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[1] We performed both two- and three-dimensional hybrid simulations of the competing
processes between the L-mode electromagnetic ion cyclotron (EMIC) and mirror
instabilities, assuming anisotropic energetic ions with T?/Tk = 4.0. In the two-
dimensional model, the energy of the EMIC waves is higher at the linear growth phase
because its growth rate is larger than that of the mirror mode. In the three-dimensional
model, however, the energy of the mirror mode waves is larger than that of the
EMIC waves for all times because the wave number spectra of mirror mode waves form
torus-like structures. We also theoretically derived a necessary condition for the
dominance of the mirror instability. As the mirror mode waves relax the temperature
anisotropy effectively, the linear growth rates of the EMIC waves become smaller before
saturation. The EMIC waves cause heating of protons trapped by the nonlinear
potentials due to coexistence of forward and backward propagating waves and
inverse cascading. They terminate the linear growth of EMIC waves. Because of these
parallel heatings, the temperature anisotropy decreases to the threshold of the mirror
instability and thus the mirror mode wave saturates. At the nonlinear stage,
coalescence of the mirror mode waves takes place in both models. The quick
dissipation of the EMIC waves occurs due to the heating by the nonlinear processes.
On the other hand, the coalescence is a much slower process than the nonlinear
processes of EMIC waves, and thus the mirror mode waves remain in the
three-dimensional model.

Citation: Shoji, M., Y. Omura, B. T. Tsurutani, O. P. Verkhoglyadova, and B. Lembege (2009), Mirror instability and L-mode

electromagnetic ion cyclotron instability: Competition in the Earth’s magnetosheath, J. Geophys. Res., 114, A10203,

doi:10.1029/2008JA014038.

1. Introduction

[2] Large perpendicular-to-parallel ion temperature an-
isotropy ratios (T?/Tk > 1) can be expected in two regions
of planetary magnetosheaths: downstream of the quasiper-
pendicular portion of the bow shocks (see Figure 1) and
close to the magnetopause where field-line draping effects
are important [Midgeley and Davis, 1963; Zwan and Wolf,
1976]. In the former region, preferential plasma heating in T?
takes place due to shock compression [Kennel et al., 1985],
and in the second region the anisotropy is caused by flow of
plasma with high Vkout the ends of the magnetic flux tubes.
[3] These ion anisotropies can lead to two different

instabilities, the mirror mode [Chandrasekhar et al., 1958;
Hasegawa, 1969, 1975] and the electromagnetic ion cyclo-
tron (EMIC) instability [Kennel and Petschek, 1966]. Of

the two instabilities, it has been suggested by Lacombe and
Belmont [1995] the L-mode EMIC instability is dominant
for low ion betas whereas the mirror mode is dominant for
high ion betas. With ISEE-1 and -2 magnetic field and
plasma data, Tsurutani et al. [1982] first established the
existence of the mirror mode in the magnetosheath of
the Earth, and with Pioneer 10 and 11 magnetic field
data, in the magnetosheaths of Jupiter and Saturn.
[4] Since the initial confirmation of the existence of

mirror modes in the Earth’s magnetosheath, they have been
observed throughout the heliosphere. They have been
detected at comets Giacobini-Zinner [Tsurutani et al.,
1999] and Halley [Russell et al., 1989; Glassmeier et al.,
2003] as well as in interplanetary space proper [Tsurutani et
al., 1992]. More recent confirmatory magnetosheath obser-
vations at Earth are found in the works of Tsurutani et al.
[1984], Hubert [1994], Phan et al. [1994], and Lacombe
and Belmont [1995], at Jupiter and Saturn are in the works
of Tsurutani et al. [1993],Bavassano et al. [1998],Violante et
al. [1995], and Erdos and Balogh [1996]. These observations
that mirror modes are often dominant coherent magnetic
structures in planetary magnetosheaths even for low beta
plasmas is a long-standing puzzle in space plasmas.
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[5] The presence of He++ tends to increase the EMIC
threshold [Price et al., 1986]. On the other hand, the mirror
mode growth is less affected by the presence of He++ ions
[Brinca and Tsurutani, 1989]. Thus Gary [1992] andGary et
al. [1993] have argued that this mechanism of lowering the
EMIC linear growth rate is a possible cause of mirror mode
formation and domination in planetary magnetosheaths.
[6] The purpose of this paper is to try another approach to

the problem. In section 2, we perform linear analysis of the
linear growth rate of each instability. We show that the
linear growth rate of the EMIC modes is indeed higher than
that of the mirror mode, in agreement with previously
published results. In section 3, using two-dimensional and
three-dimensional hybrid codes, we compare wave energy
growth rates of both the mirror and EMIC modes. In both
cases, only a hydrogen plasma is assumed, removing any
possible ambiguities associated with multiple ion effects.
The results indicate a principal difference between two-
dimensional and three-dimensional approaches and show
that the free energy flows mostly into the mirror mode.

