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Generalized A¢ ne Functions and Generalized Di¤erentials

N. T. H. LINH � J.-P. PENOT y

Abstract

We study some classes of generalized a¢ ne functions, using a generalized di¤erential. We study some
properties and characterizations of these classes and we devise some characterizations of solution sets of
optimization problems involving such functions or functions of related classes.
Key words: colinvex, colin�ne, generalized di¤erential, optimization problem, protoconvex function,
pseudoconvex function, pseudolinear function, quasiconvex function.
Mathematics Subject Classi�cation: 26B25, 46G05, 49K27, 90C26, 90C32

1 Introduction

A generalized a¢ ne function is a function which is both generalized convex and generalized concave. Such
functions have been studied in [1], [4], [5], [6], [9], [10], [11], [12], [14], [16], [17], [18], [24]. Among them
are quasia¢ ne functions, i.e. those functions which are both quasiconvex and quasiconcave (see [16], [24]).
Also, among them are pseudoa¢ ne functions, i.e. those functions which are di¤erentiable, pseudoconvex
and pseudoconcave, also called pseudolinear functions (see [5], [10], [24]). Given a bifunction h; the class
of h-colin�ne functions also belongs to this category (see [14]). These references provide interesting, non
trivial examples of generalized a¢ ne functions; in particular, fractional functions are noticeable pseudo-a¢ ne
functions and quadratic pseudo-a¢ ne functions can be characterized.
It is the purpose of the present paper to introduce and study new concepts of generalized a¢ ne functions,

as it has been done for generalized convex functions in [15]. Here, to de�ne these classes, we use a generalized
di¤erential, i.e. a set-valued map @f; as a substitute for the derivative of f: This concept allows much
�exibility as it encompasses several notions of nonsmooth analysis. We give some elementary properties and
characterizations for these generalized a¢ ne functions. We also present applications to the characterization of
the solution set of a constrained minimization problem.

2 Notation and de�nitions

Throughout this paper, X is a normed vector space (n.v.s.), X� is the dual space of X, C is a nonempty
subset of X, and f : C ! R. We assume that a set-valued map @f : C � X� is given which stands for a
substitute to the derivative of f ; we call it a generalized di¤erential of f . As observed in [15], the choice for
@f is not limited to the subdi¤erentials of nonsmooth analysis; one can also take the convexi�cators of [7], the
pseudo-di¤erentials of Jeyakumar and Luc ([8]), and much more. We assume that @f(x) 6= ? for all x 2 C
although such an assumption could be relaxed for several results. We denote by P (resp. R+) the set of positive
numbers (resp. non negative numbers) and R (resp. R1) stands for R [ f�1;+1g (resp. R [ f+1g).
We recall that the visibility cone V (C; x) of C at x 2 C is the cone generated by C � x:

V (C; x) := P(C � x) := fr(c� x) : r 2 P; c 2 Cg:
�Laboratoire de Mathématiques, CNRS UMR 5142, Faculté des Sciences, Av. de l�Université 64000 Pau, France

(honglinh98t1@yahoo.com)
yLaboratoire de Mathématiques, CNRS UMR 5142, Faculté des Sciences, Av. de l�Université 64000 Pau, France (jean-
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The visibility bundle of C is the set

V C := f(x; u) 2 C �X : 9r 2 P; w 2 C; u = r(w � x)g =
[
x2C

fxg � V (C; x):

It contains the radial tangent bundle of C which is the set

T rC := f(x; u) 2 C �X : 9 (rn)! 0+; x+ rnu 2 C 8ng =
[
x2C

fxg � T r(C; x):

We also use the tangent bundle of C which is the set

TC := f(x; u) 2 C �X : 9(rn) 2 PN; (un)! u; x+ rnun 2 C 8ng =
[
x2C

fxg � T (C; x):

The upper and the lower radial derivatives (or upper and lower Dini derivatives) of f at x 2 C in the direction
u 2 T r(C; x), are de�ned by

D+f(x; u) = lim sup
t!0+; x+tu2C

1

t
[f(x+ tu)� f(x)];

D+f(x; u) = lim inf
t!0+; x+tu2C

1

t
[f(x+ tu)� f(x)]:

We recall the following de�nitions (see [15, 20, 24]).

De�nition 2.1 Let f : C � X ! R. A function f is said to be
(a) @f -pseudoconvex at x if for all w 2 C :

f(w) < f(x)) for all x� 2 @f(x) : hx�; w � xi < 0: (1)

(b) @f -quasiconvex at x if for all w 2 C :

f(w) < f(x)) for all x� 2 @f(x) : hx�; w � xi � 0: (2)

(c) @f -protoconvex at x if for all w 2 C :

f(w) � f(x)) for all x� 2 @f(x) : hx�; w � xi � 0: (3)

We add the word �eventually�when in the preceding implications �for all�is changed into �there exists�.
Thus, for instance, f is eventually @f -pseudoconvex at x if for all w 2 C satisfying f(w) < f(x) there exists
x� 2 @f(x) such that hx�; w � xi < 0:
Clearly

f is (eventually) @f -pseudoconvex at x =) f is (eventually) @f -quasiconvex at x; (4)

f is (eventually) @f -protoconvex at x =) f is (eventually) @f -quasiconvex at x: (5)

Now we introduce some de�nitions related to generalized concavity .

De�nition 2.2 Let f : C ! R, g := �f and some @g : C � X� be given. The function f is said to be (even-
tually) @(�f)-pseudoconcave (resp. (eventually) @(�f)-quasiconcave, (eventually) @(�f)-protoconcave) at x
if for g := �f; the function g is (eventually) @g-pseudoconvex (resp. (eventually) @g-quasiconvex, (eventually)
@g-protoconvex) at x. A function f : C ! R is said to be (eventually) @f -pseudoa¢ ne if it is both (eventually)
@f -pseudoconvex and (eventually) @(�f)-pseudoconcave. It is said to be @f -protoa¢ ne if it is @f -protoconvex
and @(�f)-protoconcave.
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Remark 2.1 (a) If we assume that @(�f)(x) = �@f(x), then f is @(�f)-pseudoconcave (resp. @(�f)-
quasiconcave, @(�f)-protoconcave) at x if and only if �f is �@f -pseudoconvex (resp. �@f -quasiconvex,
�@f -protoconvex) at x.
(b) When @f(x) := Df (x) [ �D�f (x) where Df (x) and D�f (x) is a subdi¤erential of f and �f at x

respectively, one has @(�f)(x) = �@f(x).

We recall from [14] that f : C ! R is said to be h-colin�ne at x 2 C; where h : V C ! R, if there exists
� : C � C ! P such that for every w 2 X;

f(w)� f(x) = �(w; x)h(x;w � x):

Here we introduce a concept in which the bifunction h is replaced by a generalized di¤erential @f .

De�nition 2.3 (a) A function f : C � X ! R is @f -colin�ne at x 2 C if there exists � : C�Graph(@f)! P
such that for every w 2 C; for any x� 2 @f(x)

f(w)� f(x) = �(w; x; x�)hx�; w � xi: (6)

(b) A function f : C � X ! R is eventually @f -colin�ne at x 2 C if there exists � : C �Graph(@f) ! P
such that for every w 2 C; there exists x� 2 @f(x) satisfying (6).

