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Abstract

We study some classes of generalized convex functions, using a generalized di¤erential approach. By
this we mean a set-valued mapping which stands either for a derivative, a subdi¤erential or a pseudo-
di¤erential in the sense of Jeyakumar and Luc. We establish some links between the corresponding classes
of pseudoconvex, quasiconvex and another class of generalized convex functions we introduced. We devise
some optimality conditions for constrained optimization problems. In particular, we get Lagrange-Kuhn-
Tucker multipliers for mathematical programming problems.
Key words: colinvex, generalized di¤erential, mathematical programming, optimality conditions, proto-
convex function, pseudoconvex function, quasiconvex function.
Mathematics Subject Classi�cation: 26B25, 46G05, 49K27, 90C26, 90C32

1 Introduction

Various needs have led mathematicians to introduce and study several notions of generalized convexity or
concavity. Among the tools used to de�ne or study these notions are the various subdi¤erentials of nonsmooth
analysis ([1], [17], [16], [24], [29], [32], [34], [39], [35]...), the convexi�cators of [11], the pseudo-di¤erentials of
Jeyakumar and Luc ([18]), the normal cones to sublevel sets ([2], [4], [5], [6]) and the generalized directional
derivatives ([19], [20], [22], [40]). In the present paper we use a concept of generalized derivative which can
encompass all these notions but the last one. We call it a generalized di¤erential in contrast with the notion of
subdi¤erential because it is not necessarily a one-sided concept. It allows much �exibility. It also leads us to
get rid of some assumptions required in previous works such as smooth renorming of the space. We establish
comparisons with the notions obtained using directional derivatives or their substitutes.
The case of pseudo-a¢ ne functions (also called pseudo-linear functions) is studied elsewhere ([23]) with

similar concepts and methods. It requires some results of the present paper.
In the two last sections of the paper, we investigate some necessary and su¢ cient optimality conditions for

constrained problems and mathematical programming problems.

2 Characterizations of generalized convex functions

We devote this preliminary section to review some concepts of generalized convexity; we also introduce new
ones. Some elementary properties and characterizations are given.
In the sequel X, Y are normed vector spaces, X� is the dual space of X, C is a nonempty subset of X

and f : C ! R1 := R [ f+1g: We extend f to XnC by +1; alternatively, we may consider f : X ! R1
and take for C a subset of X containing the domain of f: We denote by P (resp. R+) the set of positive
numbers (resp. non negative numbers) and R stands for R [ f�1;+1g: We assume that a set-valued map
@f : C � X� is given which stands as a substitute to the derivative of f ; we call it a generalized di¤erential
of f . Among possible choices for @f are the subdi¤erentials of f in the various senses of nonsmooth analysis
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and the pseudo-di¤erentials of f in the sense of [18]. These cases will be considered below. We also deal with
some other cases, such as normal cones set-valued maps.
We recall that the visibility cone V (C; x) of C at x 2 C is the cone generated by C � x:

V (C; x) := P(C � x) := fr(c� x) : r 2 P; c 2 Cg:

It contains the radial tangent cone to C at x which is the set

T r(C; x) := fu 2 X : 9 (rn)! 0+; x+ rnu 2 C 8ng:

The visibility bundle (resp. the radial tangent bundle) of C is the set

V C := f(x; u) 2 C �X : 9r 2 P; w 2 C; u = r(w � x)g =
[
x2C

fxg � V (C; x)

(resp. T rC := f(x; u) 2 C �X : 9 (rn)! 0+; x+ rnu 2 C 8ng =
[
x2C

fxg � T r(C; x) ).

If C is starshaped at x (in the sense that for all w 2 C and t 2 [0; 1] one has (1 � t)w + tx 2 C) one has
V (C; x) = T r(C; x): Thus, if C is convex, V C = T rC:
The upper and the lower radial derivatives (or upper and lower Dini derivatives) of f at x 2 C in the

direction u 2 T r(C; x), are de�ned by

D+f(x; u) = lim sup
t!0+; x+tu2C

1

t
[f(x+ tu)� f(x)];

D+f(x; u) = lim inf
t!0+; x+tu2C

1

t
[f(x+ tu)� f(x)]:

The upper and the lower radial subdi¤erentials are de�ned by

@rf := fx� : hx�; ui � D+f(x; u) 8u 2 T r(C; x)g;
@rf := fx� : hx�; ui � D+f(x; u) 8u 2 T r(C; x)g:

The de�nitions of @f -pseudoconvexity and @f -quasiconvexity we adopt here for a generalized subdi¤erential
@f of f are similar to the ones used for a subdi¤erential by several authors; see [29], [34] and the references
therein. We also introduce de�nitions of @f -protoconvexity and strict @f -pseudoconvexity of f as natural
variants of the two preceding concepts.

De�nition 1 Let f : C ! R1, x 2domf . A function f is said to be
(i) @f -pseudoconvex at x if for all w 2 C :

f(w) < f(x)) for all x� 2 @f(x) : hx�; w � xi < 0: (1)

(ii) @f -quasiconvex at x if for all w 2 C :

f(w) < f(x)) for all x� 2 @f(x) : hx�; w � xi � 0: (2)

(iii) @f -protoconvex at x if for all w 2 C :

f(w) � f(x)) for all x� 2 @f(x) : hx�; w � xi � 0: (3)

(iv) strictly @f -pseudoconvex at x if for all w 2 Cnfxg :

f(w) � f(x)) for all x� 2 @f(x) : hx�; w � xi < 0: (4)
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We add the word �eventually�when in the preceding implications �for all�is changed into �there exists�.
Thus, for instance, f is eventually @f -pseudoconvex at x if for all w 2 C satisfying f(w) < f(x) there exists
x� 2 @f(x) such that hx�; w � xi < 0:
Remark that the de�nition of @f -strict pseudoconvexity is irrealistic if x is a non unique minimizer of f:
Clearly

f is strictly @f -pseudoconvex at x =) f is @f -protoconvex and @f -pseudoconvex at x; (5)

f is @f -pseudoconvex at x =) f is @f -quasiconvex at x; (6)

f is @f -protoconvex at x =) f is @f -quasiconvex at x: (7)

