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1 Abstract

In this contribution we propose a general presentation of Eulerian multi-fluid modeling and nu-
merical methods for the simulation of polydisperse evaporating sprays. By spray, we denote a
cloud of spherical liquid droplets of various sizes ranging from submicronic scales up to several
hundred microns which interact with the carrier gaseous phase and among themselves. We deal
with sprays for which the physics of such a two-phase flow is governed at the “kinetic” level,
also called mesoscopic level, by a Williams-Boltzmann spray equation, where the elementary
phenomena such as evaporation, heating, coalescence and secondary break-up can be described
properly. Our objective is to provide a hierarchy of models of Eulerian type with two main
criteria : 1- to take into account accurately the polydispersion of the spray, that is the large size
spectrum, as well as size-conditioned dynamics, evaporation and heating, 2- to keep a rigourous
link with the Williams-Boltzmann spray equation at the mesoscopic level of description. We
start with the original multi-fluid model where the polydispersion is resolved by discretizing the
size phase space into intervals, also called sections in relation to the original work of Greenberg
and Tambour. We present the fundamentals of the model, the associated precise set of related
closure assumptions as well as its implication on the mathematical structure of solutions. We
provide robust numerical methods able to cope with the potential presence of singularities and
a set of validations showing the efficiency of the model and of the related numerical methods.
This approach is very robust but encounters two difficulties : 1- in order to accurately resolve
evaporation and size conditioned dynamics in phase space, it requires a high number of size
intervals, 2- for finite Stokes numbers and large Knudsen numbers, it fails to reproduce droplet
crossing trajectories since it relies on a hydrodynamic local velocity equilibrium. We thus present
recent studies based on high order moment methods which allow to overcome these two diffi-
culties. Then, the models are validated by comparisons with experimental measurements in the
configuration of pulsated free jets with polydisperse spray injection, a dedicated well-controled
environment with coupled Laser diagnostics. We conclude this lecture with a chapter on the
computational multi-fluid dynamics and prove that the proposed models and related numerical
methods and algorithms are well-suited for 2D and 3D simulations. They prove to be very accu-
rate versus a Lagragian approach and eventually involve a small amount of numerical diffusion
as a consequence of a precise choice of algorithms. Their ability for high performance comput-
ing on parallel architecture with dedicated algorithms is also demonstrated. In the framework
of this Lecture Series, it provides a set of very interesting tools for the purpose of simulating
nanoparticles in fluid flows.

2 Introduction

These Lecture Notes are devoted to the modeling and numerical methods used in the numerical
simulation through Eulerian multi-fluid models of polydisperse evaporating sprays in gaseous
flows. The main background application is two-phase combustion. Indeed, in many industrial
combustion applications such as Diesel engines, fuel is stocked in condensed form, injected as a
disperse liquid phase in a gaseous flow and burned once it has evaporated. Two phase effects as
well as the polydisperse character of the droplet size distribution, since the droplets dynamics
depend on their inertia and are conditioned on size, can significantly influence flame structure.
Consequently, it is important to have reliable models and numerical methods in order to be able
to describe precisely the physics of two-phase flows where the disperse liquid phase is constituted
of a cloud of particles of various sizes that can evaporate, coalesce or aggregate, break-up and
also have their own inertia and size-conditioned dynamics or heating properties.

Even if crucial in combustion applications, such a physics is also encountered in solid propel-
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lant rocket boosters, where the cloud of alumina particles experiences coalescence and become
polydisperse in size, thus determining its global dynamical behavior [1, 2]. The coupling of
dynamics, conditioned on particle size, with coalescence or aggregation as well as with evapora-
tion can also be found in the study of fluidized beds [3] and planet formation in solar nebulae
[4, 5]. In fact such models and methods are also used for submicronic particles like aerosols (see
[6] and references therein) and soots (see [7, 8]); in such cases, the particles only have a very
small inertia, experience Brownian motion and usually satisfy a Population Balance Equation
(PBE) for the particle size distribution describing various phenomena (aggregation, breakage,
growth, oxidation...). Here, we aim at describing the whole range of particle sizes from inertial to
non-inertial particles, droplets or aerosols and nanoparticles as long as a “kinetic” description is
available and reproduces reasonably well the physics of the involved phenomenon. The purpose
of these Lecture Notes is to provide modeling and numerical tools for such scenarios. Since our
main area of interest is combustion, we will work with sprays throughout this paper, keeping in
mind the broad application fields related to this study.

By spray, we denote a disperse liquid phase constituted of droplets carried by a gaseous
phase. Even with this seemingly precise definition, two approaches corresponding to two levels
of description can be distinguished. The first, associated with a full Direct Numerical Simulation
(DNS) of the process, provides a model for the dynamics of the interface between the gas and
liquid, as well as the exchanges of heat and mass between the two phases using various techniques
such as the Volume Of Fluids (VOF) or Level Set methods (see for example [9, 10, 11, 12]).
This “microscopic” point of view is very rich in information on the detailed properties at one
droplet level concerning, for example, the resulting drag exerted on one droplet depending on
its surroundings flow or the details of one event of droplet break-up following the geometry
of the interface between the phases. The second approach, based on a more global point of
view thus called “mesoscopic”, describes the droplets as a cloud of point particles for which the
exchanges of mass, momentum and heat are described using a statistical point of view and the
details of the interface behavior, angular momentum of droplets, detailed internal temperature
distribution inside the droplet, etc., are not predicted. Instead, a finite set of global properties
such as size of spherical droplets, velocity of the center of mass, temperature are modeled and
denoted internal variables. Because it is the only one for which numerical simulations at the
scale of a combustion chamber or in a free jet can be conducted, this “mesoscopic” point of view
will be adopted in the present Lecture Notes. The proposed methods will be valid as far as such
a description is available.

The principal physical processes that must be accounted for are (1) transport in physical
space, (2) droplet heating and evaporation, (3) acceleration of droplets due to drag, and (4)
coalescence and break-up of droplets leading to polydispersity. Spray models, where a spray is
understood as a disperse phase of liquid droplets, i.e. with a liquid volume fraction much smaller
than one, have a common basis at the mesoscopic level (also called “the kinetic level” by analogy
to the kinetic theory of gases), under the form of a number density function (NDF) satisfying a
Boltzmann type equation, the so-called Williams-Boltzmann equation [13, 14]. This equation is
also called the Population Balance Equation (PBE), Generalized Population Balance Equation
(GPBE) or General Dynamic Equation (GDE) in the chemical engineering community [15, 16].
The Williams-Boltzmann equation implies several underlying assumptions, the major one being
associated to the possibility of closing the equation in the “one-particle” probability density
function (PDF) from the Liouville equation in the multi-particle joint PDF [17]. The reader
who is not familiar with the kinetic theory of gases approach will find a precise adapted version
to the present subject in [15]. The internal variables characterizing one droplet are size, velocity
and temperature, so that the total phase space is usually high-dimensional. Such a transport
equation describes the evolution of the NDF of the spray due to evaporation, to the drag force
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of the gaseous phase, to the heating of the droplets by the gas and finally to the droplet-droplet
interactions, such as coalescence and break-up phenomena [1, 18, 19, 20, 21, 22, 23]. The spray
transport equation is then coupled to the gas phase equations. The two-way coupling of the
phases occurs first in the spray transport equations through the rate of evaporation, drag force
and heating rate, which are functions of the gas phase variables and second through exchange
terms in the gas phase equations.

There are several strategies in order to solve the liquid phase and the major challenge in
numerical simulations is to account for the strong coupling between all the involved processes.
A first choice is to approximate the NDF by a sample of discrete numerical parcels of particles
of various sizes through a Lagrangian–Monte-Carlo approach [1, 18, 19, 20, 24]. It is called
Direct Simulation Monte-Carlo method (DSMC) by Bird [25] and is generally considered to
be the most accurate for solving Williams-Boltzmann equation; it is especially suited for DNS
since it does not introduce any numerical diffusion, the particle trajectories being exactly re-
solved. This approach has been widely used and has been shown to be efficient in a number
of cases. Its main drawback, that has shown recently to be a major one with the development
of new combustion chambers leading to combustion instabilities (Lean Premixed Prevaporized
combustor with spray injection), is the coupling of a Eulerian description for the gaseous phase
to a Lagrangian description of the disperse phase, thus offering limited possibilities of vectoriza-
tion/parallelization and implicitation [26]. Besides, it brings another difficulty associated with
the repartition of the evaporated mass at the droplet location onto the Eulerian grid for the
gas description. Moreover for unsteady computations of polydisperse sprays, a large number
of parcels in each cell of the computational domain is generally needed for the convergence of
the numerical method, thus yielding large memory requirement and computational cost. An-
other Lagrangian-type approach is needed in both academic and industrial configurations for
computational cost reasons : the Discrete Particle Simulation (DPS), where each droplet is rep-
resented by a numerical particle [27, 28, 29]. In fact, a coarser version of the DPS is generally
used for which a numerical particle possibly represents several physical droplets [18, 19]. It is
less costly than DSMC but only represents one realization of the statistical process and thus,
it does not provide the same level of information in term of ensemble averages. Eventually, the
DPS approach leads to the same difficulties in terms of optimization and coupling.

The drawback of the cost, coupling and optimization of DSMC and DPS makes the use
of a Eulerian formulation for the description of the disperse phase attractive, at least as a
complementary tool for Lagrangian solvers, and leads to the use of moments methods since
the high dimension of the phase space prevents the use of DNS on the NDF equation with
deterministic numerical methods like finite volumes or finite difference methods. The use of
moments methods leads to the loss of some information but the cost of such methods is usually
lower than the Lagrangian ones for two reasons. The first one is related to the fact that the
number of unknowns we solve for is limited; the second one is related to the high level of
optimization one can reach when the two phases are both described by a Eulerian model. One
of the key issue is then to chose a set of moments in order to capture the dynamics in the internal
variables and a second one, related and not the easiest, is to close the set of equations in the
model.

In the simple situation for which size is the only internal variable, there exists mainly two
options. For submicronic particles like aerosols and soots the numerical solution of the PBE for
the particle size distribution can be obtained by choosing a relevant set of global moments in
size and by using a quadrature method of moments (QMOM in [30, 31]) or a direct quadrature
method of moments (DQMOM in [32]), or other methods presented in the other Notes of this
Lecture Series. This method is very efficient in the univariate case. The alternative is to
discretize the size phase space into size intervals called “sections” or “classes”, thus leading to
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a finite volume-like numerical method [33, 34] sometimes called a multi-fluid model. Let us
underline that most of the time, we want to solve the evolution of the particle size distribution
and the use of a presumed NDF approach encounters severe stability problems [35]. The reasons
is that, for evaporating droplets or soots, the structure of the particle size distribution is strongly
influenced by both the drift velocity in the size variable due to evaporation and growth/oxidation
as well as by the aggregation-breakage phenomena and is far from being self-similar.

Thus, when we extend the set of internal variables and consider the multivariate case, we
can either stick to a general moment method or particularize the size variable and consider a
moment method conditioned on size for the other variables. In the context of inertial droplets,
for which the inertia determines the dynamical behavior, the first method was used in [36]. A
set of global moments in both size and velocity was considered; however, the question of the
choice of moments is still an open question and the multidimensional quadrature does not rely
on firm mathematical grounds such as in the univariate case. The other possibility is to take
moment methods in other internal variables conditioned on droplet size and then to use a multi-
fluid approach, that is a discretization of the size phase space into intervals. As an example,
for inertial droplets, let us consider the droplet size and velocity as the internal variables (the
temperature and other variables lead to the same kind of reasoning). The question of choosing
the velocity moments for a given size has been studied extensively in the kinetic theory literature
[17, 37, 22, 23, 38], we refer to [39] for further reading and will come back to this issue. We
thus divide the size phase space into intervals and use classical velocity moment methods and
closures conditioned on each size interval. In the present Lecture Notes, we choose the second
approach and particularize the size variable.

A first attempt at deriving a fully Eulerian model for sprays polydisperse in size in laminar
configurations with droplets having their own inertia and which was able to capture the dynamics
of droplets with various size, whatever the profile of the NDF, was developed in [33] with the
so-called sectional method. The idea was to consider the disperse phase as a set of continuous
media : “fluids”, each “fluid” corresponding to a statistical average in a size interval between two
fixed droplet sizes, the section. The sprays were then described by a set of conservation equations
for each “fluid”. Greenberg in [33] noticed that such a model has also its origin at the kinetic
level, trying to make the link with the Williams-Boltzmann spray equation. However, they only
provided a partial justification, the complete derivation for the conservation of mass and number
of droplets, the momentum and energy equations being out of the scope of their paper since
the set of rigorous closure assumptions of the conservation equations was not provided. Finally,
their coalescence model did not take into account the relative velocity of colliding particles, thus
making the model only suited for very small particles like soots such as in [7].

The purpose of the present contribution is to present the class of methods called the Eulerian
multi-fluid approach initiated in [23], which was inspired by the sectional approach and extended
to coalescence in [40, 41], to break-up in [42, 43], to turbulent flows in [38, 44, 45] and to
multi-dimensional configurations in [46, 47]. The basis idea behind such a class of models is
to build a model meeting the following criteria : 1- Eulerian description of the disperse liquid
phase, 2- preservation of the link with the kinetic level of description, 3- ability of capturing
the polydispersity in size of evaporating sprays, 4- ability of capturing the dynamics of the
evaporating droplets conditioned on size. The key ingredient in order to obtain such a model
is to preserve the droplet size as an internal variable, but to use a moment approach as far
as velocity and eventually temperature are concerned. For the sake of legibility, the derivation
of the various levels of modeling will be conducted within the framework of simplified droplet
models, since it is straightforward to extend it to richer droplet modeling for which we provide
precise references. Even if it is important for combustion application (see Chapter 5), we will
neglect the heating of the droplets and illustrate the proposed model in the case where the
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internal variables are only the size and the droplet velocity. We refer to the three Ph.D. Theses
of F. Laurent, G. Dufour and S. de Chaisemartin where detailed models can be found [48, 43, 47].

The first model to meet the proposed criteria is the original multi-fluid model as developed in
[48, 23]. Chapter 3 is devoted to this model. From the Williams-Boltzmann equation, we derive
a semi-kinetic model in section 3.1, that is, we preserve the size as a continuous internal variable
but introduce a velocity and eventually a temperature moment closure in order to obtain a set of
partial differential equations. It is equivalent to the original Williams-Boltzmann equation under
the assumption that there exists a single mean characteristic velocity for a given droplet size,
at a given space location and for a given time, around which a generalized Maxwellian velocity
distribution is to be found thus leading to a possible closure of the set of equations. In the
laminar case or in the framework of DNS, it corresponds to the so-called monokinetic velocity
distribution, i.e. no dispersion around the mean, which is a generalization of the usual concept
of Maxwellian distribution (a common assumption of zero temperature used in astrophysics
[49] for example). Even if the whole droplet sizes range is covered, the support of the droplet
number distribution in the velocity phase space is restricted to a one-dimensional sub-manifold
of R

d, parametrized by droplet size [23], d being the spatial dimension. We will successively
present the semi-kinetic model for polydisperse dense evaporating sprays experiencing break-up
and coalescence. However, we will not tackle the case of turbulent flows for which some scales
are not resolved but modeled in these Notes; it corresponds to a usual Maxwellian distribution
for which the dispersion becomes a variable of the problem : the droplet agitation “internal
energy”. We refer to [45] and references therein. The set of assumptions we have identified
allows to relate the obtained model in the laminar case to the pressureless gas dynamics studied
in [49, 50]. Consequently, the mathematical structure of the resulting conservation equations
leads to identified singularities. Section 3.2 is devoted to an illustration of typical singularity
formation and we characterize critical Stokes number associated with it. It will be very helpful
in understanding the physics behind such mathematical behavior, as well as in designing optimal
and robust numerical methods which can reproduce such singularities. From the knowledge of
the semi-kinetic model and of its structural behavior, we design the numerical tools in order
to simulate such a model in section 3.3. This semi-kinetic model is then discretized in the
size variable using a finite volume-like technique [51]. It yields the multi-fluid model for which
we can preserve some level of information about the size distribution with a reasonable and
adaptive computational cost. If a good level of precision is required about the size distribution,
the computational cost is going to be lower but comparable to the Lagrangian one (however the
optimization of the solver through the fully Eulerian description of the two phases leads to a
substantial gain in CPU time as presented in Chapter 6). The method is still able to capture
the behavior of the spray with a coarse discretization in the size phase space [52] and thus a low
computational cost, a definitive advantage in comparison with the Lagrangian methods. The
question of the computational efficiency of such Eulerian approaches is a key question since these
methods are intended to be used in more realistic unsteady configurations as an alternative to the
too costly Lagrangian methods for polydisperse sprays. We have already studied this question
in [46, 47] where the Eulerian multi-fluid approach was shown to offer a good precision with
a relative low cost : without any parallelization, its cost is about the same as the one of a
converged DSMC computation; compared to a DPS it can be five to ten times slower but the
scalability of such a method on parallel architectures eventually provides a faster method for a
higher level of information compared to DPS where the statistical noise can be very high. Finally
section 3.4 is devoted to the numerical illustration and validation of the multi-fluid model in
several test-cases where the simulations are compared to Lagrangian simulations in the context
of one-way coupling in order to precisely evaluate the description of the disperse liquid phase
for a given gaseous flow field. Three representative configurations are chosen for the gaseous
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flow with one-way coupling in order to compare the results obtained by Lagrangian and Eulerian
models for the spray : Taylor-Green vortices, two-dimensional axisymmetric jets and coalescence
in a conical nozzle. Two-dimensional Taylor-Green configuration is a very interesting benchmark
which allows us to prove the computational efficiency and the good behavior of the multi-fluid
for multi-dimensional configurations [46].

Starting from this fundamentals, we focus on the two main limitations of the original multi-
fluid model. First, the method is based on a one mass-moment preservation in each section,
which amounts to considering constant distribution functions in one section or size interval.
Thus, in order to capture the details of the size distribution function as well as size conditioned
dynamics and heating, we have to provide a large amount of sections as explained also in the
coalescence case in Chapter 3. Besides, the closure in velocity distribution conditioned on
size is based on a one node quadrature, the monokinetic assumption, and is equivalent to a
hydrodynamical equilibrium closure. However, in the context of an infinite Knudsen limit, that
is, if the spray is dilute enough and the droplet small enough in such a way that collisions can
completely be neglected, two groups of droplets can cross and produce a multi-modal velocity
distribution which can not be reproduced by the original assumption of the multi-fluid and leads
to singularities as described in Chapter 3. Based on high order moment methods and related
algebra tools we provide in Chapter 4 possibilities to overcome these two difficulties. This work
is based on the ongoing work of D. Kah in his Ph.D. Thesis [53] and corresponds to several
publications [54, 55, 56, 57]. We present a synthesis of these results and the related tools.

Chapter 5 is devoted to validations through comparisons with experimental measurements
in the configuration of pulsated free jets with polydisperse spray injection, a dedicated well-
controlled environment with coupled diagnostics. This work has been the subject of a Sympo-
sium paper [58]. We have designed the experimental set-up and the related diagnostics in order
to be able to capture the size conditioned-dynamics of a polydisperse spray in a laminar periodic
unsteady gaseous flow with strong vortical structures. This is an ideal validation test-case for
the methods we are developing and shows that we are able to reproduce numerically the physics
of such flows for both non-evaporating and evaporating sprays.