A function f is said to be @f -colin�ne (resp. @f -pseudoconvex...) on C if it is @f -colin�ne (resp. @f -
pseudoconvex...) at each point of C: For this reason we have chosen to consider � is de�ned on C�Graph(@f)
in De�nition 2.3 rather than on C � @f(x) although only the values of � on C � @f(x) play a role. Similarly,
we have chosen to write De�nition 2.3(b) in that way in order to stress the analogy with (a). Note that this
de�nition can be rephrased as: f is eventually @f -colin�ne if there exists � : C �C ! P and g : C �C ! X�

such that for every w; x 2 X; g(w; x) 2 @f(x) and

f(w)� f(x) = �(w; x)hg(w; x); w � xi:

When f is di¤erential and @f := fDfg; f is @f -colin�ne if, and only if, f is pseudoa¢ ne.
Although the preceding de�nitions are quite restrictive, they are satis�ed in some cases of signi�cant

interest.
Note that if f is a h-colin�ne function, where h : V C ! R is linear and continuous in its second variable,

with `(x) := h(x; �) for all x 2 C; then f is a @f -colin�ne function for @f := f`g and f is an eventually
@f -colin�ne function when @f � f`g: Hence, every pseudoa¢ ne (di¤erentiable) function is @f -colin�ne where
@f := fDfg or eventually @f -colin�ne where @f � fDfg: Remark that the converse is not true in general, as
shown in Example 2.3, where f is eventually @f -colin�ne but f is not quasiconvex, hence f is not pseudoa¢ ne.

Example 2.1 Let X = Rn and let a; b 2 X�; �; � 2 R. For C := fx 2 X : bx + � > 0g; let f : C ! R be

given by f(x) =
ax+ �

bx+ �
for all x 2 C. When @f(x) := frf(x)g; f is @f -colin�ne at x since

rf(x) = (bx+ �)a+ (ax+ �)b

(bx+ �)2
; f(w)� f(x) = bx+ �

bw + �
rf(x)(w � x):

If @f(x) � frf(x)g then f is eventually @f -colin�ne at x.

Example 2.2 Let the function f : R! R be given by f(x) := x3. Then f is not pseudoa¢ ne. But if @f := P
or ? 6= @f � P, then f is @f -colin�ne. If @f \ P 6= ? then f is eventually @f -colin�ne.

Example 2.3 Let f : R ! R be given by f(x) = 0 for x 6= 0 and f(0) = 1: Let @f(x) = f�1; 0; 1g for x 6= 0
and @f(0) = f�1; 1g: Then f is eventually @f -colin�ne but f is not quasiconvex.
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Example 2.4 Let f : P ! R be given by f(x) =
x2 � 1
x

: Then rf(x) = x2 + 1

x2
: If for all x 2 P, @f(x) =

rf(x) or @f(x) � P then f is @f -colin�ne. If @f(x) \ P 6= ? for all x 2 P, then f is eventually @f -colin�ne.

Example 2.5 Let X be a n.v.s. and let g : X ! R be @g-colin�ne. For C := fx 2 X : g(x) > 0g; let
f(x) =

p
g(x) and @f � P@g. f is @f -colin�ne on C since for any w; x 2 C and x�f 2 @f(x), there exist r 2 P

and x�g 2 @g(x) such that x�f = rx�g and

hx�f ; w � xi = rhx�g; w � xi = r
g(w)� g(x)
�(w; x; x�g)

= r(
p
g(w) +

p
g(x))

f(w)� f(x)
�(w; x; x�g)

:=
f(w)� f(x)
�f (w; x; x�f )

:

Similarly, if @f \ P@g 6= ? then f is eventually @f -colin�ne on C.

Example 2.6 More generally, let X be a n.v.s., g : X ! R be @g-colin�ne on C := fx 2 X : g(x) > 0g:
Then, for any p 2 N, f(:) := gp(:) := (g(:))p and @f � P@g, f is @f -colin�ne on C since for any w; x 2 C
and x�f 2 @f(x), there exist r 2 P and x�g 2 @g(x) such that x�f = rx�g and

f(w)� f(x) = gp(w)� gp(x) = (g(w)� g(x))(
p�1X
k=0

gk(w)gp�k�1(x))

= �g(w; x; x
�
g)hx�g; w � xi(

p�1X
k=0

gk(w)gp�k�1(x)) = �f (w; x; x
�
f )hx�f ; w � xi

where �f (w; x; x�f ) := r�1�g(w; x; x
�
g)(

p�1P
k=0

gk(w)gp�k�1(x)): Similarly, if @f \ P@g 6= ? then f is eventually

@f -colin�ne on C.

The following result is similar to [14, Prop. 4], but instead of using a bifunction as a generalized directional
derivative, we use an arbitrary generalized di¤erential. We use a terminology similar to the one in [14, Prop.
4] in view of the fact that the vector v := �(w; x; x�)(w� x) in the invexity relation (7) is colinear to w� x; a
feature close to what occurs in the convex case.

Proposition 2.1 For any function f : C ! R, x 2 domf and any multimap @f : C � X�, the following
assertions are equivalent.
(a) f is @f -pseudoconvex and @f -protoconvex at x 2 C;
(b) f is @f -colinvex at x in the sense: there exists � : C � Graph(@f) ! P such that for all w 2 C;

x� 2 @f(x);
f(w) � f(x) + �(w; x; x�)hx�; w � xi: (7)

Proof . (b))(a) is obvious: given w 2 C; if f(w) < f(x) then hx�; w � xi < 0 for all x� 2 @f(x); while if
f(w) � f(x) then hx�; w � xi � 0 for all x� 2 @f(x): Hence, f is @f -pseudoconvex and @f -protoconvex at x.
(a))(b) Let f be @f -pseudoconvex and @f -protoconvex at x. Let w 2 C and x� 2 @f(x):
If hx�; w � xi = 0 then one has f(w) � f(x) by @f -pseudoconvexity of f and one can take �(w; x; x�) = 1

or any element in P:
If hx�; w � xi > 0 then f(w) > f(x) by @f -protoconvexity of f . Then one can take �(w; x; x�) =

f(w)� f(x)
hx�; w � xi > 0:

If hx�; w � xi < 0 then one can take �(w; x; x�) = maxff(w)� f(x)hx�; w � xi ; 0g + 1, or any � > 0 such that

� � f(w)� f(x)
hx�; w � xi : For (w; u; u

�) 2 C � @f with u 6= x we can take any value for �(w; u; u�): �
A similar result is valid for eventually colinvex functions i.e. functions such that for every w; x 2 C there

exists x� 2 @f(x) and �(w; x; x�) 2 P such that

f(w)� f(x) � �(w; x; x�)hx�; w � xi:
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Proposition 2.2 For any function f : C ! R, x 2 domf and any @f : C � X�, the following assertions are
equivalent.
(a) f is eventually @f -pseudoconvex and eventually @f -protoconvex at x;
(b) f is eventually @f -colinvex at x:

3 Characterizations of generalized a¢ ne functions

In the present section we study classes of generalized a¢ ne functions which are still more restrictive. Their
interests lie in their striking properties. In particular, they enjoy nice composition properties with the classes
introduced in the preceding section. Their behaviors will be studied below.
First, we shall consider some composition properties.