2. Linear Analysis

[7] We calculate theoretical growth rates of instabilities
by solving the kinetic plasma dispersion relation H(k, w) =
0, where k is a wave number vector consisting of orthogonal
components kk and k? (parallel and perpendicular to the
ambient magnetic field), and w is a complex frequency of
each mode. The imaginary part of w is the linear growth
rate. We assume bi-Maxwellian velocity distributions as

functions of vk and v?, parallel and perpendicular to the
static magnetic field, respectively, for H+ defined by

fH vk; v?
� �

¼ nH

2pð Þ3=2VkHV 2
?H

exp �
v2k

2V 2
kH
� v2?
2V 2
?H

 !
; ð1Þ

where nH is the density of protons. The thermal velocities

of ions are given by VkH =

ffiffiffiffiffiffi
TkH
mH

q
, V?H =

ffiffiffiffiffiffi
T?H
mH

q
, where TkH

and T?H are temperatures of the protons in the parallel and
perpendicular directions, respectively, and mH is the mass
of proton. The plasma frequency of proton is wpH = 300WH,
where WH is the cyclotron frequency of protons. The
temperature anisotropy of ions is varied over the range of
2.5 � T?H/TkH � 4.0 and the different ion beta values of
protons are 0.5, 1.0 or 2.5. We assume the electron beta
value be = 1.0.
[8] The top panels of Figure 2 show the w-kk diagrams of

the L-mode EMIC waves (dashed line) and the mirror mode
waves (solid line) for different ion b values (2.5, 1.0 and
0.5). The middle panels show the growth rate of each mode
for a temperature anisotropy of ions T?/Tk = 4.0. The
bottom panels show the maximum growth rate of each
mode for various temperature anisotropies. In all cases, the
maximum growth rate of L-mode EMIC waves is higher
than that of mirror mode wave. Therefore, the fastest
growing mode of the EMIC instability can initially grow
faster than that of the mirror instability driven by the
temperature anisotropy. We note that, however, the growth

Figure 1. A schematic illustration of the magnetosphere of the Earth. The white lines show the
interplanetary magnetic field (IMF).

A10203 SHOJI ET AL.: MIRROR AND L-MODE EMIC INSTABILITIES

2 of 13

A10203



rate does not correspond directly to the increase of the total
energy of each mode.

3. Hybrid Simulation

[9] We analyze the competing process between the L-mode
EMIC andmirror instabilities using a three-dimensional hybrid
code for three models: one-dimensional, two-dimensional,
and three-dimensional physical models.

3.1. Basic Equations and Parameters

[10] The basic equations of the hybrid code are given as
follows:

r� E ¼ � @B
@t
; ð2Þ

r � B ¼ m0J ; ð3Þ

�eneE þ J e � B�rpe ¼ 0; ð4Þ

dvH

dt
¼ qH

mH

E þ vH � Bð Þ; ð5Þ

where E is the electric field, B is the magnetic field, m0 is
the magnetic permeability in vacuum, and J is the current
density. We have neglected the displacement current.
[11] Equation (4) shows the momentum equation of the

electron fluid, in which the inertia of the electron fluid has
been neglected. The value �e is the charge of an electron
and Je and pe are the current and pressure of electrons,
respectively. The current of the electron fluid is given by

J e ¼ J � qHnHvH: ð6Þ

We assume adiabatic variations of the electron pressure pe:

pe ¼ pe0 ne=n0ð Þg ; ð7Þ

where pe0 and n0 are the initial pressure and density of
electrons, respectively, and g is the ratio of specific heat.
The charge density of electrons is given by the quasineu-
trality condition. Equation (5) shows the equation of motion
of protons, where vH, qH, mH are the velocity, charge, and
mass of protons.
[12] In this hybrid code, the Current Advance Method and

the Cyclic Leapfrog (CAM-CL) modified by Buneman-
Boris method [Matsumoto and Omura, 1993] are used to

Figure 2. The linear analysis of each mode. The top panels show the w-k diagram of the L-mode EMIC
waves (dashed line) and the mirror mode waves (solid line) for different ion b. The middle panels show
the growth rate of each mode. The temperature anisotropy of ions in these panels is 4.0. The bottom
panels show the maximum growth rate of each mode as a function of the temperature anisotropy for a
constant value b.
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calculate the equation of motion of ions. For computing the
ion current in each grid, we used the ‘‘area sharing method’’
to improve the accuracy. Moreover, the three-point digital
filter [Birdsall and Langdon, 1985] is applied to suppress
current noise that can arise in high wave number space
caused by a lack of particles.
[13] The bi-Maxwellian protons are uniformly distributed

in the simulation space. The number of superparticles in the
simulation is Np = 231, the charge to mass ratio is qs/ms =
1.0, the plasma frequency of proton is wpH/WH = 300. The
thermal speeds of protons in the parallel and perpendicular
directions are VkH/VA = 0.707 and V?H/VA = 1.414,
respectively, where VA is the Alfven velocity of protons.
Thus the temperature anisotropy is T?/Tk = 4.0 and the ion

beta in the parallel direction is bkH =
nmV 2

kH=2

B2
0
= 2m0ð Þ = 0.50, where

m0 is the permeability in vacuum. The maximum growth
rate of the L-mode EMIC instability and the mirror
instability is then 0.28 and 0.16 as shown in Figure 2,
respectively. These ion parameters are the same in the three
different simulation models. In the Earth’s magnetosheath, the
temperature anisotropy and beta value of ions are inversely