Finally, once we have obtained the models and numerical methods and validated them, we
demonstrate in Chapter 6 that such models and methods are very accurate and well suited for
parallel architectures in order to conduct 3D simulations. In the context of two configurations
related to the work conducted in the 2008 Summer Program of the Center for Turbulence
Research at Stanford University and to the Ph.D. Thesis of S. de Chaisemartin, we propose
detailed comparisons with Lagrangian simulations. These configurations are a 2D free jet and
a 3D homogeneous turbulence; the simulations are conducted in the framework of one-way
coupling and with a single code solving the gaseous flow field as well as the disperse liquid phase
with both a Lagrangian approach and a Eulerian multi-fluid approach. It is a very original
pathway since it allows a very detailed analysis of the compared accuracy and computational
cost. Thus we show the ability of the Eulerian multi-fluid models to capture the details of the
dynamics with a very limited amount of numerical diffusion as a result of a precise use of various
algorithms and with a nice scalability on parallel architecture. It foresees the capability of such
methods for more complex 3D configurations and justifies the choices we have made in terms of
models, numerical methods and algorithms.
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3 Multi-fluid fundamentals

3.1 Modeling Fundamentals in a simplified framework

For the purpose of the legibility of the paper, we will present the derivation of the Eulerian multi-
fluid model for polydisperse evaporating sprays which experience coalescence and secondary
break-up from a simplified Williams-Boltzmann equation at the kinetic level of description.

3.1.1 Williams-Boltzmann transport equation

Let us define the number distribution function fa,b of the spray, where fa,b(t,x, φ,u) dxdφdu
denotes the averaged number of droplets (in a statistical sense), at time t, in a volume of size dx
around x, with a velocity in a du-neighborhood of u and with a size in a dφ-neighborhood of φ.
The physical space is taken to be R

d where d is the dimension. The droplets are considered to
be spherical and their sizes are characterized by φ = a rb, where r is the radius of the droplet;
φ can be the radius (a = 1 and b = 1; φ = r), the surface, (a = 4π and b = 2; φ = s) or the
volume (a = 4

3π and b = 3; φ = v). The associated evaporation rate will be denoted Rφ. We
will work mainly with the volume and the surface in the following. Within this section, we will
use the volume and f

4
3
π,3 will be noted f .

For the sake of simplicity and for the purpose of this paper, we are going to consider that the
evaporation process is described by a d2 law without convective corrections, that the drag force
is given by a Stokes law, and finally that the unstationary heating of the droplets does not need
to be modeled so that the evaporation law coefficient does not depend on the heating status of
the droplet. This simplifications are only done for the sake of clarity of the presentation and
have no consequences on the generality of the proposed approach. We refer to [59], [1] and [23]
for more detailed droplet models for which the derivation can be easily extended and the reader
will find the details in the three theses we have dedicated to the development of our model
[48, 43, 47].

The evolution of the spray is then described by the Williams-Boltzmann transport equation :

∂tf + u · ∂xf + ∂v(Rv f) + ∂u.(F f) = Γcoll + Γbu, (1)

where Rv(t,x, v,u) denotes the d2 law evaporation rate Rv = 1
2

(

3v
4 π

)1/3
Rs, where Rs is a

constant, F(t,x, v,u) is the Stokes drag force due to the velocity difference with the gaseous
phase, F = (Ugas(t,x) − u)/τp, Ugas being the gaseous velocity and τp(s), the dynamical time
of the droplet, τp(s) = (ρl s)/(18 πµgas), where ρl is the density of the liquid assumed constant
and µgas the viscosity of the gas; Γcoll is the collision operator leading to coalescence and Γbu

the operator modeling the secondary break-up. These quantities have the following dependence
(t,x, v,u) (except for Γcoll and Γbu which are integral operators depending on f); in general,
they depend on the local gas composition, velocity and temperature and this dependence is
implicitly written in the (t,x) dependence.

It has to be noticed that the refinement of the drag, evaporation and heating models, can
not go beyond a given limit in the context of a kinetic description. The added mass effect in
the aerodynamical forces can be described only through the addition of a new variable in the
phase space which is the time derivative of the velocity of the particle; in the applications we are
considering, it is going to be negligible. Actually, the history terms such as the Basset forces or
the inner temperature distribution of a droplet in the effective conductivity model by [59] can
not be easily modeled in the context of a kinetic description of the spray, as already discussed
in [23]. As a conclusion, the derivation presented in the following on a simplified model, can be
extended to more refined droplet models as long as they do not include history terms.
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3.1.2 Modeling of coalescence

The kinetic model for the collision operator leading to coalescence is taken from [60] and we
neglect the influence of the impact parameter on the probability of rebound of two collisional
partners :

[Co1] We only take into account binary collisions (small volume fraction of the liquid phase).

[Co2] The mean collision time is very small compared to the intercollision time.

[Co3] Every collision leads to coalescence of the partners.

[Co4] During coalescence, mass and momentum are conserved.

Thus Γcoll = Q−
coll + Q+

coll, where Q−
coll and Q+

coll respectively correspond to the quadratic
integral operators associated with creation and destruction of droplets due to coalescence :

Q−
coll = −

∫

v∗

∫

u∗

f(t,x, v,u) f(t,x, v∗,u∗) B(|u − u∗|, v, v∗) dv∗du∗, (2)

Q+
coll =

1

2

∫

v∗∈[0,v]

∫

u∗

f(t,x, v⋄(v, v∗),u⋄(v, v∗,u)) f(t,x, v∗,u∗)B(|u⋄ − u∗|, v⋄, v∗)J dv∗du∗, (3)

where v⋄ and u⋄ are the pre-collisional parameters,

v⋄(v, v∗)=v − v∗, u⋄ =
vu − v∗u∗

v − v∗
, (4)

J is the Jacobian of the transform (v,u) → (v⋄,u⋄), at fixed (v∗,u∗) : J = (v/v⋄)d, with d the
dimension of the velocity phase space [1, 60] and where

B(|u − u∗|, v, v∗) = β(v, v∗) |u − u∗|, β(v, v∗) = π (r(v) + r(v∗))2 , r(v) =

(

3v

4π

) 1
3

(5)

Remark 1. The assumption that all collisions lead to the coalescence of the partners is not
realistic, especially if the colliding droplets have comparable sizes [61] [62]. In such situa-
tions the probability Ecoal, that coalescence really occurs from the collision of two droplets has
to be taken into account; the expression of B then becomes B(|u − u∗|, v, v∗) = Ecoal(|u −
u∗|, v, v∗) β(v, v∗) |u−u∗|. It is possible to treat the coalescence efficiency factor within the pro-
posed model and the reader is referred to [41] for the details. Nevertheless, in the following, for
the sake of simplicity, we will assume Ecoal(|u−u∗|, v, v∗) = 1, which is equivalent to assumption
[Co3].

3.1.3 Modeling of secondary break-up

Similarly the modeling of secondary break-up relies on a statistical approach and can be taken
from [1, 43] :

Γbu(f)(v,u) = −νbuf +

∫

v∗>v

∫

u

νbu(v∗,u∗)h(v, v∗,u,u∗)f(v∗,u∗)dv∗du∗ (6)
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• νbu is the mean break-up frequency of the droplets which is defined through experimental
correlations on the mean break-up time of a droplet from [63, 64]. Following [65] (a
thorough discussion of this issue is to be found in [43]), for Weber numbers beyond the
critical one, we take :

νbu(v,u) =
‖Ugas − u‖

10 r(v)

√

ρl

ρgas
, (7)

where ρgas is the density of the gas, but the mean break-up frequency can be also a function
of both the Weber and the Ohnsorge numbers as in [64].

• h(., ., v∗,u∗) denotes the daughter distribution in terms of size and velocity (v∗,u∗). This
distribution must satisfy the mass conservation constraint :

∫

u

∫ v∗

v=0
v h(v,u, v∗,u∗)dvdu = v∗, (8)

and must be further defined. We take h(v,u, v∗,u∗) = gu(v,u, v∗,u∗)gv(v, v∗,u∗), where
gu(v, v∗,u,u∗) = δ(u − ubu(v, v∗,u∗)), with

ubu(v, v∗,u∗) = Ugas +
u∗ − Ugas

1 + CWe

(√

ρgas

ρl

r(v∗)
r(v)

)2/3
(9)

from [65] and gv(v, v∗,u∗) is the droplet size distribution after break-up.

There is not a single and standard way of modeling the statistics of the daughter droplets;
O’Rourke and Amsden in [66], for example, take an exponantially decreasing function of droplet
radius with the use of a correlation for the Sauter mean radius rsmd in terms of Weber number :
the Wert correlation [67]. Since most of the time, for evaporation sprays, the number density
function as a function of droplet radius linearly approaches zero at zero droplet radius, Dufour
[43] rather introduced, using :

rsmd =

(

3

4π

)1/3

∫ v∗

0
v gv dv

∫ v∗

0
v2/3gv dv

; (v∗)3 =

∫ v∗

0
v3gvdv, (10)

a profile of the droplet size distribution which he assumed exponentially descreasing as a function
of droplet surface :

gs(s, v
∗,u∗) =

η

8 π
exp

(

−
γ

4 π
s
)

, gs(s, v
∗,u∗)ds = gv(v, v∗,u∗)dv, (11)

where the two functions η(v∗,u∗) and γ(v∗,u∗) are determined from the above equalities. The
reader will find the details of the calculation of these two coefficients in [43].

3.1.4 Eulerian semi-kinetic model

In this section, we will recall the first step of the formalism and the associated assumptions
introduced in [23] in order to derive the Eulerian multi-fluid method and explain how this
formalism can be extended in order to treat the coalescence phenomenon between droplets
having their own inertia governed by their size. It is worth noticing that we do take into
account the mean velocity difference of the droplets in the coalescence process as opposed to the
model proposed in [33] which is mainly suited for very small particles such as soots.
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The key idea is to reduce the size of the phase space and to consider only the moments of
order zero and one in the velocity variable at a given time, a given position and for a given
droplet size. The obtained conservation equations, called the semi-kinetic model for the two
fields n(t,x, v) =

∫

f du and ū(t,x, v) =
∫

f udu /n(t,x, v), are only in a close form under a
precise assumption on the support of the original NDF in the whole phase space : the velocity
distribution at a given time, given location and for a given droplet size is a Dirac delta function
[23].

However, this assumption is not directly compatible with the coalescence phenomenon, since
there is no reason for a droplet created by the coalescence of two droplets of various sizes,
which is deduced from momentum conservation, to exactly match the velocity corresponding
to its new size. We first relax the assumption of zero dispersion and assume Gaussian velocity
dispersion and handle the whole positive real line for the possible sizes so that all the collisions
can be described by the model : (v,u) ∈ (0,+∞)×R

d. The semi-kinetic system of conservation
laws is then obtained by taking the limit of zero dispersion in the source terms coming from
coalescence, uniformly in (t,x, v). Summarizing, we obtain the semi-kinetic model in the limit
of zero dispersion of a more general problem where dispersion is allowed and “project” the
original NDF at the kinetic level onto a one-dimensional sub-manifold of velocity phase space
parametrized by droplet size [23].

Proposition 2. Let us make the following assumptions on the spray distribution function:

[H1] For a given droplet size, at a given point (t,x), there is only one characteristic averaged
velocity ū(t,x, v).

[H2] The velocity dispersion around the averaged velocity ū(t,x, v) is zero in each direction,
whatever the point (t,x, v).

[H3] The droplet number density n(t,x, v) is exponentially decreasing at infinity as a function
of v uniformly in (t,x).

Assumptions [H1] and [H2] define the structure of f : f(t,x, v,u) = n(t,x, v) δ(u − ū(t,x, v))
and the semi-kinetic model is given by two partial differential equations in the variables n(t,x, v)
and ū(t,x, v) which express respectively, the conservation of the number density of droplets and
their momentum, at a given location x and for a given size v :

∂tn + ∂x · (nū) + ∂v(nRv) = Gn
coll + Gn

bu (12)

∂t(n ū) + ∂x · (n ū ⊗ ū) + ∂v(n Rvū) − nF = Gnu
coll + Gnu

bu . (13)

where F = F(t,x, v) and Rv = Rv(t,x, v) are the drag force and the evaporation rate taken at
u = ū, and with :

Gn
coll = −n(v)

∫

v∗∈[0,+∞)

n(v∗)β(v, v∗)I−n dv∗ +
1

2

∫

v∗∈[0,v]

n(v⋄(v, v∗))n(v∗)β(v⋄(v, v∗), v∗)I+
n dv∗, (14)

Gnu
coll = −n(v)

∫

v∗∈[0,+∞)

n(v∗)β(v, v∗)I−u dv∗ +
1

2

∫

v∗∈[0,v]

n(v⋄(v, v∗))n(v) β(v⋄(v, v∗), v∗)I+
u dv∗, (15)

where the partial collisional integrals I−n , I+
n , I−u and I+

u are functions of (t,x, v, v∗) and take
the following expressions :

I−n = |ū(v) − ū(v∗)|, I−u = ū(v)|ū(v) − ū(v∗)|, (16)
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I+
n = |ū(v∗) − ū(v − v∗)|, v I+

u = ((v − v∗)ū(v − v∗) + v∗ū(v∗)) |ū(v∗) − ū(v − v∗)|. (17)

The source terms associated to secondary break-up reads, noting νbu(v) = νbu(v,u(v)) are :

Gn
bu = −νbu(v)n(v) +

∫

v∗>v

νbu(v∗)gv(v, v∗,u(v∗))n(v∗)dv∗, (18)

Gnu
bu = −νbu(v)n(v)u(v)) +

∫

v∗>v

νbu(v∗) gv(v, v∗,u(v∗))n(v∗)u(v∗)dv∗. (19)

We refer the reader to the thesis of Dufour [43] for the extension of the presented coales-
cence and break-up operators to sprays with the temperature as another internal variable which
describes the unsteady heating of the droplets by the gaseous carrier phase.

The proof can be found in [41] and [43]. The validity of the assumption on the velocity
distribution conditioned by size will be discussed in a more general framework in section 3.2,
whereas its applicability for polydisperse sprays with evaporation and coalescence to a nozzle
test case will be treated in section 3.4.

Remark 3. It has to be noticed that the coalescence source terms obtained in the equations
do not conserve the global kinetic energy of the droplets. However, for the velocity and the
temperature range we are interested in, the change in the temperature of the droplets due to the
dissipation of the kinetic energy lost in the coalescence process is totally negligible. Besides, due
to the statistical treatment of break-up, mass is conserved by the corresponding source terms,
however, momentum is not.

3.1.5 Discretization in the size phase space

We choose a level of discretization for the droplet size phase space and we average the obtained
semi-kinetic system of conservation equations over some fixed size intervals, each “fluid” corre-
sponding to the set of droplets in each size interval. It can be interpreted as a finite volume
discretization in the size variable, the order of which has been studied in [51] as far as the
evaporation is concerned.

The Eulerian multi-fluid model, is based on the reduction of a continuous semi-kinetic system
of equations (12-13) as a function of size, to a finite number of degrees of freedom. This reduction
is performed by averaging, in fixed size intervals : the sections (the kth section being defined
by vk−1 ≤ v < vk), of the semi-kinetic model. As a fundamental assumption, the form of n as
a function of the geometry is supposed to be independent of t and x in a given section. Thus
the evolution of the mass concentration of droplets m(k), in a section k, is decoupled from the
repartition in terms of sizes κ(k)(v) inside the section [33] :

n(t,x, v) = m(k)(t,x)κ(k)(v),

∫ vk

vk−1

ρl v κ(k)(v) dv = 1. (20)

The sections have fixed sizes, which is a major difference compared to a sampling method;
however, they are not independent from each other, they exchange mass and momentum. The
choice of the discretization points vk, k ∈ [1, N ] has been studied in [52]; consequently we choose
the (N + 1)th section to be [vN ,+∞) in order to be able to describe the whole size spectrum.
The final model is then obtained in the next proposition.

Proposition 4. Besides assumptions [H1]-[H3] associated to the derivation of the semi-kinetic
model, we make the following assumption on the velocity distribution inside a section :
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[H4] In each section, the averaged velocity ū(t,x, v) does not depend on v, ū(t,x, v) = ū(k)(t,x),
for vk−1 ≤ v < vk.

We obtain the multi-fluid system of 2(N + 1) conservation equations :

∂tm
(k) + ∂x · (m(k)ū(k)) = −(E

(k)
1 + E

(k)
2 )m(k) + E

(k+1)
1 m(k+1) + C

m (k)
coll + C

m (k)
bu (21)

∂t(m
(k)ū(k)) + ∂x · (m(k)ū(k) ⊗ ū(k)) = −(E

(k)
1 + E

(k)
2 )m(k)ū(k) + E

(k+1)
1 m(k+1)ū(k+1)

+m(k)F
(k)

+ C
mu (k)
coll + C

mu (k)
bu (22)

where E
(k)
1 and E

(k)
2 are the “classical” pre-calculated evaporation coefficients [23, 33] :

E
(k)
1 = −ρl vk Rv(t,x, vk)κ(k)(vk), E

(k)
2 = −

∫ vk

vk−1

ρl Rv(t,x, v)κ(k)(v) dv, (23)

where F
(k)

is the mean drag force : F
(k)

(t,x) =
∫ vk

vk−1
ρl v F(t,x, v) κ(k)(v) dv, and where the

source terms associated with the coalescence phenomenon , C
m (k)
coll and C

mu (k)
coll in the mass and

momentum equation respectively of the jth section are quadratic in the variables
(

m(k)
)

k∈[1,N+1]

and include the velocity difference between droplet of various sections Vkj =
∥

∥ū(k) − ū(j)
∥

∥ as well
as collisional integrals Qkj, k = [1, N + 1], j = [1, N + 1], k 6= j, Q⋄

ki, Q∗
ki, j = [2, N + 1], i =

[1, I(k)], the expression of which can be found in [40, 41]. The source terms associated with
secondary break-up are to be found from the semi-kinetic model in [43]; they are linear in the
variables

(

m(k)
)

k∈[1,N+1]
. The source terms due to coalescence conserve mass and momentum,

whereas the source term due to break-up only conserve mass, since the daughter droplets all relax
to one single after-break-up velocity :

N+1
∑

k=1

C
m (k)
coll = 0,

N+1
∑

j=1

C
m (k)
coll = 0,

N+1
∑

k=1

C
m (k)
bu = 0. (24)

Let us mention that this model does not predict any coalescence between droplets of the
same section since they have the same velocity and their probability of colliding is zero.

Finally, the coefficients used in the model, either for the evaporation process or the drag

force E
(k)
1 , E

(k)
2 and F

(k)
, k = [1, N + 1] in (21-22), or the collisional integrals for evaluating

the coalescence can be pre-evaluated from the choice of the droplet size discretization and from
the choice of κ(k) since the collision integrals do not depend on time nor space. The coalescence
phenomenon, when taken into account, results in quadratic source terms in the Eulerian multi-
fluid conservation equations for the mass and momentum of each “fluid”. The coefficients
involved in these source terms are collisional integrals; they do not depend on t, x or on the
droplet size but only on the given droplet size discretization. Consequently, they can be pre-
calculated before the resolution of the system of conservation laws is conducted. The algorithms
for the evaluation of these coefficients are provided in [41] for coalescence and in [43] for break-up.