Proposition 3.1 Let g : C ! R be (eventually) @g-colin�ne. Let ' : R! R and f := ' � g and let @f(x) :=
@'(g(x))@g(x):
(a) If ' is (eventually) @'-pseudoconvex, then f is (eventually) @f -pseudoconvex;
(b) If ' is (eventually) @'-quasiconvex, then f is (eventually) @f -quasiconvex;
(c) If ' is (eventually) @'-protoconvex, then f is (eventually) @f -protoconvex;
(d) If ' is (eventually) @'-colin�ne, then f is (eventually) @f -colin�ne.

Proof. Since g is @g-colin�ne, for all w; x 2 C and all x� 2 @g(x) there exists �g(w; x; x�) 2 P such that
g(w)� g(x) = �g(w; x; x�)hx�; w � x: Let u := '(x) and v := '(w):
(a) Since ' is @'-pseudoconvex, if there exists x�f 2 @f(x) such that hx�f ; w � xi � 0 then there exist

x�g 2 @g(x) and u� 2 @'(u) such that x�f = u�x�g � 0: Moreover,

x�f = u
�x�g � 0) u�(g(w)� g(x)) � 0) '(g(w)) � '(g(x)):

(b) Since ' is @'-quasiconvex, if there exists x�f 2 @f(x) such that hx�f ; w�xi > 0 then there exist x�g 2 @g(x)
and u� 2 @'(u) such that x�f = u�x�g > 0: Moreover,

x�f = u
�x�g > 0) u�(g(w)� g(x)) > 0) '(g(w)) � '(g(x)):

(c) A similar proof can be given when ' is @'-protoconvex.
(d) Now, if ' is @'-colin�ne, then for all x�f 2 @f(x); there exist some x�g 2 @g(x) and some u� 2 @'(u)

such that x�f = u
�x�g: Moreover, one has

'(g(w))� '(g(x)) = �'(v; u; u�)hu�; g(w)� g(x)i = �'(v; u; u�)�g(w; x; x�g)hu�x�g; w � xi

hence f is @f -colin�ne.
When g is eventually @g-colin�ne, for w; x 2 C there exist x�g 2 @g(x) and �g(w; x; x�) 2 P such that

g(w)� g(x) = �g(w; x; x�)hx�g; w � xi. Let u := '(x) and v := '(w):
Let ' be eventually @'-pseudoconvex. If '(g(w)) � '(g(x)); then there exists u� 2 @'(u) such that

hu�; v � ui � 0: Hence

'(g(w)) � '(g(x))) hu�; g(w)� g(x)i � 0) hu�x�g; w � xi � 0:

Clearly, u�x�g 2 @f(x): Thus, f is eventually @f -pseudoconvex.
Similar proofs can be given for (b), (c) and (d). �
From the preceding proposition and De�nition 2.3, we have the following example show simple contructions

of colin�ne functions.

Example 3.1 Let g; h : C ! R, g be @g-colin�ne and h be @h-colin�ne and let x 2 C:
(a) Let f := g + h or f := gh. If P@g = P@h and if @f � P@g; then f is @f -colin�ne.
(b) Let f(�) := 1

g(�) and D := fx 2 C : g(x) > 0g: If @f � �P@g, then f is @f -colin�ne on D:
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Let us turn to properties of colin�ne functions. The following result is an easy consequence of Lemma 2.1
and Lemma 2.2.

Proposition 3.2 (a) A function f is @f -colin�ne if, and only if, f is @f -colinvex and �f is �@f -colinvex.
(b) Suppose that for all x 2 C the set @f(x) is convex. If f is eventually @f -colinvex and �f is eventually

�@f -colinvex, then f is eventually @f -colin�ne.
(c) Let C be open and let f be radially continuous. If f is (eventually) @f -protoconvex and �f is (eventually)

�@f -protoconvex and 0 =2 @f(x) for all x 2 C then f is (eventually) @f -colin�ne.

Proof. (a) Let f be @f -colin�ne. Then, there exists � : C � Graph(@f) ! P such that for all w; x 2 C;
x� 2 @f(x);

f(w)� f(x) = �(w; x; x�)hx�; w � xi:

Thus, f is @f -colinvex and �f is �@f -colinvex since this function � will satisfy relation (7) both for f and
�f .
Conversely, let w; x 2 C. Since f is @f -colinvex and �f is �@f -colinvex, there exist �1 : C�Graph(@f)! P

and �2 : C �Graph(@f)! P such that for all w; x 2 C; x� 2 @f(x);

f(w)� f(x) � �1(w; x; x�)hx�; w � xi;
�f(w) + f(x) � �2(w; x; x�)h�x�; w � xi:

Thus, if f(w) � f(x) < 0 then hx�; w � xi < 0, while if f(w) � f(x) > 0 then hx�; w � xi > 0; hence in both

cases we can take �(w; x; x�) =
f(w)� f(x)
hx�; w � xi > 0: Now when f(w) = f(x) then hx

�; w � xi = 0 and one can

take any �(w; x; x�) 2 P.
(b) If f is eventually @f -colin�ne, then as in the proof of (a), one gets that f is eventually @f -colinvex and

�f is eventually �@f -colinvex.
Conversely, let w; x 2 C. Since f is eventually @f -colinvex and �f is eventually �@f -colinvex, there exist

�1 : C � C ! P, �2 : C � C ! P and g1 : C � C ! X�; g2 : C � C ! X� such that for all w; x 2 C;

�2(w; x)hg2(w; x); w � xi � f(w)� f(x) � �1(w; x)hg1(w; x); w � xi:

If f(w)�f(x) < 0 then hg1(w; x); w�xi < 0; hence we can take g(w; x) := g1(w; x), �(w; x) =
f(w)� f(x)

hg1(w; x); w � xi
>

0; if f(w)�f(x) > 0 then hg2(w; x); w�xi > 0 and we can take g(w; x) := g2(w; x), �(w; x) =
f(w)� f(x)

hg2(w; x); w � xi
>

0; while if f(w) = f(x) then hg1(w; x); w � xi � 0 and hg2(w; x); w � xi � 0 and, since @f(x) is convex, there
exists g3(w; x) 2 X� such that hg3(w; x); w�xi = 0 and we can take g(w; x) := g3(w; x) and any �(w; x; x�) 2 P.
(c) Under the assumptions of (c), f is @f -pseudoconvex and �f is �@f -pseudoconvex (see [15, Proposition

2.5]). By Proposition 2.1, f is @f -colinvex and �f is �@f -colinvex. Hence from (a) f is @f -colin�ne.
Similarly, if f is eventually @f -protoconvex and �f is eventually �@f -protoconvex and 0 =2 @f(x) for all

x 2 C then f is (eventually) @f -colin�ne. �
It may happen that f is eventually @f -colinvex and �f is eventually �@f -colinvex but f is not eventually

@f -colin�ne when @f is not convex.

Example 3.2 Let f : R ! R be given by f(x) = 0 for x � 0 and f(x) = x for x � 0 and let @f be given by
@f(x) = f�1; 1g for all x 2 C := X: Then f is eventually @f -colinvex and �f is eventually �@f -colinvex but
f is not eventually @f -colin�ne since f(�1) = f(0) = 0 and h1;�1� 0i 6= 0, h�1;�1� 0i 6= 0.

