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We study some classes of generalized a¢ ne functions, using a generalized di¤erential. We study some properties and characterizations of these classes and we devise some characterizations of solution sets of optimization problems involving such functions or functions of related classes.

Introduction

A generalized a¢ ne function is a function which is both generalized convex and generalized concave. Such functions have been studied in [START_REF] Aggarwal | Pseudolinearity and e¢ ciency via Dini derivatives[END_REF], [START_REF] Cambini | On generalized linearity of quadratic fractional functions[END_REF], [START_REF] Cambini | Generalized convexity and optimality conditions in scalar and vector optimization[END_REF], [START_REF] Chew | Pseudolinearity and e¢ ciency[END_REF], [START_REF] Jeyakuma | On characterizing the solution sets of pseudolinear programs[END_REF], [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF], [START_REF] Kortanek | Pseudoconcave programming and Lagrange regularity[END_REF], [START_REF] Kruk | Pseudolinear programming[END_REF], [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF], [START_REF] Martinez-Legaz | Quasiconvex duality theory by generalized conjugation methods[END_REF], [START_REF] Martos | Nonlinear programming: Theory and methods[END_REF], [START_REF] Rapcsak | On pseudolinear functions[END_REF], [START_REF] Penot | Glimpses upon quasiconvex analysis[END_REF]. Among them are quasia¢ ne functions, i.e. those functions which are both quasiconvex and quasiconcave (see [START_REF] Martinez-Legaz | Quasiconvex duality theory by generalized conjugation methods[END_REF], [START_REF] Penot | Glimpses upon quasiconvex analysis[END_REF]). Also, among them are pseudoa¢ ne functions, i.e. those functions which are di¤erentiable, pseudoconvex and pseudoconcave, also called pseudolinear functions (see [START_REF] Cambini | Generalized convexity and optimality conditions in scalar and vector optimization[END_REF], [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF], [START_REF] Penot | Glimpses upon quasiconvex analysis[END_REF]). Given a bifunction h; the class of h-colin…ne functions also belongs to this category (see [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF]). These references provide interesting, non trivial examples of generalized a¢ ne functions; in particular, fractional functions are noticeable pseudo-a¢ ne functions and quadratic pseudo-a¢ ne functions can be characterized.

It is the purpose of the present paper to introduce and study new concepts of generalized a¢ ne functions, as it has been done for generalized convex functions in [START_REF] Linh | Generalized convex functions and generalized di¤ erentials[END_REF]. Here, to de…ne these classes, we use a generalized di¤erential, i.e. a set-valued map @f; as a substitute for the derivative of f: This concept allows much ‡exibility as it encompasses several notions of nonsmooth analysis. We give some elementary properties and characterizations for these generalized a¢ ne functions. We also present applications to the characterization of the solution set of a constrained minimization problem.

Notation and de…nitions

Throughout this paper, X is a normed vector space (n.v.s.), X is the dual space of X, C is a nonempty subset of X, and f : C ! R. We assume that a set-valued map @f : C X is given which stands for a substitute to the derivative of f ; we call it a generalized di¤ erential of f . As observed in [START_REF] Linh | Generalized convex functions and generalized di¤ erentials[END_REF], the choice for @f is not limited to the subdi¤erentials of nonsmooth analysis; one can also take the convexi…cators of [START_REF] Demyanov | Contructive nonsmooth analysis[END_REF], the pseudo-di¤erentials of Jeyakumar and Luc ( [START_REF] Jeyakuma | Nonsmooth vector functions and continuous optimization[END_REF]), and much more. We assume that @f (x) 6 = ? for all x 2 C although such an assumption could be relaxed for several results. We denote by P (resp. R + ) the set of positive numbers (resp. non negative numbers) and R (resp. R 1 ) stands for R [ f 1; +1g (resp. R [ f+1g).

We recall that the visibility cone V (C; x) of C at x 2 C is the cone generated by C x:

V (C; x) := P(C x) := fr(c x) : r 2 P; c 2 Cg:
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The visibility bundle of C is the set V C := f(x; u) 2 C X : 9r 2 P; w 2 C; u = r(w x)g = [ x2C fxg V (C; x):

It contains the radial tangent bundle of C which is the set

T r C := f(x; u) 2 C X : 9 (r n ) ! 0 + ; x + r n u 2 C 8ng = [ x2C fxg T r (C; x):
We also use the tangent bundle of C which is the set

T C := f(x; u) 2 C X : 9(r n ) 2 P N ; (u n ) ! u; x + r n u n 2 C 8ng = [ x2C fxg T (C; x):
The upper and the lower radial derivatives (or upper and lower Dini derivatives) of f at x 2 C in the direction u 2 T r (C; x), are de…ned by

D + f (x; u) = lim sup t!0+; x+tu2C 1 t [f (x + tu) f (x)]; D + f (x; u) = lim inf t!0+; x+tu2C 1 t [f (x + tu) f (x)]:
We recall the following de…nitions (see [START_REF] Linh | Generalized convex functions and generalized di¤ erentials[END_REF][START_REF] Penot | Are generalized derivatives useful for generalized convex function[END_REF][START_REF] Penot | Glimpses upon quasiconvex analysis[END_REF]).

De…nition 2.1 Let f : C X ! R. A function f is said to be (a) @f -pseudoconvex at x if for all w 2 C :

f (w) < f (x) ) for all x 2 @f (x) : hx ; w xi < 0: (1) 
(b) @f -quasiconvex at x if for all w 2 C :

f (w) < f (x) ) for all x 2 @f (x) : hx ; w xi 0: (2) 
(c) @f -protoconvex at x if for all w 2 C :

f (w) f (x) ) for all x 2 @f (x) : hx ; w xi 0: (3) 
We add the word "eventually" when in the preceding implications "for all" is changed into "there exists". Thus, for instance, f is eventually @f -pseudoconvex at x if for all w 2 C satisfying f (w) < f (x) there exists x 2 @f (x) such that hx ; w xi < 0:

Clearly

f is (eventually) @f -pseudoconvex at x =) f is (eventually) @f -quasiconvex at x; (4) f is (eventually) @f -protoconvex at x =) f is (eventually) @f -quasiconvex at x: (5) 
Now we introduce some de…nitions related to generalized concavity .

De…nition 2.2 Let f : C ! R, g := f and some @g : C X be given. The function f is said to be (eventually) @( f )-pseudoconcave (resp. (eventually) @( f )-quasiconcave, (eventually) @( f )-protoconcave) at x if for g := f; the function g is (eventually) @g-pseudoconvex (resp. (eventually) @g-quasiconvex, (eventually) @g-protoconvex) at x. A function f : C ! R is said to be (eventually) @f -pseudoa¢ ne if it is both (eventually) @f -pseudoconvex and (eventually) @( f )-pseudoconcave. It is said to be @f -protoa¢ ne if it is @f -protoconvex and @( f )-protoconcave.

Remark 2.1 (a) If we assume that @( f

)(x) = @f (x), then f is @( f )-pseudoconcave (resp. @( f )- quasiconcave, @( f )-protoconcave) at x if and only if f is @f -pseudoconvex (resp. @f -quasiconvex, @f -protoconvex) at x. (b) When @f (x) := D f (x) [ D f (x)
where D f (x) and D f (x) is a subdi¤ erential of f and f at x respectively, one has @( f )(x) = @f (x).

