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Delineating nice classes of nonsmooth functions

Introduction

While it is known thanks to Weierstrass that wild nonsmooth functions exist, it is of interest to select classes of nonsmooth functions which have pleasant properties. Such an appraisal can be understood in different manners: [START_REF] Amahroq | Subdifferentiation and minimization of the difference of two functions[END_REF] one may hope to get properties close to the ones of convex or differentiable functions, (2) one may expect stability properties with respect to the usual operations, (3) one may wish that the main concepts of nonsmooth analysis coincide for such classes, (4) one may devote efforts to show that the regularization of such functions is worthwhile.

Many works have been devoted to such aims. Central concepts are the notions of approximately convex functions ( [START_REF] Aussel | Subsmooth sets: functional characterizations and related concepts[END_REF], [START_REF] Ngai | Approximate convex functions[END_REF], [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF]) and paraconvex (or semiconvex) functions ( [START_REF] Canino | On p-convex sets and geodesics[END_REF], [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control[END_REF], [START_REF] Ngai | Paraconvex functions and paraconvex sets[END_REF], [START_REF] Rolewicz | On the coincidence of some subdifferentials in the class of α(•)-paraconvex functions[END_REF]- [START_REF] Rolewicz | Paraconvex analysis[END_REF], [START_REF] Vial | Strong and weak convexity of sets and functions[END_REF]...). They can be given several variants. Directional variants have been studied in [START_REF] Daniilidis | Approximate convexity and submonotonicity[END_REF], [START_REF] Daniilidis | Integration of multivalued operators and cyclic submonotonicity[END_REF], in particular in connection with integration questions. Another line of research appears in the works of Poliquin, Rockafellar, Thibault and their co-authors ( [START_REF] Bernard | Prox-regularity of functions and sets in Banach spaces[END_REF], [START_REF] Bernard | Prox-regular functions in Hilbert spaces[END_REF], [START_REF] Jourani | Weak regularity of functions and sets in Asplund spaces[END_REF], [START_REF] Poliquin | Integration of subdifferentials of nonconvex functions[END_REF], [START_REF] Poliquin | Prox-regular functions in variational analysis[END_REF], [START_REF] Poliquin | Local differentiability of distance functions[END_REF]...) . In such works, the subjet of the function is heavily present, even if it is not put to the fore. It is the purpose of the present paper to put it in clear light and to propose some variants. We keep in mind expectations (1)-(3), in particular [START_REF] Aubin | Set-Valued Analysis[END_REF] and what has been called softness in [START_REF] Penot | Softness, sleekness and regularity in nonsmooth analysis[END_REF] and lower regularity in [START_REF] Mordukhovich | Variational analysis and generalized differentiation[END_REF]. We refer to [START_REF] Attouch | Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method[END_REF], [START_REF] Bougeard | Towards minimal assumptions for the infimal convolution regularization[END_REF], [START_REF] Martínez-Legaz | Regularization by erasement[END_REF], [START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF], [START_REF] Rockafellar | Variational Analysis[END_REF] and their references for the question of regularization. With [START_REF] Jourani | Radiality and semismoothness[END_REF], [START_REF] Jourani | Weak regularity of functions and sets in Asplund spaces[END_REF] and [START_REF] Ngai | Semismoothness and directional subconvexity of functions[END_REF], the paper [START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF] has been our starting point.

Our main thrusts consist in putting to the fore different localizations in the subjet of the function and in clarifying the roles of different notions of uniform or equi-differentiability. Because the passages from functions to sets and from sets to functions have been dealt with in several other papers ( [START_REF] Bounkel | On various notions of regularity of sets in nonsmooth analysis[END_REF], [START_REF] Borwein | Techniques of Variational Analysis[END_REF], [START_REF] Colombo | Variational inequalities and regularity properties of closed sets in Hilbert spaces[END_REF], [START_REF] Jourani | Weak regularity of functions and sets in Asplund spaces[END_REF], [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF]- [START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF], [START_REF] Rockafellar | Variational Analysis[END_REF]...), for the sake of brevity, we do not explore all the possibilities but just present some of them.

Preliminaries

In the sequel X is a Banach space with dual space X * and F(X) (resp. S(X)) denotes the set of all functions (resp. lower semicontinuous (l.s.c.) functions) from X to R ∞ := R ∪ {+∞}. For more information about the basic concepts of nonsmooth analysis we recall in this section, we refer to the recent monographs of Borwein and Zhu ( [START_REF] Borwein | Techniques of Variational Analysis[END_REF]), Mordukhovich [START_REF] Mordukhovich | Variational analysis and generalized differentiation[END_REF], Rockafellar and Wets [START_REF] Rockafellar | Variational Analysis[END_REF], Schirotzek ([49]) and Zalinescu [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF].