Proposition 3.3 (a) If f is @f -colin�ne on C, then f is quasia¢ ne (i.e. quasiconvex and quasiconcave) on
C.
(b) If f is @f -colin�ne at x 2 C; then, setting @(�f)(x) := �@f(x), f is @f -protoa¢ ne and @f -pseudoa¢ ne

at x:
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Proof. (a) Suppose that f is not quasia¢ ne: there exist x; y; z 2 C with y 2]x; z[such that either
f(y) > maxff(x); f(z)g or f(y) < minff(x); f(z)g: If f(y) > maxff(x); f(z)g then for y� 2 @f(y); one has
hy�; x� yi < 0 and hy�; z� yi < 0; a contradiction with the linearity of y�: If f(y) < minff(x); f(z)g a similar
proof yields a contradiction.
(b) Since f is @f -colinvex and �f is �@f -colinvex, the assertion follows from Remark 1 and Proposition

2.1. �
Now, let us give a partial converse of the preceding result. It uses the following assumptions in which

x 2 C:
8u 2 T r(C; x) D+f(x; u) > 0; D+f(x; u) � 0) D+f(x; u) > 0; (8)

8x� 2 @f(x) 8u 2 T r(C; x) hx�; ui � D+f(x; u) (9)

8x� 2 @(�f)(x) 8u 2 T r(C; x) hx�; ui � D+(�f)(x; u) (10)

8x� 2 @f(x) 8u 2 T r(C; x) D+f(x; u) � hx�; ui (11)

Obviously, condition (8) is satis�ed when f has a radial derivative at x in all directions u 2 T r(C; x):Moreover,
if C is open, f is di¤erentiable on C and @f(x) = ff 0(x)g; @(�f)(x) = f�f 0(x)g; the other conditions are
satis�ed. However, these conditions allow x to be a boundary point of C (which is not assumed to be open in
the next results).
Let us recall that a function f is radially nonconstant if one cannot �nd any proper line segment on which

f is constant.

Proposition 3.4 Let f be @f -pseudoa¢ ne on a convex set C. Then f is quasia¢ ne on C. Let x 2 C:
(a) If f is radially nonconstant and if @(�f) = �@f; then f is @f -colin�ne.
(b) If relation (9) is satis�ed, then f is @f -colinvex at x.

In addition to (9), if one of the following two conditions holds, then f is @f -colin�ne at x.
(i) @(�f)(x) = �@f(x) and relation (10) is satis�ed,
(ii) conditions (8), (11) are satis�ed at x and for all u 2 V (C; x); there exists y� 2 @(�f)(x) such that

D+(�f)(x; u) � hy�; ui:

Proof. Since f is @f -pseudoconvex and �f is @(�f)-pseudoconvex, f and �f are quasiconvex by [15,
Proposition 6]. Thus, f is quasia¢ ne on C.
(a) Let us �rst prove that f is @f -protoconvex. Suppose that f is not @f -protoconvex. Then there exist

some w; x 2 C such that f(w) � f(x) and some x� 2 @f(x) with hx�; w � xi > 0: Then f(w) = f(x): On the
other hand, since f is quasiconvex and radially nonconstant, there exists z 2 (w; x) such that f(z) < f(x) and
then hx�; z � xi < 0, a contradition.
Similarly, if �f is not @(�f)-protoconvex, then there exist some w; x 2 C such that �f(w) � �f(x) and

some x� 2 @(�f)(x) with hx�; w � xi > 0: Since �f is @(�f)-pseudoconvex, one has f(w) = f(x): Since f is
quasiconcave and radially nonconstant, there exists z 2 (w; x) such that f(z) > f(x), i.e. �f(z) < �f(x) and
then hx�; z � xi < 0, a contradition. Thus, �f is @(�f)-protoconvex.
On the other hand, since @(�f) = �@f; �f is �@f -protoconvex and �f is �@f -pseudoconvex. Hence, f

is @f -colinvex and �f is �@f -colinvex. By Proposition 3.2 (a), f is @f -colin�ne at x:
(b) When relation (9) holds, we see that f is @f -protoconvex at x, since if f(w) � f(x) for some w 2 C;

then D+f(x;w � x) � 0 by quasiconvexity and for all x� 2 @f(x) we have hx�; w � xi � D+f(x;w � x) � 0:
Thus, since f is @f -pseudoconvex, it is @f -colinvex at x by Proposition 2.1.
Let us �rst consider the case (i): @(�f)(x) = �@f(x) and relation (10) is satis�ed. Since f is @f -

pseudoa¢ ne, f is @(�f)-pseudoconcave, hence by De�nition 2.2, �f is �@f -pseudoconvex.
Now, let us prove that f is @(�f)-protoconcave at x. If �f(w) � �f(x) for some w 2 C, then for all

x� 2 @(�f)(x) one has hx�; w�xi � D+(�f)(x;w�x) � 0 by relation (10) and the fact that �f is quasiconvex.
Thus, �f is �@f -protoconvex at x and �f is �@f -colinvex at x. By Proposition 3.2 (a), f is @f -colin�ne at
x:
Let us suppose assumption (ii) is satis�ed.
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Let us prove that �f is �@f -protoconvex if relation (11) is satis�ed. If �f(w) � �f(x) for some w 2 C;
then f(w) � f(x) and D+f(x;w � x) � 0 since f is quasia¢ ne. For any x� 2 @f(x) relation (11) implies
0 � D+f(x;w � x) � hx�; w � xi. Thus one has h�x�; w � xi � 0 and �f is �@f -protoconvex at x.
Now, let us prove that �f is �@f -pseudoconvex. Since f is @f -pseudoa¢ ne, �f is @(�f)-pseudoconvex.

Let w 2 C be such that �f(w) < �f(x) and let u := w�x. Then we have hy�; w�xi < 0 for all y� 2 @(�f)(x):
Let us pick y� 2 @(�f)(x) such that D+(�f)(x; u) � hy�; ui. Thus, we have D+f(x;w � x) > 0. Since f is
quasia¢ ne and f(w) > f(x), we also have D+f(x;w � x) � 0. Then condition (8) entails 0 < D+f(x;w � x):
Since relation (11) is satis�ed, for all x� 2 @f(x) we have 0 < D+f(x;w � x) � hx�; w � xi. Thus, we get
h�x�; w � xi < 0 for all �x� 2 �@f(x) and then �f is �@f -pseudoconvex.
Thus, �f is �@f -colinvex at x and then f is colin�ne at x: �
Let us give a similar result for an eventually colin�ne function at some x 2 C. It uses the following

assumptions which are weaker than the preceding assumptions:

8u 2 T r(C; x) 9x� 2 @f(x) hx�; ui � D+f(x; u) (12)

8u 2 T r(C; x) 9x� 2 @(�f)(x) hx�; ui � D+(�f)(x; u) (13)

8u 2 T r(C; x) 9x� 2 @f(x) D+f(x; u) � hx�; ui (14)

Proposition 3.5 Let f be @f -pseudoa¢ ne on a convex set C and let x 2 C.
(a) If f is radially nonconstant and if @(�f) \ �@f 6= ?; then f is eventually @f -colin�ne.
(b) If relation to (12) is satis�ed, then f is eventually @f -colinvex.

In addition, if @f(x) is convex and one of the following conditions holds, then f is eventually @f -colin�ne at
x.
(i) @(�f)(x) \ �@f(x) 6= ? and relation (10) is satis�ed,
(ii) @(�f)(x) = �@f(x) and relation (13) is satis�ed,
(iii) conditions (8), (14) are satis�ed at x and for all u 2 T r(C; x) there exists y� 2 @(�f)(x) such that

D+(�f)(x; u) � hy�; ui:

Proof. By the �rst assertion of the preceding proposition, f is quasia¢ ne on C:
(a) As in the proof of the preceding proposition (a), f is @f -protoconvex and �f is @(�f)-protoconvex.

