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Natural closures, natural compositions and natural sums
of monotone operators

Jean-Paul Penot∗

Abstract

We introduce new methods for defining generalized sums of monotone operators and
generalized compositions of monotone operators with linear maps. Under asymptotic condi-
tions we show these operations coincide with the usual ones. When the monotone operators
are subdifferentials of convex functions, a similar conclusion holds. We compare these gen-
eralized operations with previous constructions by Attouch-Baillon-Théra, Revalski-Théra
and Pennanen-Revalski-Théra. The constructions we present are motivated by fuzzy calcu-
lus rules in nonsmooth analysis. We also introduce a convergence and a closure operation
for operators which may be of independent interest.
Key words: asymptotic analysis, composition, fuzzy sum, monotone operator, natural
topology, natural sum, variational sum.

Mathematics Subject Classification: 47H05
Fermeture naturelle, composition et somme d’opérateurs maximaux monotones
Résumé:
Par des méthodes nouvelles, nous introduisons des sommes généralisées d’opérateurs

monotones et des compositions généralisées d’un opérateur monotone et d’une application
linéaire. Sous des conditions asymptotiques, nous montrons que ces opérations cöıncident
avec les opérations usuelles. Quand les opérateurs monotones sont les sous-différentiels
de fonctions convexes, une conclusion semblable a lieu. Nous comparons ces opérations
généralisées avec des constructions dues à Attouch-Baillon-Théra, Revalski-Théra et Pennanen-
Revalski-Théra. Les constructions que nous présentons sont motivées par les règles de calcul
flou de l’analyse non-lisse. Nous introduisons aussi une convergence et une fermeture pour
les opérateurs qui peuvent avoir un intérêt propre.

Mots clés : analyse asymptotique, composition naturelle, opérateur monotone, somme
floue, somme naturelle, topologie naturelle.

Dedicated to Haim Brézis on the occasion of his sixthieth birthday

1 Introduction

It is well-known that the sum of two maximal monotone operators and the composition of a
maximal monotone operator with a continuous linear map are not always maximal monotone
operators. Several studies have been devoted to sufficient conditions ensuring preservation of
maximal monotonicity (see [3], [6], [13], [17], [57] for instance). Another direction has been
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openned by Attouch-Baillon-Théra in [5]. In that paper the authors introduce a generalized sum
called the variational sum which coincides with the ordinary sum when the latter is maximal
monotone. In [53], [54] and [41] this construction is extended from the setting of Hilbert spaces
to the case of reflexive Banach spaces. In both cases the construction relies on the Yosida
approximations of the operators. One may wonder whether the use of this specific approximation
is crucial or not.

In order to tackle such a question, we introduce here other generalized operations which stem
from quite different an idea. It arises from an insight in nonsmooth analysis in which the role of
fuzziness is crucial. In general, the subdifferential of a sum of two lower semicontinuous functions
cannot be given as the sum of the subdifferentials of the functions. Instead, in nice enough
Banach spaces (say Asplund spaces for the Fréchet subdifferential) it can be approximated by
sums of elements of the subdifferentials at neighboring points ([10], [21], [22], [24], [25], [38],
[39]...). For closed convex functions, a similar phenomenon holds in any Banach space ([45],
[61], [62]). Taking into account the close relationships between convexity and monotonicity (see
for instance [47], [48], [59] and their references), we extend to monotone operators the fuzziness
which occurs with subdifferentials (sections 3 and 4). In such a way, we get a notion which is more
flexible than the one obtained by using the Yosida regularization; in particular, it can be defined
for any type of operators. Since several types of generalized monotone operators are known to
be of great importance for the solutions of nonlinear equations and variational inequalities (see
[12], [34] and [2] for instance) such a feature is of interest. Also, it is not clear whether the
variational sum of [5] (resp. the variational composition of [41]) depends on the specific type
of regularization. We give a partial answer for the case of the generalized Yosida regularization
studied in [49]. Moreover, our generalized sum and composition contain the ordinary sum and
ordinary composition respectively, a property which may not be satisfied with the variational
concepts. On the other hand, we have to check in each specific situation whether the obtained
operator is not too large and whether it is still monotone when the operators are monotone;
we present some results in this direction. We also present some conditions ensuring that the
extensions we study coincide with the ordinary composition or sum. These conditions rely on
some concepts of asymptotic analysis. In section 6 we compare the notions obtained with such a
process with the notions introduced previously with approximations, showing coincidence under
the assumption that the “natural” closure of the composition is maximal monotone; a similar
result holds for sums.

In section 2 we introduce a topology on the product X ×X∗ of a Banach space with its dual
space which has the pleasant property that the closure of a monotone operator in that topology
(called hereafter the natural closure) is large enough and is still monotone; in particular, any
maximal monotone operator is closed in that topology. The simple construction we give arises
from the observation made in [42] (and probably elsewhere) that the duality coupling is not
continuous for the product of the strong topology with the weak∗ topology unless X is finite
dimensional. It is also related to the fact that a Banach space X such that the graph of any
maximal monotone operator M : X ⇒ X∗ is closed for the product of the norm topology with
the bounded weak∗ topology is finite dimensional ([8, Thm 3]). Such a fact shows the neces-
sity to adopt another topology when dealing with monotone operators in infinite dimensional
spaces. This closure process may have an independent interest, but it is clearly related with the
constructions we adopt for generalized sums and compositions.

Let us observe that both approximations and fuzziness appear in calculus rules for subdif-
ferentials of nonsmooth, nonconvex functions: a decoupling procedure is usually applied to get
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them via a penalization method which has some similarity with the Moreau-Yosida approxima-
tion. Therefore, it is natural that these two means can be used for calculus rules of monotone
operators. It is our hope that concrete applications will make use of both processes; in a subse-
quent work we intend to deal with the case of elliptic operators and Nemyckii operators in the
classical sense or in the sense of [1].

2 The natural closure of an operator

In the sequel X is a Banach space with dual space X∗; we are mainly interested in the case X
is reflexive. The domain of a multimapping (or operator) M is denoted by D(M); we identify
M with its graph G(M) whenever there is no risk of confusion. The following topology on the
product of X with its dual X∗ has been used in [49]; for related observations see [42]. The
symmetry of the notion could be increased by considering the case of two spaces in separating
duality.

Definition 1 The coarsest topology on X ×X∗ which makes continuous the mappings

(x, x∗) 7→ 〈w∗, x〉 (w∗ ∈ X∗)

(x, x∗) 7→ 〈x∗, w〉 (w ∈ X)

(x, x∗) 7→ 〈x∗, x〉

will be called the natural topology ν on X ×X∗.