We say that f is @f -pseudoconvex on C (in short @f -pseudoconvex) if it is @f -pseudoconvex at every
x 2 C: We use a similar convention for the other concepts introduced above.
Let us observe that @f -quasiconvexity is di¤erent from full @f -quasiconvexity (in the terminology of [29])

in the sense (due to D. Aussel [1]) that domf is convex and for any w; x 2 C; x� 2 @f(x) with hx�; w�xi > 0;
one has f(w) � f(z) for any z 2 [x;w]. Clearly, if f is @f -quasiconvex and quasiconvex then f is fully
@f -quasiconvex while a fully @f -quasiconvex function is obviously @f -quasiconvex.
The following examples show that versatility is gained by taking for @f a multimap which may di¤er from

usual subdi¤erentials such as the Fenchel, the Fréchet or the Dini-Hadamard subdi¤erentials.
Example 1. Let f : R ! R be given by f(x) = 2x for x 2 [�1; 1]; f(x) = x + 1 for x > 1; f(x) = x � 1
for x < �1. We can take @f(x) = @Df(x) when x 6= 1 and @f(1) = �@D(�f)(1) (where @Df is the
Dini-Hadamard subdi¤erential of f). Observe that @Df(1) = ?.
Example 2. Let f : X ! R be such that for some generalized di¤erential @] one has @](�f)(x) 6= ? for all
x 2 X: Then it may be convenient to take @f := �@](�f)(x):
Example 3. Let f : X ! R be such that f = f1 + f2: Then one may take @f := @]f1 + @

]f2; where @] is
some generalized di¤erential, althougth it may be di¤erent from @](f1 + f2):
Example 4. Let f : X ! R be such that f = g � h for some functions g; h: Then one may take @f(x) :=
@]g(x) � @]h(x); where @] is some generalized di¤erential, and for subsets A; B of X�, A � B := fx� 2 X� :
B + x� � Ag; althougth @f may be di¤erent from @](g � h):
For some subdi¤erentials the preceding de�nitions may be automatically satis�ed. This is the case if @f is

the Fenchel-Moreau subdi¤erential @FMf given by @FMf(x) := fx� 2 X� : f � x� + f(x) � x�(x)g. Let us
consider some other classical subdi¤erentials. We recall that the original Greenberg-Pierskalla�s subdi¤erential
is de�ned by

@GP f(x) = fx� 2 X� : hx�; w � xi � 0) f(w) � f(x)g:

The lower subdi¤erential, or Plastria subdi¤erential of f at some point x of its domain domf := fx 2 X :
f(x) 2 Rg is the set

@<f(x) := fx� 2 X� : 8w 2 S<f (x); f(w)� f(x) � hx�; w � xig

where S<f (x) := S
<
f (f(x)) := f

�1((�1; f(x))) is the strict sublevel set of f at x: We also recall the following
variant, called the infradi¤erential or Gutiérrez subdi¤erential :

@�f(x) := fx� 2 X� : 8w 2 Sf (x); f(w)� f(x) � hx�; w � xig;

where Sf (x) := Sf (f(x)) := f�1((�1; f(x)]) is the sublevel set of f at x: For such subdi¤erentials one has
the following obvious statement.

Lemma 2 Let f : X ! R1 and x 2domf: Then
(a) f is @GP f-pseudoconvex at x;
(b) f is @<f-pseudoconvex at x;
(c) f is @�f-protoconvex and @�f-pseudoconvex at x.
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We denote by N(C; x) the normal cone at x 2 X to a subset C of X given by

N(C; x) := fx� 2 X� : hx�; w � xi � 0 8w 2 Cg

even when C is nonconvex; of course, such a cone is mainly of interest in the case C is convex. Some normal
cone operators can be associated to a function f : X ! R1 as follows: for x 2domf;

Nf (x) := N(Sf (x); x) := fx� 2 X� : hx�; w � xi � 0 8w 2 Sf (x)g;
N<
f (x) := N(S

<
f (x); x) := fx� 2 X� : hx�; w � xi � 0 8w 2 S<f (x)g:

(see for example [4], [6], [29] for the case f is quasiconvex). Clearly, any function f is Nf -protoconvex and N<
f -

quasiconvex at any x 2domf: Moreover, for any function f; @GP f (resp. Nf , N<
f ) is the greatest generalized

di¤erential @f of f; such that f is @f -pseudoconvex (resp. @f -protoconvex, @f -quasiconvex).
Recall that f is said to be semi-strictly quasiconvex if it is quasiconvex and for all w; x; y 2 C, x 2 (w; y)

one has f(x) < f(y) whenever f(w) < f(y):

Lemma 3 Let f : X ! R1 be a quasiconvex function and let x 2 C such that f(x) > inf f(X). If there is no
local minimizer of f on Lf (x) := f�1(f(x)), in particular f is semi-strictly quasiconvex, then N<

f (x) = Nf (x).
Moreover, if f is radially upper semicontinuous, then f is Nfnf0g-pseudoconvex at x:

This last assertion is given in [2, Proposition 3] and [5, Proposition 2.7]; we give a direct, simple proof for
the convenience of the reader.
Proof. Since there is no local minimizer of f on Lf (x) (that occurs when f is semi-strictly quasiconvex),

S<f (x) is dense in Sf (x); hence N
<
f (x) = Nf (x).

Then, for all x� 2 Nf (x)nf0g and w 2 S<f (x) we have hx�; w � xi < 0 since if hx�; w � xi = 0; taking
u 2 X with hx�; ui > 0 we would have w + tu 2 S<f (x) for t > 0 small enough, and hx�; w + tu � xi > 0; a
contradiction. Thus f is Nfnf0g-pseudoconvex at x: �
We say that @f is a valuable generalized di¤erential if for all a 2 X and b 2 X with f(b) > f(a) there exist

c 2 [a; b) := [a; b]nfbg and sequences (cn) ; (c�n) such that (cn)!f c; c
�
n 2 @f (cn) for each n and

hc�n; d� cni > 0 for all d 2 b+ R+(b� a) and all n 2 N.

The following result shows that for a valuable subdi¤erential, quasiconvexity, @f -quasiconvexity and @f -
protoconvexity coincide under a mild continuity assumption. The last assertion follows from [34].

Proposition 4 (a) If f : X ! R1 is quasiconvex and @f � @rf; then f is @f -protoconvex hence @f -
quasiconvex.
(b) Let f : X ! R1 be a radially continuous l.s.c. function and let @f be a valuable generalized di¤erential.

