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. Finally, many characterizations of strictly increasing maps are established.

Introduction

The aim of this paper is to give characterizations of isotone (increasing) maps by using some variants of left and right isotone properties. Characterizations of strictly increasing maps are also obtained.

We first recall some classical definitions and notations to avoid ambiguity. If ≤ is a binary relation on E which is reflexive, antisymmetric and transitive, (E, ≤) is an ordered space. An ordered space such that any two elements are comparable is a totally ordered space. An ordered space such that any nonempty majorized subset admits a supremum (and thus, by theorem, any nonempty minorized subset admits an infimum) is a complete ordered space [START_REF] Kelley | General topology[END_REF]. We will write x < y when x ≤ y and x = y. The following notations are defined in [START_REF] Bourbaki | Eléments de mathématiques, Fonctions d'une variable réelle[END_REF]:

[a, →[ = {x ∈ E : a ≤ x} , ]a, →[ = {x ∈ E : a < x} , ]←, b] = {x ∈ E : x ≤ b} , ]←, b[ = {x ∈ E : x < b} , [a, b] = [a, →[ ∩ ]←, b] , ]a, b[ = ]a, →[ ∩ ]←, b[ , [a, b[ = [a, →[ ∩ ]←, b[ , ]a, b] = ]a, →[ ∩ ]←, b] .
These subsets are called intervals, those of the form [a, b] are called segments. Since no confusion is possible when several ordered spaces are considered, we will use the same notations for their order, their intervals, etc.

In the following definitions, f : (A, ≤) → (B, ≤) is a map from an ordered space (A, ≤) into an ordered space (B, ≤). The notion of "preservation of the order" is classical:

Definition 1. f is isotone or increasing if: ∀ (x, y) ∈ A × A, x ≤ y ⇒ f (x) ≤ f (y). (I)
We remark immediately that in this definition (I), formulated from each element of the product space A × A, can be expressed by a right unilateral form, formulated from each element of the subset A + :

(I) ⇔ (I → R ) ⇔ (I → )
where, by definition,

A + := {x ∈ A : ∃y ∈ A, x < y}, (I → R ) ⇔ ∀x ∈ A + , f |[x,→[ is isotone, (I → ) ⇔ ∀x ∈ A + , f ([x, →[) ⊂ [f (x), →[ .
The same is possible with a left unilateral form, formulated from each element of the subset A -:

(I) ⇔ (I ← R ) ⇔ (I ← ) where, by definition,

A -:= {x ∈ A : ∃y ∈ A, y < x}, (I ← R ) ⇔ ∀x ∈ A -, f |]←,x] is isotone, (I ← ) ⇔ ∀x ∈ A -, f (]←, x]) ⊂ ]←, f (x)] .
We now define some various (left or right) lateral variants. We remark that, for left or right lateral versions, saying that f : (A, ≤) → (B, ≤) satisfies the left lateral version means by definition that f : (A, ≥) → (B, ≥) satisfies the right lateral version. Nevertheless we still define the two versions for more completeness.

We first introduce, in an abstract form, a notion defined in [START_REF] Bourbaki | Eléments de mathématiques, Fonctions d'une variable réelle[END_REF] (for a real-valued function defined on an open interval of the real field):

Definition 2. f is left isotone if: ∀x ∈ A -, ∃a ∈ ]←, x[ , f ([a, x]) ⊂ ]←, f (x)] . (I -) f is right isotone if: ∀x ∈ A + , ∃b ∈ ]x, →[ , f ([x, b]) ⊂ [f (x), →[ . (I + )
It is obvious that (I) ⇒ (I -) and (I + ).
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The converse implication is false in general (an example is given in § 3). The purpose of § 3 is to determine some sufficient conditions on the ordered spaces so that the isotone property can be obtained by bilateral conditions such as (I -) and (I + ) or by more general conditions that will be defined below.

We first define some notions close to the previous ones by taking into account all possible "directions" (for the left or right side); in other words, we formulate some "star" versions.

Definition 3. f is left star-isotone if: ∀x ∈ A -, ∀c ∈ ]←, x[ , ∃a ∈ [c, x[ , f ([a, x]) ⊂ ]←, f (x)] . (I -) f is right star-isotone if: ∀x ∈ A + , ∀c ∈ ]x, →[ , ∃b ∈ ]x, c] , f ([x, b]) ⊂ [f (x), →[ . (I + )
These notions appear in the theorem of isotone maps under unilateral conditions in § 2. It is easy to prove (I -) ⇒ (I -) and (I + ) ⇒ (I + ); converse implications are false. For instance, (I -) is satisfied but (I -) is not for the map (0, 1) → 1, (1, 0) → 3, (1, 1) → 2 where R 2 is endowed with the product order (the partial order associated with the cone [0, +∞[ 2 ). Nevertheless, when the domain A is totally ordered, we get equivalent properties: (I -) ⇔ (I -) and (I + ) ⇔ (I + ). Proofs are obvious.