We recall from [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF] that f : C ! R is said to be h-colin…ne at x 2 C; where h : V C ! R, if there exists : C C ! P such that for every w 2 X;

f (w) f (x) = (w; x)h(x; w x):
Here we introduce a concept in which the bifunction h is replaced by a generalized di¤erential @f .

De…nition 2.3 (a) A function f : C X ! R is @f -colin…ne at x 2 C if there exists : C Graph(@f ) ! P such that for every w 2 C; for any x 2 @f (x) f (w) f (x) = (w; x; x )hx ; w xi: (6) (b) A function f : C X ! R is eventually @f -colin…ne at x 2 C
if there exists : C Graph(@f ) ! P such that for every w 2 C; there exists x 2 @f (x) satisfying [START_REF] Chew | Pseudolinearity and e¢ ciency[END_REF].

A function f is said to be @f -colin…ne (resp. @f -pseudoconvex...) on C if it is @f -colin…ne (resp. @fpseudoconvex...) at each point of C: For this reason we have chosen to consider is de…ned on C Graph(@f ) in De…nition 2.3 rather than on C @f (x) although only the values of on C @f (x) play a role. Similarly, we have chosen to write De…nition 2.3(b) in that way in order to stress the analogy with (a). Note that this de…nition can be rephrased as: f is eventually @f -colin…ne if there exists : C C ! P and g : C C ! X such that for every w; x 2 X; g(w; x) 2 @f (x) and f (w) f (x) = (w; x)hg(w; x); w xi: When f is di¤erential and @f := fDf g; f is @f -colin…ne if, and only if, f is pseudoa¢ ne.

Although the preceding de…nitions are quite restrictive, they are satis…ed in some cases of signi…cant interest.

Note that if f is a h-colin…ne function, where h : V C ! R is linear and continuous in its second variable, with `(x) := h(x; ) for all x 2 C; then f is a @f -colin…ne function for @f := f`g and f is an eventually @f -colin…ne function when @f f`g: Hence, every pseudoa¢ ne (di¤erentiable) function is @f -colin…ne where @f := fDf g or eventually @f -colin…ne where @f fDf g: Remark that the converse is not true in general, as shown in Example 2.3, where f is eventually @f -colin…ne but f is not quasiconvex, hence f is not pseudoa¢ ne.

Example 2.1 Let X = R n and let a; b 2 X ; ; 2 R. For C := fx 2 X : bx + > 0g; let f : C ! R be given by f (x) = ax + bx + for all x 2 C. When @f (x) := frf (x)g; f is @f -colin…ne at x since rf (x) = (bx + )a + (ax + )b (bx + ) 2 ; f (w) f (x) = bx + bw + rf (x)(w x): If @f (x) frf (x)g then f is eventually @f -colin…ne at x.
Example 2.2 Let the function f : R ! R be given by f (x) := x 3 . Then f is not pseudoa¢ ne. But if @f := P or ? 6 = @f P, then f is @f -colin…ne. If @f \ P 6 = ? then f is eventually @f -colin…ne.

Example 2.3 Let f : R ! R be given by f (x) = 0 for x 6 = 0 and f (0) = 1: Let @f (x) = f 1; 0; 1g for x 6 = 0 and @f (0) = f 1; 1g: Then f is eventually @f -colin…ne but f is not quasiconvex.

Example 2.4 Let f : P ! R be given by f (x) =

x 2 1 x : Then rf (x) = x 2 + 1 x 2 : If for all x 2 P, @f (x) = rf (x) or @f (x) P then f is @f -colin…ne. If @f (x) \ P 6 = ? for all x 2 P, then f is eventually @f -colin…ne.

Example 2.5 Let X be a n.v.s. and let g : X ! R be @g-colin…ne. For C := fx 2 X : g(x) > 0g; let f (x) = p g(x) and @f P@g. f is @f -colin…ne on C since for any w; x 2 C and x f 2 @f (x), there exist r 2 P and x g 2 @g(x) such that x f = rx g and

hx f ; w xi = rhx g ; w xi = r g(w) g(x) (w; x; x g ) = r( p g(w) + p g(x)) f (w) f (x) (w; x; x g ) := f (w) f (x) f (w; x; x f ) :
Similarly, if @f \ P@g 6 = ? then f is eventually @f -colin…ne on C.

Example 2.6 More generally, let X be a n.v.s., g : X ! R be @g-colin…ne on C := fx 2 X : g(x) > 0g:

Then, for any p 2 N, f (:) := g p (:) := (g(:)) p and @f P@g, f is @f -colin…ne on C since for any w; x 2 C and x f 2 @f (x), there exist r 2 P and x g 2 @g(x) such that x f = rx g and

f (w) f (x) = g p (w) g p (x) = (g(w) g(x))( p 1 X k=0 g k (w)g p k 1 (x)) = g (w; x; x g )hx g ; w xi( p 1 X k=0 g k (w)g p k 1 (x)) = f (w; x; x f )hx f ; w xi where f (w; x; x f ) := r 1 g (w; x; x g )( p 1 P k=0 g k (w)g p k 1 (x)): Similarly, if @f \ P@g 6 = ? then f is eventually @f -colin…ne on C.
The following result is similar to [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF]Prop. 4], but instead of using a bifunction as a generalized directional derivative, we use an arbitrary generalized di¤erential. We use a terminology similar to the one in [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF]Prop. 4] in view of the fact that the vector v := (w; x; x )(w x) in the invexity relation [START_REF] Demyanov | Contructive nonsmooth analysis[END_REF] is colinear to w x; a feature close to what occurs in the convex case.

Proposition 2.1 For any function f : C ! R, x 2 domf and any multimap @f : C X , the following assertions are equivalent.

(a) f is @f -pseudoconvex and @f -protoconvex at x 2 C; (b) f is @f -colinvex at x in the sense: there exists

: C Graph(@f ) ! P such that for all w 2 C; x 2 @f (x); f (w) f (x) + (w; x; x )hx ; w xi: (7) Proof . (b))(a) is obvious: given w 2 C; if f (w) < f (x) then hx ; w xi < 0 for all x 2 @f (x); while if f (w) f (x) then hx ; w xi 0 for all x 2 @f (x): Hence, f is @f -pseudoconvex and @f -protoconvex at x. (a))(b) Let f be @f -pseudoconvex and @f -protoconvex at x. Let w 2 C and x 2 @f (x):
If hx ; w xi = 0 then one has f (w) f (x) by @f -pseudoconvexity of f and one can take (w; x; x ) = 1 or any element in P:

If hx ; w xi > 0 then f (w) > f (x) by @f -protoconvexity of f . Then one can take (w;

x; x ) = f (w) f (x) hx ; w xi > 0:
If hx ; w xi < 0 then one can take (w;

x; x ) = maxf f (w) f (x) hx ; w xi ; 0g + 1, or any > 0 such that f (w) f (x)
hx ; w xi : For (w; u; u ) 2 C @f with u 6 = x we can take any value for (w; u; u ):

A similar result is valid for eventually colinvex functions i.e. functions such that for every w; x 2 C there exists x 2 @f (x) and (w; x; x ) 2 P such that

f (w) f (x) (w; x; x )hx ; w xi:
Proposition 2.2 For any function f : C ! R, x 2 domf and any @f : C X , the following assertions are equivalent.