If f is @f -quasiconvex, then it is quasiconvex.

Proof. (a) Let w; x 2 C and x� 2 @f(x) be such that hx�; w � xi > 0. Then there exists (tn) ! 0+ such
that f(x+ tn(w � x)) > f(x): Since f is quasiconvex, one has f(w) > f(x):
(b) It follows from [34] with a similar proof. �
The following proposition is well known when @f is the derivative of f or a subdi¤erential of f .

Proposition 5 Let C be open, let f : C ! R be radially upper semicontinuous and 0 =2 @f(x).
(a) If f is @f -quasiconvex at x then it is @f -pseudoconvex at x.
(b) If f is eventually @f -quasiconvex at x then it is eventually @f -pseudoconvex at x.

Proof. Let w; x 2 C be such that f(w) < f(x):
(a) If f is @f -quasiconvex at x then for all x� 2 @f(x); hx�; w�xi � 0: Suppose that there exists x� 2 @f(x)

such that hx�; w�xi = 0: Since x� 6= 0; we can �nd u 2 X such that hx�; ui = 1: By radial upper semicontinuity
of f; there exists " > 0 such that y := w + "u 2 C and f(y) < f(x): Since f is @f -quasiconvex,

0 � hx�; y � xi = hx�; w � xi+ "hx�; ui = " > 0;

4



a contradiction. Hence, one has hx�; w � xi < 0 for all x� 2 @f(x): f is @f -pseudoconvex at x.
(b) If f is eventually @f -quasiconvex at x, there exists x� 2 @f(x); such that hx�; w � xi � 0: With a

similar proof to the one in (a), one gets hx�; w � xi < 0. �
A comparison between @f -pseudoconvexity, quasiconvexity (in the usual sense) and semi-strict quasicon-

vexity is given in the next proposition. Similar comparisons have been made in [17, Prop. 11.5], [30], [40], [34]
in case @f is contained in the dag subdi¤erential @yf de�ned there. We use the conditions:
(C) if for some w; x 2 C; f is constant on [w; x], then one has hx�; w � xi � 0 for some x� 2 @f(x):
(M) if x is a local minimizer of f; then 0 2 @f(x).
Condition (C) is satis�ed when @f(x)\@Df(x) 6= ?; where @Df is the Dini-Hadamard subdi¤erential of f;

in particular when f is Gâteaux-di¤erentiable at each point of C and f 0(x) 2 @f(x): Condition (M) is a natural
condition which is satis�ed by all sensible generalizations of the derivative used for minimization problems.
Let us recall that a function f is radially nonconstant if one cannot �nd any line segment on which f is

constant.
The �rst assertion of the following proposition can be given when f is a radially continuous l.s.c. function

and @f is a valuable generalized di¤erential since if f is @f -pseudoconvex, then it is @f -quasiconvex and, by
Proposition 4, it is quasiconvex; see also in [1, Theorem 4.1] for the case X admits a smooth renorming. A
comparison of assertions (b) and (c) with [1, Proposition 5.2] is made in the example below. The proof of the
last assertion is similar to the one of [1, Proposition 5.2]; note that one does not need that @ be valuable.

Proposition 6 Let C be convex, let f : C ! R1 be @f -pseudoconvex and @f(x) 6= ? for all x 2 C. Then
(a) f is quasiconvex.
(b) If f satis�es condition (C), then it is semi-strictly quasiconvex.
(c) If f satis�es condition (M), then every local minimizer is a global minimizer. Moreover, if f is radially

continuous and l.s.c., then it is semi-strictly quasiconvex.
(d) If f is radially nonconstant, then f is strictly @f -pseudoconvex.

Proof. (a) Let f be @f -pseudoconvex. Suppose that f is not quasiconvex. Then there exist w; x; y 2 C
such that x 2 (w; y) and f(x) > f(w); f(x) > f(y): By @f -pseudoconvexity of f; for all x� 2 @f(x) one has
hx�; w � xi < 0 and hx�; y � xi < 0, a contradiction with the linearity of x�:
(b) Now, suppose that f is @f -pseudoconvex and satis�es condition (C). If f is not semi-strictly quasiconvex

then there exist w; x; y 2 C with x 2 (w; y) such that f(w) < f(y) � f(x): Thus, by (a), f(x) = f(y) and x is
a maximizer of f on [w; x]: Now, if f([x; y]) is not constant then there exists z 2 (x; y) such that f(z) < f(x),
a contradition with the quasiconvexity of f and f(w) < f(x). Hence, f([x; y]) is constant. Since f is @f -
pseudoconvex and f(w) < f(x), one has hx�; w � xi < 0 for all x� 2 @f(x): On the other hand, by condition
(C), there exists x� 2 @f(x) such that 0 � hx�; y � xi: a contradiction.
(c) The �rst assertion follows from the de�nition of @f -pseudoconvexity of f and condition (M). For the

second assertion, see [17, Prop. 11.5 (iii)]. Note that for this implication, one does not need that @ be valuable.
(d) See [1, Proposition 5.2]. �

Example 5. Let f : R ! R be given by f(x) = 0 for x � 0 and f(x) = x for x > 0: Since f is not radially
nonconstant, we cannot use [1, Proposition 5.2]. However, appropriate choices of @f allow to apply Proposition
6:
(a) Let @f(x) = R for x < 0 and @f(x) = P for x � 0: Then f is @f -pseudoconvex and condition (C)

is satis�ed. Thus, f is semi-strictly quasiconvex. Note that condition (M) is not satis�ed since 0 is a local
minimizer of f but 0 =2 @f(0):
(b) If @f(x) = R for x � 0 and @f(x) = P for x > 0; then condition (M) is satis�ed.
A simple stability property is given in the following lemma (here the convexity of C is not needed).