correlated in the range of 1.2 � T?/Tk � 5.0 and 0.01� bk �
10.0 because of the regulation of the EMIC instability [Fuselier
et al., 1994]. These observations represents the results of the
instability. In this study, we analyze the instabilities driven by
the fresh injection of the anisotropic protons. Thus we initially
assume a strong temperature anisotropy and a high beta value in
a possible range of observation to drive both L-mode EMIC
and mirror instabilities.
[14] A constant background magnetic field B0 is assumed

in the x direction. The electron beta is be = 1.0. The grid
spacingDx is 1.0VA/WH. The numbers of grid points (nx� ny
ny � nz) are 512 � 512 � 512, 512 � 512 � 1, and 512 � 1
� 1 in the three-dimensional, two-dimensional, and one-
dimensional models, respectively. The number of time steps
is 3200 with Dt = 0.04/WH. Periodic boundary is used in
each dimension.

3.2. Linear Stage Competition Between Mirror
and L-Mode EMIC Instabilities

[15] Figures 3a and 3b show the time histories of the L-
mode EMIC waves and the mirror mode waves at mx = 41,
my = 1, mz = 1 and mx = 33, my = 40, mz = 1, respectively,
where mj (j = x, y, z) is the mode number in each direction.
The growth rates of each wave have good agreement with
those given by the kinetic linear theories (dashed lines) in
the simulation models. The L-mode EMIC waves initially
grow faster than the mirror mode waves.
[16] In Figure 3a, the effect of the mirror mode waves on

the saturation levels of the L-mode EMIC waves is also
shown. The initial linear growth rates of the L-mode EMIC

Figure 3. (a) The effect of mirror instability on the
saturation levels of the L-mode EMIC waves at mx = 41,
my = 1, mz = 1. (b) The saturation levels of the mirror mode
waves at mx = 33, my = 40, mz = 1. In each panel, the black,
blue, and red lines show the saturation level in the one-
dimensional, two-dimensional, and three-dimensional mod-
els, respectively, and the dashed black lines show the
theoretical growth rate of each mode at the initial phase.

Figure 4. The spectrum of B/B0 in the log scale in the two-
dimensional model. (a) t = 17.92/WH in the linear stage. (b) t =
120.32/WH in the nonlinear stage.
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waves are the same in all simulation models. As we discuss
later in section 3.6, the growth of the mirror mode waves
relaxes the temperature anisotropy of protons more effec-
tively in the three-dimensional model than in the two-
dimensional model. As the spatial dimension increases,
the available free energy for the L-mode EMIC instability
are lost faster to the mirror mode waves, and the growth
time of the L-mode waves becomes shorter. Therefore
the saturation levels of the L-mode EMIC waves are very
different in these two simulation models. Indeed, in the
three-dimensional model, the mirror mode and L-mode
EMIC waves have similar amplitudes for these parameters,
whereas in one-dimensional or two-dimensional models,
the L-mode EMIC waves dominate the mirror mode by over
one order of magnitude in amplitude.
[17] The spectrum of B/B0 in the log scale in the two-

dimensional and three-dimensional models at t = t1 = 17.92/
WH are shown in Figures 4a and 5a, respectively. In Figure 5,
the left and middle panels are the spectrum for mz = 1 and
mx = 26 (which correspond to kz = 0VA/WH and kx = 0.30VA/
WH) planes, respectively. The right panel is a schematic
drawing of the spectrum in the three-dimensional wave
number space. In the wave number vector space of both
models, note the mirror mode waves excited at oblique
angles and the L-mode EMIC waves excited mostly in the
direction parallel to B0. In Figure 4a and the left panel of
Figure 5a, the L-mode EMIC waves are excited faster than
the mirror mode waves. The spectrum of L-mode EMIC
waves is much stronger than that of mirror mode waves,
especially in two-dimensional model. This is because the
growth rate of the L-mode EMIC wave is higher than that of

the mirror mode wave. The mirror mode waves, on the other
hand, grow slowly in oblique directions in both models.
Because of symmetry, the spectrum of the mirror mode
waves spreads in all perpendicular direction as shown in the
middle panel of Figure 5a. All of the cross sections of the
wave number space including x axis are the same. Therefore
the mirror mode waves in the wave number space form a
torus-like structure shown in the right panel of Figure 5a. In
this panel, the center structure is the L-mode EMIC waves
and the surrounding structures are the mirror mode waves.
[18] We identify the magnetic energy density of each wave

by the following method and plot its time history in Figure 6.
Examination of thewave spectra shows that the L-modeEMIC
waves and mirror mode waves are separated by the angle q =
30� between the wave number vector k and B0. Accordingly,
we define the ‘‘L-mode EMIC wave range’’ to be 0� � q
� 30�, and the ‘‘mirror mode wave range’’ to be 30� < q
� 80�. We divide the spectra of the magnetic field into
these two ranges of the wave number vector space, and
integrate the value of jB(k)/B0j2 in each range. Figures 6a
and 6b show results of the two-dimensional and three-
dimensional simulations, respectively.
[19] We find a clear difference in the saturation levels of

the L-mode EMIC and mirror instabilities in the two-
dimensional and three-dimensional models. In the two-
dimensional model, shown in Figure 6a, the magnetic
energy density of the L-mode EMIC waves attains a larger
value than that of the mirror mode waves. This is caused by
the L-mode linear growth rate being larger than that of the
mirror mode waves. In the three-dimensional model shown
in Figure 6b, however, the mirror mode waves gains larger