The lower directional derivative (or contingent derivative or Dini-Hadamard derivative) of f ∈ F(X) finite at x is given by

f D (x, v) := lim inf (t,w)→(0 + ,v) 1 t (f (x + tw) -f (x)).
The Clarke-Rockafellar derivative [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], or circa-derivative of f ∈ S(X) at x is given by

f C (x, v) := sup r>0 lim sup (t,y)→(0 + ,x) f (y)→f (x) inf w∈B(v,r) 1 t (f (y + tw) -f (y)).
The directional (or Dini-Hadamard) subdifferential and the circa (or Clarke-Rockafellar) subdifferential are associated to these derivatives by

∂ D f (x) = {x * ∈ X * : x * ≤ f D (x, •)}, ∂ C f (x) = {x * ∈ X * : x * ≤ f C (x, •)}.
The firm (or Fréchet) subdifferential of f ∈ F (X) at x is the set ∂ F f (x) of x * ∈ X * such that for all ε > 0 there exists some δ > 0 for which

f (w) -f (x) -x * , w -x ≥ -ε w -x ∀w ∈ B(x, δ).
Given an hyper-modulus π, i.e. a function π : R

+ → R + ∪ {+∞} such that lim r→0+ π(r)/r = 0, π(0) = 0, ∂ F f (x) contains the π-proximal subdifferential of f at x which is the set ∂ π f (x) of x * ∈ X * such that f (w) -f (x) -x * , w -x ≥ -π( w -x ) ∀w ∈ X. For π(t) := t 2 , ∂ π f (x) is just called the proximal subdifferential of f at x. In fact, ∂ F f (x)
is the union of the π-proximal subdifferentials of f at x for π in the set of hyper-modulus.

The limiting subdifferential of f at x is defined as

∂ L f (x) := lim sup y→ f x ∂ F f (y)
, where y → f x means that y → x with f (y) → f (x), the limsup being taken in a sequential way with respect to the weak * topology.

As in [START_REF] Penot | Softness, sleekness and regularity in nonsmooth analysis[END_REF], we say that f is soft at x if the limiting subdifferential

∂ L f (x) of f at x coincides with ∂ F f (x).
We call subdifferential a multifunction ∂ : F(X) × X ⇒ X * such that for all f ∈ F(X) and all x ∈ X one has ∂ F f (x) ⊂ ∂f (x) ⊂ ∂ C f (x). These inclusions imply that for all f ∈ F(X) the domain of ∂f is included in the domain of f and that ∂f is locally bounded if f is locally Lipschitzian. The inclusion ∂ F f ⊂ ∂f could be relaxed into ∂ π f ⊂ ∂f for some hyper-modulus π, but we require it for the sake of simplicity.

Given a subdifferential ∂, recall that the ∂-subjet (in short subjet) of f ∈ F(X) is the set

J ∂ f := {(x, x * , f (x)) : x ∈ X, f (x) < +∞, x * ∈ ∂f (x)}.
This notion generalizes the concept of one-jet classically used in differential geometry. It will play a crucial role in [START_REF] Ioffe | Limiting subhessians, limiting subjets and their calculus[END_REF], [START_REF] Penot | Critical duality[END_REF], [START_REF] Penot | Ekeland duality as a paradigm[END_REF] and in what follows.

A spectrum of subdifferentiable functions

In the sequel, f ∈ S(X), i.e. f : X → R ∞ is a l.s.c. function and x ∈ dom f := {x ∈ X : f (x) < +∞}. The first concept of the following definition has been introduced (in a slightly different but equivalent form) in [START_REF] Jourani | Weak regularity of functions and sets in Asplund spaces[END_REF] in the case ∂ is the limiting subdifferential under the name of weakly regular function (WR) at x relative to x * . The third one has been used in [START_REF] Amahroq | Subdifferentiation and minimization of the difference of two functions[END_REF] and [START_REF] Penot | Gap continuity of multimaps, Set-Val. Anal[END_REF]. The fourth one is a variant of a notion introduced and studied in [START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF], where ∂ = ∂ F and a quantitative estimate is required. The last one appears in [START_REF] Duda | Semiconvex and strongly paraconvex functions: representations as suprema of smooth functions[END_REF]. The other ones seem to be new.

Definition 1 (a) The function f is said to be equi-(∂)-subdifferentiable at (x, x * ), where x * ∈ ∂f (x), if there exists some ρ > 0 such that for any ε > 0 one can find some δ > 0 such that

x * , w -x ≤ f (w) -f (x) + ε w -x (1)
for all x * ∈ ∂f (x) ∩ B( x * , ρ) and all w ∈ B(x, δ).

(b) The function f is said to be boundedly equi-(∂)-subdifferentiable at x if ∂f (x) is nonempty and if for any bounded subset B * of X * and any ε > 0 one can find some δ > 0 such that (1) holds for all x * ∈ ∂f (x) ∩ B * and all w ∈ B(x, δ).

(c) The function f is said to be equi-(∂)-subdifferentiable at x if ∂f (x) is nonempty and if for any ε > 0 one can find some δ > 0 such that (1) holds for all x * ∈ ∂f (x) and all w ∈ B(x, δ).

(d) The function f is said to be uniformly ∂-subdifferentiable around (x, x * ), where x * ∈ ∂f (x), if there exists some ρ > 0 such that for any ε > 0 one can find some δ > 0 such that

x * , y -x ≤ f (y) -f (x) + ε y -x (2)
for all (x, x * , f (x)) ∈ J ∂ f ∩ B((x, x * , f (x)), ρ) and all y ∈ B(x, δ).