(a) f is eventually @f -pseudoconvex and eventually @f -protoconvex at x; (b) f is eventually @f -colinvex at x:

3 Characterizations of generalized a¢ ne functions

In the present section we study classes of generalized a¢ ne functions which are still more restrictive. Their interests lie in their striking properties. In particular, they enjoy nice composition properties with the classes introduced in the preceding section. Their behaviors will be studied below.

First, we shall consider some composition properties.

Proposition 3.1 Let g : C ! R be (eventually) @g-colin…ne. Let ' : R ! R and f := ' g and let @f (x) := @'(g(x))@g(x):

(a) If ' is (eventually) @'-pseudoconvex, then f is (eventually) @f -pseudoconvex; (b) If ' is (eventually) @'-quasiconvex, then f is (eventually) @f -quasiconvex; (c) If ' is (eventually) @'-protoconvex, then f is (eventually) @f -protoconvex; (d) If ' is (eventually) @'-colin…ne, then f is (eventually) @f -colin…ne.
Proof. Since g is @g-colin…ne, for all w; x 2 C and all x 2 @g(x) there exists g (w; x; x ) 2 P such that g(w) g(x) = g (w; x; x )hx ; w x: Let u := '(x) and v := '(w):

(a) Since ' is @'-pseudoconvex, if there exists x f 2 @f (x) such that hx f ; w xi 0 then there exist x g 2 @g(x) and u 2 @'(u) such that x f = u x g 0: Moreover,

x f = u x g 0 ) u (g(w) g(x)) 0 ) '(g(w)) '(g(x)):
(b) Since ' is @'-quasiconvex, if there exists x f 2 @f (x) such that hx f ; w xi > 0 then there exist x g 2 @g(x) and u 2 @'(u) such that x f = u x g > 0: Moreover,

x f = u x g > 0 ) u (g(w) g(x)) > 0 ) '(g(w)) '(g(x)):
(c) A similar proof can be given when ' is @'-protoconvex.

(d) Now, if ' is @'-colin…ne, then for all x f 2 @f (x); there exist some x g 2 @g(x) and some u 2 @'(u) such that x f = u x g : Moreover, one has

'(g(w)) '(g(x)) = ' (v; u; u )hu ; g(w) g(x)i = ' (v; u; u ) g (w; x; x g )hu x g ; w xi hence f is @f -colin…ne.
When g is eventually @g-colin…ne, for w; x 2 C there exist x g 2 @g(x) and g (w; x; x ) 2 P such that g(w) g(x) = g (w; x; x )hx g ; w xi. Let u := '(x) and v := '(w):

Let ' be eventually @'-pseudoconvex. If '(g(w)) '(g(x)); then there exists u 2 @'(u) such that hu ; v ui 0: Hence '(g(w)) '(g(x)) ) hu ; g(w) g(x)i 0 ) hu x g ; w xi 0:

Clearly, u x g 2 @f (x): Thus, f is eventually @f -pseudoconvex.

Similar proofs can be given for (b), (c) and (d).

From the preceding proposition and De…nition 2.3, we have the following example show simple contructions of colin…ne functions.

Example 3.1 Let g; h : C ! R, g be @g-colin…ne and h be @h-colin…ne and let x 2 C:

(a) Let f := g + h or f := gh. If P@g = P@h and if @f P@g; then f is @f -colin…ne.

(b) Let f ( ) := 1 g( ) and D := fx 2 C : g(x) > 0g: If @f P@g, then f is @f -colin…ne on D:
Let us turn to properties of colin…ne functions. The following result is an easy consequence of Lemma 2.1 and Lemma 2.2. Proposition 3.2 (a) A function f is @f -colin…ne if, and only if, f is @f -colinvex and f is @f -colinvex.

(b) Suppose that for all x 2 C the set @f (x) is convex. If f is eventually @f -colinvex and f is eventually @f -colinvex, then f is eventually @f -colin…ne.

(c) Let C be open and let f be radially continuous. If f is (eventually) @f -protoconvex and f is (eventually) @f -protoconvex and 0 = 2 @f (x) for all x 2 C then f is (eventually) @f -colin…ne.

Proof. (a) Let f be @f -colin…ne. Then, there exists : C Graph(@f ) ! P such that for all w; x 2 C; x 2 @f (x); f (w) f (x) = (w; x; x )hx ; w xi: Thus, f is @f -colinvex and f is @f -colinvex since this function will satisfy relation [START_REF] Demyanov | Contructive nonsmooth analysis[END_REF] both for f and f . Conversely, let w; x 2 C. Since f is @f -colinvex and f is @f -colinvex, there exist 1 : C Graph(@f ) ! P and 2 : C Graph(@f ) ! P such that for all w; x 2 C; x 2 @f (x);

f (w) f (x) 1 (w; x; x )hx ; w xi; f (w) + f (x) 2 (w; x; x )h x ; w xi: Thus, if f (w) f (x) < 0 then hx ; w xi < 0, while if f (w) f (x) > 0 then hx ; w xi > 0; hence in both cases we can take (w; x; x ) = f (w) f (x) hx ; w xi > 0: Now when f (w) = f (x)
then hx ; w xi = 0 and one can take any (w; x; x ) 2 P. (b) If f is eventually @f -colin…ne, then as in the proof of (a), one gets that f is eventually @f -colinvex and f is eventually @f -colinvex.

Conversely, let w; x 2 C. Since f is eventually @f -colinvex and f is eventually @f -colinvex, there exist If f (w) f (x) < 0 then hg 1 (w; x); w xi < 0; hence we can take g(w; x) := g 1 (w; x), (w;

x) = f (w) f (x) hg 1 (w; x); w xi > 0; if f (w) f (x) > 0 then hg 2 (w;
x); w xi > 0 and we can take g(w; x) := g 2 (w; x), (w;

x) = f (w) f (x) hg 2 (w; x); w xi > 0; while if f (w) = f (x)
then hg 1 (w; x); w xi 0 and hg 2 (w; x); w xi 0 and, since @f (x) is convex, there exists g 3 (w; x) 2 X such that hg 3 (w; x); w xi = 0 and we can take g(w; x) := g 3 (w; x) and any (w; x; x ) 2 P.

(c) Under the assumptions of (c),

f is @f -pseudoconvex and f is @f -pseudoconvex (see [15, Proposition 2.5]). By Proposition 2.1, f is @f -colinvex and f is @f -colinvex. Hence from (a) f is @f -colin…ne.
Similarly, if f is eventually @f -protoconvex and f is eventually @f -protoconvex and 0 = 2 @f (x) for all x 2 C then f is (eventually) @f -colin…ne.

It may happen that f is eventually @f -colinvex and f is eventually @f -colinvex but f is not eventually @f -colin…ne when @f is not convex.

Example 3.2 Let f : R ! R be given by f (x) = 0 for x 0 and f (x) = x for x 0 and let @f be given by @f (x) = f 1; 1g for all x 2 C := X: Then f is eventually @f -colinvex and f is eventually @f -colinvex but f is not eventually @f -colin…ne since f ( 1) = f (0) = 0 and h1; 1 0i 6 = 0, h 1; 1 0i 6 = 0.