Lemma 7 Let I be a �nite set. For i 2 I, let fi : C ! R1; let @fi : C � X� and let f := supi2I fi. For
x 2 C; let I(x) := fi 2 I : fi(x) = f(x)g and @f(x) := co [i2I(x) @fi(x).
If for i 2 I(x), fi is @fi-pseudoconvex (resp. @fi-protoconvex, @fi-quasiconvex) at x, then f is @f -

pseudoconvex (resp. @f -protoconvex, @f -quasiconvex) at x:
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Proof. Let w 2 C be such that f(w) < f(x). Then for all i 2 I(x) one has fi(w) < fi(x): Since fi is
@fi-pseudoconvex, for all x� 2 [i2I(x)@fi(x); one has hx�; w � xi < 0: Now, let x� 2 @f(x): Then there exist
ti 2 [0; 1],

P
i2I(x) ti = 1 and x

�
i 2 @fi(x) for i 2 I(x) such that x� =

P
i2I(x) tix

�
i ; hence hx�; w � xi < 0.

A similar proof can be given to show that f is @f -protoconvex or @f -quasiconvex at x. �

3 Links with previous works

In [22], assuming a generalized directional derivative h : V C ! R of f is given, we de�ned concepts which
seem to be related to the present notions. Let us make a precise comparison. Recall that f is h-pseudoconvex
(resp. h-quasiconvex, h-protoconvex ) at x if for all w 2 C

f(w) < f(x)) h(x;w � x) < 0
(resp. f(w) < f(x)) h(x;w � x) � 0;
resp. f(w) � f(x)) h(x;w � x) � 0).

Let us �rst consider the case we dispose of a general di¤erential @f which is a generalized pseudo-di¤erential
of f: The concept of pseudo-di¤erential of f has been introduced by Jeyakumar and Luc in [18] when h+ and
h+ are the Dini derivatives of f . We introduce a slight variant which enables to encompass [14, De�nitions
2.1, 2.2] and [18].

De�nition 8 Let f : C ! R and h : V C ! R: We say that a subset @f(x) of X� is:
(a) an upper h-pseudo-di¤erential of f at x if for all (x; u) 2 V C; we have

h(x; u) � supfhx�; ui : x� 2 @f(x)g: (8)

(b) a lower h-pseudo-di¤erential of f at x if for all (x; u) 2 V C; we have

h(x; u) � inffhx�; ui : x� 2 @f(x)g: (9)

(c) an (h+; h+)-pseudo-di¤erential of f at x; where h+; h+ : V C ! R; if it is an upper h+-pseudo di¤er-
ential of f at x and a lower h+-pseudo di¤erential of f at x.

We say that @f(x) is upper exact (resp. lower exact) if for all u 2 X one has

supfhx�; ui : x� 2 @f(x)g = maxfhx�; ui : x� 2 @f(x)g

(resp. inffhx�; ui : x� 2 @f(x)g = minfhx�; ui : x� 2 @f(x)g) whenever the supremum (resp. in�mum) is
�nite. Clearly, if @f(x) is weak� compact then @f(x) is upper exact and lower exact.

Proposition 9 Let f : C ! R1, h : V C ! R and let @f(x) be an upper h-pseudo-di¤erential of f at x. If f
is @f -quasiconvex (resp. @f -protoconvex) at x; then f is h-quasiconvex (resp. h-protoconvex) at x.
If f is @f -pseudoconvex at x and if @f(x) is upper exact, then f is h-pseudoconvex at x:

Proof. Let f be @f -quasiconvex (resp. @f -protoconvex) at x and let w 2 C be such that f(w) < f(x) (resp.
f(w) � f(x)). Since h(x;w�x) � supfhx�; w�xi : x� 2 @f(x)g � 0; f is h-quasiconvex (resp. h-protoconvex)
at x.
Now let f be @f -pseudoconvex at x and let w 2 [f < f(x)]: Then for all x� 2 @f(x); one has hx�; w�xi < 0:

Thus, if @f(x) upper exact, one has maxfhx�; ui : x� 2 @f(x)g < 0; hence h(x;w � x) < 0 and so f is h-
pseudoconvex at x: �
We have a kind of converse.

Proposition 10 Let @f(x) be a lower h-pseudo-di¤erential of f at x. If f is h-pseudoconvex then f is
eventually @f -pseudoconvex.
If f is h-quasiconvex (resp. h-protoconvex) at x and if @f(x) is lower exact, then f is eventually @f -

quasiconvex (resp. eventually @f -protoconvex) at x.
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Proof. Since f is h-pseudoconvex at x, for any w 2 C; f(w) < f(x), one has

0 > h(x;w � x) � inffhx�; w � xi : x� 2 @f(x)g:

Hence, there exists x� 2 @f(x) such that hx�; w � xi < 0: f is eventually @f -pseudoconvex at x.
Now, let f be h-quasiconvex (resp. h-protoconvex) at x. For any w 2 C; w 2 [f < f(x)] (resp. w 2 [f �

f(x)]), one has
0 � h(x;w � x) � inffhx�; w � xi : x� 2 @f(x)g:

Since @f(x) is lower exact, there exists x� 2 @f(x) such that hx�; w � xi � 0: Hence, f is eventually @f -
quasiconvex (resp. eventually @f -protoconvex) at x. �
Now, let us assume that @f is the generalized di¤erential of f associated with a bifunction h in the following

way:
@f(x) := @hf(x) := @h(x; �)(0) := fx� 2 X� : 8u 2 X; hx�; ui � h(x; u)g:

We will use the following conditions on h :

(S) 8w; x 2 C h(x;w � x) = supfhx�; w � xi : x� 2 @hf(x)g:

(S�) 8w; x 2 C h(x;w � x) = maxfhx�; w � xi : x� 2 @hf(x)g:
Condition (S) (resp. (S�)) is satis�ed when C is open and for all x 2 C the function h(x; �) is sublinear and
l.s.c. (resp. continuous).

Proposition 11 (a) If f is h-pseudoconvex (resp. h-quasiconvex, h-protoconvex) at x; then f is @hf-pseudoconvex
(resp. @hf-quasiconvex, @hf-protoconvex) at x.
(b) Conversely, if f is @hf-pseudoconvex at x and if h satis�es condition (S�), then f is h-pseudoconvex at

x.
(c) If f is @hf-quasiconvex (resp. @hf-protoconvex) at x and if h satis�es condition (S), then f is h-

quasiconvex (resp. h-protoconvex) at x.