Unilateral characterization of isotone maps

We now define some other lateral variants from properties (I → R ) and (I ← R ). Firstly, some "local" versions. Definition 4. f is isotone by left restriction if:

∀x ∈ A -, ∃a ∈ ]←, x[ , f |[a,x] is isotone. (I - R ) f is isotone by right restriction if: ∀x ∈ A + , ∃b ∈ ]x, →[ , f |[x,b] is isotone.
(I + R ) Secondly, the corresponding "star" versions.

Definition 5. f is star-isotone by left restriction if:

∀x ∈ A -, ∀c ∈ ]←, x[ , ∃a ∈ [c, x[ , f |[a,x] is isotone. (I - R ) f is star-isotone by right restriction if: ∀x ∈ A + , ∀c ∈ ]x, →[ , ∃b ∈ ]x, c] , f |[x,b] is isotone. (I + R )
The following table gives some implications between the notions of right lateral increasing that are defined previously.

(I) ⇔ (I → R ) ⇔ (I → ) ⇓ ⇓ (I + R ) ⇒ (I + ) ⇓ ⇓ (I + R ) ⇒ (I + ).
Generally, properties (I + R ), (I + ), (I + R ) or (I + ) are not sufficient to ensure the isotone property. Even if A is countable, totally ordered and complete (and also well ordered); consider for instance

A := {-n -1 : n ∈ N * } ∪ {0}, B := R and f defined by f (0) = 0 and f (-n -1 ) = n (for n ∈ N * ): (I + R
) is satisfied without f being isotone. The purpose of this section is the study of some converse implications relative to the isotone property (I).

We thus introduce the following properties which concern ordered spaces.

Definition 6. An ordered space (A, ≤) is with finite segments if:

∀(x, y) ∈ A × A, x ≤ y ⇒ [x, y] is a finite subset.
If A is a finite subset, (A, ≤) is with finite segments. The converse is false: N and Z are with finite segments. We also remark that this property is not preserved for the closure of a subset of R (consider

I := {n -1 : n ∈ N * } and its closure I ∪ {0}). Definition 7. An ordered space (A, ≤) is with finite connections if: ∀(x, y) ∈ A × A, x ≤ y ⇒ ∃N ∈ N, ∃(a i ) N +1 i=0 ⊂ A, x = a 0 ≤ a i ≤ a i+1 ≤ a N +1 = y and ]a i , a i+1 [ = ∅ for i = 0, 1, ..., N .
If (A, ≤) is with finite segments then it is with finite connections. The converse is false; consider for instance N∪{-∞, +∞} endowed with the order defined by: -∞ (resp. +∞) is the minimum (resp. maximum). When the order is total, (A, ≤) is with finite segments if and only if it is with finite connections; the proof of this result is straightforward.

A unilateral characterization of increasing is given below.

Theorem 1. Let f be a map from an ordered space (A, ≤) into another one (B, ≤). If

A is with finite connections then

(I) ⇔ (I + R ) ⇔ (I + ) ⇔ (I - R ) ⇔ (I -).
Proof. If x ≤ y then, since A is with finite connections, there exists a finite number n of points a i such that x ≤ a 1 ≤ a 2 ≤ ... ≤ a n ≤ y and ]a i , a i+1 [ = ∅ for i = 0, 1, ..., n where a 0 := x and a n+1 := y.

By (I + ), f (a i ) ≤ f (a i+1 ) for i = 0, 1, ..., n since a i+1 is the only point in ]a i , a i+1 ] and thus f ([a i , a i+1 ]) ⊂ [f (a i ), →[. We get f (x) ≤ f (y) by transitivity.
Thus, the first two equivalences are proved. The last two ones can be deduced since (I) is equivalent to the increasing of f from (A, ≥) into (B, ≥).

When the space A is totally ordered, (I + R ) ⇔ (I + R ) and also (I + ) ⇔ (I + ). As a direct consequence, we have the following characterizations.