Proposition 3.3 (a) If f is @f -colin…ne on C, then f is quasia¢ ne (i.e. quasiconvex and quasiconcave) on C.

(b) If f is @f -colin…ne at x 2 C; then, setting @( f )(x) := @f (x), f is @f -protoa¢ ne and @f -pseudoa¢ ne at x: Proof. (a) Suppose that f is not quasia¢ ne: there exist x; y; z 2 C with y 2]x; z[such that either f (y) > maxff (x); f (z)g or f (y) < minff (x); f (z)g: If f (y) > maxff (x); f (z)g then for y 2 @f (y); one has hy ; x yi < 0 and hy ; z yi < 0; a contradiction with the linearity of y : If f (y) < minff (x); f (z)g a similar proof yields a contradiction.

(b) Since f is @f -colinvex and f is @f -colinvex, the assertion follows from Remark 1 and Proposition 2.1. Now, let us give a partial converse of the preceding result. It uses the following assumptions in which

x 2 C: 8u 2 T r (C; x) D + f (x; u) > 0; D + f (x; u) 0 ) D + f (x; u) > 0; (8) 8x 2 @f (x) 8u 2 T r (C; x) hx ; ui D + f (x; u) (9) 8x 2 @( f )(x) 8u 2 T r (C; x) hx ; ui D + ( f )(x; u) ( 10 
)
8x 2 @f (x) 8u 2 T r (C; x) D + f (x; u) hx ; ui (11) 
Obviously, condition ( 8) is satis…ed when f has a radial derivative at x in all directions u 2 T r (C; x): Moreover, if C is open, f is di¤erentiable on C and @f (x) = ff 0 (x)g; @( f )(x) = f f 0 (x)g; the other conditions are satis…ed. However, these conditions allow x to be a boundary point of C (which is not assumed to be open in the next results).

Let us recall that a function f is radially nonconstant if one cannot …nd any proper line segment on which f is constant. 9) is satis…ed, then f is @f -colinvex at x. In addition to [START_REF] Jeyakuma | On characterizing the solution sets of pseudolinear programs[END_REF], if one of the following two conditions holds, then f is @f -colin…ne at x.

Proposition 3.4 Let f be @f -pseudoa¢ ne on a convex set C. Then f is quasia¢ ne on C. Let x 2 C: (a) If f is radially nonconstant and if @( f ) = @f; then f is @f -colin…ne. (b) If relation (
(i) @( f )(x) = @f (x) and relation [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF] is satis…ed, (ii) conditions ( 8), ( 11) are satis…ed at x and for all u 2 V (C; x); there exists y 2 @( f )(x) such that D + ( f )(x; u) hy ; ui:

Proof. Since f is @f -pseudoconvex and f is @( f )-pseudoconvex, f and f are quasiconvex by [START_REF] Linh | Generalized convex functions and generalized di¤ erentials[END_REF]Proposition 6]. Thus, f is quasia¢ ne on C.

(a) Let us …rst prove that f is @f -protoconvex. Suppose that f is not @f -protoconvex. Then there exist some w; x 2 C such that f (w) f (x) and some x 2 @f (x) with hx ; w xi > 0: Then f (w) = f (x): On the other hand, since f is quasiconvex and radially nonconstant, there exists z 2 (w; x) such that f (z) < f (x) and then hx ; z xi < 0, a contradition.

Similarly, if f is not @( f )-protoconvex, then there exist some w; x 2 C such that f (w) f (x) and some x 2 @( f )(x) with hx ; w xi > 0: Since f is @( f )-pseudoconvex, one has f (w) = f (x): Since f is quasiconcave and radially nonconstant, there exists z 2 (w; x) such that f (z) > f (x), i.e. f (z) < f (x) and then hx ; z xi < 0, a contradition. Thus, f is @( f )-protoconvex.

On the other hand, since @( f ) = @f; f is @f -protoconvex and f is @f -pseudoconvex. Hence, f is @f -colinvex and f is @f -colinvex. By Proposition 3.2 (a), f is @f -colin…ne at x: (b) When relation ( 9) holds, we see that f is @f -protoconvex at x, since if f (w) f (x) for some w 2 C; then D + f (x; w x) 0 by quasiconvexity and for all x 2 @f (x) we have hx ; w xi D + f (x; w x) 0: Thus, since f is @f -pseudoconvex, it is @f -colinvex at x by Proposition 2.1.

Let us …rst consider the case (i): @( f )(x) = @f (x) and relation ( 10) is satis…ed. Since f is @f -pseudoa¢ ne, f is @( f )-pseudoconcave, hence by De…nition 2.2, f is @f -pseudoconvex. Now, let us prove that f is @( f )-protoconcave at x. If f (w) f (x) for some w 2 C, then for all x 2 @( f )(x) one has hx ; w xi D + ( f )(x; w x) 0 by relation [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF] and the fact that f is quasiconvex. Thus, f is @f -protoconvex at x and f is @f -colinvex at x. By Proposition 3.2 (a), f is @f -colin…ne at x:

Let us suppose assumption (ii) is satis…ed.

Let us prove that f is @f -protoconvex if relation ( 11) is satis…ed. If f (w) f (x) for some w 2 C; then f (w) f (x) and D + f (x; w x) 0 since f is quasia¢ ne. For any x 2 @f (x) relation ( 11) implies 0 D + f (x; w x) hx ; w xi. Thus one has h x ; w xi 0 and f is @f -protoconvex at x. Now, let us prove that f is @f -pseudoconvex. Since f is @f -pseudoa¢ ne, f is @( f )-pseudoconvex. Let w 2 C be such that f (w) < f (x) and let u := w x. Then we have hy ; w xi < 0 for all y 2 @( f )(x): Let us pick y 2 @( f )(x) such that D + ( f )(x; u) hy ; ui. Thus, we have D + f (x; w x) > 0. Since f is quasia¢ ne and f (w) > f (x), we also have D + f (x; w x) 0. Then condition (8) entails 0 < D + f (x; w x): Since relation ( 11) is satis…ed, for all x 2 @f (x) we have 0 < D + f (x; w x) hx ; w xi. Thus, we get h x ; w xi < 0 for all x 2 @f (x) and then f is @f -pseudoconvex.

Thus, f is @f -colinvex at x and then f is colin…ne at x: Let us give a similar result for an eventually colin…ne function at some x 2 C. It uses the following assumptions which are weaker than the preceding assumptions:

8u 2 T r (C; x) 9x 2 @f (x) hx ; ui D + f (x; u) (12) 8u 2 T r (C; x) 9x 2 @( f )(x) hx ; ui D + ( f )(x; u) ( 13 
)
8u 2 T r (C; x) 9x 2 @f (x) D + f (x; u) hx ; ui (14) 
Proposition 3.5 Let f be @f -pseudoa¢ ne on a convex set C and let x 2 C. (a) If f is radially nonconstant and if @( f ) \ @f 6 = ?; then f is eventually @f -colin…ne. (b) If relation to ( 12) is satis…ed, then f is eventually @f -colinvex. In addition, if @f (x) is convex and one of the following conditions holds, then f is eventually @f -colin…ne at x.