Proof. (a) If f is h-pseudoconvex at x; then for w 2 [f < f(x)] and x� 2 @hf(x) one has hx�; w � xi �
h(x;w � x) < 0: Thus f is @hf -pseudoconvex. Now, if f is h-quasiconvex (resp. h-protoconvex) at x then for
w 2 [f < f(x)] (resp. w 2 [f � f(x)]), x� 2 @hf(x); one has hx�; w � xi � h(x;w � x) � 0 and then f is
@hf -quasiconvex (resp. @hf -protoconvex) at x.
(b) It follows from Proposition 9, since when h satis�es condition (S�), @hf(x) is an upper h-pseudo-

di¤erential of f at x which is upper exact.
(c) Since h satisfy condition (S), @hf is an upper h-pseudo-di¤erential of f at x: Thus, the conclusion

follows from the �rst assertion of Proposition 9.

4 Optimality conditions for problems with constraints

In the present section, we apply the preceding concepts to the constrained minimization problem

(C) min f(x) subject to x 2 C;

where C is a subset of X; and f : C ! R1. Let S be the set of solutions to (C) and let @f : C � X� be a
generalized di¤erential of f:
Let us give a su¢ cient condition for (C).

Proposition 12 (a) Let f be @f -pseudoconvex at a 2 C. If 0 2 @f(a) +N(C; a); then a is a solution to (C).
(b) Let f be eventually @f -pseudoconvex at a 2 C. If �@f(a) � N(C; a); then a is a solution to (C):
(c) If f is @f -pseudoconvex at a, if @f(a) is upper exact and if the following condition holds, then a is a

solution to (C) :
sup

a�2@f(a)
ha�; ui � 0 8u 2 V (C; a): (10)
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Proof. (a) Let us note that the assumption of (a) is stronger than the assumption of (c). However, we give
a direct proof. If 0 2 @f(a) + N(C; a); then there exists a� 2 @f(a) such that ha�; x � ai � 0 for all x 2 C:
Since f is @f -pseudoconvex at a, one has f(x) � f(a) for all x 2 C : a 2 S:
(b) Suppose �@f(a) � N(C; a) and f is eventually @f -pseudoconvex at a: If for some x 2 C one has

f(x) < f(a) then there exists a� 2 @f(a) such that ha�; x� ai < 0 , a contradiction with �a� 2 N(C; a):
(c) Supposing that a =2 S we show that (10) does not hold. Let x 2 C be such that f(x) < f(a): Since

f is @f -pseudoconvex at a; for all a� 2 @f(a); we have ha�; x � ai < 0: Since @f(a) is upper exact, we get
maxfha�; x� ai : a� 2 @f(a) < 0 and (10) does not hold. �
It follows from Lemma 2 that the preceding proposition implies the result in [21, Prop. 5].
The following example shows that with some suitable choices of @f , the assumptions of the preceding

proposition reduce to the condition 0 2 @f(a) +N(C; a):
Example 6. Let us take for @f the subdi¤erentials @0f and @^f given in [30, Example 7.2] as follows

x� 2 @0f(x), f(x) = min
hx�;wi>1

f(w); hx�; xi > 1;

x� 2 @^f(x), f(x) = min
hx�;wi�1

f(w); hx�; xi � 1:

Then, any function f is @f -pseudoconvex: if x� 2 @0f(x) is such that hx�; w�xi � 0; then hx�; wi � hx�; xi > 1,
hence f(w) � f(x). Similarly, we have that f is @^f -pseudoconvex.
The next proposition is similar to [4, Prop. 4.1]. Note that here, we do not need the quasiconvexity of f

and moreover @f(x) may be di¤erent from N<
f (x)nf0g: Also, we do not need the additional assumptions of

Proposition 5 which would enable to apply the preceding proposition.

Proposition 13 Let C be convex and let f be @f -quasiconvex and radially upper semicontinuous at a 2 C.
Assume that 0 =2 @f(a) and C? := fx� 2 X� : 8w; x 2 C; hx�; xi = hx�; wig = f0g: If 0 2 @f(a) + N(C; a);
then a is a solution to (C).

Proof. Since 0 2 @f(a) + N(C; a), there exists a� 2 @f(a) such that ha�; x � ai � 0 for all x 2 C: Since
C? = 0; there exists w 2 C such that ha�; w � ai > 0: Now, for any given x 2 C; t 2 (0; 1); we de�ne
xt := (1� t)x+ tw so that

ha�; xt � ai = (1� t)ha�; x� ai+ tha�; w � ai > 0

Since f is @f -quasiconvex at a; one has f(xt) � f(a) and then f(x) � f(a) by radial upper semicontinuity of
f at a: Thus, a 2 S: �
When a suitable bifunction h is available and @f is an upper h-pseudo-di¤erential of f , condition (10) turn

to be necessary.

Proposition 14 Let C be convex, h : V C ! R be such that h(a; �) � D+f(a; �) and let a subset @f(a) of X�

be an upper h-pseudo-di¤erential of f at a. If a 2 S then condition (10) holds.

Proof. Let a 2 S and u 2 V (C; a). Let x 2 C be such that u := x� a: Then

0 � D+f(a; x� a) � h(a; x� a) � supfha�; x� aia� 2 @f(a)g:

�
Under some additional convexity assumptions, the su¢ cient condition of Proposition 12 (a) also is necessary.

Proposition 15 Let C be convex, let h : V C ! R be such that h(a; �) � D+f(a; �) and let @f(a) be an
upper h-pseudo-di¤erential of f at a. Assume that h(a; �) is sublinear and continuous. If a 2 S then 0 2
w� � cl(co(@f(a))) +N(C; a): In particular, if @f(a) is weak� closed convex, one has 0 2 @f(a) +N(C; a).
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Note that the assumption that @f(a) is weak� closed convex is satis�ed when @f(a) = @hf(a):
Proof. Let a 2 S: One has h(a; v) � 0 for all v 2 V (C; a) by [22, Proposition 27] or, equivalently,

h(a; �)+�V (C;a)(�) � 0: Since C is convex, V (C; a) is a convex set. Hence we have 0 2 @(h(a; �)+�V (C;a)(�))(0) so
that 0 2 @h(a; �)(0)+@�V (C;a)(0). Now since @f(a) is an upper h-pseudo-di¤erential of f at a; the set @h(a; �)(0)
is contained in the weak� closed convex hull of @f(a); which is @f(a). Hence, we get 0 2 @f(a) +N(C; a). �
Let us give some other optimality conditions in the spirit of Minty variational inequalities and [4]. Recall

([3]) that a multimap T : C � X� is said to be upper sign-continuous on C if, for every w; x 2 C; the following
implication (in which xt := tx+ (1� t)w) holds:

8t 2 (0; 1); inffhx�t ; w � xi : x�t 2 T (xt)g � 0) supfhx�; w � xi : x� 2 T (x)g � 0:

We will use the following assumption taken from ([3]):
(A) for every x 2 C there exists a convex neighborhood Vx of x and an upper sign-continuous operator

T : Vx \ C ! 2X
�
with nonempty values satisfying T (w) � @f(w) for all w 2 Vx \ C.