Corollary 2. If f is a map from a totally ordered space with finite segments (A, ≤) into an ordered space (B, ≤) then

(I) ⇔ (I + R ) ⇔ (I - R ) ⇔ (I + ) ⇔ (I -).
The conclusion of this corollary is not still true under the assumptions of the previous theorem. Indeed, these characterizations are not true if A, even finite, is not totally ordered. Consider for instance the subset A which consists of the points (0, 0), (1, 0) and (0, 1) and is endowed with the order associated with the cone [0, +∞[ 2 and the map f defined by f (0, 0) = 1, f (1, 0) = 2 and f (0, 1) = 0: (I + R ) is satisfied but (I -) is not (and thus f is not isotone).

This corollary cannot be generalized to the case of a lattice (even finite), i.e. an ordered set whose subsets of two elements possess an infimum and a supremum; we can modify the last example by adding the point (1, 1) and by defining f (1, 1) = 2.

Other unilateral characterizations will be established in the following section as a consequence of the main theorem.

Bilateral characterization of isotone maps

In the main theorem which concerns the converse implication of (1) we will use the following lateral notions of increasing that are more general.

Definition 8. f is left quasi-isotone if: ∀x ∈ A -, ∃a ∈ ]←, x[ , f (]a, x]) ⊂ ]←, f (x)] . (QI -) f is right quasi-isotone if: ∀x ∈ A + , ∃b ∈ ]x, →[ , f ([x, b[) ⊂ [f (x), →[ . (QI + )
The converse implications of (I -) ⇒ (QI -) and (I + ) ⇒ (QI + ) are false: any sequence of real numbers is left and right quasi-isotone.

Definition 9. f is pointwise left isotone if: ∀x ∈ A -, ∃a ∈ ]←, x[ , f (a) ∈ ]←, f (x)] . (PI -)
f is pointwise right isotone if:

∀x ∈ A + , ∃b ∈ ]x, →[ , f (b) ∈ [f (x), →[ . (PI + )
Trivially, (I -) ⇒ (P I -) and (I + ) ⇒ (P I + ) but the converse implications are false. For instance, the function defined by f ([-1, 0]) = {0} and f (x) = x -1 if x ∈ ]0, 1] is pointwise right isotone but is not right isotone.

The following notions are also used in the main theorem.

Definition 10. f is left pseudo-isotone or pointwise left star-isotone if:

∀x ∈ A -, ∀c ∈ ]←, x[ , ∃a ∈ [c, x[ , f (a) ∈ ]←, f (x)] . (PI -)
f is right pseudo-isotone or pointwise right star-isotone if:

∀x ∈ A + , ∀c ∈ ]x, →[ , ∃b ∈ ]x, c] , f (b) ∈ [f (x), →[ . (PI + )
It is straightforward that (P I -) ⇒ (P I -) and (P I + ) ⇒ (P I + ) and that the converse implications are false (consider the previous example). When the domain A is well ordered, these implications are not necessarily equivalences; consider the case where A = N: (P I + ) and (P I + ) correspond respectively to the increasing of the sequence and one of its subsequences. We also have the implications (I -) ⇒ (P I -) and (I + ) ⇒ (P I + ).

The following table contents some links between several properties of right lateral increasing; the symbol means the equivalence of the properties when the domain A is totally ordered.

(I) ⇒ (I + R ) ⇒ (I + ) ⇒ (PI + ) ⇓ ⇓ ⇓ (I + R ) ⇒ (I + ) ⇒ (PI + ) ⇓ (QI + ).
We can state the main theorem. Theorem 3. Let (A, ≤) be a complete totally ordered space, (B, ≤) an ordered space and f : (A, ≤) → (B, ≤) a map which is right pseudo-isotone and left quasi-isotone. Then f is isotone.

Proof. Assume that f is not isotone: there exist x 1 < x 2 in A such that the relation f (x 1 ) ≤ f (x 2 ) is not satisfied in the ordered space B. Consider the subset

P := {x ∈ [x 1 , x 2 ] : f (x) f (x 2 )} . ( 2 
)
On the one hand, P = ∅ for x 1 ∈ P : f (x 1 ) f (x 2 ). On the other hand, P is a majorized subset: by definition, P ⊂ ]←, x 2 ] . Denote x 0 := sup P (P is a nonempty majorized subset of the complete ordered space A).