(i) @( f )(x) \ @f (x) 6 = ? and relation [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF] is satis…ed, (ii) @( f )(x) = @f (x) and relation ( 13) is satis…ed, (iii) conditions ( 8), ( 14) are satis…ed at x and for all u 2 T r (C; x) there exists y 2 @( f )(x) such that D + ( f )(x; u) hy ; ui: Proof. By the …rst assertion of the preceding proposition, f is quasia¢ ne on C: (a) As in the proof of the preceding proposition (a), f is @f -protoconvex and f is @( f )-protoconvex. Moreover, since @( f )\ @f 6 = ?; f is eventually @f -protoconvex and f is eventually @f -pseudoconvex. Hence, f is @f -colinvex and f is eventually @f -colinvex. By Proposition 3.2 (b), f is eventually @f -colin…ne at x: (b) Let us …rst observe that f is eventually @f -protoconvex at x, since if f (w) f (x) for some w 2 C; then D + f (x; w x) 0, and, by relation [START_REF] Kruk | Pseudolinear programming[END_REF], there exists x 2 @f (x) such that hx ; w xi D + f (x; w x) 0: Since f is also @f -pseudoconvex, it is eventualy @f -colinvex at x by Proposition 2.2.

In order to show that f is eventually @f -colin…ne at x; let us …rst consider the case (i). Since f is @f -pseudoa¢ ne, f is @( f )-pseudoconcave, hence by De…nition 2.2, f is @( f )-pseudoconvex. Since relation [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF] is satis…ed, as in the proof of the preceding proposition, we get that f is @( f )-protoconvex at x. Thus, f is @( f )-colinvex. On the other hand, since @( f )(x) \ @f (x) 6 = ?, f is eventually @f -pseudoconvex and eventually @f -protoconvex at x. Thus, f is eventually @f -colin…ne at x by Proposition 3.2 (b). Now, let us suppose assumption (ii) is satis…ed. First, we observe that f is eventually @( f )-protoconcave at x: since if f (w) f (x) for some w 2 C, then for some x 2 @( f )(x) one has hx ; w xi D + ( f )(x; w x) 0 by relation [START_REF] Linh | Optimality conditions for quasiconvex programming[END_REF]. On the other hand, since @( f )(x) = @f (x), f is eventually @f -protoconvex at x. So, f is eventually @f -colin…ne at x:

Finally, let us suppose assumption (iii) is satis…ed. Let us …rst prove that f is eventually @f -protoconvex at x. If f (w) f (x) for some w 2 C; then f (w) f (x) and D + f (x; w x) 0 since f is quasia¢ ne. By relation [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF], there exists x 2 @f (x) such that 0 D + f (x; w x) hx ; w xi. Thus one has x 2 @f (x) with h x ; w xi 0: f is eventually @f -protoconvex at x. Now, let us prove that f is eventually @f -pseudoconvex at x. Since f is @f -pseudoa¢ ne, f is @( f )pseudoconvex. If f (w) < f (x) for some w 2 C; using our assumption and condition [START_REF] Jeyakuma | Nonsmooth vector functions and continuous optimization[END_REF] as in the preceding proof, we get 0 < D + f (x; w x): Since relation ( 14) is satis…ed, there exists x 2 @f (x) such that D + f (x; w x) hx ; w xi. Thus, we get x 2 @f (x) with h x ; w xi < 0: f is eventually @f -pseudoconvex at x.

Thus, f is eventually @f -colinvex at x and then f is eventually @f -colin…ne at x: Remark 3.1 (a) Note that if we change " " into "<" in relations ( 11), ( 9), then assumption [START_REF] Jeyakuma | Nonsmooth vector functions and continuous optimization[END_REF] in the preceding results could be deleted. (b) Clearly, condition ( 8) is satis…ed if f has a radial derivative in the direction u for all u 2 T r (C; x): (c) The preceding proposition implies [14, Proposition 13].

Proposition 3.6 Let f be @f -colin…ne on C and let w; x 2 C: For r 2 R, let x r := x + r(w x): Then for any s; t 2 R; with s 6 = t such that x s ; x t 2 C; the following statements are equivalent:

(a) f (x) = f (w); (b) f (x t ) = f (x s ); (c) hx t ; x s x t i = 0 for all x t 2 @f (x t ); (d) hx s ; x t x s i = 0 for all x s 2 @f (x s ).
Proof. (a))(b) If f (x) = f (w) then for any x 2 @f (x), hx ; w xi = 0 and then, 0 = hx

; x t xi = hx ; x s xi. By De…nition 2.3, f (x t ) = f (x) = f (x s ).
(b),(c),(d) is obvious by De…nition 2.3. (c))(a) If hx t ; x s x t i = 0 for all x t 2 @f (x t ) then, since s 6 = t; for all x t 2 @f (x t ) one has hx t ; x wi = 0, hence hx t ; x x t i = hx t ; w x t i = 0 and then f

(x) = f (x t ) = f (w).
For an eventually colin…ne function, we have the following property in the spirit of Minty variational inequalities and Stampachia variational inequalities. It shows that, in our case, a solution in the sense of Minty is a solution in the sense of Stampachia.

Recall ( [START_REF] Aussel | On quasivariational inequalities[END_REF]) that a multimap T : C X is said to be upper sign-continuous on C if, for every w; x 2 C; the following implication (in which x t := tx + (1 t)w) holds: 8t 2 (0; 1); inffhx t ; w xi : x t 2 T (x t )g 0 ) supfhx ; w xi : x 2 T (x)g 0: Proposition 3.7 Let f be eventually @f -colin…ne on C and let w; x 2 C:

(a) If for all w 2 @f (w) one has hw ; w xi 0 (resp. hw ; w xi > 0, hw ; w xi = 0, hw ; w xi < 0, hw ; w xi 0) then there exists x 2 @f (x) such that hx ; w xi 0 (resp. hx ; w xi > 0, hx ; w xi = 0, hx ; w xi < 0, hx ; w xi 0).

(b) @f is upper sign-continuous on C:

Proof. (a) Since f is eventually @f -colin…ne on C; there exist w 2 @f (w); x 2 @f (x), (w; x; x ) 2 P and (x; w; w ) 2 P such that f (w) f (x) = (w; x; x )hx ; w xi = (x; w; w )hw ; x wi:

If for all w 2 @f (w) one has hw ; w xi 0; then the preceding relation entails f (w) f (x). Thus, hx ; w xi 0: The proofs of the other assertions are similar.

(b) Since x t x = t(w x) for t 2 (0; 1); (b) follows from (a) by substituting x t ; x t to w; w :

The preceding proposition can easily adapted to the case f is @f -colin…ne by interchanging "for all" and "there exists". Moreover, in such a case, one sees @f and @f are pseudomonotone (in the sense of [START_REF] Penot | Generalized convexity of functions and generalized monotonicity of set-valued maps[END_REF]; see also [START_REF] Penot | Are generalized derivatives useful for generalized convex function[END_REF], [START_REF] Penot | Generalized monotonicity of subdi¤ erentials and generalized convexity[END_REF]). Thus we get a multivalued generalization of the concept of PPM map which has been used in [START_REF] Bianchi | An extension of pseudolinear functions and variational inequalities problems[END_REF] to study variational inequalities.