It follows that for every (w,w∗) ∈ X × X∗the functions (x, x∗) 7→ 〈w∗, x〉 + 〈x∗, w〉 are
continuous for the topology ν; thus ν is stronger than the weak topology on X × X∗. When
X is finite dimensional, the natural topology ν is just the product topology. The convergence
associated with the topology ν is given by:

((xi, x
∗
i ))i∈I → (x, x∗) for ν iff (xi)i∈I

σ→ x, (x∗i )i∈I

σ∗→ x∗, (〈x∗i , xi〉)i∈I → 〈x∗, x〉,
where σ (resp. σ∗) is the weak (resp. weak∗) topology on X (resp. X∗).

Thus the convergence associated with ν is weaker than the product convergence of the strong
convergence on X with the weak-star convergence of bounded nets on X∗. In particular, a se-

quence ((xn, x∗n))n converges to (x, x∗) for ν if (xn) → x and (x∗n)
σ∗→ x∗. The natural convergence

is also weaker than the topology γ considered by Gossez in [26] which is defined as the product
of the strong topology on X with the weakest topology on X∗ for which the functions x∗ 7→ ‖x∗‖
and x∗ 7→ 〈x∗, w〉 for w ∈ X are continuous. In fact, if a net ((xi, x

∗
i ))i∈I converges to (x, x∗) for

the topology γ, there exist k ∈ I and r > 0 such that ‖x∗i ‖ ≤ r for i ∈ I, i > k, so that

|〈x∗i , xi〉 − 〈x∗, x〉| ≤ |〈x∗i , xi − x〉|+ |〈x∗i − x∗, x〉|
≤ ‖x∗i ‖ . ‖xi − x‖+ |〈x∗i − x∗, x〉| → 0

and ((xi, x
∗
i ))i∈I converges to (x, x∗) for the natural topology ν.

Although ν is not compatible with the linear structure of X×X∗, it enjoys separate compat-
ibility in the following sense: if two nets ((xi, x

∗
i ))i∈I ((xi, y

∗
i ))i∈I converge to (x, x∗) and (x, y∗)

respectively for the topology ν, then, for any r, s ∈ R, the net ((xi, rx
∗
i + sy∗i ))i∈I converges to

(x, rx∗ + sy∗) for ν; a similar assertion holds when interchanging the roles of the variables. In
particular, if a multimapping M : X ⇒ X∗ has convex images, its closure M for the natural
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topology also has convex images. We also note that if P := M × N, where M : X ⇒ X∗,
N : Y ⇒ Y ∗, then P = M ×N, as the natural topology on X × Y ×X∗ × Y ∗ is the product of
the natural topologies on X ×X∗ and Y × Y ∗, as easily checked.

Although ν is rather weak, it is adapted to the study of monotone operators as it satisfies
the following properties.

Proposition 2 Any maximal monotone operator (identified with its graph) is closed in the nat-
ural topology.

This property is an immediate consequence of the fact that the closure of (the graph of) a
monotone operator in the natural topology is a monotone operator.

In turn, this property follows from a result of independent interest contained in the next
lemma. Here we make use of the notion of monotone polar T 0 of a subset T of X×X∗ explicitely
introduced to us by Mart́ınez-Legaz, (but implicitely used in [13], [52] for example), given by

T 0 := {(x, x∗) ∈ X ×X∗ : ∀(w, w∗) ∈ T, 〈x∗ − w∗, x− w〉 ≥ 0}.

Clearly, one has the equivalence
S ⊂ T 0 ⇔ T ⊂ S0,

hence, taking S := T 0, T ⊂ T 00. Moreover, the definitions show the following equivalences

T is monotone ⇔ T ⊂ T 0, (1)

T is maximal monotone ⇔ T = T 0. (2)

It is shown in [52, Thm 2.5] that if M is a linear monotone operator, then M is maximal
monotone iff its domain D(M) is dense in X and D(M0) = D(M).

Lemma 3 Let S and T be subsets of X ×X∗ such that S ⊂ T 0. Then, the natural closures S

and T of S and T respectively satisfy S ⊂ T
0
.

In particular, for any subset T of X ×X∗, one has T
0

= T 0 and T 0 is closed in the natural
topology.

Proof. Let (x, x∗) be in the closure S of S and let (w,w∗) ∈ T. Then there exists a
net ((xi, x

∗
i ))i∈I in S with limit (x, x∗) in the natural topology, so that one has 〈w∗, x〉 =

limi〈w∗, xi〉, 〈x∗, w〉 = limi〈x∗i , w〉, 〈x∗, x〉 = limi〈x∗i , xi〉 and one gets

〈x∗ − w∗, x− w〉 = 〈x∗, x〉 − 〈x∗, w〉 − 〈w∗, x〉+ 〈w∗, w〉 (3)

= lim
i

(〈x∗i , xi〉 − 〈x∗i , w〉 − 〈w∗, xi〉+ 〈w∗, w〉) (4)

= lim
i
〈x∗i − w∗, xi − w〉 ≥ 0.

Thus S ⊂ T 0. It follows that T ⊂ S
0
, hence, by what precedes, T ⊂ S

0
or S ⊂ T

0
.

Taking S = T 0 and observing that T
0 ⊂ T 0, we get T 0 ⊂ T

0 ⊂ T 0, so that T 0 is closed and

coincides with T
0
. 2

The preceding closedness result can be reformulated as follows. Here we say that an operator
S is co-monotone if there exists T ⊂ X ×X∗ such that S = T 0.
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Corollary 4 Any co-monotone operator S is closed in the natural topology.

In particular, any maximal monotone operator being co-monotone, we get the closedness
result of Proposition 2.

Taking S = T in the first assertion of Lemma 3, we get the announced preservation of
monotonicity:

Corollary 5 For any monotone operator T, the closure T of T in the natural topology is mono-
tone.

Remark. This result is also a consequence of Proposition 2 since by Zorn lemma T is contained
in a maximal monotone operator M, so that T is contained in M = M, hence is monotone. We
owe to C. Zalinescu the observation that one can avoid the use of the Zorn lemma by using (1)
and by applying Lemma 3 with S = T. 2

The weakness of the topology ν is an advantage when looking for a maximal monotone ex-
tension of a monotone operator M : since the natural closure M of M is large and still monotone,
it is more likely maximal monotone than the closure for the norm topology or for the Gossez
topology. In the same line of thought, Proposition 2 shows that there is no hope of finding a
maximal monotone operator (whose graph) is not closed in the natural topology.

A comparison with enlargements is made in the following corollary; for more on the topic of
enlargements, see [14], [15], [16], [36], [54], [60] for instance.

Corollary 6 For any monotone operator M, the closure M of M in the natural topology satisfies
M ⊂ M0 =

⋂
ε>0 M ε, where

M ε := {(x, x∗) ∈ X ×X∗ : ∀(w, w∗) ∈ M, 〈x∗ − w∗, x− w〉 ≥ −ε}.