It has to be noted that such an approach can be extended to turbulent flows where some
scales are modeled and not resolved, as opposed to the presented approach where all scales are
resolved and which corresponds to DNS or laminar flows. Even if many strategies exists (see for
example the recent theses [68, 69, 70]) where ensemble averages for the particles are first taken
for a given gaseous flow realization and then Large Eddy Simulation (LES) spatial averaging
is introduced, we rather take ensemble average over turbulent realization of the gaseous flow
at the “kinetic level” and then conduct the same kind of semi-kinetic modeling and finally
sectional/multi-fluid size description as introduced in [71] and the following papers. The details
of such an approach and validation can be found in [38, 44, 45, 72]
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3.1.6 Non-dimensional equations

For the purpose of the next section devoted to the mathematical characterization of the system of
partial differential equations, it will be easier to work with a dimensionless form of the equations.
Once again, we restrict ourselves to a d2 evaporation law, to a Stokes drag and neglect the
heat exchange between the droplets and the gas in order to conduct this characterization. We
introduce a characteristic gas velocity u0, a characteristic length L and the corresponding time
τgas = L/u0. Furthermore s0 is a characteristic droplet surface, τ0

ev = s0/
∣

∣R0
s

∣

∣, a characteristic
evaporation time based on a typical evaporation rate

∣

∣R0
s

∣

∣; we use the two non-dimensional
numbers St = τ0

p /τgas the ratio of the typical droplet dynamical response time τ0
p , based on s0,

over the gas characteristic time, called the Stokes number, as well as Ev = τgas/τ0
ev, the ratio

of the gas time over the evaporation time based on s0. We also define the non-dimensional
evaporation rate K = Rs/

∣

∣R0
s

∣

∣. Moreover, it was convenient to work with the volume, which is
the natural size variable for the multi-fluid formulation since the only moment of the distribution
function inside one section which is conserved is mass proportional to the droplet volume. Within
the next section, we will deal with dynamics and evaporation which are easily defined in terms
of surface so that is it easier to consider the evolution equations using s; in fact the Stokes
number is proportional to droplet surface and the evaporation rate of a d2 law is a constant as
a function of surface indicating that the surface regression is affine versus time.

The non-dimensional evolution equations for an individual droplet then read :

dtxp = up, dtup =
Ugas(t,xp) − up

St sp
, dtsp = Ev K, (25)

where xp is the position of the droplet at time t, up its velocity and sp its surface. The system
of equations (25) can also be described through what is called the fine-grained phase space
distribution function, defined by:

W (t,x,u, s) = δ(x − xp(t)) δ(u − up(t))δ(s − sp(t)), (26)

which is therefore an Eulerian quantity, taking different values from one realization to another.
The single particle PDF, P , is then defined as the ensemble average of the fine-grained (see [73])
distribution function P (t,x,v, s) = 〈W 〉 which satisfies, as well as f(t,x,u, s), the corresponding
NDF (the summation over all single particle PDF’s), the kinetic Williams-Boltzmann equation
in non-dimensional form :

∂tf + u.∂xf + ∂u ·

(

Ugas − u

St s
f

)

− Ev ∂s(K f) = 0. (27)

The initial conditions on the NDF are deduced from the distribution function of particles at
time t = 0. If no other alea is introduced in the system, that is, for example, if Ugas(t,xp) is
deterministically determined, the ensemble average mentioned above is only the expectation over
the probability space associated with the initial distribution in the phase or sample space. It
allows a particle-based definition of the NDF and provide a derivation of the Williams-Boltzmann
equation when the forces acting on the particle are localized in phase space. It will be useful
in order to make the link between Eulerian and stochastic Lagrangian descriptions of the liquid
phase [46].

3.2 Mathematical Issues - Singularities

The assumptions formulated at the kinetic and at the macroscopic level while deriving the
Eulerian model, lead to several mathematical difficulties. Indeed we obtain a peculiar system
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of conservation equations without any pressure term leading to singularities called “δ-shocks”.
These singularities occur when the monokinetic assumption of the multi-fluid model ceases to
be valid and introduces some artificial velocity averaging. The key issue is thus to characterize
the appearance of such singularities and to relate it to the physics of droplet dynamics. This
will have two consequences, first we will be able to choose comparison configurations which are
within the validity limit of the multi-fluid model; second, since the configurations of interest
frequently involve flow location which can be a little beyond the validity limit and still can be
accurately described by the multi-fluid model, we aim at developing a numerical method robust
enough to cope with these singularities in case they do occur.

3.2.1 Mathematical peculiarities of Multi-fluid modeling

This multi-fluid system of equations contains a peculiar transport term similar to the pressureless
gas system studied for example in [50]. Indeed, it is similar to an Euler gas dynamics system of
equations, but without any pressure term in the momentum equation; that is, if we consider a
single section and focus on the left hand side of the system of equations, it corresponds to the
limit of zero temperature of the gas dynamics equations :

{

∂t(m
(1)) + ∂x · (m(1)ū(1)) = 0,

∂t(m
(1)ū(1)) + ∂x · (m(1)ū(1) ⊗ ū(1)) = 0.

(28)

This system can be found for example in astrophysics, when describing the formation of large
scale structures in the universe or in the modeling of sticky particles [49]; it has also been
presented in [74] for bubbles. It has the peculiarity to be weakly hyperbolic and can generate
“δ-shocks” (that is a discontinuity in velocity which leads to Dirac delta function concentration
in density) or create vacuum zones. Note that it is important to be able to cope efficiently
with vacuum zones since they represent areas of the flow where no droplet is to be found and
are commonly encountered in most applications. In fact the equation on the velocity itself is
decoupled from the conservation of mass and takes the form of the Burger’s classical equation :

∂tū
(1) + ū(1) · ∂xū

(1) = 0. (29)

A shock may then arise, leading to the concentration of density at its interface. This shock
occurs for example when droplets cross each-other : indeed we have at the same space and time
location two velocities. In the resolution of the whole problem, as formulated in system (21,22),
the drag term will decrease the occurrence of such crossings, attracting droplet velocity towards
gas velocity. Nevertheless, for droplets inertial enough, influence of drag is weaker and crossings
may still occur. As we already mentioned in the assumption [H1], section 3.1, we only have one
averaged velocity at a given point, preventing the description of droplet crossings of the same
size. In the two-fluid model, also based on one averaged velocity, the same problem occurs and
droplet crossings can neither be described. Nevertheless, the multi-fluid model can use multiple
sections for the description of polydispersity and thus allows crossing of droplets which do not
belong to the same size interval. Nevertheless, equally-sized droplet crossings are out of the
limits of the multi-fluid model and can not be described.

This observation has three consequences. First we want to be able to control droplet dy-
namics for a given gaseous flow. Indeed for turbulent flows or even for laminar flows with
contra-rotative vortices or impinging jets, equally-sized droplet crossings may occur. We would
like to be able, through a limitation on the Stokes number of the droplets, to foresee these
crossings and prevent them to occur inside a standard multi-fluid model. Second we want to
develop a numerical method robust enough to cope with the velocity discontinuities and density
concentration arising if equally-sized droplet crossings do still occur at rare occasions in the
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flow. Finally, for Stokes numbers high enough such that crossing will be essential and has to be
described, we have to switch to more complex model which will be presented in Chapter 4.

A specific numerical method is consequently needed for the multi-fluid model, requiring :

• to stand high gradients even up to the situation where all the mass density would be
concentrated in one cell;

• to preserve the positivity of mass density;

• to reproduce a discrete maximum principle on the velocity.

Furthermore, we also want an order of accuracy high enough as well as limited numerical diffusion
in cases of regular distribution to limit the number of cells needed. It will be essential in order
to treat multi-dimensional configurations. The development of such a numerical method is
presented in section 3.3.

3.2.2 Detailed analysis of multi-fluid limits

The peculiar structure of the multi-fluid system and the set of associated assumptions require
a precise analysis of droplet dynamics description. The purpose of this paragraph is to provide
the key ideas of the analysis yielding the definition of a critical Stokes number, Stc, below which
the assumptions of the multi-fluid are valid. We first introduce the fundamentals of the analysis
in a typical one dimensional problem defining a critical Stokes number. We then extend this
definition to two-dimensional problems in the context of Taylor-Green vortices for the gaseous
flow. The extension to a more general framework for more complex flow field is then considered.
Finally we perform Lagrangian numerical applications in these configurations, to study the
validity of the theoretical criterion introduced.

1-D model problem and critical Stokes number - The purpose of the present section
is to identify the critical point for the appearance of “δ-shocks” [50, 75], that is, the eventual
concentration up to infinity of the density field related to the creation of a discontinuous velocity
field. Such an event corresponds to the crossing of characteristic curves in the physical space
[76] and to the limit of the monokinetic character of the NDF at the kinetic level, i.e. the
velocity distribution at given location becomes multi-valued. These characteristic curves are
defined, for both the kinetic equation (1) and the system of conservation laws (12,13), in the
case of non-evaporating droplets, by a set of ordinary differential equations (ODE) and initial
conditions :







dtxp = up

dtup =
Ugas(t, xp) − up

St

,
xp(0) = x0

p

up(0) = u0
p

, (30)

with u0
p = ū(1)(0, x0

p) since the initial distribution is monokinetic. It should be noticed that the
non-linear coupling between the two fields is contained in the fact that the gaseous velocity field
Ugas is only sampled by the droplet trajectory at xp. Thus, the characteristic curves are the
integral curves of the vector field defined by system (30), parametrized by the initial spatial
coordinate so that we will adopt the notation (xp, up)

t(t, x0
p). Under some standard conditions

on the regularity of the field Ugas, the characteristic curves exist and are well-defined for all
time and spatial initial conditions. However, as soon as some characteristic curves cross each
other in the only spatial projection of the characteristic diagram (x, t), the distribution ceases
to be monokinetic and the equivalence between the macroscopic and kinetic descriptions is not
valid any more. In fact the characteristics never cross each other in the (x, u) phase space
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so that the distribution admits multiple velocities at a point where the spatial projection of
the characteristics cross each-other. For the sake of simplicity the generic example of steady
gaseous flow field is given by a spatial harmonic oscillation Ugas(x) = sin (2π x), with periodic
boundary condition on the spatial interval [0, 1]. The initial condition for the spray is a uniform
zero velocity distribution ū(1) = 0, as well as a constant density distribution m(1) = 1. The
characteristic first crossing point can be shown to be at x = 1/2 since this is the point of
maximal strain. In order to characterize the limit we linearize the original system of ODEs (30)
at x = 1/2 for which the eigenvalues of the associated matrix are real, if and only if 8π St ≤ 1.
The limiting value of the Stokes number is then Stc = 1/(8π) ≈ 0.0398. Taking a look at
Figure 1 will provide the reader with the intuitive picture of two cases where there is or there is
not characteristic crossing. We have represented on the left the trajectories of the particles (that
are also the characteristic curves in this pressureless configuration) with the usual convention
that the abscissa is the spatial coordinate and the ordinate, the time evolution. We consider
thirty equidistributed initial spatial positions and a zero initial velocity. We plotted the evolution
of the position versus time for two Stokes numbers which are above and below the critical one.
It can be clearly seen that the characteristics cross at x = 0.5 for St = 0.3 at time around
t = 0.5 which corresponds to the first time when the velocity distribution at x = 0.5 becomes
multi-valued as shown in the position-velocity phase plane on the top-right of Figure 1. On the
contrary, such a scenario never occurs for St = 0.03 for which the characteristic curves never
cross and the velocity field as a function of position always remain monokinetic as presented in
Figure 1-bottom.

For Stokes numbers beyond the critical limit, let us underline the fact that, even for the
Williams-Boltzmann equation at the kinetic level, there is a singularity at the time when the
characteristics are crossing in the (x, t) diagram. At this exact time, the zeroth order moment
of the NDF, that is the number density of droplets, becomes infinite at x = 1/2 and the
original modeling at the kinetic level can cease to be valid if the initial droplet number density
is high enough for the collision term to become important in the neighborhood of the axis
of symmetry where the singularity occurs. Even if this singularity is spatially integrable, the
original modeling on the NDF should then involve a collision term or a “granular pressure”. For
an interesting study of the influence of the initial number density of droplets on the influence of
the collisional term in the NDF equation in a different framework, we refer to the work of Volkov
and collaborators (see [77] and references therein) as well as the study we have conducted during
the Summer Program 2008 for finite Knudsen number crossing jets involving collisions [55].

This will prove to be symptomatic of what happens in multi-dimensional configurations with
more complex flows.

Taylor-Green vortices - In the two-dimensional version of the steady spatially oscillating
gaseous flow field, we consider a steady solution of the incompressible Euler equations with
periodic boundary conditions. We use the following notations Ugas = (U, V )t for the two
components of the gaseous velocity field and it reads in the non-dimensional setting U =
sin(2π x) cos(2 π y) for the horizontal velocity, and V = − cos(2 π x) sin(2 π y) for the verti-
cal one, (x, y) ∈ [0, 1] × [0, 1]. The structure of the flow field is presented in Figure 2 through
the stream lines.

In order to analytically characterize the critical Stokes number, we focus on the behavior
of the system around the central point (1/2, 1/2). The characteristics in their non-dimensional
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Figure 1: (top) : St = 0.3, St > Stc, characteristic crossing in the (x, t) plane (left) and phase plane
dynamics (x, v) (right) for 30 initial conditions equally distributed in space with zero initial velocity;
(bottom) : St = 0.03, St < Stc, no characteristic crossing in the (x, t) plane (left) and phase plane
dynamics (x, v) (right) for 30 initial conditions equally distributed in space with zero initial velocity.
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Figure 2: (left) Stream lines of the Taylor-Green vortices and position of the cut for the study of normal
ejection velocity, (right) Structure of the invariant droplet velocity manifold versus Stokes number in
term of the velocity component orthogonal to the gas flow.

form are then linearized at this point and it yields :



















dtxp = up, dtup =
2 π xp − up

St
,

dtyp = vp, dtvp =
−2 π yp − vp

St
.

(31)

The system in the two directions then decouples and the eigenvalues in the x direction are always
real, whereas one recovers the same analysis in the y direction as in the 1D case, with the same
critical value of the Stokes number St. It can be shown that, for the considered initial monokinetic
velocity distribution, the first point of characterics crossing is at the center point (1/2, 1/2) which
is again the point of maximum rate of strain. Besides, as shown in [46], the droplet velocity
field is rapidly attracted, within a few Stokes number, to an invariant velocity manifold which
is smooth only if the non-dimensional Stokes number is below its critical value and becomes
discontinuous beyond this threshold, thus allowing the droplets to go from one vortex to its
neighbors. This phenomenon is presented in Figure 2-right where the invariant droplet velocity
normal to the stream lines of the gaseous velocity field is plotted. Beyond the obtained Stokes
critical value, the droplets are ejected from the vortices and encounter the droplets coming from
the other vortices, since the original number density or droplets is symmetrical. Consequently,
for Stokes numbers below this critical value, we are sure that the multi-fluid assumptions will be
valid in the sense that the kinetic modeling and the fluid modeling provide identical descriptions.
We will then be able to conduct thorough comparisons with a Lagrangian solver as in [46]. For
Stokes numbers beyond this critical value, the multi-fluid model and the kinetic model are not
coherent any more. The Williams-Boltzmann spray equation also encounters a singularity if
no collision model or granular interaction is added. The Eulerian semi-kinetic and multi-fluid
models both lead to infinite density concentrations and discontinuous velocity fields as presented
in Figure 2.
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Relation to mathematical studies - In fact, in the non-dimensional gas velocity variables,
the maximal value of the strain for both 1D and 2D cases is 2π at the symmetry point. From [78]
it can be shown that system (12-13) is equivalent to the kinetic Williams-Boltzmann equation for
monokinetic initial velocity distributions under two conditions on both the initial velocity field
ū(1)(0, ·) and on the maximum amax of the derivative of the steady gaseous velocity field. The
variable amax denotes the maximal rate of strain of the gaseous flow field. In non-dimensional
variables, the conditions can be written amax St < 1/(4 d) and |∂xū(1)(0,x)|∞ St < 1/(2 d). Since
in the preceeding case, amax = 2 π, one recovers the obtained condition on the critical Stokes
number in the one-dimensional setting. These two conditions thus insure, from a mathematical
point of view, that the kinetic NDF will remain monokinetic, if it was originally so, for all times.
In this context this provides a rigorous basis in order to insure the validity of the semi-kinetic
and multi-fluid model.

However, it has to be underlined that the complete study for unsteady gaseous flows is far
more challenging and should be studied. The diversity of the possible scenarios is much richer
and requires a dedicated study which will not be presented in these Notes.

3.3 Eulerian multi-fluid specific numerical method

The numerical method designed for the multi-fluid method must deal with the complex mathe-
matical structure of the governing system of equations, described and illustrated in the previous
section. Furthermore, the numerical scheme has to present the best compromise between pre-
cision and cost, in order to tackle more complex 2-D jet or 3-D configurations (see Chapter 6).
In order to treat efficiently the different difficulties of the multi-fluid system, that are a com-
plex transport term and stiff source terms, we use an operator splitting [79, 80, 81]. It allows
to design efficient numerical methods for each contribution. Furthermore, one takes advantage
of the structured grids used in this study to introduce a dimensional splitting to treat multi-
dimensional configurations, leading to a high efficiency. One has to note that this choice is not
restrictive since extension to unstructured grids have been proposed in the literature.

3.3.1 General Scheme

Phenomena involved in our problem are of two different types : transport induces an evolution
in the physical space without leading to any interaction between the sections, whereas transport
in internal coordinate space, i.e., size and velocity through evaporation, drag, heat transfer and
collisions, induces an evolution without any coupling with the spatial coordinates. It is then
interesting to separate them using an operator-splitting method. The multi-fluid system (21,22),
is then split into two systems, for the physical space and for the phase space. On one hand, the
evolution in physical space for the multi-fluid size section k reads:







∂t m(k) + ∂x ·
(

m(k) ū(k)
)

= 0,

∂t

(

m(k)ū(k)
)

+ ∂x ·
(

m(k) ū(k) ⊗ ū(k)
)

= 0.
(32)

On the other hand, the phase space evolution, in internal coordinate space, reads for section k:










dt m(k) = −
(

E
(k)
1 + E

(k)
2

)

m(k) + E
(k+1)
1 m(k+1),

dt

(

m(k)ū(k)
)

= −
(

E
(k)
1 + E

(k)
2

)

m(k)ū(k) + E
(k+1)
1 m(k+1)ū(k+1) + m(k) F

(k)
.

(33)

The operator-splitting method consists in solving alternatively these simpler problems (32)
and (33) in order to approximate the solution of the full problem (21,22). We choose a Strang
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splitting which is second order in time provided all the steps are second order in time, with the
following structure, see [81] :

• Phase space transport: solve system of equations (32) during ∆t/2,

• Physical space transport: solve system of equations (33) during ∆t,

• Phase space transport: solve system of equations (32) during ∆t/2.

This approach has the great advantage to preserve the properties of the schemes we use for
the different contributions, as for example maximum principle or positivity. If we assume that
the involved phenomena evolve at roughly similar time scales, this Strang splitting algorithm
guaranties a second order precision in time provided that each of the elementary schemes has at
least a second order time accuracy.

As mentioned in [76], this Strang splitting can also be obtained with an algorithm based on
a Lie splitting. The Lie splitting is composed of two steps of length ∆t. The Strang splitting is
constructed with this two steps but it alternates the order in which they are performed :

1. iteration 2n

• Phase space transport: solve system of equations (32) during ∆t,

• Physical space transport: solve system of equations (33) during ∆t,

2. iteration 2n+1

• Physical space transport: solve system of equations (33) during ∆t,

• Phase space transport: solve system of equations (32) during ∆t.