Figure 5. The log scale spectrum of B/B0 in the three-dimensional model. A schematic drawing is
shown for illustration. (a) t = 17.92/WH in the linear stage. (b) t = 120.32/WH in the nonlinear stage.
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free energy than the L-mode EMIC wave. In the oblique
direction region the mirror mode waves can exist over a
wider range of the wave numbers because the degree of
freedom of the wave number vector space increases because
of another perpendicular direction kz. In the two-dimension-
al model, the structures are uniform in the kz direction, while
in the three-dimensional model the wave number vectors of
the mirror mode waves form the torus-like structure shown
in the right panel of Figure 5a. As a result, the mirror mode
waves gain more free energy than L-mode EMIC wave,
even though the linear growth rate is still smaller than that
for the L-mode EMIC wave.

3.3. Effect of Initial Thermal Fluctuation

[20] There is a possibility that the L-mode EMIC instabil-
ity becomes dominant although the mirror instability obtains
the geometrical three-dimensional advantage, as we have
explained in the previous section. In much lower initial
thermal noise case, the growth time of the L-mode EMIC
waves becomes longer. As a result, the amplitude of the L-
mode EMIC waves becomes larger than that in the higher
noise case. In such extreme cases, the mirror instability will
not dominate over the L-mode EMIC instability. We will
calculate each wave energy density and estimate the effect
of initial thermal fluctuation on the competition below.
[21] Since the timescale of the mirror instability is much

slower than the cyclotron motion of protons, this phenom-

enon is gyrotropic and the spectrum in the wave number
space becomes symmetric in the perpendicular plane. This
is verified by the simulation result shown in Figure 5a. We
assume a mirror mode wave which has only specified wave
numbers (kk, k?) = (kkM, k?M); this forms a ‘‘ring’’ in the
three-dimensional wave number space. The parallel com-
ponent of the mirror mode wave is given by

BMk k; tð Þ ¼ BM0d kk � kkM
� �

d k? � k?Mð ÞegMt ; ð8Þ

where BM0 is the initial thermal noise for the mirror mode

wave, k? (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
) is the wave number in the

perpendicular direction and d(x) is Dirac’s delta function.
[22] By inverse Fourier transform, we obtain the wave

amplitude in the real space:

BMk x; tð Þ ¼ k?MBM0

2pð Þ2
J0 k?M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p� �
eikkMxþgMt; ð9Þ

where J0(x) is the Bessel function of order 0. From rrr � B =
0, we obtain the perpendicular component of the mirror
mode wave, BM?:

BM? ¼ �
kkM
k?M

BMk: ð10Þ

We also obtain one of the transverse components of the L-
mode EMIC wave at (kk, k?) = (kkL, 0) in the same manner:

BL? x; tð Þ ¼ BL0

2pð Þ3
ei kkLx�wL tð ÞþgLt ; ð11Þ

where BL0 is the initial thermal noise for the L-mode EMIC
wave.
[23] We calculate variation of wave energy densities over

the time period tg during which both wave modes grow
according to the linear growth rates. Since the total ampli-
tude of the mirror mode wave BM can be expressed by BMk
as BM

2 = BM?
2 + BMk

2 = (1 + kkM
2 /k?M

2 )BMk
2 , we obtain the

wave energy variation of the mirror mode wave:

DEM ¼ jBM x; tg
� �

j2 � jBM x; 0ð Þj2
D E

¼ B2
M0

16p3
e2gMtg � 1
� �

1þ
k2kM

k2?M

 !Z 2p

0

J 20 pð Þpdp; ð12Þ

where hxi shows the mean value of x in the volume. On the
other hand, the L-mode EMIC wave has two perpendicular
components since it has the left-handed circular polariza-
tion. Thus, the total amplitude of the L-mode EMIC wave
BL can be expressed by BL? as BL

2 = BLy
2 + BLz

2 = 2BL?
2 .