Proof. This follows from Lemma 3 by setting S := M, T :=
⋂

ε>0 M ε, observing that, for
every ε > 0, M ε is closed in the natural topology and that S ⊂ S0 ⊂ M ε 2

The following result shows that a classical argument about limits of operators (see [4, Prop.
3.59]) has a natural place in the present framework.

Proposition 7 Let (An)n∈N be a sequence of monotone operators and let A be a maximal mono-
tone operator such that A ⊂ lim infn∈NAn (for the strong topology on X × X∗). Then, the se-
quential lim supn∈NAn in the natural topology is contained in A, so that A = limn∈NAn in the
natural topology and in the strong topology.

Proof. Let (x, x∗) be the natural limit of a sequence ((xn, x∗n))n∈N such that (xn, x
∗
n) ∈ Ap(n)

for an increasing map n 7→ p(n) of N into N. Given (w, w∗) ∈ A we can find a sequence
((wn, w∗

n))n∈N → (w, w∗) strongly. Then, since a weakly converging sequence is bounded, the
definition of the natural convergence shows that

〈x∗ − w∗, x− w〉 = lim
n∈N

(〈x∗n, xn〉 − 〈x∗n, wp(n)〉 − 〈w∗
p(n), xn〉+ 〈w∗

p(n), wp(n)〉) ≥ 0.

Since A is maximal monotone, we get (x, x∗) ∈ A. 2
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3 Passages between sums and composition

Before extending these usual operations, let us note that they are closely related.
Let us first note that the sum S := M +N of two operators M, N : X ⇒ X∗ can be obtained

as a composition S = AT ◦ (M ×N) ◦A, where A : X → X ×X is the diagonal mapping given
by A(x) := (x, x) and (M ×N)(x′, x′′) := M(x′)×N(x′′). This follows from the computation of
AT :

AT (x∗, y∗) = x∗ + y∗.

We note that M×N is monotone whenever M and N are monotone (and even maximal monotone
if M and N are maximal monotone and X is reflexive).

Now let us show that if A : X → Y is a densely defined linear mapping and if M : Y ⇒ Y ∗

is an operator, the composition AT ◦M ◦A can be obtained with the help of the sum operation.
For that purpose, we associate to A and M the operators B, C : X × Y ⇒ X∗ × Y ∗ given by

B(x, y) := {(AT y∗,−y∗) : y∗ ∈ Y ∗} if y = A(x), ∅ otherwise,

C(x, y) := {0} ×M(y) for any (x, y) ∈ X × Y.

Then we have

(B + C) (x, y) = {(AT y∗,−y∗ + z∗) : y∗ ∈ Y ∗, z∗ ∈ M(Ax)} if y = A(x), ∅ otherwise.

Therefore (
AT ◦M ◦ A

)
(x) = {x∗ ∈ X∗ : (x∗, 0) ∈ (B + C) (x,Ax)},

or equivalently, (x, x∗) ∈ AT ◦M◦A iff (x,Ax, x∗, 0) ∈ G(B+C), the graph of B+C. We note that
B is maximal monotone, that C is monotone when M is monotone and C is maximal monotone
when C is maximal monotone (we are indebted to J. Revalski for this last observation). .

We choose to treat first composition, not only because composition is crucial from the point
of view of the theory of categories, but also because it is notationally simpler.

4 Natural composition and fuzzy composition

Let X and Y be Banach spaces and let A : X → Y be a linear operator with closed graph
and dense domain D(A). Its transpose AT is the linear operator with closed graph defined by
x∗ = AT y∗ if x 7→ 〈y∗, Ax〉 is the restriction to D(A) of the continuous linear map x∗. In the
sequel M is an operator from Y to Y ∗.

The abundance of conditions we impose in the following definition arises from our wish to
get as a natural composition an operator which is as close as possible to the ordinary compo-
sition. Also, such conditions are inspired by what occurs for the calculus of Fréchet or limiting
subdifferentials in Asplund spaces ([9], [10], [21], [24], [25], [38], [39]) for which one is eager to
get the most precise information about the subdifferential of a composite function, in spite of
the fuzziness of the rule.

Definition 8 The natural composition of M with A is the set
(
AT MA

)
nat

of pairs (x, x∗) ∈
X×X∗ which are limits of nets ((xi, x

∗
i ))i∈I of D(A)×X∗ in the natural topology such that there

exists a net ((yi, y
∗
i ))i∈I in M with x∗i = AT y∗i for each i ∈ I and

(‖yi − Axi‖)i∈I → 0, (〈y∗i , Axi − yi〉)i∈I → 0.
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Let us note that, under the assumption that (xi, x
∗
i )i∈I → (x, x∗) in the natural topology, the

condition (〈y∗i , Axi − yi〉)i∈I → 0 is equivalent to the condition (〈y∗i , yi〉)i∈I → 〈x∗, x〉: setting
εi := 〈y∗i , Axi − yi〉, we have

〈x∗i , xi〉 = 〈AT y∗i , xi〉 = 〈y∗i , Axi〉 = 〈y∗i , yi〉+ εi

When x ∈ D(A), since 〈y∗i , Axi − Ax〉 = 〈x∗i , xi − x〉 → 0, we have (〈y∗i , yi − Ax〉)i∈I → 0.

Moreover, when D(A) = X and A is continuous, we also have (Axi)i∈I

σ→ Ax, (yi)i∈I
σ→ Ax.

Let us also introduce a variant whose definition is also motivated by the calculus of subdif-
ferentials of lower semicontinuous convex functions in reflexive Banach spaces ([45], [61], [62]).

Definition 9 (a) The fuzzy composition of M with A is the set
(
AT MA

)
fuz

of (x, x∗) ∈
X × X∗ such that there exists sequences ((xn, x

∗
n))n∈N in X × X∗, ((yn, y

∗
n))n∈N in M with

x∗n = AT (y∗n) for each n ∈ N, ((xn, x
∗
n))n∈N → (x, x∗) strongly and (‖yn − Axn‖)n∈N → 0,

(‖y∗n‖ . ‖yn − Axn‖)n∈N → 0.
(b) The weak fuzzy composition of M with A is the set

(
AT MA

)
wf

of (x, x∗) ∈ X × X∗

such that there exists nets ((xi, x
∗
i ))i∈I in X ×X∗, ((yi, y

∗
i ))i∈I in M with x∗i = AT (y∗i ) for each

i ∈ I, (x∗i )i∈I is bounded, (x∗i )i∈I → (x∗) weakly∗ and (‖xi − x‖)i∈I → 0, (‖yi − Axi‖)i∈I → 0,
(‖y∗i ‖ . ‖yi − Axi‖)i∈I → 0.

(c) The sequential weak fuzzy composition of M with A is the set
(
AT MA

)
swf

obtained by

replacing nets by sequences in (b).

The following inclusions are obvious:

(
AT MA

)
fuz

⊂ (
AT MA

)
swf

⊂ (
AT MA

)
wf
⊂ (

AT MA
)

nat
.