(e) The function f is said to be boundedly uniformly ∂-subdifferentiable around x if ∂f (x) is nonempty and if there exists some ρ > 0 such that for any bounded subset B * of X * and for any ε > 0 one can find some δ > 0 such that [START_REF] Attouch | Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method[END_REF] 

holds for all (x, x * , f (x)) ∈ J ∂ f ∩ (B(x, ρ) × B * × B(f (x), ρ)
) and all y ∈ B(x, δ).

(f ) The function f is said to be uniformly ∂-subdifferentiable around (x, f (x)) if ∂f (x) is nonempty and if there exists some ρ > 0 such that for any ε > 0 one can find some δ > 0 such that (2) holds for all

(x, x * , f (x)) ∈ J ∂ f ∩ (B(x, ρ) × X * × B(f (x), ρ)
) and all y ∈ B(x, δ).

(g) Given a subset S of X, f is said to be uniformly ∂-subdifferentiable on S if ∂f (x) is nonempty for all x ∈ S and if for any ε > 0 one can find some δ > 0 such that ( 2) holds for all

(x, x * , f (x)) ∈ J ∂ f ∩ (S × X * × R) and all y ∈ B(x, δ) ∩ S.
(h) f is said to be uniformly ∂-subdifferentiable around x if there exists some neighborhood of x on which f is uniformly ∂-subdifferentiable.

Remarks. (a) When f is equi-∂-subdifferentiable at (x, x * ) and ρ is as in assertion (a) one has ∂f (x) ∩ B( x * , ρ) ⊂ ∂ F f (x). When f is boundedly equi-∂-subdifferentiable at x, one has ∂f (x) = ∂ F f (x).
Similar assertions hold for the other notions. For such a reason, when the mention of ∂ is omitted in the sequel, that means that ∂ = ∂ F .

(b) The preceding assertions can be formulated by using hyper-modulus or modulus. Here, as usual, a modulus is a function µ : R + → R + ∪ {+∞} which is continuous at 0, with µ(0) = 0; π : R + → R ∞ is an hypermodulus if, and only if µ given by µ(t) := π(t)/t for t > 0, µ(0) = 0 is a modulus. Thus, a quantitative form can be given to the preceding notions, as in [START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF].

Let us compare the preceding notions. The assertions of the following proposition are displayed for the convenience of the reader. They are either obvious or easy consequences of a compactness argument. Let us recall that f is said to be quiet at x ∈ dom f if -f is calm at x, i.e. if there exist c > 0 and r > 0 such that

f (x) -f (x) ≤ c x -x for all x ∈ B(x, r). We observe that ∂ F f (x) is bounded when f is quiet at x. Proposition 2 The preceding properties are ranked in increasing strength. If X is finite dimensional, f is boundedly equi-(∂)-subdifferentiable at x if, and only if, it is equi-(∂)- subdifferentiable at (x, x * ) for all x * ∈ ∂ F f (x). If f is continuous at x, f is uniformly ∂-subdifferentiable around (x, f (x)) if, and only if, f is uniformly ∂-subdifferentiable around x. If f is quiet at x, f is boundedly equi-(∂)-subdifferentiable at x if, and only if, it is equi-(∂)-subdifferentiable at x. If f is Lipschitzian around x, f is boundedly uniformly ∂-subdifferentiable around x if, and only if, it is uniformly ∂-subdifferentiable around (x, f (x)).
Example. The distinctions of Definition 1 may appear superfluous. However, even for differentiable functions, they exist. If f is differentiable at x, it is obviously equi-subdifferentiable at x but it is not necessarily uniformly subdifferentiable around x. This last property is satisfied if the derivative Df of f is uniformly continuous on some neighborhood of x.

Example. Let f : R → R be given by f (x) := √ x + , where x + := max(x, 0). Then, as noted in [22, Example 1], f is equi-∂ F -subdifferentiable at (0, 0). In fact, it is boundedly equi-∂ C -subdifferentiable at x. But it is not equi-∂ F -subdifferentiable at 0, as easily seen. It is also boundedly uniformly ∂-subdifferentiable around x = 0, but not uniformly ∂-subdifferentiable around x = 0.

Example. Suppose f admits a lower approximation s : X → R at x, i.e. that there exists a modulus µ such that f (x + u) ≥ f (x) + s(u) -u µ(u) for all u ∈ X. Then, if s is sublinear and continuous, for every x * ∈ int(∂s(0)), f is equi-∂ F -subdifferentiable at (x, x * ). Conversely, if f is equi-∂ F -subdifferentiable at (x, x * ), then f admits a lower approximation s at x which is sublinear and continuous: one can define s by s(u) := sup{ x * , u : x * ∈ ∂f (x) ∩ B( x * , ρ)}, where ρ is as in Definition 1 (a).