From equation (11), we calculate the wave energy of the
L-mode EMIC wave:

DEL ¼ jBL x; tg
� �

j2 � jBL x; 0ð Þj2
D E

¼ B2
L0

2pð Þ6
e2gLtg � 1
� �

:

ð13Þ

Figure 6. Time evolution of the magnetic energy density of
the L-mode EMIC waves and the mirror mode waves in the
(a) two-dimensional and (b) three-dimensional model. The
dashed line shows the energy of the L-mode EMICwaves, and
the solid line shows that of the mirror mode waves.
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In the present simulation, at the end of the linear growing
stage, we find that the energy of the mirror mode waves is
larger than that of the L-mode EMIC waves. This is
expressed as DEM /DEL > 1. Substituting equations (12)
and (13) into the inequality, we obtain the condition of the
initial thermal fluctuations for the dominance of the mirror
instability:

BL0

BM0

� �2

< 4p3
e2gMtg � 1

e2gLtg � 1
1þ

k2kM
k2?M

 !Z 2p

0

J 20 pð Þpdp

’ 23:2
e2gMtg � 1

e2gLtg � 1
1þ

k2kM
k2?M

 !
: ð14Þ

Assuming BM0 = BL0 and e2gt � 1, the value of tg should
satisfy the condition (15):

tg <
log 1þ k2kM=k

2
?M

� �
þ 3:14

2 gL � gMð Þ : ð15Þ

Substituting the simulation parameters, gM = 0.16WH, gL =
0.28WH, k?M/kkM = tan 50�, into equation (15), we obtain
the condition for the dominance of the mirror instability:

tg < 16:8=WH: ð16Þ

From Figure 3, we confirm that the value of tg in the
simulation satisfies this condition. Assuming tgWH � 1,
we rewrite equation (14) as

BL0

BM0

< 7:49e� gL�gMð Þtg : ð17Þ

If the initial fluctuations can satisfy this condition, the
mirror mode wave can gain more free energy than the
L-mode EMIC wave, even though gL is larger than gM. In an
extreme case where BL0 is much larger than BM0, the L-mode
EMIC instability will dominate over the mirror instability.
However, the realistic conditions BM0� BL0 and (gL� gM)tg
< 2 result in the dominance of the mirror mode wave.

3.4. Long Time Evolution of L-Mode EMIC Wave

[24] The mirror mode instability in the three-dimensional
model effectively diffuse the temperature anisotropy as we
discuss in section 3.6. It makes the linear growth rates and
wave numbers of L-mode EMIC waves smaller than those
in the two-dimensional model before the end of the growth
phase. The L-mode EMIC waves still grow as we can see in
Figure 3a (around 20/WH < t < 30/WH). When the amplitude
of the L-mode EMIC waves reaches a sufficient level,
the forward and backward propagating waves form a non-
linear static potential F which is produced by the v? � B?
term [Omura et al., 1988; Omura, 1991]. It can be expressed
as

F ¼ m

q

WH

k

BL?
B0

� �2 w
WH � w

cos 2kxþ q0ð Þ; ð18Þ

where, q0 is the phase at x = 0. Because of particle trapping by
this nonlinear potential, the energy of the L-mode EMIC
waves is transferred to proton kinetic energy. Figure 7 shows
the isodensity curves of the protons at the initial time and at
the saturation time. We find heating of the whole proton
distribution function caused by the nonlinear trapping.
[25] We also note that there is another nonlinear effect of

the L-mode EMIC waves. As we can see in Figure 4b and
the left panel of Figure 5b, which show the spectra at t = t2 =
120.32/WH, the spectrum of the L-mode EMIC waves in the
two-dimensional and three-dimensional models shifts to
lower wave numbers. This transfer of the energy from
higher wave numbers to lower wave numbers is due to a
nonlinear effect. To show details of the nonlinear evolution
of the L-mode EMIC waves, we focused on the spectra of
the electric and magnetic fields at ky = kz = 0.
Figure 8 shows logjB?(kx, t)/B0j and logjEk/(VAB0)j in the
one-dimensional, two-dimensional and three-dimensional
models. The B?(kx, t) component and Ek(kx, t) component
include only the L-mode EMIC wave and acoustic wave,
respectively. At the initial stage, the L-mode EMIC waves
are excited and there is no Ek(kx, t) component because the
L-mode EMIC wave is a purely transverse wave. After
linear growth, the spectrum of the dominant L-mode
EMIC waves starts to shift to lower wave number vectors,
and the acoustic wave is generated at higher wave
numbers than the B?(kx, t) component, and it also shifts
to the lower wave numbers. Although the growth rate of
the EMIC instability decreases, the EMIC waves still grow
to a sufficient amplitude that induces the parallel heating
of resonant protons by the nonlinear potentials and the

Figure 7. The isodensity curves of protons in the three-
dimensional model (a) at t = 0 and (b) at t = 40.32/WH. The
dashed lines show the resonance velocity of protons for the
fastest growing mode of EMIC waves.
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inverse cascading process. These nonlinear processes
terminate the growth of the EMIC waves.
[26] Figures 9a and 9b show the dispersion relations (w-kx

diagram) of the L-mode EMIC waves during 0 < t < 25.6/WH

and the ion acoustic waves during 25.6/WH < t < 51.2/WH,
respectively. The white curve in Figure 9a is the dispersion
relation that we obtained by linear analysis (see section 2).
Because we use a Fourier transform for a short time
interval, the spectrum obtained by the simulation is broad
in frequency. There are forward and backward propagating
L-mode EMIC waves present. We choose one each of the
forward and backward propagating waves, and show them
by red arrows. These two waves and the parallel propagat-
ing ion acoustic waves (which are shown by the yellow
arrow), satisfy momentum and energy conservation rela-
tions (19) and (20) shown in the works of Sagdeev and
Galeev [1969] and Terasawa et al. [1986].

