∗,−r∗) ∈ A∗\{(0, 0)} we have r∗ > 0 and x∗ := u∗/r∗ ∈ ∂F f(x) ⊂ cBX∗ . Thus, for all ε > 0,
one can find some δ > 0 such that

〈u∗/r∗, w − x〉 ≤ f(w)− f(x) + ε ‖w − x‖
for all (u∗,−r∗) ∈ A∗\{(0, 0)} and all w ∈ B(x, δ). It follows that

〈u∗, w − x〉 − r∗(r − f(x)) ≤ r∗ε ‖w − x‖ ≤ aε ‖(w, r)− (x, f(x))‖
for all (u∗,−r∗) ∈ A∗, all w ∈ B(x, δ) and all r ≥ f(w). ¤

The proof of the next result is not as simple; we refer to [31, Thm 3].

Theorem 21 ([31, Thm 3]) For f l.s.c. and x ∈ dom f, x̂∗ ∈ ∂f(x), the following assertions are equivalent:
(a) The function f is uniformly subdifferentiable around (x, x̂∗);
(b) The epigraph Ef of f is uniformly normal around (xf , (x̂∗,−1)) in the sense that its indicator function

is uniformly subdifferentiable around (xf , (x̂∗,−1)).

Now let us consider the case of sublevel sets.

Proposition 22 Let X be an Asplund space and let f : X → R be a continuous function. Let S := {x ∈
X : f(x) ≤ 0} and let x ∈ X be such that f(x) = 0. Suppose f is equi-∂D-subdifferentiable at x and
lim infx→x,x∈X\S d(0, ∂F f(x)) > 0. Then S is equi-normal at x.

Proof. We can pick c > 0, r > 0 such that ‖x∗‖ ≥ c for all x ∈ (X\S) ∩ B(x, r) and all x∗ ∈ ∂F f(x).
Then, by [33, Thm 9.1] with ϕ = c, (see also, among several other contributions, [17], [30], [53], with various
assumptions on X) we have f+(x) ≥ cdS(x) for x ∈ V, where f+ := max(f, 0) and V := B(x, r/2). Given ε > 0
one can find δ ∈ (0, r/2) such that

∀w ∈ B(x, δ), x∗ ∈ ∂Df(x) 〈x∗, w − x〉 ≤ f(w)− f(x) + cε ‖w − x‖ .

Elementary calculus rules yield

c∂DdS(x) ⊂ ∂Df+(x) = co∗(∂Df(x) ∪ {0}).
Given w ∈ S ∩ B(x, δ), x∗ ∈ ∂DdS(x), by the preceding inclusion and inequality and a passage to the convex
hull and the closure, we get 〈cx∗, w − x〉 ≤ cε ‖w − x‖ . Thus, dS is equi-∂D-subdifferentiable at x, hence S is
equi-normal at x by Theorem 20. ¤
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