Obviously, convex functions satisfy all the conditions of Definition 1. In fact, property (h) of this definition corresponds to a well known class of functions. [START_REF] Duda | Semiconvex and strongly paraconvex functions: representations as suprema of smooth functions[END_REF]) Let f be continuous on some neighborhood of x. Then the following assertions are equivalent:

Theorem 3 (Duda and Zajíček

(a) f is uniformly ∂-subdifferentiable around x and f is subdifferentiable around x;

(b) there exists a neighborhood V of x such that for all ε > 0 one can find some δ > 0 such that for all x ∈ V one can find some x * ∈ X * satisfying ( 2) for all y ∈ V ∩ B(x, δ);

(c) f is semiconvex around x in the sense that there exist some neighborhood U of x and some modulus µ such that for all x, y ∈ U, t ∈ [0, 1]

f ((1 -t)x + ty) ≤ (1 -t)f (x) + tf (y) + t(1 -t)µ( x -y ) x -y .
On the other hand, property (a) of the preceding definition is satisfied under a weak convexity assumption.

Definition 4 ([27]

) A function f ∈ F (X) finite at x, is said to be approximately starshaped at x if for any ε > 0 there exists δ > 0 such that for any

x ∈ B(x, δ), t ∈ [0, 1], one has f ((1 -t)x + tx) ≤ (1 -t)f (x) + tf (x) + εt(1 -t) x -x .
(3)

Proposition 5 If f is approximately starshaped at x and if f is ∂ D -subdifferentiable at x, then f is equi-∂ D - subdifferentiable at x and ∂ D f (x) = ∂ F f (x).
Proof. Given ε > 0, let δ ∈ (0, 1) be such that relation (3) is satisfied for any x ∈ B(x, δ), t ∈ (0, 1]. Then, for all w ∈ B(x, δ), dividing by t and taking the limit inferior as (t, x) → (0 + , w), one gets

f D (x, w -x) ≤ f (w) -f (x) + ε w -x . Thus, for all x * ∈ ∂ D f (x) (1) is satisfied. The equality ∂ D f (x) = ∂ F f (x) is obvious.
Remark. When f is approximately convex at x in the sense of [START_REF] Ngai | Approximate convex functions[END_REF], one has a property which is intermediate between properties (a) and (h) of the preceding definition: for any ε > 0 one can find some δ > 0 such that (2) holds for all (x, x * , f (x))

∈ J ∂ f ∩ (B(x, δ) × X * × R) and all y ∈ B(x, δ). Proposition 6 If, for all x * ∈ ∂ F f (x), f is equi-subdifferentiable at (x, x * ), then ∂ F f (x) is locally closed. If f is equi-subdifferentiable at x, then ∂ F f (x) is weakly * closed.
Proof. Given x * ∈ ∂f (x) and ρ > 0 as in Definition 1 (a), the assertion follows from a passage to the limit in relation [START_REF] Amahroq | Subdifferentiation and minimization of the difference of two functions[END_REF] 

over a sequence (x * n ) in ∂ F f (x) ∩ B( x * , ρ) converging to some x * .
When f is equi-subdifferentiable at x, one can take an arbitrary weakly * converging net in

∂ F f (x). Remark. In [22, Thm 4.2] it is stated that f is soft at x (i.e. ∂ L f (x) = ∂ F f (x)
) whenever f is equisubdifferentiable at x when X is finite dimensional. The following counter-example shows that such an assertion is not true. Example. Given a sequence (r n ) → 0 + let f : R → R be given by f (r n ) := 0 for all n ∈ N and f (x

) := x 2 for x ∈ R\{r n : n ∈ N}. Then ∂ F f (0) = {0}, so that f is equi-subdifferentiable at x but ∂ L f (0) = R, so that f is not soft at 0.
On the other hand the implication (ii)⇒(i) of [START_REF] Jourani | Weak regularity of functions and sets in Asplund spaces[END_REF]Thm 4.2] can be given a weaker form.

Proposition 7 If f is continuous at x and boundedly uniformly subdifferentiable around x, then f is soft on some neighborhood V of x. If moreover X is an Asplund space, then f is firmly regular on V in the sense that

∂ C f (x) = ∂ F f (x)
for all x ∈ V, hence is regular in the sense of [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] that

∂ C f (x) = ∂ D f (x) for all x ∈ V.
Proof. Here ∂ := ∂ F . Let ρ > 0 be such that for any bounded subset B * of X * and for any ε > 0 one can find some δ > 0 such that (2) holds for all (x, x * , f (

x)) ∈ J ∂ f ∩ (B(x, ρ) × B * × B(f (x), ρ)) and all y ∈ B(x, δ). Let x ∈ V := B(x, ρ ), x * ∈ ∂ L f (x)
, where ρ ∈ (0, ρ] is small enough to ensure that f (w) ∈ B(f (x), ρ) for all w ∈ B(x, ρ ). Let ((x n , x * n , f (x n )) be a sequence of J ∂ f converging to (x, x * , f (x)). Taking for B * a bounded subset containing {x * n : n ∈ N}, for every ε > 0 one can find some δ > 0 such that

∀y ∈ B(x n , δ) x * n , y -x n ≤ f (y) -f (x n ) + ε y -x n
for n large enough to ensure x n -x < ρ . Passing to the limit on n in this inequality one gets

x * , y -x ≤ f (y) -f (x) + ε y -x for all y ∈ B(x, δ). Thus x * ∈ ∂ F f (x) and f is soft at x. When X is an Asplund space, ∂ C f (x) is the weak * closed convex hull of ∂ L f (x)
. Thus, every element of ∂ C f (x) satisfies the preceding relation, hence belongs to ∂ F f (x).