kf ¼ �kb þ kia ð19Þ

wf ¼ wb þ wia ð20Þ

In the above (kf, wf) and (kb, wb) are sets of the wave number
and the frequency for the forward and backward propagat-
ing L-mode EMIC wave, respectively, and (kia, wia) is the
same for the ion acoustic wave. These three points and the
origin (0, 0) form a parallelogram in the w-kx diagram. In
this three-wave coupling process, the energy of the forward
propagating mode is converted to the backward propagating
mode and the ion acoustic mode. Because of the symmetry
of the simulation space, the same nonlinear process takes

place in the opposite direction. This means that we have
another parallelogram with the backward propagating mode.
The phase velocity of the ion acoustic wave is given as

wia

kia
¼ wf � wb

kf þ kb
’ 0:1� VkH; ð21Þ

and thus the energy of the ion acoustic mode is effectively
used to heat the protons. The L-mode EMIC waves lose
their energy and their spectra cascade to lower wave
numbers. Figure 9c shows the dispersion relation computed
in the range of 25.6/WH < t < 51.2/WH. The red arrows in
this panel indicates the forward and the generated backward
propagating waves.
[27] Figure 10 shows further evidence for the nonlinear

effect on the L-mode EMIC waves. Red lines and blue lines
show the amplitude of the L-mode EMIC waves at the
higher and lower wave number, respectively. Initially, the
higher modes grow linearly in each model. In the two-
dimensional model, after the higher modes stop growing,
they start to decrease and the lower modes start to grow.
Therefore shift of the spectrum of L-mode EMIC waves are
mainly caused by the nonlinear effect in the two-dimen-
sional model. On the other hand, in the three-dimensional
model, one of the lower modes (mx = 21) initially grows
slowly at the initial time and another one starts to grow after
the higher modes saturate. This means the linear effect and
the nonlinear effect coexist in the three-dimensional model.
The shift of the spectrum is caused by these factors. The
magnetic field energy of L-mode EMIC waves takes the
maximum value and subsequently decreases to a constant
level in both two-dimensional and three-dimensional models.

Figure 8. The spectra of B?(kx, t)/B0 (EMIC wave) and Ek(kx, t)/(B0VA) (acoustic wave) in the log scale
in the (a) one-dimensional, (b) two-dimensional, and (c) three-dimensional models.
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3.5. Long Time Evolution of Mirror Mode Structure

[28] Since protons are heated in the parallel direction by
the nonlinear evolution of the L-mode EMIC waves, the
temperature anisotropy reaches the threshold of the mirror
instability, and thus the mirror mode waves stop growing. In
Figure 4b and the left panel of Figure 5b, we can find that
the wave numbers of the excited mirror mode waves also
change in wave number space in both models. The energy
of the magnetic field that exists in the large wave number
modes is transferred to smaller wave number modes. In the
three-dimensional model, this means the torus-like structure
in the wave number space changes its form to the smaller

one in the lower wavenunber as shown in the right panel of
Figure 5b.
[29] In Figure 11, which shows the time evolution of Bk at

tWH = 17.92, 30.72, 43.52, and 120.32, we find clear
formation of magnetic structures of the mirror mode waves
in both two-dimensional and three-dimensional models. In
these panels, the color bar is tuned to show the clear
structures. The actual maximum values of the amplitude are
0.31 and 0.63 in the two-dimensional and three-dimensional
models, respectively. It is noted that the L-mode EMIC
waves do not have any parallel component of the magnetic
field. Since there are no kz component of the wave number
vector in the two-dimensional model, stripes of magnetic
structures are formed. In the three-dimensional model, the
mirror mode structures are different from those in the two-
dimensional model because of the third dimension. In both
two-dimensional and three-dimensional models, the mirror
mode waves remain as larger structures at the end of the
simulations (t = t2).
[30] As we can see in Figure 6b, the energy of the mirror

mode waves does not decrease as much as in the case of the
L-mode EMIC waves. This means coalescence of the mirror
mode waves does not contribute to the heating of protons in
the nonlinear stage. Then, the nonlinear evolution is dom-
inated by the inverse cascading of the L-mode EMIC waves.
This is another reason why the mirror instability is dominant
in the magnetosheath.

Figure 9. The dispersion relation (w-kk diagram) of the L-
mode EMIC waves at (a) 0 < tWH < 25.6 and (c) 25.6 < tWH

< 51.2 and that of the ion acoustic waves at (b) 25.6 < tWH <
51.2. The red arrows show forward and backward
propagating L-mode EMIC waves, respectively. The yellow
arrows indicate a forward propagating ion acoustic wave.