The following result is similar to [14, Proposition 10].

Proposition 3.8 If f is @f -colin…ne then the function t 7 ! f (x + t(w x)) is either increasing or decreasing or constant on the interval on which it is de…ned.

Proof. Since f is @f -colin…ne, there exists : C Graph(@f ) ! P such that for every w; x 2 C; for any x 2 @f (x); f (w) f (x) = (w; x; x )hx ; w xi:

If f (w) = f (x)
then by Proposition 3.6, one has f (x + t(w x)) = f (x) for all t 2 R such that x t := x + t(w x) 2 C: If f (w) > f (x) then for any x 2 @f (x) one has hx ; w xi > 0: For all t > 0 such that x t := x+t(w x) 2 C; by homogeneity, one gets hx ; x t xi > 0. Thus f (x t ) > f (x): Also, given u := x + r(w x) 2 C and v := x + s(w x) 2 C with s > r; one has f (v) > f (u): Otherwise, one would have either f (v) = f (u) and then f (w) = f (x) by what precedes, or f (v) < f (u) and then, for all v 2 @f (v), hv ; u vi > 0; hence hv ; x vi > 0 since x v = q(u v) for some q > 0 and then f (x) > f (v); a contradiction with f (v) = f (x s ) > f (x). A similar proof shows that for every t > 0 we have f (w + t(x w)) < f (w) and for s > r; f (w + s(x w)) < f (w + r(x w)) when the involved points are in C:

If f (x) > f (w); then we also have the conclusion by interchanging the roles of w and x in what precedes.

In the sequel, we will consider the following hypothesis: (H + ) If hx ; w xi > 0 for some w; x 2 C and some x 2 @f (x); then there exists z 2]w; x[ such that f (z) > f (x).

(H ) If hx ; w xi < 0 for some w; x 2 C and some x 2 @f (x); then there exists z 2]w; x[ such that f (z) < f (x).

(H 0 ) If hx ; w xi = 0 for some w; x 2 C and some x 2 @f (x); then one has f (w) = f (x).

Hypothesis (H + ) (resp. (H )) is weaker than @f -protoconvexity of f (resp. @f -protoconvexity of f ). Hypothesis (H + ) (resp. (H )) is clearly satis…ed when @f (x) (resp. @f (x)) is contained in the Dini-Hadamard (or contingent) subdi¤erential (resp. @ D ( f )(x) of f at x).

The following theorem has been given in [START_REF] Cambini | Generalized convexity and optimality conditions in scalar and vector optimization[END_REF]Theorems 4.13,4.14], [START_REF] Chew | Pseudolinearity and e¢ ciency[END_REF], [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF], [START_REF] Kortanek | Pseudoconcave programming and Lagrange regularity[END_REF], in the case the function f is di¤erentiable and @f := ff 0 g: Here, the function f is nonsmooth. In [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF], a generalized directional derivative is used instead of a generalized di¤erential. We start with a preparatory lemma dealing with the one-dimensional case.

Lemma 3.1 Let C be an open interval of R and let ' : C ! R be a continuous function satisfying (H + ) and (H ) with respect to @'. Then ' is @'-colin…ne if, and only if, either (H 0 ) is satis…ed and there exists some t 0 2 C such that @'(t 0 ) 3 f0g; or for all t 2 C the sign of t 2 @'(t) is constant on the level set L ' (t) := ' 1 ('(t)).

Proof. Let ' be @'-colin…ne. If there exists t 0 2 C such that 0 2 @'(t 0 ); then by the proof of the preceding proposition, f is constant on C: Thus, (H 0 ) is satis…ed and, since ' is @'-colin…ne, one has t = 0 for any t 2 @'(t) and any t 2 C:

Otherwise, for all t 2 C; t 2 @'(t); one has t 6 = 0: Thus, by Proposition 3.8, ' is increasing or decreasing on C and then the level set L ' (t) of ' at t 2 C is the singleton ftg: Now, let t 1 , t 2 2 @'(t) and let s 2 C; s > t: Since ' is @'-colin…ne there exist 1 (s; t; t 1 ) 2 P and 2 (s; t; t 2 ) 2 P such that '(s) '(t) = 1 (s; t; t 1 )ht 1 ; s ti = 2 (s; t; t 2 )ht 2 ; s ti:

Thus t 1 t 2 > 0.
For the converse, let us …rst suppose (H 0 ) is satis…ed and for some t 0 2 C we have @'(t 0 ) 3 f0g. Then, for all s 2 C; 0 = t 0 2 @'(t 0 ); we have ht 0 ; s t 0 i = 0; so that, by (H 0 ), '(s) = '(t 0 ): Hence, ' is constant and, in view of conditions (H + ) and (H ), for all r 2 C; r 2 @'(r); we must have r = 0: then ' is trivially @'-colin…ne. Now suppose that for all t 2 C, t 2 @'(t), the sign of t is constant on L ' (t). Given r 2 C such that for all r 2 @'(r); r > 0; we will prove that '(t) > '(r) for all t > r: Let us …rst prove that we cannot have '(t) < '(r): If '(t) < '(r), let s := supfp 2 [r; t] : '(p) = '(r)g: Since ' is continuous, we have s < t and '(s) = '(r): Then our assumption ensures that, for all s 2 @'(s); we have s > 0;so that, by condition (H + ) there exists some p 2]s; t[ with '(p) > '(s) and the intermediate value theorem yields some q 2 [p; t] with '(q) = '(s) = '(r); a contradiction with the de…nition of s: Now let us suppose that '(t) = '(r): Then t > 0 for any t 2 @'(t) by our assumption, so that ht ; r ti < 0: Then condition (H ) yields some t 0 2]r; t[ such that '(t 0 ) < '(t) = '(r) and replacing t by t 0 in what precedes, we get again a contradiction.

A similar proof shows that '(q) < '(r) for all q < r:

We can see in a similar way that when for some r 2 C; and all r 2 @'(r) we have r < 0, the function ' is decreasing on C:

Hence, for any r; s 2 C; s 2 @'(s) there exists some (r; s; s ) 2 P such that '(r) '(s) = (r; s; s )hs ; r si:

We are ready to prove our main result. It is a nonsmooth version of [5, Theorems 4.13, 4.14], [START_REF] Chew | Pseudolinearity and e¢ ciency[END_REF], [START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF], [START_REF] Kortanek | Pseudoconcave programming and Lagrange regularity[END_REF], [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF]. (a) Let f be @f -colin…ne. Then, for all w 2 C; the set K w := fu 2 X : 8w 2 @f (w); hw ; ui = 0g is a linear subspace of X and @f (w) is contained in an half line.

(b) If f is @f -colin…ne on C then for any w; x 2 C such that f (w) = f (x) one has K x = K w and for any w 2 @f (w); x 2 @f (x); there exists some r > 0 such that w = rx :

(c) Conversely, suppose that f and @f satisfy (H 0 ), (H + ) and (H ). If for any w; x 2 C such that f (w) = f (x) and for any w 2 @f (w); x 2 @f (x), there exists some r > 0 such that w = rx ; then f is @f -colin…ne.

(d) Assume that the dimension of X is greater than 1; that C = X, and that f and @f satisfy (H 0 ), (H + ) and (H ). Then f is @f -colin…ne if, and only if, for all w; x 2 C and all w 2 @f (w); x 2 @f (x) there exists some r > 0 such that w = rx .