Proposition 16 Let C be convex, let @f : C � X� and let f be @f -protoconvex on C. If a 2 S, then for any
x 2 C one has

inffhx�; x� ai : x� 2 @f(x)g � 0:
If assumption (A) holds then condition (10) is satis�ed. If moreover T (a) is convex, w*-compact, then 0 2
@f(a) +N(C; a):

Proof. Suppose that there exist x 2 C and x� 2 @f(x) such that hx�; x�ai < 0. Since f is @f -protoconvex
at x, one has f(a) > f(x): a contradition with a 2 S: Thus, inffhx�; x� ai : x� 2 @f(x)g � 0 for all x 2 C:
Since, for every x 2 C; there exists a convex neighborhood Vx of x such that for any w 2 Vx \ C,

T (w) � @f(w), one has
inf

w2Vx\C
inffhw�; w � ai : w� 2 T (w)g � 0:

Since T is upper sign-continuous and Vx \ C is a convex set, for w 2 Vx \ C and t 2 (0; 1); we have wt :=
(1 � t)a + tw 2 Vx \ C and inffhw�t ; wt � ai : w�t 2 T (wt)g � 0 hence inffhw�t ; w � ai : w�t 2 T (wt)g � 0: By
upper sign-continuity of T; we deduce that supfha�; w � ai : a� 2 T (a)g � 0 for all w 2 Vx \ C: Using the
convexity of C; we get condition (10). Moreover, when T (a) is convex, weak* compact, one has

inf
x2C

max
a�2T (a)

ha�; x� ai � 0:

Now, applying the Sion minimax theorem or [3, Lemma 2.1(iii)], we get

max
a�2T (a)

inf
x2C

fha�; x� aig � 0:

Hence there exists some a� 2 T (a) � @f(a) such that �a� 2 N(C; a): �
Now let us turn to optimality conditions formulated in terms of normal cones to sublevel sets. The following

result can be couched in terms of the adjusted normal cone to f as in [5, Prop. 5.1]; here we give a short proof
which avoids this concept.

Proposition 17 Let f be a continuous, semi-strictly quasiconvex function on a convex C and let a 2 X be
such that f(a) > infX f: Then a 2 S if, and only if, 0 2 Nf (a)nf0g+N(C; a):

Proof. Since a 2 S we have that S<f (a) is disjoint from C: Since these two sets are convex and S<f (a) is
open, the Hahn-Banach theorem yields some a� 2 X�nf0g and some � 2 R such that

8w 2 S<f (a); 8x 2 C ha�; wi > � � ha�; xi:

Since f is semi-strictly quasiconvex, a belongs to C and the closure of S<f (a): Thus ha�; ai = � and

8w 2 S<f (a); 8x 2 C ha�; w � ai > 0 � ha�; x� ai:
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Therefore a� 2 N(C; a) and �a� 2 Nf (a)nf0g since N<
f (a) = Nf (a) by Lemma 3.

Now, assume that 0 2 Nf (a)nf0g+N(C; a): By Lemma 3, f is Nfnf0g-pseudoconvex at a: Hence, we get
a 2 S by Proposition 12(a). �
Under special assumptions, one has a stronger necessary condition.

Proposition 18 (a) If �f is (�@f)-protoconvex at a 2 S; then �@f(a) � N(C; a):
(b) If �f is eventually (�@f)-protoconvex at a 2 S; then condition (10) is satis�ed.

Proof. (a) Let a 2 S: Since �f is �@f -protoconvex at a and, for all x 2 C; �f(x) � �f(a); for all
a� 2 @f(a) one has h�a�; x� ai � 0 for all x 2 C so that �a� 2 N(C; a). Thus, �@f(a) � N(C; a):
(b) Let a 2 S: Since �f is eventually �@f -protoconvex at a and, for all x 2 C; �f(x) � �f(a); there

exists a� 2 @f(a) such that ha�; x� ai � 0. Thus, we get infx2C maxa�2@f(a)ha�; x� ai � 0: �
With a similar proof, we have the following proposition.

Proposition 19 Let a 2 C be a strict solution of (C) (i.e. for all x 2 C; f(a) < f(x)).
(a) If �f is (�@f)-quasiconvex at a; then �@f(a) � N(C; a):
(b) If �f is (�@f)-pseudoconvex at a; then �@f(a) � N(C; a)nf0g:

Example 6 shows that if we take @f := �@0(�f) or @f := �@^(�f); the pseudoconvexity assumption of
the preceding proposition is automatically satis�ed.

5 Mathematical programming problems

Let us consider now the case in which the constraint set C is de�ned by a �nite family of inequalities, so that
problem (C) turns into the mathematical programming problem

(M) min f(x) subject to x 2 C := fx 2 X : g1(x) � 0; :::; gn(x) � 0g;

where f :W ! R1, gi :W ! R1 and W is a subset of X.
Let a 2 C, and let I := f1; :::; ng; I(a) := fi 2 I : gi(a) = 0g.
Let us �rst present su¢ cient optimality conditions.

Proposition 20 Let f be @f -pseudoconvex at a 2 C and gi be @gi-protoconvex at a for i 2 I(a). If for all
x 2 C, there exist a� 2 @f(a), a�i 2 @gi(a) (i 2 I(a)) and (yi) 2 R

I(a)
+ such that ha�+

P
i2I(a)

yia
�
i ; x� ai � 0 (in

particular, if a� +
P

i2I(a)
yia

�
i = 0 for some a

� 2 @f(a) and some a�i 2 @gi(a) for i 2 I(a)), then a is a solution

to problem (M).