This form is in fact a classical Strang splitting with a splitting timestep 2∆t. The error due to
the splitting increases, but all the steps are of length ∆t and this will be important in terms
of the global accuracy of the scheme. Indeed, there is no CFL reduction in the physical space
transport. Furthermore, to advance the solution of ∆t we need to perform only two steps and
not three, and it leads to a benefit in the computational efficiency of the algorithm.

3.3.2 Physical space transport resolution

Let us recall that the transport term in physical space for both the semi-kinetic model and the
each section is the pressureless gas system [50] and reads for example for the first section :

{

∂t(m
(1)) + ∂x · (m(1)ū(1)) = 0,

∂t(m
(1)ū(1)) + ∂x · (mū(1) ⊗ ū(1)) = 0.

(34)

A specific numerical method is needed in order to cope with discontinuous velocity fields, “δ-
shocks” as well as with vacuum. We need a method which strictly preserves the positivity of
the density field, allows the concentration of all the density in one cell without leading to an
instability of the method, and guarantees the maximum principle on the velocity. This is quite
a constraint, however, we still at least require a second order accuracy in order to limit the nu-
merical diffusion as well as the level of discretization requires for a precise calculation. Bouchut,
in [75], developed second order kinetic schemes, which are finite volume schemes based on the
equivalence between a macroscopic and a microscopic level of description for the pressureless
gas equations. For the purpose of the exposition, we will work in one dimension and will forget
about the superscript :

∂tf + u ∂xf = 0 ⇐⇒

{

∂t(m) + ∂x · (mū) = 0
∂t(mū) + ∂x · (mū2) = 0

(35)
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with :
f(t, x, u) = m(t, x)δ(u − ū(t, x)). (36)

The values of m and ū are then recovered from f by the formula :
(

m
ū

)

(t, x) =

∫

R

(

1
u

)

f(t, x, u)du. (37)

This is precisely the same framework as the one we encountered for the semi-kinetic model and
will apply to the multi-fluid model.

The principle of such a method is a finite volume method giving approximations mn
j and

qn
j = mn

j un
j of the following averaged values on each cell [xj−1/2, xj+1/2] of m and mū at each

discrete time tn :

mn
j ≃

1

∆x

∫ xj+1/2

xj−1/2

m(tn, x)dx, qn
j = mn

j un
j ≃

1

∆x

∫ xj+1/2

xj−1/2

m(tn, x)ū(tn, x)dx. (38)

First, at time t = tn, a distribution function fn(x, u) is reconstructed from the averaged values
mn

j and qn
j . This comes from equation (36) and, for example, a piecewise linear reconstruction

of m(tn, x) and ū(tn, x) with adequate slope limiters will work. Second, the kinetic equation is
solved analytically between tn and tn+1 : f(t, x, u) = fn(x − ū(t − tn), u). Finally, a projection
of f(tn+1−, x, u) is conducted in order to find mn+1

j and qn+1
j , which corresponds to the average

on each cell of (37) at t = tn+1−. This leads to the following scheme :

mn+1
j = mn

j −
∆t

∆x

(

Fm
j+1/2 −Fm

j−1/2

)

, (39)

qn+1
j = qn

j −
∆t

∆x

(

Fq
j+1/2 −Fq

j−1/2

)

, (40)

with the numerical fluxes :

F j+1/2 =

(

Fm
j+1/2

Fq
j+1/2

)

=
1

∆t

∫ tn+1

tn

∫

R

(

1
u

)

ufn(xj+1/2 − ū(t − tn), u)dudt. (41)

The obtained fluxes rely, through equation (36), on the reconstructions of mn(x) = m(tn, x)
and ūn(x) = ū(tn, x) from the discrete values mn

j and un
j . Different type of reconstructions are

proposed in [75] and we have chosen the one which gives good results without being too complex,
a piecewise linear reconstruction. The detailed expressions of the fluxes and the adapted version
of the scheme to our case can be found in [46, 47].

For the 2D and 3D cases we are dealing with, in the framework of cartesian meshes, the same
type of numerical method is written in [75]. However, it is hard to find a good slope limiter
which does not induce too large a numerical diffusion. That is why we rather use a dimensional
splitting of the 1D scheme previously described, with a Strang type splitting to preserve the
second order of the method as indicated in [76]. Finally, the algorithm has been extended to
2D-axisymmetrical configurations using the same dimensional splitting; it uses a radial version
of the 1D algorithm designed in [82, 58]. Besides, such an approach is very competitive as far
as computational cost and level of accuracy is concerned, since it as a very performing way of
limiting numerical diffusion.

3.3.3 Phase space transport resolution

We need to solve, in the phase space transport step, the ODE system (33). The polydisper-
sity resolution leads to a multi-scale problem. Indeed, droplets of different sizes have different
response time to the physical phenomena. The ODE integrator must then be carefully chosen.
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The Runge-Kutta implicit methods are particularly well suited for stiff problems, see for
example [83]. Among them, the implicit Runge Kutta method based on Radau quadrature is
called Radau IIA. We choose a 5th order version of this integrator, obtained with a three-stage
Radau quadrature of order 5. This method is shown to be A-stable in [83]. Furthermore, this
method is L-stable, that allows a very fast convergence, with a fast high frequency absorption.
This property is of importance for multi-fluid simulation as low inertia droplet velocity relaxes
very rapidly to gas velocity, under drag force effect. An important limitation of this method, is
the difficulty to obtain an efficient implementation of its algorithm. However, this Radau IIA
method is implemented in the program RADAU5, written by Hairer, see [83]. It offers a very
efficient algorithm, solving very efficiently the nonlinear systems involved.

3.3.4 Conclusion on the algorithm optimality

The scheme we have designed then offers the ability to treat delta-shocks and vacuum. It
guaranties a maximum principle on the velocity as well as the positivity of the density in the
transport of physical space. Moreover, it is second order accurate in space and time and, with
the precise splitting structure we have chosen, it leads to limited numerical diffusion, a key
issue for Eulerian models and numerical methods. It is important at this level to insist on
the structure of the algorithm and the implications on the numerical diffusion of the obtained
scheme; we will come back on these issues when comparing Eulerian and Lagrangian solvers in
terms of accuracy.

3.4 Numerical validations

We present first precise and quantitative comparisons between the Lagrangian and the Eulerian
descriptions for the Taylor-Green vortices where the analytical gaseous velocity field as well as
the polydisperse spray initial condition provide a challenging test case and are representative
of the main problems we will encounter in more complex configurations. The first ingredient is
to define a procedure to be able to compare the accuracy of both methods; we then use it for
both a non-evaporating and an evaporating case. We will then present the results we obtained
concerning comparisons in an Isotropic Homogeneous Turbulence configuration. Finally we will
show the size-conditionned dynamics comparisons realized in a 2D axisymmetric free jet with
evaporating polydisperse spray injection.

3.4.1 Taylor-Green configuration

Comparison procedure - To evaluate differences between the two spray solutions, given a
gaseous velocity field, we need to reconstruct Eulerian fields from the statistical information
provided by the Lagrangian treatment. We thus need to define an Eulerian grid to perform this
reconstruction. Furthermore, as we want to compare the Lagrangian results to the multi-fluid
ones, we want to perform comparisons for various droplet sizes in order to study the ability of
the Eulerian method to capture dynamics of droplets of various sizes. In our two-dimensional
Taylor-Green case, we need a three-dimensional grid to account for space and size discretizations.
We have chosen in this case a 100 × 100 × 10 grid, to have a sufficiently detailed description
of the fields : 100 × 100 for the space discretization, and 10 size intervals to be able to study
polydispersity. Let us recall that we work with non-dimensional quantities on the space and size
cube [0, 1] × [0, 1] × [0, 1].

The initial spatial and size distributions are presented in Figure 3. As a matter of fact, this
distribution will allow to analyze numerical diffusion of the method, and to determine the spatial
refinements needed. Indeed its gradients are important as we can see in Figure 3 (left) where we
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Figure 3: Initial droplet distribution : (left) non uniform spatial repartition, three-dimensional plot with
number density as the third coordinate; (right) non-dimensional polydisperse size distribution.

realized a three dimensional plot to represent the droplet number density in the domain. The
droplets are introduced in the computational domain with a zero initial velocity in both cases.

Computing errors on this grid means :

• reconstructing the Eulerian fields for the mass densities in the size intervals from the
Lagrangian statistics on this grid;

• averaging, if necessary, the Eulerian multi-fluid results on this very grid.

An example of such a reconstruction is to be found in Figure 4 where a zoom is presented (we
have focused on a quarter of the computational domain, which is the zone of interest).

We evaluate on this grid the global error at the time t = 1.5 (i.e. the dimensional time
is 1.5 times the gaseous flow field time, which is the ratio of the characteristic period of the
Taylor-Green lattice over the maximum of the velocity field; roughly, it corresponds to one and
a half eddy turn over time). The constant by pieces error field for a generic quantity Q, which
in the following will be mainly the droplet mass density in one section, is defined for an Eulerian
computation by :

E1.5
Q (x, y) = Q1.5

e (x, y) − Q1.5
l−ref(x, y), (42)

where the fields are taken to be constant inside a cell of the comparison grid. The right-hand-side
corresponds to the averages over the associated cell of both the Eulerian simulation (subscript e)
and the Lagrangian reference simulation with 16 Million particles (subscript l − ref), respectively.

To have an estimate of the relative error over the whole grid, we study the L1 norm of the
relative error on the grid :

||E1.5
Q ||1 =

∫ 1
0

∫ 1
0 |Q1.5

e (x, y) − Q1.5
l−ref(x, y)|dxdy

∫ 1
0

∫ 1
0 |Q0

l−ref(x, y)|dxdy
. (43)

The denominator is taken at the initial time, but this has no impact on the non-evaporating
case since the global mass as well as the mass in the sections are preserved throughout the
calculation. For the evaporating case, this has however an impact and allows to quantify the
error relative to the initial amount of mass, which is the one with the main physical sense.
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Figure 4: Zoom on the top-right quarter of the periodic computational domain of the total mass density
of droplets at time t = 1.5, projected on the comparison grid 100× 100× 10 : (left) Lagrangian reference
solution, (right) Eulerian with a 400 × 400 × 10 grid.

Non Evaporating spray - To illustrate comparisons between the Eulerian and the La-
grangian methods previously described, we present a study of the error between the Lagrangian
reference case with 16 Million particles and the Eulerian cases, to show that both methods
converge towards the same results. The chosen time for the comparison is t = 1.5, for which
the total mass density is presented in Figure 4. It exhibits a high concentration of the inertial
droplets around the vortex and creates very high gradient areas. It is thus a really challenging
test case as far as Eulerian models are concerned, irrespective of the evaporation process. We
now discuss the error plots presented in Figures 5 to 7 where the details of the comparisons
are conducted for three representative sections illustrating the influence of the droplets inertia
on their behavior. This critical Stokes number identify the critical point for the apparition
of equally-sized droplet crossings, and then of δ-shock singularities, as detailed in [84]. The
Figures 5 to 7 represent the evolution of the logarithm of the relative error between Eulerian
multi-fluid cases and the reference Lagrangian computation versus the logarithm of the space
discretization step of the Eulerian computation. For convenience, we have presented the actual
values of the error and of the space discretization step on the two axis, but the points on these
axis correspond to the logarithms of these values. As we mentioned in the report [84], the nu-
merical method used for the multi-fluid model is second order in space, explaining the line with
a slope equal to two in all the pictures. The plots show three different levels of space refinements
for the Eulerian computation : 100× 100, 200× 200 and 400× 400. In order to see the influence
of the refinement in size of the multi-fluid model, we plot three curves in each Figure, showing
three size discretizations : 10, 20 and 30 sections.

Concerning the droplets of intermediate size presented in Figure 6, the Eulerian computation
converges towards the Lagrangian reference case with almost second order. Furthermore, ten
sections are enough for the size discretization since the size refinement does not have any impact
on the global error. The effect of the size discretization step refinement in this non-evaporating
case is purely a finer description of the velocity distribution as a function of droplet size for
a given location and time. Consequently, in the range of Stokes number associated to these
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Figure 5: (top) Logarithm of L1 norm of the error between Eulerian simulation for small droplets (second
section St = 0.14 Stc) for various ∆x and the Lagrangian reference solution at time t = 1.5, projected on
the comparison grid 100 × 100 × 10 : slope two line (blue solid line), 10 sections (magenta solid line),
20 sections (dashed line) and 30 sections (dotted-dashed line). (bottom) Corresponding droplet mass
density with 10 iso-contours from 0 up to 1.44-time the maximum of the initial mass density in the
second section : (left) Lagrangian reference solution, (right) Eulerian computation with a 400× 400× 10
grid.
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Figure 6: (top) Logarithm of L1 norm of the error between Eulerian simulation for medium size droplets
(fifth section St = 0.41 Stc) for various ∆x and the Lagrangian reference solution at time t = 1.5, projected
on the comparison grid 100× 100× 10 : slope two line (blue solid line), 10 sections (magenta solid line),
20 sections (dashed line) and 30 sections (dotted-dashed line). (bottom) Corresponding droplet mass
density with 10 iso-contours from 0 up to 1.44-time the maximum of the initial mass density in the fifth
section : (left) Lagrangian reference solution, (right) Eulerian computation with a 400 × 400 × 10 grid.
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droplets of intermediate size, the size-dependence of the velocity field is not strong enough to
require a finer discretization and the dynamics of the droplets are correctly reproduced by the 10
sections case. For more inertial droplets, Figure 7, the order of convergence is weaker and it is
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Figure 7: (top) Logarithm of L1 norm of the error between Eulerian simulation for inertial droplets (ninth
section St = 0.78 Stc) for various ∆x and the Lagrangian reference solution at time t = 1.5, projected on
the comparison grid 100 × 100 × 10 : slope two line (blue solid line), 10 sections (magenta solid line),
20 sections (dashed line) and 30 sections (dotted-dashed line). (bottom) Corresponding droplet mass
density with 10 iso-contours from 0 up to 2.43-time the maximum of the initial mass density in the ninth
section : (left) Lagrangian reference solution, (right) Eulerian computation with a 400 × 400 × 10 grid.

not improved by the refinement in section. As a matter of fact, this is due to the high gradient
appearing for this class of droplets; indeed the inertial droplets are quickly ejected from the
vortex and form high concentration regions and therefore very high gradients (most of the mass
is concentrated in a few cells). In this case, the numerical method reduces its order of precision
to first order to deal with such concentrations and associated gradients, thanks to the use of
a slope limiter, as detailed in [84]. When we increase the number of points we decrease these
gradients and we therefore increase the order of the method, as represented in the Figure 7.

As far as the small droplets are concerned, Figure 5, the behavior is different from the
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previous ones. Indeed we notice an important influence of the droplet size refinement in the
rate of convergence. It can be shown that the velocity difference between the gas and the liquid
disperse phase for droplets with low inertia is a linear function of the Stokes number and thus
is linear as a function of droplet size. Since the multi-fluid models relies on the assumption of
a single velocity inside a section, if two few sections are considered, the differential dynamics of
droplets of various sizes is not captured by the model. Then we have to switch to 20 sections
to properly predict the dynamics of droplets with very low inertia. Once refined in size, the
Eulerian computation converges towards the Lagrangian reference with an order of about 2.

Both descriptions are thus presenting a very good agreement as we can see quantitatively
by analyzing the error levels. The L1 norm of the error is around a few percent for an Eulerian
simulation with a 400× 400× 10 discretization as summarized in Table 1. Such an error can be
thought of as rather high. It can be explained in the following way : we have chosen to present
the relative error in reference of the initial total mass introduced in the numerical simulation,
we have a small amount of mass concentrated in a narrow region of the domain which gets
even more concentrated due to the ejection process by the vortex and finally, we have extreme
gradients in order to test the influence of the numerical diffusion of the second order in space
numerical method. If, however we had decided to plot the absolute error only considering that
the mass density of droplets is reaching one at its maximum, we would have ended up with
an error of about one per a thousand. Such a statement can be observed more qualitatively,
plotting the iso-contours of the mass density for the three sections studied in Figures 5, 6 and
7. Dynamics of the droplet of various sizes are very well predicted, even if the chosen test case
is extremely challenging and leads to the presented level of errors.

Droplet size Global error norm ||E1.5
m ||1

St = 0.14 Stc 8%

St = 0.41 Stc 5%

St = 0.78 Stc 8%

Table 1: Computation of ||E1.5
m ||1, norm of the global error at time t = 1.5, for the mass

density of three sections of droplets in size : small droplets (St = 0.14 Stc), medium size droplets
(St = 0.41 Stc) and inertial droplets (St = 0.78 Stc).

Evaporating case - Our interest being in combustion applications, we perform similar com-
parisons in the evaporating case. In order to focus on the numerical method, the evaporation
is described by a d2 law in both Eulerian and Lagrangian descriptions . We still refer to a
Lagrangian computation with 16 Million particles. We consider a low evaporation speed to
preserve a relatively high number of particles in our reference computation, that is Ev = 1/15
and K = −1, thus if we look at non dimensional time t = 1.5, 10% of the mass will be evapo-
rated. We present in this case the errors already defined for the non-evaporating case between
Lagrangian and Eulerian descriptions. We study the same mesh refinements for the Eulerian
method, in space as well as in size, and we study the behavior of various droplet sizes. We see
in the Figure 8 that the behavior of small and medium size droplets is the same as in the non-
evaporating case : the Eulerian method converges towards the Lagrangian reference solution
with the expected second order. On the other hand, for the inertial droplets, the refinement in
space nearly does not change the error value, only modified by the refinement in sizes, as we can
see in Table 2.
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Figure 8: Logarithm of L1 norm of the error between Eulerian simulation (left) for small droplets (second
section St = 0.14 Stc), (right) for medium size droplets (fifth section St = 0.41 Stc) for various ∆x and
the Lagrangian reference solution at time t = 1.5, projected on the comparison grid 100× 100× 10 in the
evaporating case : slope two line (blue solid line), 10 sections (magenta solid line), 20 sections (dashed
line) and 30 sections (dotted-dashed line).

Error Error Error
1/∆x 10 Sections 20 Sections 30 Sections

100 25% 14% 10.5%

200 25% 15% 11%

400 25% 15% 11%

Table 2: Evolution of L1 norm of the relative error between the reference Lagrangian solution
and Eulerian multi-fluid for various refinements in space and size, projected on the comparison
grid 100 × 100 × 10, and for inertial droplets (St = 0.78 Stc). The results are presented at time
t = 1.5

The multi-fluid model for evaporation is only first order accurate in the size discretization
step [51]. This explains why we do not see the effect of the physical space refinement, the error
being driven by the droplet size refinement. Indeed, if we plot the evolution of the error with the
number of sections, as done in Figure 9, we see the same error evolution with ∆s for different
physical space discretizations. This drawback of the multi-fluid method was already noticed in
[41] and can be partially avoided by using a second order method to describe the evaporation
as described in [51]. These techniques are not presented in this section because new methods
based on a breakthrough from classical multi-fluid have been developed [56]; they yield a very
efficient description of the evaporation process, are based on higher ordre moment methods and
new theoretical tools and will be presented in Chapter 4.

As a conclusion, we have shown in both the evaporating and non-evaporating cases the
ability of the multi-fluid model to accurately approximate the Lagrangian reference solution,
and thus the dynamics of droplets of various sizes coupled to the evaporation process. Even if
some improvement of the description of the evaporation process is to come, we can still define an
equivalent level of accuracy for both descriptions and thus come up with a relevant information
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Figure 9: Logarithm of L1 norm of the error between Eulerian simulation for inertial droplets (ninth
section St = 0.78 Stc) for various ∆S at fixed ∆x and the Lagrangian reference solution at time t = 1.5
projected on the comparison grid 100× 100× 10 in the evaporating case : slope one line (blue solid line),
∆x = 1/100 (magenta solid line), ∆x = 1/200 (dashed line) and ∆x = 1/400 (dotted-dashed line).

as far as computational cost is concerned.