Proof. (a) It is obvious that K w is a linear subspace. Let w ; x 2 @f (w): For any u 2 X such that hw ; ui = 0; taking t > 0 small enough, we have w + tu 2 C and f (w + tu) = f (w): Again, since f is @f -colin…ne, we obtain hx ; ui = 0: Thus, ker w = K w and x jjx jj = w jjw jj or x jjx jj = w jjw jj if w and x are both non null, while if one is 0; the other one is 0 too. In other terms, there exists some r 2 Rnf0g such that w = rx : Let us prove that r is positive when x 6 = 0. Let y 2 C be such that hx ; y xi 6 = 0: Since f is @f -colin…ne, one has (b) Now let w; x 2 C be such that f (w) = f (x) and let u 2 K w . Since f is @f -colin…ne, we have x w 2 K w , hence x w+tu 2 K w for all t 2 R since K w is a linear subspace. Thus, for jtj small enough, we have x+tu 2 C and f (x + tu) = f (w) = f (x): Therefore hx ; ui = 0 for all x 2 @f (x) and u 2 K x . So, K w K x . The symmetry of the roles of w and x yields K w = K x .

Let w 2 @f (w); x 2 @f (x): By (a) and the preceding case, we have ker w = K w = K x = ker x and so there exists some r 2 Rnf0g such that w = rx : Let us prove that r is positive. Suppose that r < 0. Pick u 2 X such that hx ; ui = 1 and set z 1 = w + tu and z 2 = x + tu, with t > 0 small enough to ensure that z 1 ; z 2 2 C: Then, since f is @f -colin…ne, one has f (z 1 ) < f (w) = f (x) < f (z 2 ) and hx ; w xi = 0: Since f is radially continuous, there exists some s 2]0; 1[ such that, for z := sz 1 + (1 s)z 2 ; one has f (z) = f (x): Then z x = sw sx + tu and 0 = hx ; z xi = hx ; sw sx + tui = t > 0; a contradiction. Hence, the case r < 0 is excluded. (c) If there exist x 2 C such that @f (x) 3 0; then one has f (y) = f (x) for all y 2 C by condition (H 0 ) since hx ; y xi = 0: Thus, the level set of f at x is C and our assumption ensures that for all y 2 @f (y); for some r > 0; we have y = rx = 0. Thus f is @f -colin…ne.

(b) there exist a continuous linear form `on X; `6 = 0 and a lower semicontinuous (resp. continuous) increasing, @g-colin…ne function g : R ! R such that f = g `:

Proof. (a)=)(b) Let condition (C1) be satisfy and let f : X ! R be l.s.c. (resp. continuous) and @f -colin…ne. Hence f is quasia¢ ne by Proposition 3.3. According to [START_REF] Martinez-Legaz | Quasiconvex duality theory by generalized conjugation methods[END_REF], [START_REF] Penot | Glimpses upon quasiconvex analysis[END_REF], there exist a continuous linear form `on X and a lower semicontinuous. (resp. continuous) nondecreasing function g : R ! R such that f = g `: Since f is nonconstant, `6 = 0: Let us prove that g is increasing. Suppose that there exist r 1 < r 2 in R such that for all r 2 [r 1 ; r 2 ]; g(r) = g(r 1 ) = g(r 2 ). Since f is nonconstant, g is nonconstant and there exists some t 0 > 1, such that, for t t 0 one has either g(r 1 + t(r 2 r 1 )) > g(r 2 ) or g(r 2 + t(r 1 r 2 )) < g(r 1 ): We consider the …rst case, the second one being similar. Since `6 = 0, there exist w; x 2 X such that `(w) = r 1 < `(x) = r 2 . Then, for t t 0 ; we have `(w + t(x w)) > `(x) = r 2 and then f (w + t(x w)) = g(`(w + t(x w))) = g(r 1 + t(r 2 r 1 )) > g(r 2 ) = f (w) = f (x): By Proposition 3.8, f is not @f -colin…ne. Therefore g is increasing.

Now, we shall prove that g is @g-colin…ne. For any u; v 2 R, and v 2 @g(v); by condition (C1), there exists w; x 2 X and x 2 @f (x) such that `(w) = u, `(x) = v and v `= x : Hence there exists f (w; x; x ) 2 P such that g(u) g(v)

f (w; x; x ) = g(`(w)) g(`(x))

f (w; x; x ) = hx ; w xi = hv ; `(w) `(x)i = hv ; u vi: so that g is @g-colin…ne.

(b))(a) Let condition (C2) be satisfy and w; x 2 X. Then, for any x 2 @f (x); there exists u 2 @g(`(x)) such that x = u `: Since g is @g-colin…ne, there exists g (`(w); `(x); u ) 2 P such that f (w) f (x) g (`(w); `(x); u ) = g(`(w)) g(`(x))

g (`(w); `(x); u ) = hu ; `(w) `(x)i = hu `; w xi = hx ; w xi hence, f is @f -colin…ne.

Characterizations of solution sets

In the present section, we consider the minimization problem

(C) min f (x) subject to x 2 C
where C is a subset of n.v.s. X and f : C ! R.

Our purpose here is limited: since optimality conditions for (C) and mathematical programming problems using the concepts of the previous sections are dealt with in [START_REF] Linh | Optimality conditions for quasiconvex programming[END_REF], [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF], [START_REF] Linh | Generalized convex functions and generalized di¤ erentials[END_REF], [START_REF] Penot | Are generalized derivatives useful for generalized convex function[END_REF], [START_REF] Penot | Characterization of solution sets of quasiconvex programs[END_REF], [START_REF] Penot | A Lagrangian approach to quasiconvex analysis[END_REF], we are just concerned with characterizations of solution sets. Let S be the set of solutions to (C) and let @f : C X be a generalized di¤erential of f:

The following results are direct consequences of De…nition 2.3. Here we set S a := fx 2 C : 9a 2 @f (a); ha ; x ai = 0g; S 0 a := fx 2 C : 8a 2 @f (a); ha ; x ai = 0g: Proposition 4.1 Let f be @f -colin…ne on C: (a) If a 2 S, then for all x 2 C; a 2 @f (a); x 2 @f (x) one has ha ; x ai 0 and hx ; a xi 0. Moreover, S = S a = S 0 a : (b) Conversely, if for all x 2 C; either there exists a 2 @f (a) such that ha ; x ai 0 or there exists x 2 @f (x) such that hx ; a xi 0, then a 2 S. Proposition 4.2 Let f be an eventually @f -colin…ne function on C:

(a) If a 2 S, then for all x 2 C, there exists some a 2 @f (a) such that ha ; x ai 0 and there exists some x 2 @f (x) such that hx ; a xi 0.

Moreover, S 0 a S S a : (b) Conversely, if for all x 2 C, either for all a 2 @f (a) one has ha ; x ai 0 or for all x 2 @f (x) one has hx ; a xi 0 then a 2 S.