Figure 10. The amplitude of the L-mode EMIC wave for
the various mode numbers (m = 60, 41 with red line and m =
21, 16 with blue line) in the (a) two-dimensional and (b)
three-dimensional models.
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3.6. Heating of Particles

[31] Figure 12a shows the difference of the relaxation of
the temperature anisotropy in the three different simulation
models. Since there is no mirror mode wave in the one-
dimensional model, the L-mode EMIC instability consumes
all of the free energy of the temperature anisotropy. In the
two-dimensional model, the L-mode EMIC waves are
affected by the mirror instability, but the amplitude at the
linear growth stage still becomes much larger than that of
the mirror instability. In the linear stage, because of the
dominance of the mirror instability, the temperature anisot-
ropy in the three-dimensional model decreases more quickly
than that in the one-dimensional and two-dimensional
models. The spreading of the energy spectrum of the mirror

mode waves in the three-dimensional model causes the
effective consumption of the free energy of the temperature
anisotropy.
[32] After the energy density of each wave saturates, the

anisotropy of protons is relaxed slower than that before
saturation. Because of the heating by the nonlinear potential
and the inverse cascading process, the L-mode EMIC waves
lose their energy to thermalize the background protons, and
therefore the system is dominated by the mirror mode waves
in the nonlinear stage. In the later time, the temperature
anisotropy in each model is almost the same. The nonlinear
evolution of the L-mode EMIC instability is almost in the
parallel direction in each model, the protons are heated by
the nonlinear potential and the parallel propagating ion
acoustic waves at the nonlinear stage. This heating is less

Figure 11. The time evolution of Bk/B0 in the x-y plane in the (a) two-dimensional and (b) three-
dimensional models.
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dependent on the differences of the spatial dimension. Then,
the particles should be heated to almost the same level
among the three models. Figure 12b shows the kinetic
energy density of protons in each model. We can find that
the kinetic energies in the parallel and perpendicular direc-
tions are almost the same among the three models.
[33] Figure 13 shows the time evolution of the energy in

the three-dimensional model up to t = t2 = 120.32/WH.
Figure 13a shows the magnetic energy density of each
wave. The solid black line shows jB/B0j2 of the mirror
mode waves, and the dashed black line shows jB/B0j2 of the
L-mode EMIC waves. In the nonlinear stage, the energy of
the L-mode EMIC waves decreases and the kinetic energy
of protons in the parallel direction increases. As the simu-
lation space is the uniform model with the periodic bound-
ary, the initially given total energy should be conserved.
Then, the magnetic energy which decreases at the nonlinear
stage should go into kinetic energy of protons.
[34] Figure 13b shows the value of Ji � E/(B0

2WH/m0),
where Ji is the ion current. Note that when Ji � E > 0, the
energy of electromagnetic waves goes to particles and vice
versa. The timescale of the interaction between the ion
acoustic waves and protons is much faster than that of the

change of the mirror mode structure. The effect of the
induced electric field due to the slow time variation of the
magnetic field is much smaller than that of the ion acoustic
waves. Thus the energy of the mirror mode waves does
not go to protons. Figure 13c shows that the energy of the
L-mode EMIC waves goes to protons through Ji � E.
[35] From the energy conservation law, we can obtain,

@2um
@t2
¼ � @J i � E

@t
; ð22Þ

where um is the average of the magnetic energy density in
the simulation space. In the hybrid simulation, if we assume
the phase speed is much slower than the speed of light c,
then the electric energy density ue = E2/2c2 term can be
neglected. Because the net system energy is conserved such
as um + KH = const., the second derivative of the kinetic
energy @2KH/@t

2 is equal to �@2um/@t2. In the growing

Figure 12. (a) The relaxation of the temperature aniso-
tropy of protons. The black line shows the result in the
one-dimensional model, the blue line shows that in the
two-dimensional model, and the red line shows that in
the three-dimensional model. (b) The kinetic energy of H+

in each direction. The solid line shows the kinetic energy in
the parallel direction, and the dashed line shows that in the
perpendicular direction in each model.

Figure 13. The time evolution of kinetic and magnetic
energy in the three-dimensional model. (a) The magnetic
energy density of each mode. (b) The integrated value of
J � E/(B0

2WH/m0) in the simulation space. (c) The kinetic
energy density of protons KH/(B0

2/2m0) in the three-
dimensional model.
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phase, when the sign of @2um/@t
2 is positive, the electro-

magnetic waves grow exponentially, and when it is
negative, they suffer from the nonlinear effect. Then,
equation (22) indicates we can judge whether linear or
nonlinear growth is dominant in the growing phase with the
sign of the derivative of Ji � E/(B0

2WH/m0). At the minimal
point of Ji � E/(B0

2WH/m0), there is the point of change from
linear growth to nonlinear growth. From Figure 13b,
showing Ji � E/(B0

2WH/m0), we find the time at the minimal
point is t = 23.04/WH, and this time agrees with the time
when the ion acoustic waves are generated (from the bottom
panel of Figure 8c).