Proof. Suppose on the contrary that there exists some x 2 C such that f(x) < f(a): Since f is @f -
pseudoconvex at a and a� 2 @f(a); we have ha�; x� ai < 0. Since for i 2 I(a), gi is @gi-protoconvex at a and
a�i 2 @gi(a), we have ha�i ; x � ai � 0. Taking (yi) 2 R

I(a)
+ as in our assumption, we get a contradiction with

the relation
ha�; x� ai+

X
i2I(a)

yiha�i ; x� ai < 0

deduced from the preceding inequalities. �
Remark (a) According to Proposition 4, the condition that gi is @gi-protoconvex at a can be replaced by
quasiconvexity of gi and @gi(a) � @rgi(a) for i 2 I(a).
(b) By Lemma 2 (b) and (c), the preceding proposition implies [21, Thm. 11].
A variant with a similar proof can be given.

Proposition 21 Let f be eventually @f -pseudoconvex at a 2 C and let gi be eventually @gi-protoconvex at
a for i 2 I(a). If for all x 2 C, a� 2 @f(a) and a�i 2 @gi(a) (i 2 I(a)) there exists (yi) 2 R

I(a)
+ such that

ha� +
P

i2I(a)
yia

�
i ; x� ai � 0, then a is a solution to problem (M).
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Another su¢ cient condition can be given.

Proposition 22 Let f be @f -quasiconvex and radially upper semicontinuous at a 2 C and let gi be quasiconvex
for i 2 I: Assume that 0 =2 @f(a), C? = f0g and @gi(a) � @rgi(a) for i 2 I(a). If there exists (yi) 2 RI(a)+

such that a� +
P

i2I(a)
yia

�
i = 0 for some a� 2 @f(a) and some a�i 2 @gi(a) (i 2 I(a)), then a is a solution to

problem (M).

Proof. By Proposition 4 (a), gi is @gi-protoconvex at a: Let a� 2 @f(a), a�i 2 @gi(a) and yi 2 R+ (i 2 I(a))
be such that a� +

P
i2I(a)

yia
�
i = 0: Since for all x 2 C, i 2 I(a); one has gi(x) � gi(a); hence ha�i ; x� ai � 0; we

obtain �a� =
P

i2I(a)
yia

�
i � N(C; a): Then Proposition 13 yields the conclusion. �

Now let us turn to necessary optimality conditions for (M). Let us �rst consider the case of a single
constraint which is quasiconvex.

Proposition 23 Let @f : W � X�and let f be @f -protoconvex. Let g1 be quasiconvex, a 2 S and g1(a) = 0.
If assumption (A) holds and if T (a) is convex w*-compact, then there exists y1 2 R+ such that

0 2 @f(a) + y1N(Sg1(a); a):

Proof. One has 0 2 @f(a) + N(C; a) by Proposition 16. On the other hand, since g1(a) = 0; we have
C = Sg1(a) and N(C; a) = N(Sg1(a); a). Setting y1 = 1; we have the conclusion. �
Now, let us turn to the general case. We shall use the following lemma in which � := f(xi)i2I(a) :

8j; k 2 I(a); xj = xkg is the diagonal of XI(a). Its proof is a consequence of the rule for computing the
subdi¤erential of a sum of convex functions, applied to the case the functions are the indicator functions of
the sets Ci := g

�1
i ((�1; 0]):

Lemma 24 Assume gi is quasiconvex for all i 2 I, gi is u.s.c. at a for all i 2 InI(a) and let Ci :=
g�1i ((�1; 0]), a 2 X. Assume that one of the following two conditions holds:
(a) there exist some k 2 I(a) and some z 2 Ck such that gi(z) < 0 for each i 2 I(a)nfkg (Slater condition).
(b) X is complete, gi is l.s.c. for all i 2 I(a) and R+(��

Q
i2I(a)

Ci) = X
I(a):

Then
N(C; a) =

P
i2I
R+N(Ci; a):

This lemma and Proposition 16 entail the following result.

Proposition 25 Let @f : W � X�and let f be @f -protoconvex. Suppose g1; :::; gn satisfy the assumptions of
the preceding lemma, assumption (A) holds and T (a) is convex w*-compact. Then there exists (yi) 2 RI(a)+

such that
0 2 @f(a) +

P
i2I(a)

yiN(Sgi(a); a):

Note that this optimality condition can be formulated in terms of Gutiérrez functions to the constraints.
Recall from [21] that f is a Gutiérrez function at a if its sublevel set Sf (a) is convex and such that

N(Sf (a); a) = R+@�f(a):

By the preceding proposition and [21, Lemma 9], if the constraints (gi)i2I(a) are Gutiérrez function at a in

the preceding proposition as in the preceding lemma, then there exists (yi) 2 RI(a)+ such that 0 2 @f(a) +P
i2I(a)

yi@
�gi(a):

Using representations of normal vectors to sublevels sets such as [7, Theorem 3.3.4], [28, Theorem 4.1], [37,
Proposition 5.4] under appropriate assumptions, one can derive from the last proposition necessary conditions
in fuzzy or limiting forms.

11



References

[1] D. Aussel, Subdi¤erential properties of quasiconvex and pseudoconvex functions: Uni�ed approach. J.
Optim. Theory Appl. 97, 1 (1998), 29-45.

[2] D. Aussel and A. Daniilidis, Normal cones to sublevel sets: an axiomatic approach. Applications in qua-
siconvexity and pseudoconvexity, in �Generalized Convexity and Generalized Monotonicity�, Proceedings
of the 6th International Symposium on generalized convexity/Monotonicity, N. Hadjisavvas et al. (eds),
Lecture notes in Economics and Mathematical Systems, 502 (2001), Springer, 88-101.

[3] D. Aussel and N. Hadjisavvas, On quasivariational inequalities, J. Optim. Theory Appl. 121, (2004),
445-450.

[4] D. Aussel and N. Hadjisavvas, Adjusted sublevel sets, normal operator, and quasi-convex programming,
SIAM J. Optim. 16, 2 (2005), 358-367.

[5] D. Aussel and J. Ye, Quasiconvex programming with locally starshaped contraints region and applications
to quasiconvex MPEC, Optimization, to appear.

[6] J. Borde and J.-P. Crouzeix, Continuity properties of the normal cone to the level sets of a quasiconvex
function, J. Optim. Theory Appl. 66 (1990), 415-429.

[7] J.M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Canadian Math. Soc., Springer, New
York (2005).