Stability properties

We first consider the stability of the classes defined above under usual operations.

Theorem 8 Let f = sup i∈I f i , where (f i ) i∈I is a finite family of functions which are equi-∂ D -subdifferentiable at x. Then f is equi-∂ D -subdifferentiable at x.
Proof. We first prove that for I(x) := {i ∈ I :

f i (x) = f (x)} we have ∂ D f (x) = cl * co( i∈I(x) ∂ D f i (x)).
It suffices to show that the support functions of both sides are equal, what follows from the equality

f D (x, u) = max i∈I(x) f D i (x, u),
which can be easily shown. Now, for every i ∈ I(x), ε > 0, one can find some δ i > 0 such that

∀x * i ∈ ∂ D f i (x), ∀x ∈ B(x, δ i ) x * i , x -x ≤ f i (x) -f i (x) + ε x -x .
Setting δ := min i∈I(x) δ i , taking convex combinations, one gets that

∀x * ∈ co( i∈I(x) ∂ D f i (x)), ∀x ∈ B(x, δ) x * , x -x ≤ f (x) -f (x) + ε x -x .
Taking a weak * converging net, one sees that the preceding inequality remains valid for all x * ∈ ∂ D f (x) and all x ∈ B(x, δ). Thus, f is equi-∂ D -subdifferentiable at x. The following stability result completes [START_REF] Ngai | Approximate convex functions[END_REF]Thm 3.8]. It has some similarities with [31, Cor 2] but the assumptions and the conclusions are different. Note that here h is not supposed to be convex but the qualification condition is stronger than the Robinson qualification condition. 

Theorem 9 Let X and Y be Banach spaces, let W be an open subset of X and let f

:= h • g, where g : W → Y is differentiable at x ∈ W and h : Y → R ∞ is finite at y := g(x). Suppose A := Dg(x)
∂ F f (x) = ∂ F h(y) • Dg(x).
Moreover, there exists some c > 0 such that for every x * ∈ ∂ F f (x) there exists some y * ∈ ∂ F h(y) such that x * = y * • Dg(x) and y * ≤ c x * . In fact, if c > 0 is such that B Y ⊂ A(cB X ) for A := Dg(x), then for every x * ∈ A T (Y * ) there exists a unique y * ∈ Y * such that x * = y * • Dg(x) and y * ≤ c x * . The uniqueness stems from the surjectivity of A; the estimate is a consequence of the fact that for every y ∈ B Y there exists some x ∈ cB X satisfying y = A(x).

Let ρ > 0 be such that for all ε > 0 one can find some δ := δ(ε) > 0 such that y * , y -y ≤ h(y) -h(y) + ε y -y for all y * ∈ ∂ F h(y) ∩ B( y * , ρ) and all y ∈ B(y, δ). Let c > A := Dg(x) and let ρ := ρ/c . Since g is differentiable at x, given ε ∈ (0, c -A ), there exists γ

:= γ(ε) ∈ (0, δ(ε)/c ) such that g(w) -g(x) -A(w -x) ≤ ε w -x for all w ∈ B(x, γ).
Then, for all w ∈ B(x, γ) and for all

x * ∈ ∂ F f (x) ∩ B( x * , ρ ) one has g(w) -g(x) ≤ c w -x ≤ c γ ≤ δ(ε) and x * := y * • A with y * ∈ ∂ F h(y) ∩ B( y * , ρ), so that x * , w -x = y * , A(w -x) ≤ y * , g(w) -g(x) + y * .ε w -x ≤ h(g(w)) -h(g(x)) + ε g(w) -g(x) + y * .ε w -x ≤ f (w) -f (x) + ε (c + c x * + ρ) w -x .
Since ε is arbitrarily small, these inequalities show that ( 1) is satisfied. The proof of assertion (b) is similar, taking into account the fact shown above that for every bounded subset

B * of A T (Y * ) there exists a bounded subset C * of Y * such that B * = A T (C * ).
The proof of the following statement is obvious. When ∂ = ∂ L , its second hypothesis can be ensured by assuming some compactness condition and some asymptotic subdifferential condition.

Theorem 10 Let f := f 1 + f 2 , where f 1 and f 2 are equi-∂-subdifferentiable at x. Suppose ∂f (x) = ∂f 1 (x) + ∂f 2 (x). Then f is equi-∂-subdifferentiable at x.

Subdifferential characterizations

A number of classes of generalized convex functions on an Asplund space X have been given subdifferential characterizations ( [START_REF] Aussel | Subsmooth sets: functional characterizations and related concepts[END_REF], [START_REF] Colombo | Variational inequalities and regularity properties of closed sets in Hilbert spaces[END_REF], [START_REF] Daniilidis | Approximate convexity and submonotonicity[END_REF], [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF], [START_REF] Ngai | Paraconvex functions and paraconvex sets[END_REF]...). In the present section we examine whether the same can be done for the classes we defined above.