We have in particular (x 1 ∈ P and x 2 majorizes P ):

x 1 ≤ x 0 ≤ x 2 . ( 3 
)
We also get P ⊂ [x 1 , x 0 ] (for P ⊂ [x 1 , →[ by definition, and x 0 majorizes P ). Now we justify the property:

f (x 0 ) f (x 2 ). (4) 
By assuming f (x 0 ) ≤ f (x 2 ), two cases appear. If x 1 = x 0 then f (x 0 ) = f (x 1 ) f (x 2 ) (for x 1 ∈ P ) which contradicts the assumption. Otherwise, x 1 < x 0 and then, since f is left quasi-isotone at x 0 , there exists a < x 0 such that f (]a, x 0 ]) ⊂ ]←, f (x 0 )] and then, from the assumption, f (x) ≤ f (x 2 ) for all x ∈ ]a, x 0 ] . We deduce that P ⊂ ]←, x 0 ] \ ]a, x 0 ] and thus, since A is totally ordered, P ⊂ ]←, a] . Consequently, a majorizes P and thus x 0 ≤ a which gives a contradiction. Thus, property (4) is satisfied. We remark that x 0 ∈ P (by ( 3)-( 4)) and then x 0 = max P. We get:

x 1 ≤ x 0 < x 2 .
(5) Indeed, by [START_REF] Dubreil | [END_REF], it is sufficient to justify that x 0 = x 2 ; this follows from f (x 0 ) = f (x 2 ) (by (4)).

Since f is right pseudo-isotone at x 0 , and x 0 < x 2 (by (5)), there exists

b ∈ ]x 0 , x 2 ] such that f (b) ≥ f (x 0 ). In particular, b ∈ [x 1 , x 2 ] but b / ∈ P (for x 0 < b) which implies that f (b) ≤ f (x 2 ). Thus, f (x 0 ) ≤ f (x 2
) which gives a contradiction with (4).

We can formulate the following bilateral characterizations of the increasing of a map when the order is total and complete on the domain: Obviously, some other equivalences can be formulated above (by changing (QI -) or (P I -) by (I -) and also (QI + ) or (P I + ) by (I + )).

When the domain is N or Z we can simplify the previous characterizations. The set N is discrete (well ordered and such that all elements except the first one has a predecessor [START_REF] Dubreil | [END_REF]) but Z is not; nevertheless Z satisfies the following more general definitions.

Definition 11. An ordered space (Z, ≤) is left quasi-discrete if: ∀x ∈ Z -, ∃a ∈ ]←, x[ , ]a, x[ = ∅; (Z, ≤) is right quasi-discrete if: ∀x ∈ Z + , ∃b ∈ ]x, →[ , ]x, b[ = ∅. (Z, ≤) is quasi-discrete if it is left and right quasi-discrete.
A countable totally ordered space is not necessarily left or right quasi-discrete. The sets

I := {n -1 : n ∈ N * }, J := {-n -1 : n ∈ N * } and I ∪ J are quasi-discrete; I ∪ {0} is left but not right quasi-discrete, J ∪ {0} is right but not left quasi-discrete, I ∪ J ∪ {0} is not left nor right quasi-discrete.
An ordered space with finite connections is quasi-discrete. The converse is false: I ∪ J is quasi-discrete but there exist no finite connections between an element of I and another one of J.

It is immediate that any map from a left (resp. right) quasi-discrete ordered space (Z, ≤) into an ordered space (B, ≤) is left (resp. right) quasi-isotone. We deduce the following corollaries giving unilateral characterizations of the isotone property.

Corollary 5. Let (Z, ≤) be a left quasi-discrete and complete totally ordered space, (B, ≤) an ordered space and f : (Z, ≤) → (B, ≤). Then:

(I) ⇔ (I + R ) ⇔ (I + ) ⇔ (P I + ). In the above corollary, property (P I + ) is not equivalent to the isotone property (consider the map defined on the finite subset {-1, 0, 1} by f (-1) = 0 = f (1) and f (0) = -1). Corollary 6. Let (Z, ≤) be a right quasi-discrete and complete totally ordered space, (B, ≤) an ordered space and f : (Z, ≤) → (B, ≤). Then:

(I) ⇔ (I - R ) ⇔ (I -) ⇔ (P I -
). Property (P I -) is not equivalent to the isotone property even if the domain is finite and well ordered.

The equivalences of one of these two corollaries are not valid under the assumptions of the other one. Consider Z = I ∪ {0} which is a left quasi-discrete and complete totally ordered space and f given by f (0) = 1 and f (i) = i for i ∈ I; this function satisfies (I - R ) (and thus (I -), (P I -)) but is not isotone.