Moreover, since @(�f)\�@f 6= ?; �f is eventually �@f -protoconvex and �f is eventually �@f -pseudoconvex.
Hence, f is @f -colinvex and �f is eventually �@f -colinvex. By Proposition 3.2 (b), f is eventually @f -colin�ne
at x:
(b) Let us �rst observe that f is eventually @f -protoconvex at x, since if f(w) � f(x) for some w 2 C; then

D+f(x;w� x) � 0, and, by relation (12), there exists x� 2 @f(x) such that hx�; w� xi � D+f(x;w� x) � 0:
Since f is also @f -pseudoconvex, it is eventualy @f -colinvex at x by Proposition 2.2.
In order to show that f is eventually @f -colin�ne at x; let us �rst consider the case (i). Since f is @f -

pseudoa¢ ne, f is @(�f)-pseudoconcave, hence by De�nition 2.2, �f is @(�f)-pseudoconvex. Since relation
(10) is satis�ed, as in the proof of the preceding proposition, we get that �f is @(�f)-protoconvex at x. Thus,
�f is @(�f)-colinvex. On the other hand, since @(�f)(x)\�@f(x) 6= ?, �f is eventually �@f -pseudoconvex
and eventually �@f -protoconvex at x. Thus, f is eventually @f -colin�ne at x by Proposition 3.2 (b).
Now, let us suppose assumption (ii) is satis�ed. First, we observe that f is eventually @(�f)-protoconcave at

x: since if �f(w) � �f(x) for some w 2 C, then for some x� 2 @(�f)(x) one has hx�; w�xi � D+(�f)(x;w�
x) � 0 by relation (13). On the other hand, since @(�f)(x) = �@f(x), �f is eventually �@f -protoconvex at
x. So, f is eventually @f -colin�ne at x:
Finally, let us suppose assumption (iii) is satis�ed. Let us �rst prove that �f is eventually �@f -protoconvex

at x. If �f(w) � �f(x) for some w 2 C; then f(w) � f(x) and D+f(x;w � x) � 0 since f is quasia¢ ne. By
relation (14), there exists x� 2 @f(x) such that 0 � D+f(x;w�x) � hx�; w�xi. Thus one has �x� 2 �@f(x)
with h�x�; w � xi � 0: �f is eventually �@f -protoconvex at x.
Now, let us prove that �f is eventually �@f -pseudoconvex at x. Since f is @f -pseudoa¢ ne, �f is @(�f)-

pseudoconvex. If �f(w) < �f(x) for some w 2 C; using our assumption and condition (8) as in the preceding
proof, we get 0 < D+f(x;w�x): Since relation (14) is satis�ed, there exists x� 2 @f(x) such that D+f(x;w�
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x) � hx�; w � xi. Thus, we get �x� 2 �@f(x) with h�x�; w � xi < 0: �f is eventually �@f -pseudoconvex at
x.
Thus, �f is eventually �@f -colinvex at x and then f is eventually @f -colin�ne at x: �

Remark 3.1 (a) Note that if we change ��� into �<� in relations (11), (9), then assumption (8) in the
preceding results could be deleted.
(b) Clearly, condition (8) is satis�ed if f has a radial derivative in the direction u for all u 2 T r(C; x):
(c) The preceding proposition implies [14, Proposition 13].

Proposition 3.6 Let f be @f -colin�ne on C and let w; x 2 C: For r 2 R, let xr := x + r(w � x): Then for
any s; t 2 R; with s 6= t such that xs; xt 2 C; the following statements are equivalent:
(a) f(x) = f(w);
(b) f(xt) = f(xs);
(c) hx�t ; xs � xti = 0 for all x�t 2 @f(xt);
(d) hx�s; xt � xsi = 0 for all x�s 2 @f(xs).

Proof. (a))(b) If f(x) = f(w) then for any x� 2 @f(x), hx�; w � xi = 0 and then, 0 = hx�; xt � xi =
hx�; xs � xi. By De�nition 2.3, f(xt) = f(x) = f(xs).
(b),(c),(d) is obvious by De�nition 2.3.
(c))(a) If hx�t ; xs�xti = 0 for all x�t 2 @f(xt) then, since s 6= t; for all x�t 2 @f(xt) one has hx�t ; x�wi = 0,

hence hx�t ; x� xti = hx�t ; w � xti = 0 and then f(x) = f(xt) = f(w). �
For an eventually colin�ne function, we have the following property in the spirit of Minty variational

inequalities and Stampachia variational inequalities. It shows that, in our case, a solution in the sense of
Minty is a solution in the sense of Stampachia.
Recall ([2]) that a multimap T : C � X� is said to be upper sign-continuous on C if, for every w; x 2 C;

the following implication (in which xt := tx+ (1� t)w) holds:

8t 2 (0; 1); inffhx�t ; w � xi : x�t 2 T (xt)g � 0) supfhx�; w � xi : x� 2 T (x)g � 0:

Proposition 3.7 Let f be eventually @f -colin�ne on C and let w; x 2 C:
(a) If for all w� 2 @f(w) one has hw�; w�xi � 0 (resp. hw�; w�xi > 0, hw�; w�xi = 0, hw�; w�xi < 0,

hw�; w�xi � 0) then there exists x� 2 @f(x) such that hx�; w�xi � 0 (resp. hx�; w�xi > 0, hx�; w�xi = 0,
hx�; w � xi < 0, hx�; w � xi � 0).
(b) @f is upper sign-continuous on C:

Proof. (a) Since f is eventually @f -colin�ne on C; there exist w� 2 @f(w); x� 2 @f(x), �(w; x; x�) 2 P
and �(x;w;w�) 2 P such that

f(w)� f(x) = �(w; x; x�)hx�; w � xi = ��(x;w;w�)hw�; x� wi:

If for all w� 2 @f(w) one has hw�; w � xi � 0; then the preceding relation entails f(w) � f(x). Thus,
hx�; w � xi � 0: The proofs of the other assertions are similar.
(b) Since xt � x = t(w � x) for t 2 (0; 1); (b) follows from (a) by substituting xt; x�t to w; w

�: �
The preceding proposition can easily adapted to the case f is @f -colin�ne by interchanging �for all�and

�there exists�. Moreover, in such a case, one sees @f and �@f are pseudomonotone (in the sense of [26]; see
also [20], [25]). Thus we get a multivalued generalization of the concept of PPM map which has been used in
[3] to study variational inequalities.
The following result is similar to [14, Proposition 10].