4. Discussion and Conclusions

[36] By expanding the simulation system from a two-
dimensional model to a three-dimensional model, we find
that the mirror instability dominates over the L-mode EMIC
instability because the mirror mode waves form torus-like
structures in the three-dimensional wave number space as
shown in Figure 5a. We also derived the theoretical condi-
tion of the initial thermal fluctuations for the dominance of
the mirror instability. The realistic conditions result in the
dominance of the mirror mode wave.
[37] The saturation level of the L-mode EMIC waves in

the three-dimensional model becomes smaller than those in
the one-dimensional and two-dimensional models because
the mirror instability effectively consumes the free energy of
the temperature anisotropy. In Figure 7, we found the
nonlinear heating of the whole proton distribution functions.
We cannot find the quasilinear effect which occurs near the
resonance velocity of the fastest growing mode of EMIC
waves (’0.4VA). We therefore conclude that saturation of
the L-mode EMIC waves is caused by heating by the
nonlinear potentials and by nonlinear wave-wave coupling.
[38] In the nonlinear stage, the kinetic energy is almost

the same among the one-dimensional, two-dimensional, and
three-dimensional models as shown in Figure 12a. From
Figure 6, we find the nonlinear evolution is dominated by
the L-mode EMIC instability. In all models, the L-mode
EMIC waves transfer their energy to ion heating by the
nonlinear potentials and the generated ion acoustic waves.
With these nonlinear processes, the L-mode EMIC waves
lose their energy quickly. These phenomena take place with
the parallel propagating waves, and thus the nonlinear
heating occurs almost in the parallel direction. Because of
these nonlinear heating of protons in the parallel direction,
the temperature anisotropy decreases to the threshold of
the mirror instability, and thus the growth of the mirror
mode waves saturates.
[39] Coalescence of the mirror mode structures proceeds

after the saturation of the mirror instability in both two-
dimensional and three-dimensional models. The topology of
the mirror mode structures in the three-dimensional model
differs from that in the two-dimensional model because of
the difference in degree of freedom in the perpendicular
direction. This causes a clear difference in nonlinear evo-
lution of the magnetic field structures. At the end of the
nonlinear evolution, these structures still remain. This
coalescence occurs on a longer timescale than for inverse
cascading of the L-mode EMIC waves. In the magneto-
sheath, this nonlinear effect on the dominance of mirror

instability should occur not near the bow shock but in
regions of the deep magnetosheath or magnetopause, where
the L-mode EMIC waves have reached nonlinear levels and
are decaying. Therefore, it is likelier to observe mirror mode
waves in inside the magnetosheath rather than near the bow
shock.
[40] We note that Tsurutani et al. [1982] has measured the

scale size of mirror mode waves at Earth and found it to be
much larger than the ion inertial length. As the ion beta and
temperature anisotropy becomes lower, the wavelength of
the most unstable mode becomes larger [Hasegawa, 1969].
This mode, however, cannot grow enough because the
maximum growth rate is small, and the temperature anisot-
ropy is mostly consumed by the L-mode EMIC wave. We
found that the scale size becomes larger and comparable to
the observed one through the coalescence process as shown
in Figure 11. The wave amplitude is still large after this
nonlinear process takes place, and the observed mirror mode
waves also have large amplitude. Therefore, the large mirror
mode structure in the magnetosheath should be caused by not
only the linear growth but also the nonlinear process. For
more precise comparison with the observations, more para-
metric analyses are needed, and moreover the nonlinear
evolution must be followed in an open system with aniso-
tropic ion population injected upstream of the magneto-
sheath. Such simulations are left as a future study.
[41] To our knowledge, this is the first study to analyze

the competing process between the L-mode EMIC instabil-
ity and the mirror instability by the three-dimensional
hybrid simulation. Mirror instability becomes dominant
for two reasons: the large volume of the mirror mode waves
in the three-dimensional wave number space and the quick
dissipation of the L-mode EMIC waves due to nonlinear
evolution. More analysis for the slower nonlinear process is
left for the future work.

Appendix A: Derivation of the Waveform of the
Mirror Mode Wave in the Three-Dimensional
Model

[42] Calculating the Inverse Fourier Transform of equa-
tion (8), we obtain the waveform in the real space:

BMk x; tð Þ ¼ BM0

2pð Þ3
Z

d kk � kkM
� �

eikkxdkk

�
ZZ

d k? � k?Mð Þei ykyþzkzð ÞdkydkzegMt

¼ BM0

2pð Þ3
eikkMxþgMt

ZZ
d k? � k?Mð Þei ykyþzkzð Þdkydkz:

ðA1Þ

We change the orthogonal coordinates to the polar
coordinates, (ky, kz) 7! (k?, f), and then equation (A1) is
calculated as

BMk x; tð Þ ¼ BM0

2pð Þ3
eikkMxþgMt

�
ZZ

d k? � k?Mð Þei yk? cosfþzk? sinfð Þk?dk?df

¼ k?MBM0

2pð Þ3
eikkMxþgMt

Z 2p

0

eik?M y cosfþz sinfð Þdf: ðA2Þ
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The phase part in the integrated function is calculated as
y cosf + z sinf =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
cos(f + f0), where f0 =

tan�1(z/y) (tan�1 x is arctangent function). Therefore we
obtain BMk(x, t) in the three-dimensional model as

BMk x; tð Þ ¼ k?MBM0

2pð Þ3
eik?MxþgMt

Z 2p

0

eik?M
ffiffiffiffiffiffiffiffiffi
y2þz2
p

cos fþf0ð Þdf

¼ k?MBM0

2pð Þ2
J0 k?M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p� �
egMtþikkMx; ðA3Þ

where J0(x) is the Bessel function of order 0. The value
of f0 can be neglected because of the periodicity of the
integrated function.
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