The following result is an easy consequence of the definitions. Let us note that the fuzzy
composition (hence the natural composition

(
AT MA

)
nat

) is always larger than the ordinary com-

position AT MA; the similar inclusion for the variational composition of [41] requires particular
assumptions.

Proposition 10 The natural composition
(
AT MA

)
nat

of M with A contains the closure of

AT MA := AT ◦ M ◦ A in the natural topology: AT MA ⊂ (
AT MA

)
nat

. The strong closure

of AT MA is contained in
(
AT MA

)
fuz

. The sequential closure of AT MA in the product of the

strong convergence with the weak∗ convergence is contained in
(
AT MA

)
swf

.

Proof. Given (x, x∗) ∈ AT MA, there exists a net (xi, x
∗
i )i∈I in AT MA with limit (x, x∗) in

the natural topology. Then, setting yi := Axi, and picking y∗i ∈ Myi such that x∗i = AT y∗i
we see that the conditions of the definition of

(
AT MA

)
nat

are fulfilled: (x, x∗) ∈ (
AT MA

)
nat

.

The inclusion of the strong closure of AT MA in
(
AT MA

)
fuz

is obtained similarly as is the last

inclusion. 2

Proposition 11 For any operators M, N ⊂ Y × Y ∗ such that M ⊂ N0 one has

(
AT MA

)
fuz

⊂ (
AT MA

)
swf

⊂ (
AT MA

)
wf
⊂ (

AT MA
)

nat
⊂ (AT NA)0.

In particular
(
AT MA

)
nat
⊂ (

AT M0A
)0

.
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Proof. Let us show that for any (x, x∗) ∈ (
AT MA

)
nat

and (w, w∗) ∈ AT NA we have

〈x∗ − w∗, x− w〉 ≥ 0. (5)

For this purpose, let us pick nets ((xi, x
∗
i ))i∈I in X×X∗, ((yi, y

∗
i ))i∈I in M as in Definition 8 and

let z∗ ∈ NAw be such that w∗ = AT z∗. Then, using the observation following that definition
and the fact that (xi, x

∗
i )i∈I converges to (x, x∗) in the natural topology, we have

〈x∗, x〉 = lim
i∈I
〈y∗i , yi〉, 〈x∗, w〉 = lim

i∈I
〈y∗i , Aw〉, 〈w∗, x〉 = lim

i∈I
〈z∗, Axi〉 = lim

i∈I
〈z∗, yi〉,

so that relation (5) is a consequence of the relation 〈y∗i − z∗, yi−Aw〉 ≥ 0 for each i ∈ I. Taking

N := M0 we obtain
(
AT MA

)
nat
⊂ (

AT M0A
)0

. 2

From the characterizations of monotone and maximal monotone operators given in (2) we
deduce the following consequences. They show that

(
AT MA

)
nat

is not necessarily large, although

it contains the natural closure AT MA of AT MA.

Corollary 12 If M is a monotone operator, then
(
AT MA

)
nat
⊂ (

AT MA
)0

.

Proof. Since M is monotone, one has M ⊂ M0, hence
(
AT MA

)
nat
⊂ (

AT MA
)0

. 2

Thus, if M is a monotone operator such that AT MA is maximal monotone, then
(
AT MA

)
nat

=

AT MA. More generally, we have a similar result with the natural closure AT MA of AT MA.

Corollary 13 If M is a monotone operator such that the natural closure AT MA of AT MA is
maximal monotone, then

(
AT MA

)
nat

= AT MA. If M is a monotone operator and if the strong

closure of AT MA is maximal monotone, then it coincides with
(
AT MA

)
fuz

.

Proof. In view of Proposition 10 it suffices to show that
(
AT MA

)
nat

⊂ AT MA. Since, by

the preceding corollary and Lemma 3,
(
AT MA

)
nat

⊂ (
AT MA

)0
=

(
AT MA

)0

, this inclusion

is a consequence of the relation N0 = N when N is maximal monotone. If the strong clo-
sure cl(AT MA) of AT MA is maximal monotone, then one has cl(AT MA) ⊂ (

AT MA
)

fuz
⊂(

AT MA
)0

=
(
cl(AT MA)

)0
=cl(AT MA) and equality holds. 2

Also, the following result partly justifies our construction.

Theorem 14 Let A : X → Y be linear and continuous, let g : Y → R∪{+∞} be a proper lower
semicontinuous convex function and let f := g ◦ A. Then

(
AT ∂gA

)
nat

= ∂f. If X is reflexive,

one also has
(
AT ∂gA

)
fuz

= ∂f.

Proof. Let (x, x∗) ∈ ∂f and let y := Ax. Using [45] Theorem 2.2 or [61], [62], we can find
a net (yi, y

∗
i )i∈I in ∂g such that (‖yi − y‖)i∈I → 0, (x∗i )i∈I := (AT y∗i )i∈I converges weakly∗ to

x∗, (〈y∗i , yi − y〉)i∈I → 0 and (g(yi))i∈I → g(y). Then, taking xi := x, we see that ((xi, x
∗
i ))i∈I

converges to (x, x∗) in the natural topology and (‖yi − Axi‖)i∈I → 0, (〈y∗i , Axi − yi〉)i∈I → 0.
When X is reflexive, by [45] Theorem 2.2, one can take a sequence instead of a net and assume
that (x∗i ) converges to x∗, so that we get ∂f ⊂ (

AT ∂gA
)

fuz
.

Now let (x, x∗) ∈ (
AT ∂gA

)
nat

. Let (xi, x
∗
i )i∈I converge to (x, x∗) in the natural topology

and be such that there exists (yi, y
∗
i ) ∈ ∂g with (‖yi − Axi‖)i∈I → 0, (〈y∗i , Axi − yi〉)i∈I → 0,

8



x∗i = AT (y∗i ) for each i ∈ I. Then, since (Axi)i∈I weakly converges to Ax, we obtain that
(yi)i∈I weakly converges to Ax and lim infi∈I g(yi) ≥ g(Ax) = f(x) since g is convex and lower
semicontinuous. Moreover, as observed above, (〈y∗i , yi〉)i∈I → 〈x∗, x〉, and, for every w ∈ X,
(〈y∗i , Aw〉)i∈I = (〈x∗i , w〉)i∈I → 〈x∗, w〉, so that

f(w) = g(Aw) ≥ lim inf
i∈I

(g(yi) + 〈y∗i , Aw − yi〉) ≥ f(x) + 〈x∗, w − x〉.

Thus x∗ ∈ ∂f(x). 2

Example. Let M : Y → Y ∗ be a monotone linear operator which is symmetric (i.e. 〈My, z〉 =
〈Mz, y〉 for any y, z ∈ Y ) and let A : X → Y be a continuous linear operator. Then

(
AT MA

)
nat

is larger than AT MA :

(
AT MA

)
nat

= AT MA + {0} × (
D(AT MA)

)⊥
.