[8] A. Cambini and L. Martein, Generalized convexity and optimality conditions in scalar and vector optimiza-
tion, In: Handbook of generalized convexity and generalized monotonicity, N. Hadjisavvas, S. Komlosi
and S. Schaible (eds.), Kluwer Academic Publishers (2005), 151-194.

[9] J.P. Crouzeix, Criteria for generalized convexity and generalized monotonicity in the di¤erentiable case,
In: Handbook of generalized convexity and generalized monotonicity, N. Hadjisavvas, S. Komlosi and S.
Schaible (eds.), Kluwer Academic Publishers (2005), 89-120.

[10] A. Daniilidis, N. Hadjisavvas and J.-E. Martínez-Legaz, An appropriate subdi¤erential for quasiconvex
functions, SIAM J. Optim., Vol. 12 (2001), 407-420.

[11] V.F. Demyanov, Convexi�cation and concavi�cation of a positive homogeneous function by the same family
of linear functions, Universita di Pisa, (1994) Report 3, 208,802.

[12] V.F. Demyanov and A.M. Rubinov, Contructive nonsmooth analysis, Verlag Peter Lang, Frankfurt am
Main, 1995.

[13] W.E. Diewert, Alternative characterizations of six kinds of quasiconcavity in nondi¤erentiable case with
applications to nonsmooth programming, In: Generalized Concavity in Optimization and Economics, S.
Schaible and W.T. Ziemba (eds.), Academic Press, New York, 1981.

[14] V. Jeyakuma and D.T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexi�cators, J.
Optim. Theory Appl. 101, 3 (1999), 599-562.

[15] V. Jeyakuma and D.T. Luc, Approximate Jacobian matrices for nonsmooth continuous map and C1-
optimization, SIAM J. Control and Optim. 36, 5 (1998), 1815-1832.

[16] A. Hassouni and A. Jaddar, On generalized monotone multifunctions with applications to optimality con-
dition in generalized convex programming, J. Inequal. Pure Appl. Math. 4, 67, 11p., electronic. ??

[17] N. Hadjisavvas, Generalized monotonicity and nonsmooth analysis, In: Handbook of generalized convex-
ity and generalized monotonicity, N. Hadjisavvas, S. Komlosi and S. Schaible (eds.), Kluwer Academic
Publishers (2005), 465-500.

12



[18] V. Jeyakuma and D.T. Luc, Nonsmooth vector functions and continuous optimization, Springer (book to
appear).

[19] S. Komlósi, Generalized monotonicity and generalized convexity, J. Optim. Theory Appl. 84, 2 (1995),
361-376.

[20] S. Komlósi, Generalized convexity and generalized derivatives, In: Handbook of generalized convexity and
generalized monotonicity, N. Hadjisavvas, S. Komlosi and S. Schaible (eds.), Kluwer Academic Publishers
(2005), 421-464.

[21] N.T.H. Linh and J.-P. Penot, Optimality conditions for quasiconvex programming, SIAM J. Optim, Vol.
17, 2 (2006), 500-510.

[22] N.T.H. Linh and J.-P. Penot, Generalized a¢ ne maps and generalized convex functions, preprint, Univer-
sity of Pau, July 2006.

[23] N.T.H. Linh and J.-P. Penot, Generalized a¢ ne functions and generalized di¤erentials, preprint, Univer-
sity of Pau, October 2006.

[24] D.T. Luc, Generalized convexity in vector optimization, In: Handbook of generalized convexity and gen-
eralized monotonicity, N. Hadjisavvas, S. Komlosi and S. Schaible (eds.), Kluwer Academic Publishers
(2005), 195-236.

[25] O.L. Mangasarian, Nonlinear programming, McGraw-Hill, New York, (1969).

[26] J.E. Martínez-Legaz, On lower subdi¤erentiable function, in Trend in Mathematical Optimization, K.H.
Ho¤manm at al. (eds), Int. Series Numer. Math. 84, Birkhauser, Basel (1988), 197-232.

[27] P. Michel and J.-P. Penot, A generalized derivative for calm and stable functions. Di¤er. Integral Equ. 5,
2 (1992), 433-454.

[28] H.V. Ngai and M. Thera, A fuzzy necessary optimality condition for non-lipchitz optimization in Asplund
spaces, SIAM J. Optim. 12, 3, 656-668.

[29] J.-P. Penot, Are generalized derivatives useful for generalized convex function. In: Generalized Convex-
ity, Generalized Monotonicity, J.-P.Crouzeix, M. Volle, J.-E. Martinez-Legaz (eds.), Kluwer Academic
Publishers (1998), 3-39.

[30] J.-P. Penot, What is quasiconvex analysis?, Optimization, 47 (2000), 35-110.

[31] J.-P. Penot, A variational subdi¤erential for quasiconvex functions, J. Optim. Theory Appl. 111, 3 (2001),
165-171.

[32] J.-P. Penot, Characterization of solution sets of quasiconvex programs, J. Optim. Theory Appl. 117, 3
(2003), 627-636.

[33] J.-P. Penot, A Lagrangian approach to quasiconvex analysis, J. Optim. Theory Appl. 117, 3 (2003), 637-
647.

[34] J.-P. Penot, Glimpses upon quasiconvex analysis, ESIAM: Proceedings, to appear.

[35] J.-P. Penot and Sach, P.H, Generalized monotonicity of subdi¤erentials and generalized convexity, J.
Optim. Theory Appl. 94, 1 (1997), 251-262.

[36] J.-P. Penot and M. Volle, Surrogate programming and multipliers in quasiconvex programming, SIAM J.
Control Optim., 42 (2003), pp. 1994-2003.

[37] J.-P. Penot and C. Zalinescu, Harmonic sums and duality, J. Convex Anal., 7 (2000), pp. 95-113.

13



[38] J.-P. Penot and C. Zalinescu, Element of quasiconvex subdi¤erential calculus, J. Convex Anal., 7 (2000),
pp. 243-269.

[39] J.-P. Penot and Quang, P.H, Generalized convexity of functions and generalized monotonicity of set-valued
maps, J. Optim. Theory Appl. 92, 2 (1997), 343-356.

[40] P.H. Sach and J.-P. Penot, Characterizations of generalized convexities via generalized directional deriva-
tives, Numerical Functional Analysis and Optimization 19 (1998), 615-634.

14