In this section, X is an Asplund space and ∂ stands for the Fréchet subdifferential. We say that a multimap (or multifunction) M : X ⇒ X * is semimonotone if there exists a modulus µ such that

∀(x, x * ), (y, y * ) ∈ gph(M ) x * -y * , x -y ≥ -µ( x -y ) x -y .
It is said to be submonotone at x ∈ X if there exists a modulus µ such that

∀x * ∈ M (x), (y, y * ) ∈ gph(M ) x * -y * , x -y ≥ -µ( x -y ) x -y .
We start with a qualitative reformulation of [START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF]Thm 4] which is a result of quantitative nature.

Theorem 11 For a l.c.s. function f on X and x * ∈ ∂ F f (x) the following assertions are equivalent:

(a) f is uniformly ∂-subdifferentiable around (x, x * ); (b) there exists ρ > 0 such that, for V := B((x, x * , f (x)), ρ), the multimap M : X ⇒ X * given by

gph(M ) := {(x, x * ) : (x, x * , f (x)) ∈ J ∂ f ∩ V }, is semimonotone.
The proof of the next result is much simpler. It relies on the following version of the Mean Value Theorem.

Lemma 12 Let f be a l.c.s. function on X and let x, y ∈ dom f. Then there exist t ∈ (0, 1], sequences

(z n ) → z := x + t(y -x), (z * n ) such that z * n ∈ ∂f (z n ) for all n ∈ N and lim inf n z * n , x -y ≥ f (x) -f (y), (4) 
lim inf n z * n , z -z n ≥ 0. (5) 
Theorem 13 For a l.c.s. function f on X and x ∈ dom ∂f, the following assertions are equivalent: (a) f is uniformly ∂-subdifferentiable around x; (b) there exists ρ > 0 such that for V := B(x, ρ) × X * × R, the multimap M : X ⇒ X * given by

gph(M ) := {(x, x * ) : (x, x * , f (x)) ∈ J ∂ f ∩ V }, ( 6 
)
is semimonotone.

Proof. (a)⇒(b) Let ρ > 0 be such that for any ε > 0 one can find some δ > 0 such that for all (x,

x * , f (x)) ∈ J ∂ f ∩ V , with V := B(x, ρ) × X * × R, and all y ∈ B(x, δ) one has x * , y -x ≤ f (y) -f (x) + ε y -x . ( 7 
)
In particular, if (x, x * , f (x)) ∈ J ∂ f ∩ V and (y, y * , f (y)) ∈ J ∂ f ∩ V are such that x -y < δ, one has a similar relation by interchanging (x, x * ) with (y, y * ). Adding sides by sides the two relations, one gets

x * -y * , y -x ≤ 2ε y -x , so that M is semimonotone. (b)⇒(a)
Let ρ > 0, V and M be as in assertion (b), so that, for every ε > 0 there exists δ := δ(ε) > 0 such that for all (x, x * ), (y, y * ) ∈ gph(M ) satisfying x -y < δ one has

x * -y * , y -x ≤ ε x -y .
Given ε > 0, let δ := min(δ(ε), ρ/2). Let V := B(x, ρ/2) × X * × R. Then, for every (x, x * , f (x)) ∈ J ∂ f ∩ V and y ∈ B(x, δ ) one has y ∈ B(x, ρ). When f (y) = +∞, relation [START_REF] Borwein | The proximal normal formula in Banach space[END_REF] is trivially satisfied. Thus, we may suppose f (y) < +∞ and apply the preceding lemma: there exist t ∈ (0, 1] and sequences (z n ) → z := x + t(y -x), (z * n ) such that z * n ∈ ∂f (z n ) for all n ∈ N satisfying (4), [START_REF] Bernard | Prox-regularity of functions and sets in Banach spaces[END_REF]. Then

x * , y -x + f (x) -f (y) ≤ x * , y -x + lim inf n z * n , x -y ≤ x * , y -x + lim inf n ( x * , x -y + z * n -x * , t -1 (x -z) ) ≤ lim inf n t -1 ( z * n -x * , x -z n + z * n -x * , z n -z ) ≤ lim inf n t -1 (ε x -z n + z * n , z n -z ) ≤ t -1 ε x -z = ε x -y .
Thus, ( 7) is satisfied. Now we give a variant of [START_REF] Jourani | Weak regularity of functions and sets in Asplund spaces[END_REF]Thm 7.1]; here we use the Fréchet subdifferential instead of the limiting subdifferential and f is not supposed to be locally Lipschitzian.

Proposition 14 Let f be a l.c.s. function on X, finite at x, with ∂ F f (x) nonempty. If ∂ F f is submonotone at x, then f is equi-subdifferentiable at x. Proof. By assumption, for every ε > 0 there exists δ > 0 such that for all x * ∈ ∂ F f (x), (y, y * ) ∈ gph(∂ F f ) satisfying x -y < δ one has

x * -y * , y -x ≤ ε x -y .

Let us show that, for all x * ∈ ∂f (x) and all y ∈ B(x, δ),

x * , y -x ≤ f (y) -f (x) + ε y -x . ( 8 
)
Given x * ∈ ∂f (x) and y ∈ B(x, δ) ∩ dom f, Lemma 12 yields t ∈ (0, 1], sequences (z n ) → z := x + t(y -x), (z * n ) with z * n ∈ ∂f (z n ) for all n ∈ N, such that relations (4), ( 5) hold. Then z n ∈ B(x, δ) for n large enough and, by these relations,

x * , y -x = lim n (1/t) x * , z n -x ≤ lim inf n (1/t)( z * n , z n -x + ε z n -x ) ≤ lim inf n (1/t)( z * n , z -x + ε z -x ) ≤ lim sup n ( z * n , y -x + ε y -x ) ≤ f (y) -f (x) + ε y -x .
When y ∈ B(x, δ)\ dom f, inequality ( 8) is trivial.