3.4.2 Two-dimensional axisymmetric jets

In order to assess the Eulerian method in a more realistic configuration, we tackle a 2D axisym-
metric free jet. A polydisperse spray is injected over all the core of the jet width. This test case
was done with the code developed at CORIA and EM2C coupling a gas solver to a Lagrangian
solver (code ASPHODELE developed at CORIA [85, 54, 55]) and to an Eulerian multi-fluid
solver (code MUSES3D - developed at EM2C [47]).

Configuration - As far as the gas phase is concerned, we use a 2D axisymmetric low mach
number dilatable solver. The gas jet is computed on a 400 × 200 grid. In order to destabilize
the jet, we inject turbulence through a Klein method with 5% of fluctuations[86]. The Reynolds
number based on the geometry is 1000. We plot the results at the dimensionless time t = 15.
The gas vorticity is presented in Figure 10. Concerning the Eulerian liquid phase, we have
developed a specific pressureless gas numerical scheme, for 2D-axisymmetrical configurations
and the reader is referred to [82] for the complete derivation of the numerical method. We use
the same grid for the gas phase and for the Eulerian liquid phase. As far as the Lagrangian
liquid phase is concerned, we conduct a Discrete Particle Simulation (DPS) with 10000 to 40000
numerical particles depending on the presence of evaporation or not, the number of injected
particles being the same for all the simulations. As mentioned in the introduction, one can see
this DPS as a single realization of the disperse liquid phase, driven by stoichiometry at injection,
of a statistical Lagrangian description (DMSC) and thus compare it to the Eulerian multi-fluid
model, derived from a statistical spray description. This point of view is chosen since it is close
to the level of precision usually used in industrial simulations in terms of Lagrangian simulations.
In this test case we provide comparisons between the Eulerian and Lagrangian methods plotting
the Lagrangian numerical particle positions versus the Eulerian number density. Thanks to the
multi-fluid polydispersity resolution, we will perform the comparisons for different ranges of sizes
and thus for different inertia, in the evaporating and non-evaporating cases.
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Figure 10: Gaseous vorticity at time t=15, obtained with a low mach number dilatable solver on a
400 × 200 grid.

Non-evaporating free jet test case - For this test case we use 5 sections for the Eulerian
multi-fluid simulation. We have 40 000 Lagrangian particles in the computational domain. We
first present the results for the whole spray, regardless of the droplet sizes in Figure 11. The

Figure 11: Non-evaporating polydisperse spray, Stokes 0.003 to 4.45 corresponding to diameters
d = 4µm to d = 150µm, at time t=15, : (top) Lagrangian particle positions with 40000 particles,
(bottom) Eulerian total number density with a 400 × 200 × 5 grid.

global droplets dynamics illustrated by the Lagrangian solution in Figure 11-top are very well
reproduced by the Eulerian multi-fluid method presented in Figure 11-bottom. We then move
to the more difficult problem of size-conditionned dynamics. We find a very good agreement
for the droplets with low intertia, for Stokes from 0.003 to 0.18 corresponding to diameters
from 4µm to 30µm, as shown in Figure 12. This shows the ablity of the multi-fluid method to
simulate the dynamics of a spray where few crossings occur, the droplet dynamics being close
to the gas one, therefore in its validity domain. For higher Stokes number, the droplets are
ejected from the vortices and crossing trajectories are likely to occur, breaking the monokinetic
multi-fluid assumption; nevertheless, the dynamics is still very well reproduced. The results are
plotted in Figure 13 for Stokes number from 0.71 to 4.45 corresponding to diameters from 60µm
to 150µm. One can notice that the number density is concentrated in a few cells in this case
and the numerical method does not encounter any problem to capture it, illustrating again its
robustness.
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Figure 12: Non-evaporating polydisperse spray, low inertia droplets, Stokes 0.003 to 0.18 cor-
responding to diameters d = 4µm to d = 30µm, at time t=15 : (top) Lagrangian particle positions with
40000 particles, (bottom) Eulerian number density with a 400 × 200 × 5 grid.

Figure 13: Non-evaporating polydisperse spray, high inertia droplets, Stokes 0.71 to 4.45 cor-
responding to diameters d = 60µm to d = 150µm, at time t=15 : (top) Lagrangian particle positions
with 40000 particles, (bottom) Eulerian total number density with a 400 × 200 × 5 grid.
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Evaporating free jet test case - This weakly turbulent free jet is also assessed with an
evaporating spray. As in the previous test cases, we choose a simple d2-law model in order to
focus on the comparisons of the numerical methods. We take then a constant evaporation, i.e.
K = −1 and Ev = 0.2. The results are presented in the same way as for the non-evaporating
case. In order to describe correctly the evaporation process, we take 10 sections for the Eulerian
multi-fluid simulation and out of the 40 000 particles that should be in the computational
domain, only 10 000 Lagrangian particles remain at the considered time because of evaporation.
As in the non-evaporating case, we find a very good agreement between the Eulerian multi-fluid

Figure 14: Evaporating polydisperse spray, Stokes 0.003 to 4.45 corresponding to diameters d =
4 µm to d = 150µm, at time t=15, : (top) Lagrangian particle positions with 10000 particles, (bottom)
Eulerian total number density with a 400 × 200 × 5 grid.

and the Lagrangian descriptions in terms of global spray dynamics, see Figure 14. Even the
size-conditioned dynamics are still very well predicted by the multi-fluid method as well for low
Stokes number shown in Figure 15, as for high Stokes number shown in Figure 16.

This polydisperse evaporating axisymmetric free jet shows the ability of the multi-fluid
method to treat more complex case, closer to industrial configuration. These first compar-
isons with Lagrangian computations show the ability of the Eulerian method to capture the
size-conditionned dynamics in this case and are very encouraging. Further results concerning
polydisperse spray Eulerian/Lagrangian comparisons have been obtained recently and can be
more quantitative, for example regarding gaseous fuel mass fraction. Theses results have been
obtained during the 2008 Summer Program of the Center for Turbulence Research at Stanford
University [54] and in the Ph.D. Thesis of S. de Chaisemartin [47, 57]. An account of these
results will be presented in chapter 6.

3.4.3 Coalescence for dense sprays in a conical nozzle

In this subsection, we need a well-defined configuration, both of stationary and unsteady laminar
flows where evaporation, coalescence and the dynamics of droplets of various sizes are coupled
together in order to evaluate the capability of the multi-fluid model to capture the physics of
such configurations. In the following, the secondary break-up of the droplets is not taken into
account. We want to validate the multi-fluid model with a reference Lagrangian solver which uses
an efficient and already validated stochastic algorithm for the description of droplet coalescence
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Figure 15: Evaporating polydisperse spray, low inertia droplets, Stokes 0.003 to 0.18 correspond-
ing to diameters d = 4µm to d = 30µm, at time t=15 : (top) Lagrangian particle positions with 10000
particles, (bottom) Eulerian number density with a 400 × 200 × 5 grid.

Figure 16: Evaporating polydisperse spray, high inertia droplets, Stokes 0.71 to 4.45 correspond-
ing to diameters d = 60µm to d = 150µm, at time t=15 : (top) Lagrangian particle positions with 10000
particles, (bottom) Eulerian total number density with a 400 × 200 × 5 grid.
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[2]. Besides, we want to evaluate the validity of the assumption underlying the model and the
computational efficiency of this new approach as compared to the Lagrangian solver. The results
presented here are related to the original work [41].

The chosen test case is a decelerating self-similar 2D axisymmetrical nozzle. The deceleration
generates a velocity difference between droplets of various sizes and induces coalescence. The
temperature of the gas is taken high enough in order to couple the evaporation process to the
coalescence one. The configuration is stationary 2D axisymmetrical in space and 1D in droplet
size. It is described in detail, along with the Lagrangian solver, in [41]. Hence, only its essential
characteristics are given here. The influence of the evaporation process on the gas characteristics
is not taken into account in our one-way coupled calculation. It is clear that the evaporation
process is going to change the composition of the gas phase and then of the evaporation itself.
However, we do not attempt to achieve a fully coupled calculation, but only to compare two
ways of evaluating the coupling of the dynamics, evaporation and coalescence of the droplets. It
has to be emphasized that it is not restrictive in the framework of this study, which is focused
on the numerical validation of Eulerian solvers for the liquid phase. Let us emphasize that [41]
was the first publication to our knowledge to propose a Eulerian formalism with the ability to
capture coalescence of a polydisperse spray.

Figure 17: (left) Monomodal distribution function from experimental measurements, (right) Bimodal
distribution function.

Finally we consider two droplet size distributions. The first one, called monomodal, is
composed of droplets with radii between 0 and 35 microns, with a Sauter mean radius of 15.6
microns and a variance of D10 = 24 microns. It is represented in Figure 17-left and is typical of
the experimental condition reported in [52]. The droplets are only constituted of liquid heptane,
their initial velocity is the one of the gas, their initial temperature, fixed at the equilibrium
temperature 325.4 K (corresponding to an infinite conductivity model), does not change along
the trajectories. The second distribution is called bimodal since it involves only two groups
of radii respectively 10 microns and 30 microns with equivalent mass density. This bimodal
distribution function is typical of alumina particles in solid propergol rocket boosters [1]. It
is represented in Figure 17-right and is probably the most difficult test case for an Eulerian
description of the size phase space.

The initial injected mass density is then taken at m0 = 3.609 mg.cm−3 so that the volume
fraction occupied by the liquid phase is 0.57% in the stationary case. Because of the deceleration
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of the gas flow in the conical nozzle, droplets are going to also decelerate, however at a different
rate depending on their size and inertia. This will induce coalescence. For the problem to be
one-dimensional in space, conditions for straight trajectories are used and are compatible with
the assumption of an incompressible gas flow. This leads to the following expression for the
gaseous axial velocity Uz and the reduced radial velocity Ur/r:

uz(z) =
z2
0 uz(z0)

z2
,

ur

r
=

uz(z)

z
=

z2
0 uz(z0)

z3
for z ≥ z0 (44)

where z0 > 0 is the coordinate of the nozzle entrance and the axial velocity V (z0) at the entrance
is fixed. The trajectories of the droplets are also assumed straight since their injection velocity
is co-linear to the one of the gas. This assumption is only valid when no coalescence occurs.
However, even in the presence of coalescence, it is valid in the neighborhood of the centerline.
The deceleration at the entrance of the nozzle is taken at a(z0) = −2uz(z0)/z0; it is chosen large
enough so that the velocity difference developed by the various sizes of droplet is important. In
the stationary configuration, we have chosen a very large value as well as a strong deceleration
leading to extreme cases : uz(z0) = 5m/s, z0 = 10cm for the monomodal case and uz(z0) = 5m/s,
z0 = 5cm for the bimodal case. It generates a very strong coupling of coalescence and dynamics
and induces an important effect on the evaporation process.
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Figure 18: (left) Evolution of the mass density of liquid for the Lagrangian reference solution (solid line)
and for various discretizations with the Eulerian multi-fluid model ( + : 90 sections, × : 30 section, ∗ :
15 sections, ⊔⊓ : 90 sections without collision). (right) Sauter mean radius for the Lagrangian reference
solution (solid line) and for various discretizations with the Eulerian multi-fluid model ( + : 90 sections,
× : 30 section, ∗ : 15 sections, ⊔⊓ : 90 sections without collision).

As mentioned previously, the strength of such multi-fluid models, is to be able to reproduce
the global behavior of the spray with a limited number of sections. Consequently, calculations
with various numbers of sections were performed : 90, 60, 30 and 15. For completeness, we have
also represented, both in Figure 18-left and 18-right, the solution without coalescence calculated
with 90 sections. The conclusion to be drawn from these figures is that the multi-fluid is able
to predict fairly well, even in the case of 15 sections for which the computational cost is very
reasonable, the global coupling of the various phenomena occurring in the nozzle. One crucial
point is related to the localization of the evaporation front for pollutant formation purposes and
even with 15 sections, the evaporation front is precisely computed.

It is particularly interesting to note that the average dynamics are correctly reproduced with
90 sections. Concerning the Sauter mean radius of the distribution, it is extremely well-predicted
by the 90 section solution, fairly well-reproduced by the 30 section one and the difference gets
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bigger when we use 15 sections, even if the mass difference does not grow beyond two percent
of the initial one.

If the monomodal distribution is well-suited for the Eulerian multi-fluid approach, the bi-
modal one can be considered as the most difficult task; the method can be shown to be of first
order in the size discretization step [51]. In such a situation, the numerical diffusion is intro-
ducing some artificial coupling at the dynamical level since only one velocity is prescribed per
section.

However, the results presented in Figure 19 show that the mass evolution is very well cap-
tured, the difference with the reference solution stays below 1%. The evolution of the Sauter
mean radius in Figure 19-right is also well-captured. However, once 93% of the initial mass has
evaporated, there is a little difference in the mass density decrease which seems to be due to a
difficulty to correctly reproduce the dynamics and size distribution of the spray.
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Figure 19: (left) Evolution of the mass density of liquid for the Lagrangian reference solution (solid line)
and for various discretizations with the Eulerian multi-fluid model ( + : 100 sections, × : 50 section, ∗ :
25 sections, ⊔⊓ : 100 sections without collision). (right) Sauter mean radius for the Lagrangian reference
solution (solid line) and for various discretizations with the Eulerian multi-fluid model ( + : 100 sections,
× : 50 section, ∗ : 25 sections, ⊔⊓ : 100 sections without collision).

In order to have a more precise idea of what is happening, we have observed the mass
distribution function at the point z = 10.53 cm as well as the velocity distribution as a function of
the droplet size at this point. It appears very clearly that the numerical diffusion, if too high, can
smooth out the mass distribution function and consequently the velocity distribution function
because of the assumption, the Eulerian multi-fluid model relies on. In the 25 sections case, the
peaks of the distribution have disappeared and the velocity distribution function has become
monotone. This example allows to understand what will be the limits of such an approach.
However, the simulation with 100 sections allows to predict very accurately the various peaks of
the mass distribution function, as well as their dynamics, except for the very “big” droplets, the
velocity of which is becoming higher thus causing the difference to be observed in Figure 19-right
on the Sauter mean radius. This discrepancy can be attributed to the numerical diffusion [51]
which acts on a size distribution function which is very singular and remains so through the
coalescence phenomenon.

The computational efficiency of the model is presented in details in [41] where an unsteady
series of computations are conducted in a challenging configuration for both Eulerian and La-
grangian methods. If a good level of accuracy in the size phase space is required, the cost is
lower than the Lagrangian method but of the same order, thus showing that the improvement
through the use of the Eulerian model is going to be achieved with the optimization of the
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solver coupling the two Eulerian description. However, the Eulerian model is going to allow the
user to perform several levels of accuracy for the size phase space discretization without having
any trouble with the smoothness of the calculated solution (an essential point for combustion
applications), a feature which is not present with the Lagrangian solver. We show that a coarse
discretization allows to obtain a good qualitative description of the phenomenon; it proves to
be very computationally efficient compared to the reference Lagrangian solution and still allows
to take into account the polydisperse character of the spray.

The level of code optimization that can be obtained from a global Eulerian description
has already been demonstrated in the case of two-fluid models, but the detailed study in the
framework of Eulerian multi-fluid models is in progress and an account of the current status of
research in the field will be presented in chapter 6.

Finally, the assumption that the velocity dispersion around its mean at a given time, for a
given space location and a given droplet size is zero, the Eulerian multi-fluid model relies on,
is investigated in [41] by considering the results from the Lagrangian solver and we prove that
this assumption is fullfilled.

We then have validated the Eulerian multi-fluid model by showing the good correspondence
with the reference solution when the size phase space is finely discretized. It is also shown that
the behavior of the spray is correctly captured even if a limited number of “fluids” is used for
the Eulerian model corresponding to a coarser discretization in the size phase space. The reader
can also find in [36] a detailed comparison of such an approach with DQMOM for the same kind
of configurations.

4 Beyond the original limitations : higher order methods

The multi-fluid model, presented in Chapter 3, is a fully Eulerian model describing the disperse
liquid phase while preserving the link with the kinetic level of description. It is able to capture the
polydispersion of evaporating sprays, and the dynamics of the evaporating droplets conditioned
by size. It represents a good alternative to Lagrangian models when it comes to simulate
polydispersion. However, the multi-fluid model faces two important limitations. The first one lies
in the numerical diffusion encountered in the size phase space when discretizing with a first order
method; as observed in the previous chapter, in order to reach a reasonable level of accuracy, one
has to consider numerous sections. This has shown to be critical in the description of coalescence
for bi-modal distributions. Since we aim at simulating multi-dimensional configuration, this issue
is going to be critical since numerous sections will then imply heavy computational cost. Thus,
F. Laurent [48, 51] and G. Dufour [43, 87] have devised two extensions of the multi-fluid in their
theses in order to reach second order accuracy. Even if interesting, there is a theorical as well
as a practical interest in going beyond this limit. From a mathematical point of view, there is
a challenge in devising more powerful models to combine the multi-fluid approach with a high
order description of the distribution function in each section. Moreover, for industrial purposes,
it can be sometimes impossible to increase the number of sections to reach a better accuracy for
polydispersion, as the computational cost can turn out to be too important. Therefore, there
is a need to obtain a high accuracy with a reduced number of sections up to three or even just
with one section, to be able to describe polydispersion in a two-fluid formalism.

The second limitation concerns the droplets dynamics for droplets with enough inertia. It
has been shown (see section 3.2 or [47] and references therein) that the semi-kinetic model, from
which the multi-fluid model is derived by a discretization in size, is equivalent to the kinetic
description, in the case of small Stokes numbers. For particles beyond a critical Stokes number,
some characteristic curves cross each other in the (x, t) diagram. The distribution ceases to be
monokinetic and the equivalence between the macroscopic and kinetic descriptions is not valid
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any more. Our aim is to be able to simulate these droplet crossings for high Stokes number
particles/droplets.

High order moment methods are used in order to address these two issues. In a first section,
we will use high order size moments for the description of polydispersion, in the context of
evaporation, and transport of particles with their own velocity. The property of the system of
equations as well as the mathematical and numerical tools to insure the system stability are
provided. In fact, we combine the multi-fluid approach with high order moment methods which
lead to strong mathematical difficulties (preservation of the moment space in the evaporation
step and in the transport step) for which there has been numerous studies but no real theoretical
answers [88, 89]. Our approach combines the efficiency of the multi-fluid with the accuracy of
QMOM and DQMOM [56, 53].

When it comes to the simulation of charateristic crossing, high order velocity moments are
considered. We first consider a monodisperse flow and show how to close the system with QMOM
in the spirit of [90]. We have proposed an interesting way of conducting the quadrature step in
[54] and we reproduce the method in a second section.

In a third section, the two models are coupled in a model describing polydispersion and
droplet crossing in the context of an evaporating spray. The fourth section is dedicated to
results and validation, thus showing how we have overcome the two limitations of the standard
multi-fluid model and can even tackle the issue of particle collisions in the finite Knudsen context
[55]. We also underline a series of open problems in the field.