Proposition 3.8 If f is @f -colin�ne then the function t 7! f(x+ t(w� x)) is either increasing or decreasing
or constant on the interval on which it is de�ned.
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Proof. Since f is @f -colin�ne, there exists � : C �Graph(@f) ! P such that for every w; x 2 C; for any
x� 2 @f(x);

f(w)� f(x) = �(w; x; x�)hx�; w � xi:

If f(w) = f(x) then by Proposition 3.6, one has f(x + t(w � x)) = f(x) for all t 2 R such that xt :=
x+ t(w � x) 2 C:
If f(w) > f(x) then for any x� 2 @f(x) one has hx�; w�xi > 0: For all t > 0 such that xt := x+t(w�x) 2 C;

by homogeneity, one gets hx�; xt � xi > 0. Thus f(xt) > f(x): Also, given u := x + r(w � x) 2 C and
v := x + s(w � x) 2 C with s > r; one has f(v) > f(u): Otherwise, one would have either f(v) = f(u)
and then f(w) = f(x) by what precedes, or f(v) < f(u) and then, for all v� 2 @f(v), hv�; u � vi > 0;
hence hv�; x � vi > 0 since x � v = q(u � v) for some q > 0 and then f(x) > f(v); a contradiction with
f(v) = f(xs) > f(x). A similar proof shows that for every t > 0 we have f(w + t(x � w)) < f(w) and for
s > r; f(w + s(x� w)) < f(w + r(x� w)) when the involved points are in C:
If f(x) > f(w); then we also have the conclusion by interchanging the roles of w and x in what precedes.�
In the sequel, we will consider the following hypothesis:
(H+) If hx�; w � xi > 0 for some w; x 2 C and some x� 2 @f(x); then there exists z 2]w; x[ such that

f(z) > f(x).
(H�) If hx�; w � xi < 0 for some w; x 2 C and some x� 2 @f(x); then there exists z 2]w; x[ such that

f(z) < f(x).
(H0) If hx�; w � xi = 0 for some w; x 2 C and some x� 2 @f(x); then one has f(w) = f(x).
Hypothesis (H+) (resp. (H�)) is weaker than @f -protoconvexity of f (resp. �@f -protoconvexity of �f).

Hypothesis (H+) (resp. (H�)) is clearly satis�ed when @f(x) (resp. �@f(x)) is contained in the Dini-Hadamard
(or contingent) subdi¤erential (resp. @D(�f)(x) of �f at x).
The following theorem has been given in [5, Theorems 4.13, 4.14], [6], [10], [11], in the case the function f is

di¤erentiable and @f := ff 0g: Here, the function f is nonsmooth. In [14], a generalized directional derivative is
used instead of a generalized di¤erential. We start with a preparatory lemma dealing with the one-dimensional
case.

Lemma 3.1 Let C be an open interval of R and let ' : C ! R be a continuous function satisfying (H+)
and (H�) with respect to @'. Then ' is @'-colin�ne if, and only if, either (H0) is satis�ed and there exists
some t0 2 C such that @'(t0) 3 f0g; or for all t 2 C the sign of t� 2 @'(t) is constant on the level set
L'(t) := '

�1('(t)).

Proof. Let ' be @'-colin�ne. If there exists t0 2 C such that 0 2 @'(t0); then by the proof of the
preceding proposition, f is constant on C: Thus, (H0) is satis�ed and, since ' is @'-colin�ne, one has t� = 0
for any t� 2 @'(t) and any t 2 C:
Otherwise, for all t 2 C; t� 2 @'(t); one has t� 6= 0: Thus, by Proposition 3.8, ' is increasing or decreasing

on C and then the level set L'(t) of ' at t 2 C is the singleton ftg: Now, let t�1, t�2 2 @'(t) and let s 2 C;
s > t: Since ' is @'-colin�ne there exist �1(s; t; t�1) 2 P and �2(s; t; t�2) 2 P such that

'(s)� '(t) = �1(s; t; t�1)ht�1; s� ti = �2(s; t; t�2)ht�2; s� ti:

Thus t�1t
�
2 > 0.

For the converse, let us �rst suppose (H0) is satis�ed and for some t0 2 C we have @'(t0) 3 f0g. Then,
for all s 2 C; 0 = t�0 2 @'(t0); we have ht�0; s � t0i = 0; so that, by (H0), '(s) = '(t0): Hence, ' is constant
and, in view of conditions (H+) and (H�), for all r 2 C; r� 2 @'(r); we must have r� = 0: then ' is trivially
@'-colin�ne.
Now suppose that for all t 2 C, t� 2 @'(t), the sign of t� is constant on L'(t). Given r 2 C such that for

all r� 2 @'(r); r� > 0; we will prove that '(t) > '(r) for all t > r: Let us �rst prove that we cannot have
'(t) < '(r): If '(t) < '(r), let s := supfp 2 [r; t] : '(p) = '(r)g: Since ' is continuous, we have s < t and
'(s) = '(r): Then our assumption ensures that, for all s� 2 @'(s); we have s� > 0;so that, by condition (H+)
there exists some p 2]s; t[ with '(p) > '(s) and the intermediate value theorem yields some q 2 [p; t] with
'(q) = '(s) = '(r); a contradiction with the de�nition of s:
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Now let us suppose that '(t) = '(r): Then t� > 0 for any t� 2 @'(t) by our assumption, so that
ht�; r � ti < 0: Then condition (H�) yields some t0 2]r; t[ such that '(t0) < '(t) = '(r) and replacing t by t0
in what precedes, we get again a contradiction.
A similar proof shows that '(q) < '(r) for all q < r:
We can see in a similar way that when for some r 2 C; and all r� 2 @'(r) we have r� < 0, the function '

is decreasing on C:
Hence, for any r; s 2 C; s� 2 @'(s) there exists some �(r; s; s�) 2 P such that

'(r)� '(s) = �(r; s; s�)hs�; r � si:

�
We are ready to prove our main result. It is a nonsmooth version of [5, Theorems 4.13, 4.14], [6], [10], [11],

[14].

Theorem 3.1 Let C be an open, convex subset of X; let f : C ! R be radially continuous and let @f : C � X�

with nonempty values.
(a) Let f be @f -colin�ne. Then, for all w 2 C; the set Kw := fu 2 X : 8w� 2 @f(w); hw�; ui = 0g is a

linear subspace of X and @f(w) is contained in an half line.
(b) If f is @f -colin�ne on C then for any w; x 2 C such that f(w) = f(x) one has Kx = Kw and for any

w� 2 @f(w); x� 2 @f(x); there exists some r > 0 such that w� = rx�:
(c) Conversely, suppose that f and @f satisfy (H0), (H+) and (H�). If for any w; x 2 C such that

f(w) = f(x) and for any w� 2 @f(w); x� 2 @f(x), there exists some r > 0 such that w� = rx�; then f is
@f -colin�ne.
(d) Assume that the dimension of X is greater than 1; that C = X, and that f and @f satisfy (H0), (H+)

and (H�). Then f is @f -colin�ne if, and only if, for all w; x 2 C and all w� 2 @f(w); x� 2 @f(x) there exists
some r > 0 such that w� = rx�.