1 :

 1 C C ! P, 2 : C C ! P and g 1 : C C ! X ; g 2 : C C ! X such that for all w; x 2 C; 2 (w; x)hg 2 (w; x); w xi f (w) f (x) 1 (w; x)hg 1 (w; x); w xi:

Theorem 3 . 1

 31 Let C be an open, convex subset of X; let f : C ! R be radially continuous and let @f : C X with nonempty values.

f

  (y) f (x) = (y; x; x )hx ; y xi = (y; x; w )hw ; y xi; hence we get 0 hx ; y xihw ; y xi = hx ; y xihrx ; y xi = rjjhx ; y xijj 2 and r > 0:

Thus, we can assume that 0 = 2 @f (x) for all x 2 C: Now, given w; x 2 C, for t 2 C w;x := ft 2 R : x t 2 Cg; where x t := (1 t)x + tw; let us set '(t) := f (x t ). For t 2 C w;x ; let us take @'(t) := ft 2 R : 9x t 2 @f (x t ); t = hx t ; w xig: Let us show that ('; @') satis…es (H + ), (H ) and (H 0 ). Suppose that there exists t 2 @'(t) such that ht ; s ti > 0 for t; s 2 C w;x , with s 6 = t: Then there exists x t 2 @f (x t ) such that hx t ; x s x t i = (s t)hx t ; w xi = (s t)t > 0: Since f satis…es (H + ), there exists q between t and s such that '(q) := f (x q ) > f (x t ) := '(t): Thus, ' satis…es (H + ). With a similar proof, we can see that ' satis…es (H ). Now suppose that ht ; s ti = 0 for t; s 2 C w;x , with s 6 = t and t 2 @'(t): Then there exists x t 2 @f (x t ) such that hx t ; x s x t i = (s t) t = 0:

Suppose that for all t 2 C w;x 0 = 2 @'(t). Let t; s 2 C w;x ; t 2 @'(t); s 2 @'(s) be such that '(t) = '(s). We shall prove that t s > 0: Let x t 2 @f (x t ) and x s 2 @f (x s ) be such that t = hx t ; w xi and s = hx s ; w xi: Since f (x t ) = '(t) = '(s) = f (x s ), there exists some r > 0 such that x s = rx t and we have s = hx s ; w xi = rhx t ; w xi = rt : Hence, we get t s > 0:

Thus, either there exists some t 2 C w;x such that 0 2 @'(t) or for all t 2 C the sign of t 2 @'(t) is constant on the level set L ' (t) := ' 1 ('(t)); hence ' is @'-colin…ne, by the preceding lemma.

Moreover, for any w; x 2 C, for any x 2 @f (x), we have s := hx ; w xi 2 @'(0) and

The su¢ ciency is clear by (c). Conversely, suppose that f is @f -colin…ne. Given w; x 2 C; w 2 @f (w) and x 2 @f (x) let prove there exists some r > 0 such that w = rx . If x = 0; since f is @f -colin…ne, then f is constant and so w = 0: thus the conclusion holds with r = 1 in this case or in the case w = 0: The conclusion also holds when f (w) = f (x); by (b). When w 6 = 0; x 6 = 0, f (w) 6 = f (x) and there is no r 2 Rnf0g such that w = rx the subspaces K w and K x are the hyperplanes ker w and ker x respectively, so that, the dimension of X being greater than 1; there exists z 2 (w + K w ) \ (x + K x ). One has z w 2 K w , z x 2 K x , hence hw ; z wi = 0 and hx ; z xi = 0. Since f is @f -colin…ne, we have f (x) = f (z) = f (w), a contradiction. Then, the existence of some r > 0 satisfying w = rx has been established in (b). Thus this case does not occur. It follows that when w 6 = 0 and x 6 = 0 there is some r 2 Rnf0g such that w = rx : Then we have for some ; > 0; f (x) f (w) = hw ; x wi = rhx ; x wi and f (w) f (x) = hx ; w xi; so that r = . Thus r is positive.

Note that [14, Lemma 17, Theorem 18] follow from the preceding lemma and the preceding theorem by taking @f (x) := f`(x)g. When @f (x) := frf (x)g; [5, Theorem 4.13, 4.14] is a consequence of the preceding theorem.

We devote the rest of this section, to a study of the structure of continuous colin…ne functions on a …nite dimensional n.v.s. X: When X is one-dimensional, it is easy to see that f is quasia¢ ne if, and only if, it is either nondecreasing or nonincreasing. Thus we suppose that the dimension of X is greater than 1: The di¤erentiable case is considered in [START_REF] Cambini | On generalized linearity of quadratic fractional functions[END_REF][START_REF] Cambini | Generalized convexity and optimality conditions in scalar and vector optimization[END_REF][START_REF] Komlosi | First and second characterizations of pseudolinear functions[END_REF][START_REF] Kortanek | Pseudoconcave programming and Lagrange regularity[END_REF] as a Df -colin…ne function f is pseudoa¢ ne (or pseudolinear in the terminology of these papers). The nonsmooth case is dealt with in [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF] with the help of a bifunction. Here, we use a generalized di¤erential @f of f and we assume that some natural composition rules are satis…ed.

We suppose that when f = g `for some non null continuous linear form `on X and some continuous function g : R ! R, one the following conditions is satis…ed:

(C1) @g(`(x)) ` @ (g `) (x); (C2) @ (g `) (x) @g(`(x)) `: Conditions (C1) and (C2) are satis…ed for the Fréchet and the Hadamard subdi¤erentials.

We deduce from [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF], [START_REF] Martinez-Legaz | Quasiconvex duality theory by generalized conjugation methods[END_REF], [START_REF] Penot | Glimpses upon quasiconvex analysis[END_REF] a characterization of continuous @f -colin…ne functions.

Proposition 3.9 Let f : X ! R be a lower semicontinuous (resp. continuous), nonconstant function on a …nite dimensional n.v.s. If condition (C1) is satis…ed, then assertion (a) below implies assertion (b); if condition (C2) is satis…ed, the reverse implication holds: (a) f is @f -colin…ne;

Let us consider now the case in which the constraint set C is de…ned by a …nite family of inequalities, so that problem (C) turns into the mathematical programming problem (M) min f (x) subject to x 2 C := fx 2 X : g 1 (x) 0; :::; g n (x) 0g;

where f : W ! R, g i : W ! R and W is a subset of X. Let a 2 C, let I := f1; :::; ng and let I(a) := fi 2 I : g i (a) = 0g:

In convex mathematical programming, the multipliers are the same for all solutions. The following result follows from [START_REF] Linh | Generalized a¢ ne maps and generalized convex functions[END_REF]. Note here instead of colinvexity of the objective function f; we only need that f is @fprotoconvex.

Proposition 4.3 Let a 2 S be such that there exists y = (y i ) 2 R n + ; a 2 @f (a), a i 2 @g i (a) for i 2 I(a) satisfying a + P i2I(a)

y i a i = 0 and y i g i (a) = 0 for i 2 I.

(a) If either f is @f -colin…ne at a or f is @f -protoconvex at a and g i is @g i -protoconvex at a (i 2 I(a)), then P i2I(a) y i ha i ; b ai = 0 for every b 2 S.

(b) Let f be @f -protoconvex at a and g i be @g i -colinvex at a (i 2 I(a)). Let L be the Lagrangian given by L(x; u) := f (x) + ug(x) for Now, assume that f is @f -protoconvex at a and g i is @g i -protoconvex at a