In fact, by [52, Thm 5.1], M = ∂g, where g is the lower semicontinuous function given by
g(y) = 1

2
〈My, y〉, so that

(
AT MA

)
nat

= ∂f, where f := g ◦ A; now, for Q := AT MA, one has

f(x) = 1
2
〈Qx, x〉 and for x ∈ D(Q), w∗ ∈ (D(Q))⊥ one has, for each u ∈ D(Q),

1

2
〈Q(x + u), x + u〉 − 1

2
〈Qx, x〉 = 〈Q(x), u〉+

1

2
〈Qu, u〉 ≥ 〈Qx + w∗, u〉,

so that Qx + w∗ ∈ ∂f(x); conversely, if x∗ ∈ ∂f(x), for each u ∈ D(Q) and each t ≥ 0 one has

〈Q(x), tu〉+
1

2
〈tQu, tu〉 = f(x + tu)− f(x) ≥ 〈x∗, tu〉,

hence 〈Q(x), u〉 ≥ 〈x∗, u〉 and x∗ −Q(x) ∈ (D(Q))⊥ . 2

Now let us give a criterion in order that the fuzzy composition coincides with the usual
composition. For this purpose, we require the following notion introduced in [7] (in fact, it
corresponds to the notion of [7] through a double passage to the inverse operator); see also [35],
[50], [51], [58].

Definition 15 The (sequential) asymptotic multimapping associated to a multimapping M :
Y ⇒ Y ∗ is the multimapping whose value M∞(y) at y ∈ Y is the set of z∗ ∈ Y ∗ for which
there exist sequences (tn)n∈N → +∞, (yn)n∈N → y, (y∗n)n∈N in Y ∗ such that (t−1

n y∗n)n∈N → z∗ and
y∗n ∈ M(yn) for every n ∈ N.

If M = L−1, where L : Y ∗ → Y is linear with a closed graph and closed range, then
M∞(y) = KerL for y ∈ D(M), M∞(y) = ∅ for y ∈ Y \D(M). In fact, given y ∈ D(M) = L(Y ∗),
y∗ ∈ KerL, for every w∗ ∈ L−1(y), n ∈ N we have ny∗+w∗ ∈ M(y) and (n−1(ny∗+w∗))n∈N → y∗;
conversely, if (yn)n∈N → y, y∗n ∈ M(yn) and (t−1

n y∗n)n∈N → z∗ for some sequence (tn)n∈N →
+∞, we have yn ∈ L(Y ∗), hence y ∈ L(Y ∗) = D(M) and (z∗, 0) = (limn t−1

n y∗n, limn t−1
n yn) =

limn(t−1
n y∗n, L(t−1

n y∗n)) ∈ G(L), hence L(z∗) = 0.
We need another concept from [35] which is related to a general notion of compact net as in

[43] which has been used in a similar way in [44] and elsewhere (for instance in [39] where it has
been adopted).

Definition 16 A multimapping M : W ⇒ Z between two normed vector spaces is (sequentially)
asymptotically compact at w ∈ W if for any sequence ((wn, zn))n∈N in M with (wn)n∈N → w and
(tn)n∈N := (‖zn‖)n∈N →∞ the sequence (t−1

n zn)n∈N has a converging subsequence.
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If W = X is a Banach space, Z = X∗, M is monotone, and if y is in the interior of the domain
D(M) of M, then this condition is (vacuously) satisfied since M is bounded on a neighborhood
of y. A less restrictive condition will be given in the next section, along with a notion of weak
asymptotic multimapping. With such notions, a variant of the following criterion could be given
as in the next section.

Proposition 17 Suppose A is linear and continuous, M : Y ⇒ Y ∗ is maximal monotone, M
is asymptotically compact at Ax and M∞(Ax) ∩KerAT = {0}. Then one has (AT MA)fuz(x) =
(AT MA)swf (x) = AT MA(x).

Proof. Let x∗ ∈ (AT MA)fuz(x). Let (xn, x∗n)n∈N ∈ X ×X∗, (yn, y∗n) ∈ M be sequences as in
Definition 9. Suppose first that (tn)n∈N := (‖y∗n‖)n∈N converges to +∞. By the assumption of
asymptotic compactness, we can find a subsequence (t−1

n(k)y
∗
n(k))k∈N of (t−1

n y∗n)n∈N which converges

to some z∗. Since (yn) → y := Ax, we have z∗ ∈ M∞(y). Moreover (t−1
n(k)x

∗
n(k))k∈N converges to

0 and, since AT has a closed graph, we get (z∗, 0) ∈ G(AT ). Thus z∗ ∈ M∞(y) ∩ KerAT = {0},
a contradiction with the fact that z∗ is a unit vector. Thus (y∗n)n∈N has a bounded subsequence
(y∗j )j∈J which has a weak∗ cluster point y∗. Since M is maximal monotone, we have y∗ ∈ M(y).
Then (x∗j)j∈J has AT (y∗) as a weak∗ cluster point. Thus x∗ = AT y∗ ∈ (AT MA)(x). The same
argument being valid if one just has (x∗n)n∈N → x∗ in the weak∗ topology, we also get x∗ =
AT y∗ ∈ (AT MA)(x) when x∗ ∈ (AT MA)swf (x). 2

Slight changes in the preceding proof using non sequential versions of Definitions 29, 28 below
yield the equality (AT MA)wf (x) = AT MA(x). We rather give a similar result with the natural
composition; we also need to introduce variants of the preceding asymptotic concepts.

Definition 18 A multimapping M : Y ⇒ Y ∗ is naturally asymptotically compact at y ∈ Y
if, for any z∗ ∈ Y ∗ and any net ((yi, y

∗
i ))i∈I in M such that (ti)i∈I := (‖y∗i ‖)i∈I → ∞ and

((yi, t
−1
i y∗i ))i∈I → (y, z∗) in the natural topology, one has z∗ 6= 0.

If Y is finite dimensional, any multimapping M : Y ⇒ Y ∗ is naturally asymptotically
compact at every point.

Definition 19 The natural asymptotic multimapping associated to a multimapping M : Y ⇒ Y ∗

is the multimapping whose value M∞
nat(y) at y ∈ Y is the set of z∗ ∈ Y ∗ for which there exist nets

(ti)i∈I → +∞, ((yi, y
∗
i ))i∈I in M such that (yi)i∈I → y, ((yi, t

−1
i y∗i ))i∈I → (y, z∗) in the natural

topology.

Proposition 20 Suppose A is linear and continuous, M : Y ⇒ Y ∗ is maximal monotone,
M is naturally asymptotically compact at Ax and M∞

nat(Ax) ∩ KerAT = {0}. Then one has
(AT MA)nat(x) = AT MA(x).