4.1 Multi-Moment transport and evaporation

The starting point is the non-dimensional kinetic equation (27). In this part, our purpose is
to explain high order moment methods for the description of polydispersion in the context of
evaporation and transport. Notice that it is not a restrictive condition and the proposed method
can be extended to droplet heating and more complex models [56]. The semi-kinetic equation
system of interest reads :

∂tn + ∂x(nū) + Ev ∂s(nK) = 0, (45)

∂t(n ū) + ∂x(n ū ⊗ ū) + Ev ∂s(n Kū) − F = 0. (46)

In the manner of the multi-fluid model, we apply a finite volume discretization in the size
variable, averaging the semi-kinetic system of conservation equations over some fixed size in-
tervals. We make the same assumptions on the spray distribution function : f(t,x, s,u) =
n(t,x, s) δ(u − ū(t,x, s)), that is, so far, we do not relax the monokinetic assumption. The
evaporation process is described by a d2 law and we then assume K = −1. The fundamental
difference is that we consider N + 1 size moments of the distribution function for each section,

from the 0th to the N th moment. A size moment is defined by : m
(k)
i =

∫ sk

sk−1
sin dv, where

[sk−1, sk] is the kth section.

Let make the same assumption on the velocity as for the multi-fluid model : the velocity is
assume constant inside the section, that is to say ū(t,x, s) = ū(k)(t,x) for s ∈ [sk−1, sk[. The
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system of equations for the kth section then reads :

∂tm
(k)
0 + ∂x

(

m
(k)
0 ū(k)

)

= −(Ev n(k)(sk−1) − Ev n(k+1)(sk)),

∂tm
(k)
1 + ∂x

(

m
(k)
1 ū(k)

)

= −(Ev m
(k)
0 + Ev sk−1n

(k)(sk−1) − Ev skn
(k+1)(sk)),

∂tm
(k)
2 + ∂x

(

m
(k)
2 ū(k)

)

= −(2Ev m
(k)
1 + Ev s2

k−1n
(k)(sk−1) − Ev s2

kn
(k+1)(sk)),

... (47)

∂tm
(k)
N + ∂x

(

m
(k)
N ū(k)

)

= −(NEv m
(k)
N−1 + Ev sN−1

k−1 n(k)(sk−1) − Ev sN−1
k n(k+1)(sk)),

∂t

(

m
(k)
0 ū

)

+∂x

(

m
(k)
0 ū(k) ⊗ ū(k)

)

=−(Ev n(k)(sk−1)ū
(k) − Ev n(k+1)(sk)ū

(k+1)),

where the dependance in (t,x) of each variable is implicit.
In comparison with the multi-fluid model where only one size moment is considered, i.e. the

mass moment, the description of polydispersion is enriched here when N ≥ 1 by taking, besides
the number of droplets, N other surface moments. High order reconstruction in size is now
possible, and polydispersion can be accounted for within even only one section, which is not
possible with the original multi-fluid model where such an approach would far from accurate.

However, the introduction of a moment vector MN = (m
(k)
0 , · · · , m

(k)
N )t brings up a major

issue consisting in keeping the integrity of the moment sequence MN , in either the evaporation
and the transport steps. Indeed, Wright [88] showed that independent transport of moments,
with algorithms of order greater than one in space, can result in the generation of invalid moment
sets. That means that there is no distribution function n(s) which can be reconstructed from the

moment sequence such as
∫ sk

sk−1
sin(s) ds = m

(k)
i , i ∈ [0, N ]. Vectors which verifies this condition

belong to the N th order moment space denoted MN . What makes it difficult to preserve is the
fact that this moment space is a strict subset of R

N with a complex geometry [91].
To study some interesting properties of the moment space in order to preserve it, let us

introduce some quantities derived from the moments : the normalized moments and the canonical
moments. We define normalized moments corresponding to a moment vector (m0, . . . ,mN ) as
follows :

ci =
mi

m0
. (48)

The vector cN = (c1, . . . , cN )t is the vector of normalized moments of the distribution function.
For cN ∈ MN , we denote by P (cN ) the set of all probability measures µ ∈ P with moments up
to the order N equal to cN , and

c+
N+1(cN ) = max

µ∈P (cN )
cN+1(µ), c−N+1(cN ) = min

µ∈P (cN )
cN+1(µ), (49)

where cN+1(µ) is the normalized moment of order N + 1 of the measure µ. If cN belongs to
the interior of MN , then c−i < c+

i for all i ≤ N and P (cN ) is infinite [91]. A canonical moment
sequence (pi)i≤N can then be defined by :

pi =
ci − c−i (ci−1)

c+
i (ci−1) − c−i (ci−1)

(50)

The algorithm to find the canonical moment from the moment can be found in [91]. The
expression of the first canonical moment can be found in [56]. The canonical moments have two
major properties which make them attractive to work with. First, according to the definition
(50), switching from the interior of the moment space to the space of the canonical moments,
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we switch from a complex subset of R
N to (0, 1)N and loose some of the difficulties associated

to the recursive definition of the moments. Besides, if, for a certain value of i, pi = 0 or
pi = 1, then ∀j > i, the canonical moments are not defined, and the distribution is a sum of
Dirac distributions; it indicates that the moment vector of order i belongs to the frontier of the
moment space. It is thus immediate to figure out if a canonical moment set corresponds to a
moment vector which belongs to the moment space. Secondly, the canonical moments remain
invariant under linear transformation of the distribution and we refer to [91] for a proof; for that
reason, we will work on the surface interval [0, 1] without loss of generality.

System (47) is split into two systems, for transport in phase space, i.e. evaporation, and
transport in physical space which will be treated subsequently one after the other.

4.1.1 Evaporation

We present the evaporation system in the simple case where Ev = 1; the reader can easily re-
establish the presence of the non-dimensional number. We extract the equations on size moments
of system (47), the equation on momentum being solved in a second time. The evolution of the
system through evaporation then reads :

dtMN = −AMN − ϕ− + ϕ+ (51)

MN =







m
(k)
0
...

m
(k)
N






, A =

















0 0
1 0

2
. . .
. . .

. . .

0 N 0

















. (52)

ϕ− = n(k)(t,x, sk−1)(1, sk−1, . . . , s
N
k−1)

t
ϕ+ = n(k+1)(t,x, sk)(1, sk, . . . , s

N
k )t (53)

The terms n(t,x, sk−1) and n(t,x, sk) have to be closed in system (51). They represent the
disappearing flux of droplets at time t for each section. The difficulty is that a pointwise value
of the distribution function must be found from the data of its N + 1 first moments. Moreover,
this closure has to preserve the moment space. This is a mathematical modeling as well as a
numerical issue. Indeed, once a value of n which makes system (51) stable (i.e. staying in the
moment space) has been determined, the numerical scheme has to preserve this stability. Finding
these values amounts to solve the finite Hausdorff moment problem [91] in each section. A closure
preserving the moment space is provided using an Entropy Maximisation of the moments [92].

When it comes to the numerical scheme, a pointwise definition of the flux is difficult to
evaluate. In [56], some standard ordinary differential equation solvers are used for system (51);
they all prove to be instable. In order to avoid these instabilities, we construct, as in the kinetic
schemes for hyperbolic equations, an integral formulation making use of the underlying kinetic
equation. The integral formulation of system (51) reads (the proof can be found in [56]) :

exp(∆tA) (MN )n+1 = (MN )n + Φ(k+1) − Φ(k), (54)

where

Φ(k) =

∫ sk−1+∆t

sk−1

n(k)(0,x, s̃)(1, s̃, . . . , s̃N )tds̃. (55)
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Since the following result holds :

exp(tA)











∑r
i=1 ωi(t)

∑r
i=1 ωi(t)Si(t)

...
∑r

i=1 ωi(t)S
N
i (t)











=











∑r
i=1 ωi(t)

∑r
i=1 ωi(t)(Si(t) + t)

...
∑r

i=1 ωi(t)(Si(t) + t)N











, (56)

an algorithm using a quadrature (so with N = 2r−1) is given in three steps in order to compute
moments at time n + 1, which guaranties the conservation of the moment space [56] :

1. In each section [sk−1, sk], a reconstruction n(k) is done of the distribution from its mo-
ments (MN )n by the Maximum Entropy method and the fluxes Φ(k) are computed by
equation (55).

2. The weights ω
(k)
i and the abscissas S

(k)
i , i ≤ r, corresponding to the moment vector

(MN )n + Φ(k+1) − Φ(k) are computed using the QD algorithm.

3. The moments (MN )n+1 corresponding to the weights ω
(k)
i and the abscissas S

(k)
i −∆t are

computed.

The updated momentum m
(k)
0 ū(k)(tn+1) is then given by :

(

m
(k)
0 ū(k)

)n+1
=
(

m
(k)
0 ū(k)

)n
+ Φ

(k+1)
1

(

ū(k+1)
)n

− Φ
(k)
1

(

ū(k)
)n

, (57)

where Φ
(k)
1 is the first component of Φ(k) and is then the number of droplets disappearing from

section k between t and t + ∆t. Under the CFL like condition ∆t < ∆s, this scheme is stable.
Such a method has the major advantage, with a very moderate cost, to preserve the moment
vector in the evaporation equation with a very stable model for the flux of disapearing droplets.
A straightforward and natural extension of this algorithm in order to account for a general
nonlinear evaporation law is given in [56]. Once the evaporation step algorithm is constructed,
we still have to devise an algorithm for the transport in physical space.

4.1.2 Transport

The equation system for transport in physical space reads :

∂tm
(k)
0 + ∂x

(

m
(k)
0 ū(k)

)

= 0

∂tm
(k)
1 + ∂x

(

m
(k)
1 ū(k)

)

= 0

... (58)

∂tm
(k)
N + ∂x

(

m
(k)
N ū(k)

)

= 0

∂t

(

m
(k)
0 ū(k)

)

+ ∂x

(

m
(k)
0 ū(k) ⊗ ū(k)

)

= 0

This system is already closed. It presents two mathematical issues, the first one being, like
in the evaporation step, the preservation of the moment space, and the second one being the
pressureless gas formalism explained in section 3.2. Tackling the second issue is not a problem
since it will be identical to what we have already done in the standard multi-fluid model with the
kinetic schemes of Bouchut. For the first issue, first order schemes are relatively easy to design,
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provided we use a time integrated and kinetic based expression for the fluxes in a finite volume
formulation. Under CFL condition, this scheme is stable as the updates of the mean values of
the moment sets results in a convex sum between moment sets of neighboring cells, preserving
the moment space which is convex. But our purpose is to design a numerical scheme which is
second order in space and time and is able to cope with the aformentioned issues. The capacity
to build such a scheme limiting numerical diffusion has been a key concern in every field where
the modeling work considers the transport of a moment set. It has been a stumbling block for a
long time, because conservative transport scheme only guarantees that individual tracers remain
positive and conserved. The link between the different moments, with their generally different
spatial gradients, is not guaranteed when these are transported separately like chemical species,
and thus the moment space has no reason to be preserved. When this is the case, no distribution
can be reconstructed from the moment set and we can see that as a stability issue. The scheme
we present has the property to preserve the moment space by itself, i.e without using any extra
algorithm which constrains the moment space at the expense of accuracy.

A key propriety of system (58) is that canonical moments are tranported quantities, which
means that they verify the transport equation : ∂tpi + ū · ∂xpi = 0. Their support is invariant
during a timestep. As the canonical moments are independently bounded by 0 and 1, satisfying
maximum principles on the canonical moments will insure the robustness of the scheme towards
the preservation of the moment space.

Because of the conservative form of system (58), the finite volume method [93] is a natural
candidate for its discretization. As we use a dimensional splitting algorithm, we alternatively
transport in each space direction with a one-dimensional scheme. As system (58) contains the
pressureless gaz formalism, we use the equivalence between the microscopic and the macroscopic
levels of description as detailed in section 3.3.2. However, we have an extended structure for
the distribution function which reads : f(t, x, s, u) = n(t, x, s)δ(u − ū), where n represents the
size distribution function. In the following, we omit the exponent refering to the size section, as
there is no interaction between the sections.

In the projection step, we can express the moments according to the NDF with the following
expression :











m0(x)
...

mN (x)
q











=

∫

R

∫ 1

0











1
...

sN

u











f(t, x, s, u) dsdu (59)

where q represents the momentum, q = m0u.
The algorithm of the scheme is the same as exposed in Chapter 3, section 3.3.2. We first

consider the mean values of the moments in a cell (see (38)). Then, at time t = tn, the
distribution function fn(x, s, u) is reconstructed from the average value of the moments using
the formula fn(x, s, u) = nn(x, s)δ(u − ūn) with some reconstructions nn and ūn of the density
and the velocity. The discretized equations are obtained in a conservative form by integrating
the kinetic equation over (tn, tn+1) × (xj−1/2, xj+1/2) × R × (0, 1) :

Un+1
j = Un

j −
∆t

∆x
(Fj+1/2 − Fj−1/2), (60)

where Uj = (m0,j , . . . ,mN,j , qj)
t and Fj+1/2 is the flux vector and writes :

Fj+1/2 =
1

∆t

∫ ∆t

0

∫

R

∫ 1

0











1
...
sN

u











ufn(xj+1/2 − u∆t, u, s) dsdudt. (61)
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In addition, one can compute the integrals over R
+ and R

− separately, and then the numerical
flux can be written in the flux vector splitting form : Fj+1/2 = F+

j+1/2 + F−

j+1/2, with

F
+

j+1/2 =
1

∆t

∫ ∆t

0

∫

+u≥0

∫ sk

sk−1











1
...
sN

u











ufn(xj+1/2 − u∆t, u, s) dsdudt. (62)

In order to compute the flux, and as we aim to devise a second order scheme, we use a linear
reconstruction. Whereas the choice of m0 (droplet number) and ū for reconstructed variables are
classical, the other reconstructed variables are the canonical moments. The normalized moments
are not reconstructed, as their independant reconstruction does not guarantee to preserve the
moment space, contrary to the canonical moment for which a sufficient condition is to lie between
0 and 1 to preserve the moment space. The reconstructions are performed in order that the
scheme is conservative. Morevover, slope limiters are introduced in order to respect the positivity
of m0 and the maximum principle of the other variables.

In the following, we choose N = 3 (four size moments) in order to obtain a good compromise
between accuracy and algebraic complexity. The expression of F+

j+1/2, after having used the fact
that f is solution of the kinetic equation, takes the final form :

F+
j+1/2 =

1

∆t

∫ xj+1/2

xL
j+1/2













mn
0 (x)

mn
0 (x)p1(x)

mn
0 (x)p1[(1 − p1)p2 + p1](x)

mn
0 (x)p1[(1 − p1)p2(1 − p2)p3 + (p1 + p2(1 − p1))

2](x)
mn

0 (x)ūn(x)













dx, (63)

where xL
j+1/2 is the abscissa of the last particle reaching the interface at time tn+1. At this level

it is necessary to use computer algebra tools in order to : first compute the linear reconstruction
of the canonical moments in order to preserve the conservation of the moments, second obtain an
analytical expression for the fluxes which are then exported in Fortran code directly considering
the complexity of the expressions.

Using limiters to satisfy a maximum principle on the canonical moments enables to satisfy
the realizability condition on the moments at every point of the reconstruction. We have to
satisfy a maximum principle for the canonical moments as well as for velocity, and also a non
overlapping condition to get an explicit expression for the fluxes, when we consider inertial
particles. Providing a solution to these difficulties leads to a second order in space and time
scheme able to advect a moment set preserving the moment space, and supporting singularities
when inertial particles are studied. Notice that we do not use any extra algorithm in order to
constrain the moment set to a subspace of the moment space as in [88] or [89]. The comprehensive
development of these ideas is proposed in a very recent piece of work [94] which was already
presented in [95] and will be part of D. Kah’s Ph.D. Thesis [53].

4.2 Quadrature methods for finite Stokes particles

In this section, we tackle the second limitation of the multi-fluid model : as particle character-
istics cross in the (x, t) diagram, the equivalence between semi-kinetic and kinetic description
is lost. This not a concern for particles with a small Stokes number (St << 1), as they almost
follow gas trajectories and do not cross because of the strong action of drag. But this is a
problem when it comes to finite Stokes particles as they have their own velocity and inertia and
can substantially deviate from the gas velocity. Moreover, there are two types of flow regimes
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depending on the particle Knudsen number. For dense enough sprays which are called collisional
(one reaches the hydrodynamic limit for Kn < 0.01), the particles are described by hydrody-
namic equations such as the Euler (when the distribution function is a Maxwell-Boltzmann
distribution) or Navier-Stokes equations (when perturbations around the Maxwell-Boltzmann
distribution are applied for the distribution function). These methods only consider the dynamic
of low order (velocity) moments, as the higher order moments are closed since the distribution
function is supposed to be an equilibrium distribution. On the other hand, in the case of larger
Knudsen numbers, the collision rate between particles is too weak to make the distribution func-
tion relax to an equilibrium distribution within the considered time scales. Thus, no moments
are known and equations on high order moments of the kinetic equation are written such as in
rarefied gas equations. In our work , we consider a dilute particle flow in the limit of infinite
Knudsen number, so we assume that there is no collision among the particles.

Our purpose here is to explain how this limitation of the multi-fluid model can be overcome,
using a high order moment method for velocity moments, combined with Quadrature Method
of Moment (QMOM), from the ideas of [90]. A key component of QMOM is the inversion al-
gorithm used to find the weights and abscissas from the moments. A direct non linear solver is
poorly conditionned (and get worse increasing N , the number of moments considered). However,
the product-difference (PD) algorithm introduced by McGraw [31] overcomes this difficulty by
replacing the nonlinear solver with a computationally efficient eigenvalue-eigenvector problem
that is well conditioned even for large N . Besides, even with highly coupled and nonlinear
aggregation kernels, good accuracy for the lower-order moments can usually be attained with
N = 4 nodes, [32]. Unfortunately, the PD algorithm only works for uni-variate distribution
functions, but not for bi-variate or multi-variate NDF where f depends on two (or more) in-
ternal coordinates. In order to overcome this limitation, one can work directly with transport
equations for the weights and abscissas (DQMOM [96]), which works well when ξ, η represent
passive scalars. However, for velocity moments, the DQMOM approach is unstable : in particu-
lar it fails at singular points where the velocity abscissas change discontinuously. Remarkably, a
quadrature-based moment closure for the velocity distribution function is robust at such points
[97]. However, for multi-dimensional velocity distributions, the key challenge of inverting the
moments to find the weights and velocity abscissas remains.

In this subsection we investigate moment inversion in successively one and two dimensions in
physical space. The internal variable of the distribution function are only the velocities, and we
consider only the transport operator. This is legitimate as we use an operator splitting algorithm.
Let us emphasize the fact that we consider, in this section, a monodisperse distribution, and
that we are interested in the convection operator. Our starting point is the kinetic equation
(27), where we omit the evaporation term.

4.2.1 One dimensional case

Let us first begin with the one dimensional case. The first step is to take the N first velocity
moments of the kinetic equation : m0 Mi =

∫

ui f(t, x, u) du. We consider actually the nor-
malized velocity moments Mk and note M0 = 1. We set N = 3, as we did in the previous
chapter but higher order moment can be envisioned and are currently studied by R.O. Fox. The
dynamic system on the velocity moments corresponding to the transport in the physical space
then reads :

∂tW + ∂xF(W) = 0,
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where W = (m0, m0M1, m0M2, m0M3)
t, F(W) = (m0M1, m0M2, m0M3, m0M4)

t. In sys-
tem (4.2.1), the term M4 has to be closed. This is achieved by a two-node quadrature :

M4 = w1v
4
1 + w2v

4
2, (64)

where (w1, v1), (w2, v2) are the weights and abscissas given by the quadrature of the components
of W , solution of the system :

M0 = w1 + w2,

M1 = w1v1 + w2v2, (65)

M2 = w1v
2
1 + w2v

2
2,

M3 = w1v
3
1 + w2v

3
2,

which is solved by the Product-Difference algorithm.
It can be proven that this system is weakly hyperbolic. It has two double eigenvalues which

are v1 and v2. It allows the crossing of two characteristic through the pressure term (included in
M2, which represents the velocity dispersion). However a singularity (δ-shock) will be created
if three characteristics meet at the same point. The structure of system (65) can be seen as two
independent pressureless gas systems as long as only two characteristics cross. These systems
become coupled when at least three characteristics meet, and leads to the creation of a shock.