Nice sets and functions

We devote the present section to the passages from functions to sets. It appears that when the subjets of the functions are involved, these passages are nicer than the corresponding ones in the case of approximate functions or paraconvex functions (see [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF], [START_REF] Ngai | Paraconvex functions and paraconvex sets[END_REF]). We recall that the firm or Fréchet normal cone to a subset E of X at some point Proof. (a)⇒(b) Assumption (a) can be expressed as: there exists some ρ ∈ (0, 1) such that for all ε > 0 there exists δ > 0 for which

x of E is N F (E, x) := ∂ F ι E (x),
∀x ∈ E ∩ B(x, δ), ∀x * ∈ N F (E, x) ∩ B( x * , ρ) x * , x -x ≤ ε x -x . ( 9 
)
Given ε > 0, let w ∈ B(x, δ/2) and let

x * ∈ ∂ F d E (x) ∩ B( x * , ρ). One can find a sequence (x n ) in E such that ( x n -w ) → d E (w) and x n -w ≤ w -x . Then x n ∈ B(x, δ) since x n -x ≤ x n -w + w -x ≤ 2 w -x . Since x * ∈ ∂ F d E (x) = N F (E, x) ∩ B X * , relation (9) ensures that x * , w -x ≤ lim sup n ( x * , x n -x + x * . x n -w ) ≤ lim sup n (ε x n -x + x n -w ) ≤ 2ε w -x + d E (w).
Since ε > 0 is arbitrary, this shows that d E is equi-subdifferentiable at (x, x * ). (b)⇒(a). Let ρ ∈ (0, 1) be such that for all ε > 0 there exists δ > 0 for which

∀w ∈ B(x, δ), ∀x * ∈ ∂ F d E (x) ∩ B( x * , ρ) x * , w -x ≤ d E (w) + ε w -x . ( 10 
)
Then, for all x ∈ E ∩ B(x, δ) and for all x * ∈ N F (E, x) ∩ B( x * , ρ 2 ), we have Now let us turn to the links between a function f and its epigraph E f . For x ∈ dom f we set x f := (x, f (x)). We endow X × R with a product norm, i.e. a norm for which the projections and the insertions x → (x, 0) and r → (0, r) are nonexpansive. In both cases relation [START_REF] Bounkel | On various notions of regularity of sets in nonsmooth analysis[END_REF] is satisfied with ε changed into ε(c + 1). The proof of the next result is similar.

y * := (1 + ρ) -1 x * ∈ N F (E, x) ∩ (1 + ρ) -1 (1 + ρ 2 )B X * ⊂ ∂ F d E (x), y * -x * ≤ (1 + ρ) -1 x * -x * + ρ(1 + ρ) -1 x * ≤ (1 + ρ) -1 ρ 2 + ρ(1 + ρ) -1 = ρ, so that, by (10), y * , x -x ≤ ε x -x and x * , x -x ≤ (1 + ρ)ε x -x ≤ 2ε x -x

Theorem 19

 19 For f lower semicontinuous and x ∈ dom f, x * ∈ ∂f (x), the following assertions are equivalent: (a) The function f is equi-subdifferentiable at (x, x * );(b) The epigraph E f of f is equi-normal at (x f , ( x * , -1)).Proof. (a)⇒(b) Let ρ ∈ (0, 1) be such that for all ε > 0 one can find some δ > 0 such thatx * , w -x ≤ f (w) -f (x) + ε w -x (11) for all x * ∈ ∂f (x) ∩ B( x * , ρ) and all w ∈ B(x, δ). Let ρ E ∈ (0, 1/2) be such that 2ρ E ≤ ρ(1 + x * ) -1 and let (x * , -r) ∈ N F (E, x f ) ∩ B(( x * , -1), ρ E ). Then one has r > 1/2 and x * /r ∈ ∂ F f (x) with x * /r -x * ≤ (1/r) x * -x * + (1/r) |r -1| x * ≤ 2ρ E (1 + x * ) ≤ ρ.Thus, for all (w, r)∈ E f ∩ B(x f , δ), relation (11) yields (x * , -r), (w, r) -(x, f (x)) ≤ r ( x * /r, w -x -(f (w) -f (x))) ≤ 2ε w -x ≤ 2ε (w, r) -(x, f (x)) ,so that E f of f is equi-normal at (x f , ( x * , -1)).(b)⇒(a). Let ρ ∈ (0, 1) be such that for all ε > 0 there exists γ > 0 for whichx * , w -x -r(r -f (x)) ≤ ε (w, r) -(x, f (x)) (12) whenever (w, r) ∈ B((x, f (x)), γ) ∩ E f and (x * , -r) ∈ N F (E f , x f ) ∩ B(( x * , -1), ρ). Let x * ∈ ∂ F f (x) ∩ B( x * , ρ), so that (x * , -1) ∈ N F (E f , x f ) ∩ B(( x * , -1), ρ). Let c := x * + 1 and let δ ∈ (0, γ/(c + 1)). Let w ∈ B(x, δ). When r := f (x) + c w -x ≥ f (w) we have (w, r) ∈ B((x, f (x)), γ) ∩ E f , hence x * , w -x -(f (w) -f (x)) ≤ ε (w, r) -(x, f (x)) ≤ ε w -x + ε |r -f (x)| = ε(c + 1) w -x .When f (x) + c w -x < f (w) we havex * , w -x -(f (w) -f (x)) < x * , w -x -c w -x ≤ 0.