Proof. Let x∗ ∈ (AT MA)nat(x). Let (xi, x
∗
i )i∈I ∈ X × X∗, (yi, y

∗
i )i∈I ∈ M be nets as in

Definition 8. Then, as observed after Definition 8, (〈y∗i , yi〉)i∈I → 〈x∗, x〉. Moreover, since A is
weakly continuous, (yi)i∈I → y := Ax weakly. Suppose first that (ti)i∈I := (‖y∗i ‖)i∈I converges
to +∞. We can find a subnet (t−1

j y∗j )j∈J of (t−1
i y∗i )i∈I which weak∗ converges to some z∗ ∈ Y ∗.

Then (t−1
j x∗j)j∈J weak∗ converges to 0 and, since AT has a closed graph, we get (z∗, 0) ∈ G(AT ).

Moreover, since (〈y∗i , yi〉)i∈I → 〈x∗, x〉, we get
(〈t−1

j y∗j , yj〉
)

j∈J
→ 0 = 〈AT z∗, x〉 = 〈z∗, Ax〉 =
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〈z∗, y〉. Thus, (y, z∗) ∈ M∞
nat and z∗ ∈ M∞

nat(y) ∩ KerAT = {0}, a contradiction with z∗ 6= 0.
Thus (y∗i )i∈I has a bounded subnet (y∗j )j∈J . Taking a further subnet if necessary, we may assume
that (y∗j )j∈J weak∗ converges to some point y∗ ∈ Y ∗. Then (〈y∗j , yj〉)j∈J → 〈x∗, x〉 = 〈AT y∗, x〉 =
〈y∗, y〉, so that ((yj, y

∗
j ))j∈J → (y, y∗) in the natural topology. Since M is maximal monotone,

hence closed in the natural topology, we have y∗ ∈ M(y). Thus x∗ = AT y∗ ∈ (AT MA)(x). 2

5 Fuzzy sum and natural sum

The connections we established between sum and composition enable us to transpose to sums
the constructions we have made for composition. They lead to the following definitions.

Definition 21 Given two operators M, N : X ⇒ X∗ between a Banach space and its dual,
their natural sum is the set S := (M + N)nat of (x, x∗) ∈ X × X∗ such that there exist nets
(xi, x

∗
i )i∈I → (x, x∗) in the natural topology, (ui, u

∗
i ) ∈ M , (vi, v

∗
i ) ∈ N , x∗i = u∗i +v∗i for all i ∈ I,

(‖ui − xi‖)i∈I → 0, (‖vi − xi‖)i∈I → 0, (〈u∗i , ui − xi〉+ 〈v∗i , vi − xi〉)i∈I → 0.

Definition 22 Given two operators M,N : X ⇒ X∗ between a Banach space and its dual, their
fuzzy sum is the set (M + N)fuz of (x, x∗) ∈ X × X∗ for which there exist sequences (xn)n∈N
in X, (un, u

∗
n)n∈N in M , (vn, v∗n)n∈N in N such that (‖xn − x‖)n∈N → 0, (‖un − x‖)n∈N → 0,

(‖vn − x‖)n∈N → 0,
(‖u∗n + v∗n − x∗‖)n∈N → 0 (‖u∗n‖ ‖un − xn‖+ ‖v∗n‖ ‖vn − xn‖)n∈N → 0.

Note that the last convergence implies that (〈u∗n, un − x〉+ 〈v∗n, vn − x〉)n∈N → 0.
The sequential weak fuzzy sum (M + N)swf of M and N is obtained by replacing the strong

convergence of (u∗n + v∗n) to x∗ in the preceding definition by weak∗ convergence. One can also
give a notion of non sequential weak fuzzy sum.

Although the correspondences of section 3 can serve as a guideline for the following results,
we prefer to give direct (somewhat abridged) proofs.

Proposition 23 The natural sum (M+N)nat of M and N contains (M + N)fuz and the closure

M + N of M +N in the natural topology. The fuzzy sum (M + N)fuz contains the strong closure
of M +N. The (sequential) weak fuzzy sum (M +N)swf contains the sequential closure of M +N
in the product of the strong convergence with the weak∗ convergence.

Proof. The inclusion (M + N)fuz ⊂ (M + N)nat is obvious; the inclusion M + N ⊂ (M + N)nat

follows from the choice ui = xi = vi in Definition 21. The proof of the last inclusions is similar.
2

The following results show that (M + N)nat is not necessarily large.

Proposition 24 For any operators M, N, S, T ⊂ X × X∗ with M ⊂ S0, N ⊂ T 0 one has
(M + N)nat ⊂ (S + T )0.

Proof. Let us show that for any (x, x∗) ∈ (M + N)nat , for any w ∈ X, y∗ ∈ S(w), z∗ ∈ T (w),
w∗ = y∗ + z∗, we have

〈x∗ − w∗, x− w〉 ≥ 0. (6)

11



For this purpose, let us pick nets (xi, x
∗
i )i∈I → (x, x∗) in the natural topology, (ui, u

∗
i )i∈I in M ,

(vi, v
∗
i )i∈I in N , such that x∗i = u∗i +v∗i , (‖ui − xi‖)i∈I → 0, (‖vi − xi‖)i∈I → 0, (〈u∗i , xi − ui〉+ 〈v∗i , xi − vi〉)i∈I →

0 as in Definition 21. Then, we have

〈x∗, x〉 = lim
i∈I
〈x∗i , xi〉 = lim

i∈I
(〈u∗i , ui〉+ 〈v∗i , vi〉) ,

〈x∗, w〉 = lim
i∈I

(〈u∗i , w〉+ 〈v∗i , w〉) ,

〈w∗, x〉 = lim
i∈I

(〈y∗, ui〉+ 〈z∗, vi〉) ,

so that relation (6) is a consequence of the relations 〈u∗i − y∗, ui − w〉 ≥ 0, 〈v∗i − z∗, vi − w〉 ≥ 0
for all i ∈ I. 2

Taking S = M, T = N, we get the following corollary.

Corollary 25 If M and N are monotone operators, then (M + N)nat ⊂ (M + N)0 . If M + N
is maximal monotone, then (M + N)nat = M + N.

Taking into account Proposition 23 and the relations S0 = S
0
, T 0 = T for T maximal

monotone, we get the following consequence.

Corollary 26 If M and N are monotone operators such that the natural closure M + N of
M + N is maximal monotone, then (M + N)nat = M + N. If moreover M + N coincides with
the sequential closure of M + N in the product of the strong topology with the weak∗ topology,
then (M + N)fuz = (M + N)nat = M + N . If M and N are monotone operators such that the
strong closure cl(M + N) of M + N is maximal monotone, then (M + N)fuz = cl(M + N).

The proof of following result relies on [45] Theorem 2.3 in a way which is similar to the proof
of Theorem 14. Thus, we skip it.