The numerical scheme is the same scheme as the one used for the pressureless gas (see
section 3.3). The difference is that, instead of having one local density and velocity, there are
two local densities and velocities. Moreover, it is a first order scheme in space in order to preserve
the velocity moment space.

Finally, we also have to consider the transport in phase space (that is to say the drag), which
can be treat separately from the transport in physical space through splitting, as done for the
multi-fluid method (see section 3.3.1). This system is reduced to an ODE system :

dt(m0Mi) = i
UgasMi−1 − Mi

St
, i = 0, . . . , 3 (66)

This system is solved using an implicit Runge-Kutta Radau IIA method of order 5 with adaptive
time steps. Whereas this resolution in case of multi-fluid method does not yield any difficulty,
for the multi-velocity case it can lead to a non realizable set of moments m0Mi. The preservation
of the moment space requires working with the centered moments :

M̃i =

∫

u
(u − M1)

i f(t, x, u)du, (67)

for i ∈ [0, 3]. Starting from there, even if it leads to additional nonlinear terms in the ODE
system, the Radau solver can be adapted and yields a robust solver on the conservative centered
moments that strictly preserves the moment space and allows working up to the boundary of
the moment space, i.e., the monokinetic velocity distribution.

4.2.2 Two dimensional case

Let consider only the transport in physical space, since drag can be treated exactly as in the
one-dimensional case. In the two dimensional case, the 10-component moment vector reads
W = (m0, m0Mj,l)j+l≤3, where M0,0 = 1 and m0Mj,l =

∫ ∫

uj
xul

yf(t,x,u) du. The resulting
system of conservation laws on moments for convection reads :

∂tm0Mj,l + ∂xm0Mj+1,l + ∂ym0Mj,l+1 = 0, j + l ≤ 3. (68)

02-2009 - 50 - RTO-EN-AVT-169



Eulerian multi-fluid models : modeling and numerical methods

In order the close the convective terms for which j + l = 4, we will use a quadrature method
of moments in the spirit of [90]. Let k ∈ 1, · · · ,N d denote the set of weights and abscissas
with a N quadrature level in one direction, and let d denote the dimension, which is two in
our case. We take here N = 2 and will investigate a 2d = 4-node quadrature approximation of
f . Higher N can be considered at the price of much more complex algebra and combinatorics,
and for the sake of simplicity and efficiency, we will limit ourselves to the cas N = 2. The
velocity moments are then easily related to the quadrature weights wk and abscissas (vk,x, vk,y)

by m0Mj,l =
∑2d

k=1 wkv
j
k,xvl

k,y. The issue is to evaluate the abscissas and weights from the
data of the velocity moment vector of size 10. The correspondence is one-to-one in one space
dimension. However, in dimension greater or equal to two, we will transport the whole set of
moments but effectively restrict the moment subspace recursively structured from the set of
second-order velocity moments for which the correspondence is one-to-one, and insure that the
velocity moment vector lives in this subspace.
We introduce a linear transformation C as well as a rotation matrix, R, such that (RC)T RC =
(σij) = σ, (i ∈ (x, y), j ∈ (x, y)) with σij =

∫

uiujf du, where σ is the covariance matrix.
Up to a rotation, the linear transformation C, which is chosen as a Cholesky decomposition
of σ in the rotated set of axes, allows for a natural change of variable. With this choice, we
take B = (RC)t and introduce the vector Y = [Y1, Y2], defined by Y = B−1(u − ū), so that
u = BY + ū. This variable is a good candidate in order to perform tensorial 1-D quadrature
based on the set of reconstructed centered third-order moments in the two new basis directions.
There are fundamental grounds for using the Cholesky decomposition rather than the other
methods. Defining matrix B in terms of the eigenvectors of the covariance matrix is a good
choice for the passive transport of a distribution function. However, because the velocity is
a dynamic variable, the fundamental difficulty comes from the fact that the eigenvectors of σ

do not vary smoothly with its components. As a consequence, the fluxes computed from the
abscissas are then discontinuous, leading to random fluctuations in the moments. In contrast,
the Cholesky matrix C with R = I defines B, which varies smoothly with the components of σ

and, hence, the fluxes are well-behaved [90].
On the other hand, the disadvantage of using the Cholesky matrix is that it depends on the
ordering of the covariance matrix, and is thus different for each of the two permutations (six in
three dimensions) of the coordinates corresponding to the two R matrices identity and rotation
by π/2. It is thus desirable to replace these two linear transforms Bx or By in the two preceeding
choices with a permutation-invariant linear transform. Here we consider the half-angle between
these two transforms. This treats each direction in the same manner, and is now independant
of the ordering of the covariance matrix. Besides, this choice is stable and defines a subspace of
the moment space in which the conservative variables live.

4.3 Final model and coupling

The models exposed in the two previous sections are now coupled in a model overcoming the
two highlighted limitations of the multi-fluid model. High order moment methods are applied
in both size and velocity phase space. We consider a polydisperse flow in this section again.
We describe polydispersion and droplet crossing in the context of evaporation (for which we
consider a d2 law) and transport. We consider a mono dimensional case, as the extension to the
bi-dimensional case does not bring any additional difficulty.
We make the following hypothesis on the distribution function, assuming that, in a size section,
the size and velocity distribution are independent :

f(t, x, s, u) = n(t, x, s)φ(t, x, u) (69)

RTO-EN-AVT-169 - 51 - 02-2009



Eulerian multi-fluid models : modeling and numerical methods

This model is able to capture, as the multi-fluid model is, the dynamics of the droplets con-
ditioned by size. But, into one size section, the dynamics of the droplets is independent from
their size. The size and velocities moments are tensorial products of the independent size and
velocity moments :

m
(k)
i M

(k)
j =

∫ sk

sk−1

∫

R

siujf(t, x, s, u) dsdu (70)

Considering N = 3 for both size and velocity, the number of unknows is 4 size moments and 4
velocity moments. Given the fact that the 0th order moments are equal and represent the total
density of droplets, the system has 7 unknows.

The equation system then writes :

∂tW
(k) + ∂xF(W(k)) = ϕ

(k+1) − ϕ
(k) + BW(k) (71)

where W(k) = (m
(k)
0 , m

(k)
1 , m

(k)
2 , m

(k)
3 , m

(k)
0 M

(k)
1 , m

(k)
0 M

(k)
2 , m

(k)
0 M

(k)
3 )t

and F(W(k)) = (m
(k)
0 M

(k)
1 , m

(k)
1 M

(k)
1 , m

(k)
2 M

(k)
1 , m

(k)
3 M

(k)
1 , m

(k)
0 M

(k)
2 , m

(k)
0 M

(k)
3 , m

(k)
0 M

(k)
4 )t,

B is a 7× 7 matrix, whose top left 4× 4 submatrix is the matrix showed in (52), and whose the
rest is filled with 0. Moreover, the fluxes are written :

ϕ
(k) = n(k)(t, x, sk−1)(1, sk−1, . . . , s

N
k−1, M

(k)
1 , M

(k)
2 , M

(k)
3 )t.

We do not consider the drag force, here, since its treatment needs a quite specific treatment in
order to define an averaged surface in each section.

The numerical scheme is a finite volume scheme, for which each contribution (evaporation,
transport) is split. The transport operator is solved using the solver for multi velocity systems,
detailed in the previous chapter. It is first order in space in order to preserve both size and
velocity moment space. In the same manner, the evaporation operator is solved using the solver
for the evaporation of a moment vector, detailed in the first section. The evaporation of the
velocity moment vector does not bring any additional difficulty.

4.4 Tests and validations

We present some test cases where an analytical solution can easily be provided so that we can
compare the analytical solution of the problem with the solution given by the computation of the
high order moment model. In these Notes, we will focus on two configurations, the first one is
a simple one-dimensional solution with evaporation and transport able to prove the capabilities
of our models and numerical methods. We consider particles or droplets with high inertia and
neglect drag within the considered time scales. For the evaporating multi-moment model with
pressureless gas dynamics, we show the ability to capture δ-shock formation while resolving the
size moments and preserving the size moment space, and with the evaporating multi-moment
coupled with multi-velocity model, we prove the ability to resolve droplet crossing with the same
properties for the size moments. In both cases, the computations are performed with one size
section (detail validations with several section can be found in [56]), showing the capability to
describe polydispersion with only one size section, which is a drastic improvement in comparison
to the multi-fluid model where the description of polydispersion requires many section to be
accurate.

In a second set of results, we switch to two-dimensional configurations. The first one is
devoted to the crossing of two evaporating jets for which we can evaluate an analytical solution
and conduct a numerical simulation with a CFL of one, thus eliminating numerical diffusion for
the transport in physical space. The dynamics of the size moments is very well captured during
the crossing.
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For the first test case, the polydisperse droplet cloud with droplet size distribution and initial
velocity field is given by the following expressions :

f(x, s) =

{

λ(x) sin(πs) + (1 − λ(x)) exp(−s) ifx ≤ 0.5
0 otherwise

(72)

u(x) =

{

0.5 if x ≤ 0.25
2 if x > 0.25

(73)

where λ(x) = 4(0.5 − x)2.

The analytical solution is the translation of the two parts of the density profile in the physical
space, coupled with evaporation following a d2 law (K = −1, Ev = 1) explaining the lowering
of the profiles. The velocity discontinuity within the droplet cloud makes it spread into two
separate clouds with two distinct velocities. This configuration shows the ability of the method
to handle the vacuum zone generated by the separation of the clouds. Moreover, because of
periodic boundary conditions, the faster cloud will meet the slower one once it has re-entered on
the left side. Once again, in the dilute flow regime we consider, we assume an infinite Knudsen
limit and neglect collisions so that the two clouds should cross. The CFL number is 1, the
number of cells is 400. We display results at two different instants : one before the meeting
of the clouds (t = 0.2) and one after (t = 0.4). The numerical solution is represented by solid
lines, and it is compared with the analytical solution represented by symbols. Figure 20 displays
the initial condition for the moments and the velocity. Figure 21 displays the four analytical
size moments, and the size moments at the two instants. First, we can notice that the moment
space is preserved, and the numerical solution matches the analytical one with great accuracy.
Morevover, the vacuum zone created by the velocity difference is perfectly captured by the
numerical scheme. The algorithm in terms of transport and evaporation is stable and accurate.
At time t = 0.4, the agreement between the numerical and the analytical solution associated
with the moments of the kinetic solution starts to deteriorate since the numerical solution show
the appearance of a δ-shock. Besides proving the capability of the numerical scheme to resolve
such singularities and still be stable in terms of size moment space, the created shock is non-
physical and related to the chosen modeling. When switching the coupled model with high order
velocity moment method, the crossing can be reproduced. The results are shown in Figure 22
at t = 0.4, same instant as in Figure 21 to see the difference between the two models, and at
time t = 0.7 to see the effective crossing of the clouds. We can notice that the crossing is well
captured but at the price of more numerical diffusion than in the previous case due to the first
order in space of this method. Finally, these simulations show the potential of the proposed
approach in terms of transport and evaporation.

The next configuration in a typical two dimensional configuration for which the Eulerian
multi-fluid model predicts an artificial averaging when two droplet jets are crossing without
drag nor evaporation, for a monodisperse spray. Indeed, at the collision location, there are at
the same space and time location two velocities leading two a bi-modal velocity distribution, that
is out of equilibrium. The classical multi-fluid model, because of its equilibrium assumption, can
not handle this case and predicts an artificial velocity averaging which can be also interpreted
as a collision of the two jets as shown in [54, 47, 57]. The Eulerian multi-velocity model
presented in section 4.2 predicts the exact solution for this simple configuration for which the
two jets do not see each other in the chosen infinite Knudsen limit, as it is show in [54, 47, 57].
The droplet size distribution at the boundary is steady and given by f(t, ·, s) = (1 + 8s)(1 −
s)2 exp (10−3(1 − 1

(1−s)2
)).

The configuration we are going to present is the one of two polydisperse evaporating jets
crossing in the limit of high Stokes number where the drag force can be neglected. The first jet is
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Figure 20: (left) Initial condition for the moments (the highest curve describes the 0th order moment

down to the lowest curve which corresponds to the 3rd order moment, (right) Initial condition for the
velocity field of the droplets.

Figure 21: Numerical moments (solid lines from top-0thorder moment down to bottom-3rdorder mo-
ment) computed with high order moment method for size but pressureless gas dynamics for the velocity
modeling, compared with the analytical moments (circles : zeroth order moment, vertical crosses : first
order moment, triangles : second order moment, diagonal crosses : third order moment), at two instants :
t = 0.2 (left) and t = 0.4 (right)

Figure 22: Numerical moments (solid lines from top-0thorder moment down to bottom-3rdorder moment)
computed with high order moment method for size and high order moment method for velocity, compared
with the analytical moments (circles : zeroth order moment, vertical crosses : first order moment,
triangles : second order moment, diagonal crosses : third order moment), at two instants : t = 0.4 (left)
and t = 0.7 (right)
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injected from the bottom left of the domain the following velocity : vx = 1, vy = 1. The second
jet is injected from the bottom right of the domain the following velocity : vx = −1, vy = 1. For
this computation, we use a 100 × 100 grid, with a CFL number set as 1. We use a dimensional
Lie-type splitting. This has the particularity, in the context of the same absolute value for the
velocity for all the droplets and in every direction, to eliminate any numerical diffusion. The
dynamics of the jet is represented in Figure 23-left and Figure 23-right. Figure 24-left represent
the stationnary state reached by the configuration, as the total number of droplets is evaporated
at t = 1. If we consider the principal diagonal of a jet, the analytical solution of the particle
number density on this diagonal can be easily found as there is no numerical diffusion. Figure
23-right is a comparison of the particle number density given by the numerical solution and the
analytical number density on the principal diagonal of a jet. This result shows the ability of the
model to handle the dynamics of the jets, which is more complex than in the former test case,
and its coupling with evaporation. With only four moments, we are able to capture the details
of the evaporation and transport process.

Figure 23: Total droplet number density of evaporating jets crossing simulated with high order moment
methods for size and velocity, at two instants : t = 0.2 (left) and t = 0.5 (right), on a 100 × 100 grid

Figure 24: Total droplet number density of evaporating jets crossing simulated with high order moment
methods for size and velocity at t = 1 on a 100 × 100 grid (left) and comparison of the number density
of the numerical solution (solid line) and the analytical solution (dashed line).

We still have to complete this study by showing its ability to treat cases such as the ones
achieved in [54, 47] for free jets with shear gaseous flow, and for this purpose, we still need a
higher order scheme in terms of transport in physical space with high order velocity moments.
The question of the quadrature is still an open problem which requires new ideas and firmer

RTO-EN-AVT-169 - 55 - 02-2009



Eulerian multi-fluid models : modeling and numerical methods

mathematical grounds. Finally, such an approach has to be extended to 3D simulations and the
algorithms optimized in the spirit of what will be presented in Chapter 6 in order for such an
approach to be adequate for realistic applications.

5 Validation versus experimental measurements

The detailed numerical multi-fluid characterization performed in Chapter 3, studying multi-
fluid’s assumptions and model impact in vortical flows, enables to design configurations where
the multi-fluid model is expected to give accurate results in the sense that the assumptions
underlying the model are satisfied. We then decide to design an experimental configuration
allowing multi-fluid validation through experience/simulation comparisons. For such a validation
to be achieved, we need to be able to capture size-conditioned dynamics in the experiment.

We consider acoustically pulsated free jets with a polydisperse spray injection in an axisym-
metric configuration. The acoustic excitation creates periodical large vortical structures, which
are representative of the dynamics of gaseous flows in more complex configurations, and a strong
interaction with the injected spray. In this context, we provide a series of detailed experimental
measurements using laser diagnostics; we analyze droplet size distributions, associated size-
conditioned dynamics and evaporation, for three liquids, leading to various droplet preferential
concentrations due to the vortices. Besides the achievements in terms of diagnostics, we use
the Eulerian multi-fluid model and dedicated robust numerical schemes, provided in section 3.2,
in order to conduct simulations in the chosen configuration. Detailed comparisons between
numerical simulations and experimental measurements are provided in terms of spray velocity
and number density. Size-conditioned preferential concentration of both non-evaporating and
evaporating sprays are observed and reproduced by the numerical simulations, which eventually
yields a validation of the proposed model.

The ability to analyze size-conditioned dynamics represents an important novelty, as much
from the experimental and the numerical perspective, since a Eulerian method is used. The
experiment has been realized by C. Lacour and D. Durox, at EM2C laboratory. Global com-
parisons were first presented in the 2007 International Conference on Multiphase flows [82].
The size-conditioned comparisons described in this chapter have been published in the 32nd

International Symposium on Combustion [58].

5.1 Configuration: pulsated free jet with spray injection

Crow and Champagne demonstrated that a circular jet has a natural instability at a frequency
corresponding to the preferred mode of the jet [98]. This instability can be characterized by the
Strouhal number Sh, defined by Sh = fgas D/Ub, based on the excitation frequency fgas, on the
jet diameter D and on the mean axial bulk velocity Ub. According to [98, 99], the jet strongly
responds to excitations around the preferred mode Sh ≃ 0.4, but is still very sensitive up to
Sh = 1.5.

Consequently, such a jet is an ideal candidate for a specific study on the behavior of a spray
in a flow exhibiting zones of high vorticity. Thus the retained configuration is similar to the
one in [100], in a non-reactive excited jet, laden by droplets. The range of selected Reynolds
numbers is of the order of 1000 and yields a laminar gas flow at the nozzle outlet.

In order to allow easy comparisons between numerical simulations and experimental results,
we work with dimensional quantities; however, the physics of the problem are governed by two
non-dimensional numbers. The reference time τgas = 1/fgas is the acoustic time corresponding
to the frequency fgas imposed to pulsate the jet. The reference velocity u0 is the mean axial
velocity at the nozzle exit. A reference length can be deduced from these two quantities, which is

02-2009 - 56 - RTO-EN-AVT-169



Eulerian multi-fluid models : modeling and numerical methods

characteristic of the coherent structure displacement. Characteristic droplet surface s0 is equal
to π(60e−6)2, where 60 µm corresponds to the diameter of the largest droplets in the spray at
the burner outlet. The Stokes number St, is the ratio of the drag relaxation time τp(s) to the
acoustic time τgas, whereas the evaporation number Ev is taken to be the ratio of the evaporation
time τ0

ev based on s0 over the acoustic time :

St =
τp(s)

τgas
, Ev =

τ0
ev

τgas
, (74)

where ρl is the liquid density, µg the dynamic viscosity of the gas and Rs is a characteristic
surface evaporation rate. Both numbers are linear functions of the droplet surface S.