When Z is a quasi-discrete and complete totally ordered space then all properties that appear in the two previous corollaries are equivalent. The fact that the order is total is crucial. Consider Z = 2 N with the inclusion for order; Z is a quasi-discrete and complete partially ordered space. Consider also the function f : Z → {0, 1} given by f (A) = 1 if A is a finite subset of N and f (A) = 0 otherwise. This function is left and right isotone (in fact (I - R ) and (I + R ) hold) but is not isotone.

Strictly isotone maps

The aim of this paragraph is to characterize, by a unilateral or bilateral way, the notion of strictly increasing map (or strictly isotone map), i.e., the property for a map to be isotone relative to the transitive binary relations < associated to the order relations ≤ .

The following definition is classical.

Definition 12. f is strictly increasing or strictly isotone if:

∀ (x, y) ∈ A × A, x < y ⇒ f (x) < f (y). (SI)
We now define the strict versions of various properties of left and right isotone maps. For the notations, we replace formally "I" by "SI".

Definition 13. f is strictly left isotone if:

∀x ∈ A -, ∃a ∈ ]←, x[ , f ([a, x[) ⊂ ]←, f (x)[ . (SI -) f is strictly right isotone if: ∀x ∈ A + , ∃b ∈ ]x, →[ , f (]x, b]) ⊂ ]f (x), →[ . (SI + )
It is obvious that (SI) ⇒ (SI -) and (SI + ).

Definition 14. f is strictly left star-isotone if:

∀x ∈ A -, ∀c ∈ ]←, x[ , ∃a ∈ [c, x[ , f ([a, x[) ⊂ ]←, f (x)[ . (SI -)
f is strictly isotone by left restriction if:

∀x ∈ A -, ∃a ∈ ]←, x[ , f |[a,x] is strictly isotone. (SI - R )
f is strictly star-isotone by left restriction if:

∀x ∈ A -, ∀c ∈ ]←, x[ , ∃a ∈ [c, x[ , f |[a,x] is strictly isotone. (SI - R ) f is left quasi-strict-isotone if: ∀x ∈ A -, ∃a ∈ ]←, x[ , f (]a, x[) ⊂ ]←, f (x)[ . (QSI -) f is pointwise left strict-isotone if: ∀x ∈ A -, ∃a ∈ ]←, x[ , f (a) ∈ ]←, f (x)[ . (PSI -) f is left pseudo-strict-isotone ( or pointwise left star-strict-isotone) if: ∀x ∈ A -, ∀c ∈ ]←, x[ , ∃a ∈ [c, x[ , f (a) ∈ ]←, f (x)[ . (PSI -)
Definition 15. f is strictly right star-isotone if:

∀x ∈ A + , ∀c ∈ ]x, →[ , ∃b ∈ ]x, c] , f (]x, b]) ⊂ ]f (x), →[ . (SI + )
f is strictly isotone by right restriction if:

∀x ∈ A + , ∃b ∈ ]x, →[ , f |[x,b] is strictly isotone. (SI + R )
f is strictly star-isotone by right restriction if:

∀x ∈ A + , ∀c ∈ ]x, →[ , ∃b ∈ ]x, c] , f |[x,b] is strictly isotone. (SI + R ) f is right quasi-strict-isotone if: ∀x ∈ A + , ∃b ∈ ]x, →[ , f (]x, b[) ⊂ ]f (x), →[ . (QSI + ) f is pointwise right strict-isotone if: ∀x ∈ A + , ∃b ∈ ]x, →[ , f (b) ∈ ]f (x), →[ . (PSI + )
f is right pseudo-strict-isotone ( or pointwise right star-strict-isotone) if:

∀x ∈ A + , ∀c ∈ ]x, →[ , ∃b ∈ ]x, c] , f (b) ∈ ]f (x), →[ . (PSI + )
The following table gives some implications between the different properties of left strict-isotone maps. Proof. When x < y, we can consider a finite number of points a i such that a 0 := x < a 1 < a 2 < ... < a n < a n+1 := y and ]a i , a i+1 [ = ∅ for i = 0, 1, ..., n. By (SI + ), f (a i ) < f (a i+1 ) for i = 0, 1, ..., n (since f (]a i , a i+1 ]) ⊂ ]f (a i ), →[ and a i+1 is the only point in ]a i , a i+1 ]).

The first two equivalences are proved and imply the two last ones: (SI) is equivalent to the strict increasing of f from (A, ≥) into (B, ≥).