Theorem 27 Let f, g : Y → R∪{+∞} be proper lower semicontinuous convex functions. Then
(∂f + ∂g)nat = ∂(f + g). If X is reflexive, one also has (∂f + ∂g)fuz = ∂(f + g).

Now let us give a criterion in order that the sequential weak fuzzy sum (M +N)swf of M and
N coincides with the usual sum M + N . For this purpose, we introduce variants of Definitions
15, 16, although the previous concepts could be used here too. Also, non sequential versions
could be given.

Definition 28 The sequential weakly∗ asymptotic multimapping to a multimapping M : X ⇒
X∗ is the multimapping whose value M∞

sw(x) at x is the set of weak∗ limits of bounded sequences
(t−1

n x∗n)n∈N such that (tn)n∈N → +∞ and there exists a sequence (xn)n∈N with (xn)n∈N → x and
x∗n ∈ M(xn) for each n ∈ N.

While the preceding definition yields a map which is larger than the sequential asymptotic
map, the following definition is less restrictive than Definition 16.

Definition 29 A multimapping M : X ⇒ X∗ is sequentially weakly∗ asymptotically compact at
x ∈ X if for any sequence ((xn, x∗n))n∈N in M with (xn)n∈N → x and (tn)n∈N := (‖x∗n‖)n∈N →∞
the sequence (t−1

n x∗n)n∈N has a weak∗ converging subsequence whose limit is non null.
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We are ready to give our criterion. Its assumption about the closed unit ball of X∗ could
be dropped provided one takes weak∗ cluster points of sequences (t−1

n x∗n)n∈N in the preceding
definitions.

Proposition 30 Suppose X is reflexive, or, more generally, that the closed unit ball of X∗ is
sequentially weak∗ compact. Suppose M , N : X ⇒ X∗ are maximal monotone, M is sequentially
weakly∗ asymptotically compact at x and M∞

sw(x) ∩ (−N∞
sw(x)) = {0}. Then one has (M +

N)swf (x) = M(x) + N(x).

Proof. Let x∗ ∈ (M +N)swf (x). Let (un, u
∗
n)n∈N ∈ M , (vn, v

∗
n)n∈N ∈ N be sequences such that

(un)n∈N → x, (vn)n∈N → x, (〈u∗n, un − x〉+ 〈v∗n, vn − x〉)n∈N → 0, (x∗n)n∈N := (u∗n + v∗n)n∈N weak∗

converges to x∗. Taking a subsequence if necessary, we may assume that (tn)n∈N := (‖u∗n‖)n∈N
converges to some t ∈ R+∪{+∞}. Let us show that assuming t = +∞ leads to a contradiction.
Since the closed unit ball of X∗ is weak∗ sequentially compact, taking a subsequence if necessary
we may assume that (t−1

n u∗n)n∈N weak∗ converges to some z∗. Since M is weakly∗ asymptotically
compact at x we may suppose z∗ 6= 0. Then, (t−1

n v∗n)n∈N weak∗ converges to −z∗ and we get z∗ ∈
M∞

sw(x) ∩ (−N∞
sw(x)), z∗ 6= 0, a contradiction with our asssumption. Thus t ∈ R+, and (u∗n)n∈N

has a subsequence (u∗n(j))j∈N which weak∗ converges to some u∗. Then (v∗n(j))j∈N weak∗ converges
to v∗ := x∗ − u∗. Since M and N are sequentially closed in the product of the strong topology
with the weak∗ topology, we have u∗ ∈ M(x), v∗ ∈ N(x) and we get x∗ = u∗+ v∗ ∈ (M +N)(x).
2

6 Comparisons with other notions

Let us introduce an extended composition and compare it with the natural composition. A
comparison for sums would be similar.

Definition 31 The natural extended composition of an operator M : Y ⇒ Y ∗ with a linear
operator A : X → Y is the operator (AT MA)ext :=

⋂
ε>0 AT MεA, where AT MεA denotes the

natural closure of AT MεA.

Proposition 32 For any monotone operator M : Y ⇒ Y ∗ and any linear operator A : X → Y
one has (AT MA)nat ⊂ (AT MA)ext.

Proof. Given (x, x∗) ∈ (AT MA)nat, let us pick nets (xi, x
∗
i )i∈I in X ×X∗, (yi, y

∗
i )i∈I in M as

in Definition 8. Given ε > 0 and (z, z∗) ∈ M , using the fact that (〈y∗i , Axi − yi〉)i∈I → 0 and
(‖yi − Axi‖)i∈I → 0, for i large enough we have

〈y∗i − z∗, Axi − z〉 ≥ 〈y∗i − z∗, yi − z〉 − ε ≥ −ε,

hence (Axi, y
∗
i ) ∈ Mε. It follows that (xi, x

∗
i ) ∈ AT MεA. Therefore (x, x∗) ∈ AT MεA for any

ε > 0. 2

Now, let us compare the natural composition with a notion of variational composition intro-
duced recently in [41]. For this purpose we suppose that Y is reflexive. In fact, in recalling the
construction of [41], we slightly extend the definition of the variational composition.
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Given a continuous increasing function h : R+ → R+ such that h(0) = 0, h(t) → +∞,
h−1(t) → +∞ as t → +∞, we define the duality mapping J associated with h by

J(y) = {y∗ ∈ Y ∗ : 〈y∗, y〉 = ‖y∗‖ ‖y‖ , ‖y∗‖ = h(‖y‖)}.

This multimapping is just the subdifferential of the convex function j(y) := H(‖y‖), where
H(t) :=

∫ t

0
h(s)ds. Since Y is reflexive, we endow it with a norm which is Fréchet differentiable

off 0 and is locally uniformly rotund and whose dual norm has the same properties. Then j
is Fréchet differentiable and J is the derivative of j. While the usual case corresponds to the
choice h(t) = t, other choices are convenient; in particular, for Lp spaces, with p > 1, taking
h(t) = (1/p)tp−1 is advantageous (see [34, p. 173-179] for instance).

Definition 33 The generalized Moreau-Yosida regularization (associated with the weight h) of
the multimapping M from Y into Y ∗ is given for t > 0 by

Mt :=
(
M−1 + tJ−1

)−1
.

When M is maximal monotone, for each t > 0 the mapping Mt is single-valued and ev-
erywhere defined (see for instance [49] Proposition 4.4 and 4.5) and maximal monotone ([11]
Proposition 2.4). Introducing the resolvant or proximal mapping PM

t (often denoted by JM
λ )

associated with M as

PM
t (y) =

{
z ∈ Y : 0 ∈ J

(
z − y

t

)
+ M (y)

}
y ∈ Y, (7)

[49] Proposition 3.5 yields

Mt(y) = J(t−1y − t−1PM
t y) ∈ M(PM

t y).

The first part of the following definition has been introduced in [41]; the second part is new.