Proof. (a) It is obvious that Kw is a linear subspace. Let w�; x� 2 @f(w): For any u 2 X such that
hw�; ui = 0; taking t > 0 small enough, we have w + tu 2 C and f(w + tu) = f(w): Again, since f is @f -

colin�ne, we obtain hx�; ui = 0: Thus, kerw� = Kw and
x�

jjx�jj =
w�

jjw�jj or
x�

jjx�jj = �
w�

jjw�jj if w
� and x� are

both non null, while if one is 0; the other one is 0 too. In other terms, there exists some r 2 Rnf0g such that
w� = rx�: Let us prove that r is positive when x� 6= 0. Let y 2 C be such that hx�; y � xi 6= 0: Since f is
@f -colin�ne, one has

f(y)� f(x) = �(y; x; x�)hx�; y � xi = �(y; x; w�)hw�; y � xi;

hence we get 0 � hx�; y � xihw�; y � xi = hx�; y � xihrx�; y � xi = rjjhx�; y � xijj2 and r > 0:
(b) Now let w; x 2 C be such that f(w) = f(x) and let u 2 Kw. Since f is @f -colin�ne, we have x�w 2 Kw,

hence x�w+tu 2 Kw for all t 2 R since Kw is a linear subspace. Thus, for jtj small enough, we have x+tu 2 C
and f(x + tu) = f(w) = f(x): Therefore hx�; ui = 0 for all x� 2 @f(x) and u 2 Kx. So, Kw � Kx. The
symmetry of the roles of w and x yields Kw = Kx.
Let w� 2 @f(w); x� 2 @f(x): By (a) and the preceding case, we have kerw� = Kw = Kx = kerx

� and so
there exists some r 2 Rnf0g such that w� = rx�: Let us prove that r is positive. Suppose that r < 0. Pick
u 2 X such that hx�; ui = 1 and set z1 = w + tu and z2 = x + tu, with t > 0 small enough to ensure that
z1; z2 2 C: Then, since f is @f -colin�ne, one has f(z1) < f(w) = f(x) < f(z2) and hx�; w � xi = 0: Since f is
radially continuous, there exists some s 2]0; 1[ such that, for z := sz1 + (1� s)z2; one has f(z) = f(x): Then
z � x = sw � sx+ tu and

0 = hx�; z � xi = hx�; sw � sx+ tui = t > 0;
a contradiction. Hence, the case r < 0 is excluded.
(c) If there exist x 2 C such that @f(x) 3 0; then one has f(y) = f(x) for all y 2 C by condition (H0)

since hx�; y� xi = 0: Thus, the level set of f at x is C and our assumption ensures that for all y� 2 @f(y); for
some r > 0; we have y� = rx� = 0. Thus f is @f -colin�ne.
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Thus, we can assume that 0 =2 @f(x) for all x 2 C: Now, given w; x 2 C, for t 2 Cw;x := ft 2 R : xt 2 Cg;
where xt := (1� t)x+ tw; let us set '(t) := f(xt). For t 2 Cw;x; let us take

@'(t) := ft� 2 R : 9x�t 2 @f(xt); t� = hx�t ; w � xig:

Let us show that ('; @') satis�es (H+), (H�) and (H0). Suppose that there exists t� 2 @'(t) such that
ht�; s� ti > 0 for t; s 2 Cw;x, with s 6= t: Then there exists x�t 2 @f(xt) such that hx�t ; xs�xti = (s� t)hx�t ; w�
xi = (s�t)t� > 0: Since f satis�es (H+), there exists q between t and s such that '(q) := f(xq) > f(xt) := '(t):
Thus, ' satis�es (H+). With a similar proof, we can see that ' satis�es (H�). Now suppose that ht�; s� ti = 0
for t; s 2 Cw;x, with s 6= t and t� 2 @'(t): Then there exists x�t 2 @f(xt) such that hx�t ; xs�xti = (s� t) t� = 0:
Since f satis�es (H0), one has '(s) := f(xs) = f(xt) := '(t), hence ' satis�es (H0).
Suppose that for all t 2 Cw;x 0 =2 @'(t). Let t; s 2 Cw;x; t� 2 @'(t); s� 2 @'(s) be such that '(t) =

'(s). We shall prove that t�s� > 0: Let x�t 2 @f(xt) and x�s 2 @f(xs) be such that t� = hx�t ; w � xi and
s� = hx�s; w � xi: Since f(xt) = '(t) = '(s) = f(xs), there exists some r > 0 such that x�s = rx�t and we have
s� = hx�s; w � xi = rhx�t ; w � xi = rt�: Hence, we get t�s� > 0:
Thus, either there exists some t 2 Cw;x such that 0 2 @'(t) or for all t 2 C the sign of t� 2 @'(t) is

constant on the level set L'(t) := '�1('(t)); hence ' is @'-colin�ne, by the preceding lemma.
Moreover, for any w; x 2 C, for any x� 2 @f(x), we have s� := hx�; w � xi 2 @'(0) and

f(w)� f(x) = '(1)� '(0) = �'(1; 0; s�)hs�; 1� 0) = �(w; x; x�)hx�; w � xi

where �(w; x; x�) := �'(1; 0; s�) > 0; thus f is a @f -colin�ne function.
(d) Suppose C = X: The su¢ ciency is clear by (c). Conversely, suppose that f is @f -colin�ne. Given

w; x 2 C; w� 2 @f(w) and x� 2 @f(x) let prove there exists some r > 0 such that w� = rx�.
If x� = 0; since f is @f -colin�ne, then f is constant and so w� = 0: thus the conclusion holds with r = 1 in

this case or in the case w� = 0: The conclusion also holds when f(w) = f(x); by (b). When w� 6= 0; x� 6= 0,
f(w) 6= f(x) and there is no r 2 Rnf0g such that w� = rx� the subspacesKw andKx are the hyperplanes kerw�

and kerx� respectively, so that, the dimension of X being greater than 1; there exists z 2 (w+Kw)\ (x+Kx).
One has z � w 2 Kw, z � x 2 Kx, hence hw�; z � wi = 0 and hx�; z � xi = 0. Since f is @f -colin�ne, we
have f(x) = f(z) = f(w), a contradiction. Then, the existence of some r > 0 satisfying w� = rx� has been
established in (b). Thus this case does not occur. It follows that when w� 6= 0 and x� 6= 0 there is some
r 2 Rnf0g such that w� = rx�: Then we have for some �; � > 0; f(x)� f(w) = �hw�; x� wi = �rhx�; x� wi
and f(w)� f(x) = �hx�; w � xi; so that �r = �. Thus r is positive. �
Note that [14, Lemma 17, Theorem 18] follow from the preceding lemma and the preceding theorem by

taking @f(x) := f`(x)g. When @f(x) := frf(x)g; [5, Theorem 4.13, 4.14] is a consequence of the preceding
theorem.
We devote the rest of this section, to a study of the structure of continuous colin�ne functions on a �nite

dimensional n.v.s. X: When X is one-dimensional, it is easy to see that f is quasia¢ ne if, and only if, it
is either nondecreasing or nonincreasing. Thus we suppose that the dimension of X is greater than 1: The
di¤erentiable case is considered in [4, 5, 10, 11] as a Df -colin�ne function f is pseudoa¢ ne (or pseudolinear in
the terminology of these papers). The nonsmooth case is dealt with in [14] with the help of a bifunction. Here,
we use a generalized di¤erential @f of f and we assume that some natural composition rules are satis�ed.
We suppose that when f = g � ` for some non null continuous linear form ` on X and some continuous

function g : R! R, one the following conditions is satis�ed:
(C1) @g(`(x)) � ` � @ (g � `) (x);
(C2) @ (g � `) (x) � @g(`(x)) � `:

Conditions (C1) and (C2) are satis�ed for the Fréchet and the Hadamard subdi¤erentials.
We deduce from [14], [16], [24] a characterization of continuous @f -colin�ne functions.