Corollary 8. If f is a map from a totally ordered space with finite segments (A, ≤) into an ordered space (B, ≤) then (SI) ⇔ (SI + R ) ⇔ (SI - R ) ⇔ (SI + ) ⇔ (SI -).

In the corollary above, the property (P SI + ) is not equivalent to the strict increasing (consider the map defined onto the finite subset {-1, 0, 1} by f (-1) = 0, f (0) = -1 and f (1) = 1).

Corollary 13. Let (Z, ≤) be a right quasi-discrete and complete totally ordered space, (B, ≤) an ordered space and f : (Z, ≤) → (B, ≤). Then:

(SI) ⇔ (SI - R ) ⇔ (SI -) ⇔ (P SI -).

Corollary 4 .

 4 Let (A, ≤) be a complete totally ordered space, (B, ≤) an ordered space and f : (A, ≤) → (B, ≤). Then:(I) ⇔ (I -) and (I + ) ⇔ (QI -) and (P I + ) ⇔ (P I -) and (QI + ).

(

  SI) ⇒ (SI - R ) ⇒ (SI -) ⇒ (PSI -) ⇓ ⇓ ⇓ (SI - R ) ⇒ (SI -) ⇒ (PSI -) ⇓ (QSI -).Some unilateral characterizations of the strict increasing are given bellow.Theorem 7. Let f be a map from an ordered space (A, ≤) into another one (B, ≤). IfA is with finite connections then(SI) ⇔ (SI + R ) ⇔ (SI + ) ⇔ (SI - R ) ⇔ (SI -).

The isotone property and the strictly isotone property can be connected by a general lateral property (P SI + ) or (P SI -).

Proposition 9. Let (A, ≤) and (B, ≤) be ordered spaces and f : (A, ≤) → (B, ≤). If f is isotone and right pseudo-strict-isotone then f is strictly isotone.

Proof. Let x and y in A such that x < y; assumption (I) implies f (x) ≤ f (y). By x ∈ A + and (PSI + ), we can find b ∈ ]x, y] such that f (b) ∈ ]f (x), →[ . We also get f (b) ∈ ]←, f (y)] (for b ≤ y and (I)) and consequently f (x) < f (y), which achieves the proof.

The converse is obvious. Thus, for the general case:

(SI) ⇔ (I) and (P SI + ) ⇔ (I) and (P SI -).

A bilateral condition which ensures the strict increasing can be obtained when the domain is endowed with a complete total order. Theorem 10. Let (A, ≤) be a complete totally ordered space, (B, ≤) an ordered space and f : (A, ≤) → (B, ≤) a map which is right pseudo-strict-isotone and left quasi-isotone. Then f is strictly isotone.

Proof. Since f is right pseudo-isotone (in the strict sense) and left quasi-isotone, f est isotone (by Theorem 3). The last proposition allows to conclude (properties (I) and (PSI + ) imply property (SI)).

We cannot replace the assumption (PSI + ) by the more general condition (PSI + ). Consider A = {0, 1, 2, 3}, B = {0, 1, 2} and the function f which is characterized by its graph {(0, 0), (1, 1), (2, 0), (3, 2)}: this function f is not isotone (and thus is not strictly isotone) but nevertheless is pointwise right strict-isotone and left quasi-isotone.

We obtain the following bilateral characterizations for the strictly isotone property (when the order of the domain of the map is total and complete):

Corollary 11. Let (A, ≤) be a complete totally ordered space, (B, ≤) an ordered space and f : (A, ≤) → (B, ≤). Then:

(SI) ⇔ (SI -) and (I + ) ⇔ (I -) and (SI + ) ⇔ (QI -) and (P SI + ) ⇔ (P SI -) and (QI + ).

Obviously, some other equivalences can be formulated (by replacing (QI -) by (I -) and (QI + ) by (I + ); also by replacing (PSI -) by (SI -) and (PSI + ) by (SI + )).

We remark that the strict assumption on the pseudo-isotone property cannot be associated to the quasi-isotone property: (QSI -) and (P I + ) (similarly (QSI + ) and (P I -)) do not imply the property (SI); consider a constant function onto {0, 1}.

As direct consequences of the previous corollary, some other unilateral characterizations of the strict increasing are immediately obtained.

Corollary 12. Let (Z, ≤) be a left quasi-discrete and complete totally ordered space, (B, ≤) an ordered space and f : (Z, ≤) → (B, ≤). Then:

(SI) ⇔ (SI + R ) ⇔ (SI + ) ⇔ (P SI + ).