  where the indicator function ι E of E is defined by ι E (x) = 0 for x ∈ E, ι E (x) := +∞ for x ∈ X\E. The following results complete[START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF] Thm 2].

Theorem 15 Let E be a closed subset of X and let x ∈ E, x * ∈ N F (E, x) ∩ B X * . The following assertions are equivalent:

(a) The set E is equi-normal at (x, x * ) in the sense that its indicator function ι E is equi-subdifferentiable at (x, x * );

(b) The distance function d E is equi-subdifferentiable at (x, x * ).

  so that[START_REF] Borwein | Techniques of Variational Analysis[END_REF] holds with ρ replaced with ρ 2 and ε replaced by 2ε.The following consequence stems from the fact that for x * ∈ N F (E, x)\{0}, E is equi-normal at (x, x * ) if, and only if, E is equi-normal at (x, u Corollary 16 For x in a closed subset E of X the following assertions are equivalent:(a) The indicator functionι E of E is equi-subdifferentiable at (x, x * ) for every x * ∈ N F (E, x); (b) The distance function d E is equi-subdifferentiable at (x, x * ) for every x * ∈ ∂ F d E (x).The proofs of the next equivalences are simpler than the preceding one since it suffices to use the relation∂ F d E (x) = N F (E, x) ∩ B X *and the fact that d E is continuous. Theorem 17 Let E be a closed subset of X and let x ∈ E. The following assertions are equivalent: (a) The set E is boundedly normal at x in the sense that its indicator function ι E is boundedly equisubdifferentiable at x; (b) The distance function d E is equi-subdifferentiable at x. Theorem 18 Let E be a closed subset of X and let x ∈ E. The following assertions are equivalent: (a) The set E is uniformly boundedly normal around x in the sense that its indicator function ι E is uniformly boundedly subdifferentiable around x; (b) The distance function d E is uniformly subdifferentiable around x.

* ) where u * := x * -1 x * .

Theorem 20 Let f be lower semicontinuous and let x ∈ dom f. The following assertion (b) implies assertion (a). If f is quiet at x, both assertions are equivalent:

(a) The function f is boundedly equi-subdifferentiable at x; (b) The epigraph E f of f is boundedly equi-normal at x f .

Proof. We just mention the necessary changes. (b)⇒(a) Given a bounded subset B * of X * and ε > 0 one can find γ > 0 such that

and let δ := γ/(c + 1). Then, as in the preceding proof, for every x * ∈ ∂ F f (x) ∩ B * and for every w ∈ B(x, δ), we get that relation [START_REF] Bounkel | On various notions of regularity of sets in nonsmooth analysis[END_REF] is satisfied with

Let A * be a subset of N F (E f , x f ) contained in the ball with center (0, 0) and radius a > 0. Since A * is contained in Q 0 , for every (u * , -r * ) ∈ A * \{(0, 0)} we have r * > 0 and x * := u * /r * ∈ ∂ F f (x) ⊂ cB X * . Thus, for all ε > 0, one can find some δ > 0 such that

for all (u * , -r * ) ∈ A * , all w ∈ B(x, δ) and all r ≥ f (w).

The proof of the next result is not as simple; we refer to [START_REF] Ngai | ϕ-regular functions in Asplund spaces[END_REF]Thm 3]. 

Now let us consider the case of sublevel sets.

Proposition 22 Let X be an Asplund space and let f :

Proof. We can pick c > 0, r > 0 such that x * ≥ c for all x ∈ (X\S) ∩ B(x, r) and all x * ∈ ∂ F f (x). Then, by [START_REF] Penot | Well-behavior, well-posedness and nonsmooth analysis[END_REF]Thm 9.1] with ϕ = c, (see also, among several other contributions, [START_REF] Cornejo | Conditioning and upper-Lipschitz inverse subdifferentials in nonsmooth optimization problems[END_REF], [START_REF] Ngai | Metric inequalities, subdifferential calculus and applications[END_REF], [START_REF] Zhang | Upper-Lipschitz multifunctions and inverse subdifferentials[END_REF], with various assumptions on X) we have f + (x) ≥ cd S (x) for x ∈ V, where f + := max(f, 0) and

Elementary calculus rules yield

Given w ∈ S ∩ B(x, δ), x * ∈ ∂ D d S (x), by the preceding inclusion and inequality and a passage to the convex hull and the closure, we get cx * , w -x ≤ cε w -x . Thus, d S is equi-∂ D -subdifferentiable at x, hence S is equi-normal at x by Theorem 20.