Proposition 3.9 Let f : X ! R be a lower semicontinuous (resp. continuous), nonconstant function on
a �nite dimensional n.v.s. If condition (C1) is satis�ed, then assertion (a) below implies assertion (b); if
condition (C2) is satis�ed, the reverse implication holds:
(a) f is @f -colin�ne;
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(b) there exist a continuous linear form ` on X; ` 6= 0 and a lower semicontinuous (resp. continuous)
increasing, @g-colin�ne function g : R! R such that f = g � `:

Proof. (a)=)(b) Let condition (C1) be satisfy and let f : X ! R be l.s.c. (resp. continuous) and @f -
colin�ne. Hence f is quasia¢ ne by Proposition 3.3. According to [16], [24], there exist a continuous linear form
` on X and a lower semicontinuous. (resp. continuous) nondecreasing function g : R! R such that f = g � `:
Since f is nonconstant, ` 6= 0: Let us prove that g is increasing. Suppose that there exist r1 < r2 in R such
that for all r 2 [r1; r2]; g(r) = g(r1) = g(r2). Since f is nonconstant, g is nonconstant and there exists some
t0 > 1, such that, for t � t0 one has either g(r1+ t(r2� r1)) > g(r2) or g(r2+ t(r1� r2)) < g(r1): We consider
the �rst case, the second one being similar. Since ` 6= 0, there exist w; x 2 X such that `(w) = r1 < `(x) = r2.
Then, for t � t0; we have `(w + t(x � w)) > `(x) = r2 and then f(w + t(x � w)) = g(`(w + t(x � w))) =
g(r1 + t(r2 � r1)) > g(r2) = f(w) = f(x): By Proposition 3.8, f is not @f -colin�ne. Therefore g is increasing.
Now, we shall prove that g is @g-colin�ne. For any u; v 2 R, and v� 2 @g(v); by condition (C1), there exists

w; x 2 X and x� 2 @f(x) such that `(w) = u, `(x) = v and v� � ` = x�: Hence there exists �f (w; x; x�) 2 P
such that

g(u)� g(v)
�f (w; x; x�)

=
g(`(w))� g(`(x))
�f (w; x; x�)

= hx�; w � xi = hv�; `(w)� `(x)i = hv�; u� vi:

so that g is @g-colin�ne.
(b))(a) Let condition (C2) be satisfy and w; x 2 X. Then, for any x� 2 @f(x); there exists u� 2 @g(`(x))

such that x� = u� � `: Since g is @g-colin�ne, there exists �g(`(w); `(x); u�) 2 P such that

f(w)� f(x)
�g(`(w); `(x); u�)

=
g(`(w))� g(`(x))
�g(`(w); `(x); u�)

= hu�; `(w)� `(x)i = hu� � `; w � xi = hx�; w � xi

hence, f is @f -colin�ne. �

4 Characterizations of solution sets

In the present section, we consider the minimization problem

(C) min f(x) subject to x 2 C

where C is a subset of n.v.s. X and f : C ! R.
Our purpose here is limited: since optimality conditions for (C) and mathematical programming problems

using the concepts of the previous sections are dealt with in [13], [14], [15], [20], [22], [23], we are just concerned
with characterizations of solution sets. Let S be the set of solutions to (C) and let @f : C � X� be a generalized
di¤erential of f:
The following results are direct consequences of De�nition 2.3. Here we set

Sa := fx 2 C : 9a� 2 @f(a); ha�; x� ai = 0g; S0a := fx 2 C : 8a� 2 @f(a); ha�; x� ai = 0g:

Proposition 4.1 Let f be @f -colin�ne on C:
(a) If a 2 S, then for all x 2 C; a� 2 @f(a); x� 2 @f(x) one has ha�; x� ai � 0 and hx�; a� xi � 0.
Moreover, S = Sa = S0a:
(b) Conversely, if for all x 2 C; either there exists a� 2 @f(a) such that ha�; x � ai � 0 or there exists

x� 2 @f(x) such that hx�; a� xi � 0, then a 2 S.

Proposition 4.2 Let f be an eventually @f -colin�ne function on C:
(a) If a 2 S, then for all x 2 C, there exists some a� 2 @f(a) such that ha�; x � ai � 0 and there exists

some x� 2 @f(x) such that hx�; a� xi � 0.
Moreover, S0a � S � Sa:
(b) Conversely, if for all x 2 C, either for all a� 2 @f(a) one has ha�; x� ai � 0 or for all x� 2 @f(x) one

has hx�; a� xi � 0 then a 2 S.
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Let us consider now the case in which the constraint set C is de�ned by a �nite family of inequalities, so
that problem (C) turns into the mathematical programming problem

(M) min f(x) subject to x 2 C := fx 2 X : g1(x) � 0; :::; gn(x) � 0g;

where f : W ! R, gi : W ! R and W is a subset of X. Let a 2 C, let I := f1; :::; ng and let I(a) := fi 2 I :
gi(a) = 0g:
In convex mathematical programming, the multipliers are the same for all solutions. The following result

follows from [14]. Note here instead of colinvexity of the objective function f; we only need that f is @f -
protoconvex.

Proposition 4.3 Let a 2 S be such that there exists y = (yi) 2 Rn+; a� 2 @f(a), a�i 2 @gi(a) for i 2 I(a)
satisfying a� +

P
i2I(a)

yia
�
i = 0 and yigi(a) = 0 for i 2 I.

(a) If either f is @f -colin�ne at a or f is @f -protoconvex at a and gi is @gi-protoconvex at a (i 2 I(a)),
then

P
i2I(a)

yiha�i ; b� ai = 0 for every b 2 S.

(b) Let f be @f -protoconvex at a and gi be @gi-colinvex at a (i 2 I(a)). Let L be the Lagrangian given
by L(x; u) := f(x) + ug(x) for (x; u) 2 C � Rn+ and let b 2 C: Then, b 2 S if, and only if, yg(b) = 0 and
L(a; y) = L(b; y).

Proof. (a) Let a� 2 @f(a), a�i 2 @gi(a) for i 2 I(a), y 2 Rn+ and b 2 S be as in the statement.
If f is @f -colin�ne at a; then for � := �(b; a; a�) > 0 one has for b 2 S

0 = ha�; b� ai+ h
P

i2I(a)
yia

�
i ; b� ai =

f(b)� f(a)
�

+ h
P

i2I(a)
yia

�
i ; b� ai = h

P
i2I(a)

yia
�
i ; b� ai:

Now, assume that f is @f -protoconvex at a and gi is @gi-protoconvex at a (i 2 I(a)). Since f(b) = f(a);
one has ha�; b�ai � 0: Thus,

P
i2I(a) yiha�i ; b�ai � 0: On the other hand, since gi(b) � gi(a) = 0 for i 2 I(a),

one has ha�i ; b� ai � 0. Thus, we get
P

i2I(a) yiha�i ; b� ai = 0.
(b) If gi is @gi-colinvex at a (i 2 I(a)), then there exist �i > 0 such that

0 � gi(b) = gi(b)� gi(a) � �iha�i ; b� ai:

Set � := maxf�i : i 2 I(a)g: Then, for all i 2 I(a) one has gi(b) � �ha�i ; b� ai:
By (a), y 2 Rn+ and b 2 C, one gets 0 � yg(b) � �

P
i2I(a) yiha�i ; b � ai = 0. Moreover, we have

L(a; y) = L(b; y) since f(a) + yg(a) = f(a) = f(b) = f(b) + yg(b):
Now for the converse, let b 2 C be such that yg(b) = 0 and L(a; y) = L(b; y). Then, we have f(a) =

L(a; y) = L(b; y) = f(b) + yg(b) = f(b); hence b 2 S: �
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