Definition 34 The variational composition
(
AT MA

)
v
of M with A is the set of (x, x∗) ∈ X×X∗

such that there exists a parametrized family (xt)t>0 of X satisfying (x, x∗) = limt→0+(xt, A
T MtAxt).

If this convergence is for the natural topology, we write (x, x∗) ∈ (
AT MA

)
nv

and we say that
(x, x∗) belongs to the natural variational composition.

A first comparison is as follows.

Proposition 35 Let M be a maximal monotone operator and let AT MA be the natural closure
of AT MA. Then one has

(
AT MA

)
v
⊂ (

AT MA
)

nv
⊂

(
AT MA

)0

=
(
AT MA

)0
.

If AT MA is maximal monotone then one has
(
AT MA

)
nv
⊂ AT MA.

If
(
AT MA

)
nv

(resp.
(
AT MA

)
v
) is maximal monotone, then AT MA ⊂ (

AT MA
)

nv
(resp.

AT MA ⊂ (
AT MA

)
v
).

If both AT MA and
(
AT MA

)
nv

(resp.
(
AT MA

)
v
) are maximal monotone, then they coincide.
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Proof. Our proof relies on a device in [41, Lemma 5] adapted to the generalized duality
mapping we use, and in a crucial way, on the notion of monotone polar. Let (w,w∗) ∈ AT MA,
z := Aw, and let z∗ ∈ M(z) with w∗ := AT z∗. Let (xt, A

T MtAxt)t>0 be a parametrized family of
X ×X∗ with limit (x, x∗) for the natural topology. Let us set vt := Axt, v∗t := Mtvt, x∗t := AT v∗t
and let us use the fact that there exists some yt ∈ M−1(v∗t ) such that vt = yt + tJ−1 (v∗t ) . By
the monotonicity of M−1 we have

〈v∗t − z∗, vt − z〉 = 〈v∗t − z∗, yt + tJ−1 (v∗t )− z〉 ≥ t〈v∗t − z∗, J−1 (v∗t )〉
≥ t ‖v∗t ‖h−1(‖v∗t ‖)− t ‖z∗‖h−1(‖v∗t ‖)
≥ tk(‖z∗‖),

where, for s ∈ R+, k(s) denotes the infimum over r ∈ R+ of (r − s)h−1(r), which is finite since
h−1(r) → +∞ as r → +∞. Since

〈x∗t − w∗, xt − w〉 = 〈AT v∗t − AT z∗, xt − w〉 = 〈v∗t − z∗, vt − z〉 ≥ tk(‖z∗‖),
passing to the natural limit, we get 〈x∗ − w∗, x − w〉 ≥ 0. Since (w,w∗) is arbitrary in AT MA,

this means that
(
AT MA

)
nv
⊂ (

AT MA
)0

. Now
(
AT MA

)0
=

(
AT MA

)0

.

When the natural closure AT MA of AT MA is maximal monotone, we have
(
AT MA

)0

=

AT MA hence
(
AT MA

)
nv
⊂ AT MA. When S :=

(
AT MA

)
nv

(resp. S :=
(
AT MA

)
v
) is maximal

monotone, then from the inclusion S ⊂
(
AT MA

)0

we deduce that AT MA ⊂ S0 = S. The last

assertion ensues from the two preceding ones. 2

Now, let us turn to a comparison with the natural composition. We obtain it by combining
Corollary 13 with some changes in the proof of [41] Theorem 7 which deals with the norm closure
of AT MA and not its natural closure.

Theorem 36 If M is a maximal monotone operator such that the natural closure AT MA of
AT MA is maximal monotone, then

(
AT MA

)
nv

=
(
AT MA

)
v

=
(
AT MA

)
nat

= AT MA.

Proof. When AT MA is maximal monotone, in order to show that (AT MtA)t>0 converges to
AT MA as t → 0, by [4] Theorem 3.62, it suffices to prove that for any u∗ ∈ X∗ the solution xt

of
u∗ ∈ J(xt) +

(
AT MtA

)
(xt)

converges to the solution x of
u∗ ∈ J(x) + (AT MA)(x).

Then we shall get AT MA =
(
AT MA

)
v
⊂ (

AT MA
)

nv
⊂ AT MA and the equalities of the

theorem since we have seen that
(
AT MA

)
nat

= AT MA when AT MA is maximal monotone.

Taking again an arbitrary element (w,w∗) in AT MA, z∗ ∈ MAw such that w∗ = AT z∗ and
setting vt := Axt, v∗t := Mtvt, rt := ‖v∗t ‖ , we have, as in the preceding proof,

〈AT MtAxt − w∗, xt − w〉 ≥ tk(‖z∗‖)
hence, by the definition of xt,

〈u∗ − J(xt)− w∗, xt − w〉 ≥ tk(‖z∗‖). (8)
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With the definition of J, this inequality implies that

h(‖xt‖) (‖w‖ − ‖xt‖) + ‖u∗ − w∗‖ ‖xt‖ ≥ 〈u∗ − w∗, w〉+ tk(‖z∗‖).

It follows that (xt) is bounded. Let x̄ be a weak limit point of (xt) as t → 0. Using relation (8)
and the monotonicity of J under the form 〈−J(xt), xt − w〉 ≤ 〈−J(w), xt − w〉, we get

〈u∗ − J(w)− w∗, xt − w〉 ≥ tk(‖z∗‖). (9)

The definition of the natural topology enables us to extend this relation to any (w,w∗) ∈ AT MA
and to get

〈u∗ − J(w)− w∗, x̄− w〉 ≥ 0. (10)

Since AT MA is maximal monotone, J + AT MA is maximal monotone too, and we get u∗ ∈(
J + AT MA

)
(x̄). By uniqueness of the solution of this inclusion, we have x̄ = x and the whole

family (xt) weakly converges to x.
Returning to relation (8) which is valid for any (w, w∗) in AT MA, hence for any (w,w∗) in

AT MA and using the inequality 〈J(xt), w〉 ≤ h(‖xt‖) ‖w‖ , we get

h(‖xt‖) ‖w‖ − h(‖xt‖) ‖xt‖+ 〈u∗ − w∗, xt − w〉 ≥ tk(‖z∗‖).

Setting r := lim supt→0 ‖xt‖ and passing to the limit in this inequality, we get, for any (w,w∗) ∈
AT MA,

h(r) ‖w‖ − h(r)r + 〈u∗ − w∗, x− w〉 ≥ 0.

Taking (w, w∗) = (x, u∗−J(x)) which belongs to AT MA by definition of x, we obtain h(r)(‖x‖−
r) ≥ 0. Thus r ≤ ‖x‖ = ‖x̄‖ ≤ lim inft→0 ‖xt‖ , so that ‖xt‖ → ‖x̄‖ as t → 0 and the Kadec-Klee
property implies that (xt) converges to x̄ = x. 2
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plications, Israël J. Math. 23 (2) (1976), 165-186.
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