Different liquids are used to vary the liquid evaporation rate. Decane is chosen as a reference
slowly evaporating liquid, and methanol and heptane are more volatile. The mean size distri-
bution for decane is presented in [82] and is weakly polydisperse as the other distribution, even
if the methanol is a little broader (see Table 1). The dynamical response is essentially the same
for the three liquids but droplets of different size can have very different dynamics (see States
numbers in Table 1). Conversely, the evaporation numbers are very different from one liquid
to another since droplets below 18µm diameter of heptane or methanol have evaporated within
one gaseous acoustic time, ie: one vortex eddy turn over (the evaporation rates are taken either
as function of droplet surface or of droplet diameter).

D10 D32 Ev(D32) St(D32)

decane 26 36 93 0.12
methanol 20 32 3.4 0.13
heptane 20 40 6.8 0.15

Ev(18) St(18) Ev(60) St(60)

methanol 0.96 0.037 12 0.43

Table 1: mean size distribution and mean Sauter diameter (in µm) of decane, methanol,
heptane and their corresponding evaporation numbers. In case of methanol, values of

evaporation numbers for diameters of 18µm and 60µm.

5.2 Experimental devices and diagnostics

5.2.1 Experimental setup

The experimental facility is presented in Figure 25. The injector is equipped with a converging
nozzle with a symmetry of revolution leading to a flow at the nozzle exit with a turbulence
level less than 1% of the mean axial velocity u0=1.15 m.s−1. A spray is generated from an
ultrasonic atomizer, which is fed by a syringe [82]. The air jet flowing through this injector is
acoustically forced by two loudspeakers placed on the sides of the facility to control the formation
and evolution of vortices in the near field of the jet. Air flows through the cylinder into the
facility and drags the droplets. In order to obtain a homogeneous flow at the nozzle exit, the
distance between the atomizer tip, where volatile liquids start evaporating, and the nozzle exit
is 180 mm and corresponds to a droplet residence time of a fraction of a second [100]. To benefit
from the positive effect of gravity on the droplet formation and motion, the facility is put in the
downward direction.

The modulation frequency is fgas = 50 Hz so that the Strouhal number is Sh = 1.0 in this
study. At this Strouhal number the jet is highly sensitive and the excitation generates large
periodic vortices closer to the nozzle exit, than for lower Strouhal numbers corresponding to the
most amplified instability mode [99]. High vorticity levels are reached in the core of the vortices
(600 s−1) [82]. The full cycle of oscillations is divided into 20 regularly spaced phases.
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Figure 25: (left) Lateral view of the experimental setup, (right) PIV and IPI experimental set-up.

5.2.2 Measurement techniques: PIV and IPI

The Particle Image Velocimetry (PIV) technique is used to characterize the gas flow and droplet
velocities. The set-up consists in a double pulsed Continuum Nd:Yag laser. A laser sheet (500
µm thick) is focused on the central plane of the injector. The particle Mie scattering is collected
on a Dantec Hi-Sense CCD camera 1600×1186 pixels2 equipped with a Nikkor 60 mm lens
and an interferential 532 nm filter. Velocity calculations are performed with an iterative cross-
correlation algorithm (Dantec FlowManager). An iteratively decreasing interrogation window
size is used with final value fixed to 16×32 pixels2 with an overlap of 50 %.

The Interferometry Particle Imaging (IPI) technique aims at determining the size of trans-
parent droplets, which flow through the light sheet and scatter light towards a camera. This
technique is based on the interferences created in a voluntarily defocused image between re-
flected and refracted light rays, traveling through a transparent droplet. Using the geometrical
approach [101, 102], the interference pattern between reflected and first order refracted light ray
paths can be expressed by a simple linear relation between Nf the number of fringes and dp

the particle diameter Nf = κdp, where the geometrical factor κ is function of the light source
wavelength, the observation and collection angles, and the relative refraction index of the liquid
related to the gas. The present experiment is carried out with two CCD cameras collecting the
scattered light at 90 deg relatively to the laser light source (see Figure 25). The set up is con-
stituted on the base of the PIV set up described in this paper, with two identical cameras. The
PIV camera is not only used for the droplet velocity measurement but for the droplet position
detection too and the second one is defocused to generate the interference fringes. Two differ-
ent configurations have been used to achieve different objectives. Firstly, the global behavior
of the excited jet is studied with a full view of the jet with at least three successive vortices
(59×44 mm2), with the same experimental set up as previously detailed in [82]. The maximum
measurable droplet diameter by IPI with this set up is about 90 µm, as one fringe has to be 4
pixel wide at least to be detected, and the minimum diameter is 9.6 µm to have more than one
fringe in the defocused circle. In order to obtain correct statistics, the image acquisition has
been phase-locked by synchronizing the laser and the camera with the loudspeaker excitation
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signal. For each of the 20 phases, at least 20 phase-locked pairs of images are acquired and
treated. Results are then phase-lock averaged. In the present contribution, we intend to pro-
vide droplet density results for both a non evaporating and an evaporating situations as well as
size-conditioned droplet dynamics. The previous set up was not suitable for such investigations
for two reasons: limited droplet diameter range and too low statistics. In order to reproduce
the experiment with an evaporating liquid, the measurable diameter range should be shifted
towards the smaller droplets. The distance zl between the laser sheet and the the camera lens,
is thus reduced to 180 mm (collection angle α = 6.8 deg), leading to a smaller field of view
(27×20 mm2) and a better spatial resolution. The measurable diameter range becomes [5.2, 97]
µm. Moreover, the number of phase-locked acquisitions is increased to 120 in order to enhance
the statistical resolution.

5.3 Numerical Approach

5.3.1 Numerical Resolution

A multi-fluid spray computation is done, to be compared to these experiments. We use drag
and evaporation models with convective corrections and we take into account the gravity. This
multi-fluid computation was done, with regard to transport, with a dimensional splitting for 2-D
axisymmetric configuration, described in section 3.3.

5.3.2 Numerical setup

The numerical computation requires two types of input from experiments: 1- boundary condi-
tion for the dispersed phase spatially resolved in the radial direction at inlet for droplets mass
densities and velocities in each section, 2- the full gaseous velocity field as a function of space
and time to which the dispersed phase is coupled to in the numerical simulations.

For the latter, 20 phase-locked velocity fields obtained from PIV measurements are interpo-
lated in time and space following the requirements of the dispersed phase discretization. After
noticing in [82] that the slight deviation of the gaseous flow field from the 2D-axisymmetry could
lead to peculiar behavior of the spray along the centerline, and in order to be compatible with
the spray description, the obtained velocity fields are symmetrized in a symmetry plane. The
resulting modification of the gaseous flow field is of the amount of a few percent in L2 norm and
is mainly important far from injection.

The former spray injection boundary condition roughly corresponds to the nozzle exit. For
each time step and in each size section (20 sections of 3 µm width in diameter covering the
[0, 60]µm diameter range), at the inlet axial position, we interpolate spatially the droplet veloc-
ities conditioned by size. The injection width of the spray strongly varies in time; at each time
and in each section, the number density of droplet is taken to be constant as a function of radial
position in agreement with experimental measurements.

In the present contribution, the spray volume fraction are bounded in areas of preferential
concentration by 5.10−5 and is mainly much below such a value, thus justifying the use of one-
way coupling; besides, up to measurement precision, the gaseous velocity field with and without
the spray are shown to be the same. The computational domain is discretized in 20 sections in
the size phase space, and in 400 × 400 structured cells in the two spatial directions, thus offering
good resolution for the purpose of comparisons with experimental results. Eventually, such a
simulation is a quasi three-dimensional (2D in space, 1D in size) unsteady simulation carried
out during four periods in order to reach a periodic regime.
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5.4 Results and discussion

5.4.1 Global spray behavior

Let us first describe the full view of the configuration which covers the evolution of three vortical
structures at least issued from the nozzle exit. One vortex covers the 40mm axial distance in a
time of about 80ms that is 4τf and the eddy turn over time is about 50ms. If we first concentrate
on decane, the evaporation rate is so low at the considered temperature, that the liquid can be
considered to be non-evaporating. In Figure 26-top, it is observed from experimental measure-

Figure 26: Comparison between experimental measurements - averaged field obtained from 20 instan-

taneous phase-locked samples (right half) for a 59×44 mm2 field of view and numerical simulations on
a 400 × 400 grid (left half): decane droplet concentration (droplet/mm3 - left) and mean droplet axial
velocities (m.s−1 - right) for the phase φ = 0 (arbitrary reference).

ments that droplets are essentially absent from the vortex cores, whereas the vortical structures
create both successive zones of concentrations along the centerline and large arms preventing
the captured droplets from flowing toward the exit of the domain. The absence of the spray
from the vortex core is due to the combination of two phenomena: mixing of the spray with the
air entrainment associated with the pulsation of the jet and ejection of droplets from the strong
vortical structures due to inertia (see tomographic images of the pulsated spray in [82]). The
corresponding axial velocity of the droplets is presented in Figure 26-bottom. Let us underline
that, extrapolating the results provided in [103], for the range of Stokes numbers associated with
the biggest droplets under consideration, i.e. St = 0.43, an eddy turn over time is enough for
an almost complete ejection of such droplets from the vortex present in our configuration, thus
explaining the fact that droplets are being ejected after one vortex turn over as observed in the
experiments. However, such an ejection of droplets from the vortex core is essentially governed
by the size of the droplets and will be different depending on the size. Thus we need to focus on
size-conditioned droplet dynamics. Before doing so, let us compare experimental measurements
to numerical simulations at a global level.

First, the axial velocity map is presented for both experimental and numerical results in
Figure 26-left. In the experimental case, velocities are measured essentially in the central region
of the jet, as the droplets are absent in the vortex cores. Along the central axis, the droplets are
successively accelerated and decelerated, corresponding to the vortex convection. The zones of
maximum droplet velocities in the numerical velocity field are localized at the same position as
in the experimental velocity field. Numerical results are thus able to reproduce the droplet axial
velocity and such a good agreement is also obtained for radial velocity. Next, we compare droplet
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number density. It is measured from PIV results by considering the number of droplets in a given
volume and is presented in Figure 26-right. The present results are representative of the general
spray behavior. Concerning the numerical mean droplet concentration, high concentration zones
are located at the head of each vortex. This result shows that the interaction between the high
vorticity gas flow and the spray leads to a non uniform distribution of droplets. The vortex
cores present voids of decane droplet concentration whereas high droplet concentration appear
at the leading edges (head) of the vortices. Droplets are ejected from the high vorticity core and
follow the external vortex arms. Consequently, at a global level, the comparisons are very good.
Let us underline the progress made in terms of comparisons in reference to [82]; first, because of
the coherence in terms of symmetry between the Eulerian spray modeling and the experimental
gaseous velocity field, no peculiar behavior on the centerline is to be found. Besides, since we
have included the variation of the spray width versus time at the inlet, and since we have greatly
improved the experimental statistics, we reach a much more satisfactory level of comparisons.
This level will be denoted ”quasi-quantitative”; actually even if some differences appear in the
comparisons and even if we can not claim a fully quantitative agreement, up to measurement
uncertainty, we reach both the same structure and levels of droplet density and velocity which
justify such a denomination.

5.4.2 Size-conditioned dynamics comparisons

In addition, one of the objectives of the present study is to put forward the pulsated jet behavior
regarding its polydisperse nature. In order to vary the size distribution width and to have a larger
range of droplet diameters in the jet, different liquids are studied on a reduced experimental
view (27×20 mm2). The experimental droplet concentration is obtained from 120 instantaneous
image pairs and averaged in windows of 0.66 mm2. Figure 27 presents the total concentration

Figure 27: Comparison between IPI experimental measurements - averaged field obtained from 120

instantaneous phase-locked samples with a reduced field of view of 27×20 mm2 (right half) and numerical
simulations on a 400 × 400 grid (left half): total droplet concentration at phase π in droplet/mm3; from
left to right: decane (non evaporating reference liquid), methanol and heptane (evaporating liquids).

map obtained for decane (left), methanol (middle) and heptane (right) in the focused area under
consideration. For the three liquids, droplets concentrate between the two vortices along the
central jet axis and are ejected around the vortices to form external arms. The concentration
reaches, in decane case, 0.4 droplet/mm3 inside the arm which nearly catches up the central
part of the jet. For the methanol spray, the pulsated jet structure is modified: the external arm
concentration decreases to 0.2 droplet/mm3. For the heptane spray, droplets are present inside
the vortex core and concentration reaches 0.2 droplet/mm3. The presence of evaporation thus
changes the structure of the spray localization in both the vortex core and in the arms; such a
phenomenon is well reproduced by the numerical simulations at a global level.
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In order to further investigate the polydisperse nature of the spray and its evaporation, we
focus on the first two liquids and investigate the dynamics conditioned by droplet size. Decane
concentration maps corresponding to four size ranges are presented in Figure 28-top. For the

Figure 28: Comparison of size-conditioned decane (top) and methanol (bottom) droplet number density

(droplet/mm3) between 120 phase-locked IPI experimental measurements with a reduced field of view
of 27×20 mm2 (right half) and numerical simulations on a 400 × 400 grid (left half) at phase π. Four
size ranges are presented from left to right, range [6,15] [15,30] [30,45] [45,60] in µm. Small histograms
represent the droplet number repartition among the four size ranges. Two scales are used. Very small
and big droplets have low concentration level and are presented in ochre, whereas the high concentration
levels of droplets of inter size are presented in blue.

classes of bigger droplets, the experimental results are noisy due to a poorer statistic, since the
droplet number density is rather low. However, it is clear from experiments that the ejection
of the droplets from the vortex core follow different dynamics depending on the inertia of the
droplets. As size increases, the zone without droplets widens. Such a behavior is well captured
by the numerical simulations, where the structure of the arm is found to be very different
depending on the droplet size, thus exhibiting differential dynamics conditioned by size.

In the evaporating configuration, methanol concentration maps divided into in the same four
classes are presented in Figure 28-bottom. The differential dynamics observed in the previous
case is maintained in such a case, even if the repartition of droplet number density is very
different in terms of level due to evaporation. Let us underline that droplets in the arms have
travelled about along one eddy along its turn over, thus corresponding to a time of about 2τf and
showing an important role of evaporation. However, evaporation yields additional differences.
We can note a large amount of small droplets due to the evaporation phenomena and as the
size increases, even if the area without droplet is enlarged, the structure of the created arm is
rather different since the small droplets present in this arm have had various dynamics during
the evaporation history and followed different paths from the small decane droplet. Such a
phenomenon is captured by the numerical simulation, however, the statistics level is not high
enough to capture it in the experiments. Once again, experimental and numerical results present
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very good agreement, thus demonstrating the ability of the Eulerian model to capture the
differential dynamics of droplets of various size in a Eulerian manner. Let us also underline the
robustness of the numerical methods used for the simulations since we were able to conduct a
numerical simulation of the disperse liquid phase coupled to the gaseous flow fields obtained
from experimental measurements.

In the present configuration, the spray dynamics leads to areas of preferential concentration
of droplets which can eventually lead to a limitation of the IPI technique. Indeed IPI results
rely on the processing of images and fringes counting, thus leading to a validation rate which
can spatially vary depending on the droplet concentration. However, we have checked the
total number of droplets present in the window of comparison is the same between experiments
and numerical simulation, thus showing that the potential bias associated to higher droplet
concentration does not have an important impact on the experimental measurement in these
areas.

Eventually, let us emphasize that this contribution provides the first quasi-quantitative com-
parison of size-conditioned dynamics between experimental measurements and numerical simu-
lation. This will be essential for more realistic configurations and for combustion chambers.

5.5 Conclusions

Experimental measurements of spray dynamics conditioned by droplet size obtained through
the coupling of IPI and PIV diagnostics have been compared to numerical simulations using the
Eulerian multi-fluid model. The configuration of a pulsated free jet with polydisperse droplet
injection leading to the strong interaction of the spray with large vortical structures for three dif-
ferently evaporating liquid fuels has been investigated. Generally, very good agreement is found
between model and experiments, thus exhibiting various ejection time scales from the gaseous
vortices depending on the droplet inertia and differential dynamics of droplets of various size.
Such a phenomenon will be essential for combustion applications in more realistic configuration
since it is responsible for the structure of the fuel vapor mass fraction topology. The physics of
such two-phase flows is shown to be reproduced by the Eulerian model, eventually leading to its
validation in a well-controlled 2D-axisymmetrical unsteady configuration.

6 Computational Multi-fluid dynamics

The description of the evolution of the liquid density given by the multi-fluid model has been
validated in section 3.4 of Chapter 3, through quantitative comparisons on simple configurations
like Taylor-Green vortices and conical nozzle, and through qualitative comparison on a more re-
alistic configuration of 2D-axisymetrical jet. The validation has also been conducted in Chapter
5 through comparison with experimental measurements.

The aim of this Chapter is threefold. First we want to provide quantitative comparisons
between the Lagrangian and the Eulerian multi-fluid approach in the configuration of unsteady
2D free jets in order to quantify the amount of numerical diffusion inherent to the Eulerian
description of the disperse liquid phase. Second, in such a configuration, for finite Stokes number,
we would like to estimate the influence of droplet crossing on the dynamics of the disperse phase.
Last but not least, we need to prove the capability of such an approach to tackle more realistic
3D configurations and the adaptability of the proposed numerical methods and algorithms to
parallel architectures. The numerical tools are then first described, followed by the study of a
2D evaporating jet and a 3D computation of a homogeneous isotropic turbulence.
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6.1 Numerical strategy

A new academic solver has been developed during the Ph.D. of S. de Chaisemartin [47], coupling
the ASPHODELE solver, developed at CORIA by Julien Reveillon and collaborators [85, 54],
with the multi-fluid solver MUSES3D [47] developped at EM2C Laboratory, using the models
presented in these Notes. The ASPHODELE solver couples a Eulerian description of the gas
phase with a Lagrangian description of the spray. One of the key feature of this tool is to allow,
in the framework of one-way coupling, the simultaneous computation of the gaseous phase as
well as both spray descriptions within the same code run. This solver opens new possibilities of
method evaluation in terms of dynamical comparisons and computational cost evaluation.

6.1.1 Eulerian-Lagrangian/Eulerian gas-liquid solver

The ASPHODELE solver is a DNS gas solver for low Mach (or incompressible) flows, coupled
with a Lagrangian solver, computing, for non-colliding spray, Discrete Particle Simulation (DPS)
or a Lagrangien Monte-Carlo method called Discrete Simulation Monte-Carlo (DSMC).

The low Mach solver for the gaseous phase is based on prediction correction method for the
velocity evolution, as was introduced for incompressible flows in [104, 105] and extended for low
Mach number flows in [106]. As far as numerical methods are concerned, the time resolution
is provided by a third order explicit Runge Kutta scheme with minimal storage [107]. Spatial
evolution is done with a finite difference scheme, the derivatives are computed with a Pade 6th

order scheme [108]. The boundary conditions are handled through the NSCBC method [109].
The physical space solver is available for 2-D, 2-D axisymmetric, and 3-D configurations. A
spectral solver is also available in the context of incompressible flows, for Homogeneous Isotropic
Turbulence (HIT) computations done in section 6.4.

The Lagrangian solver uses a deterministic approach, with ODE on the position, the size
and the velocity of each particle (DPS) [27, 28, 29], or a statistical approach (DSMC), using
stochastic particles tracked into the flow and representing a discretization of the NDF [25].
These two methods are equivalent for non-colliding spray in a sense given in [47]. The Lagrangian
numerical particles ODE are then solved within ASPHODELE with an explicit third order Runge
Kutta solver. Therefore, the coupling between the gas and the liquid takes place at each Runge
Kutta sub-step. Two main difficulties arise when coupling Eulerian and Lagrangian descriptions
in two-phase flows. First, the gaseous quantities have to be computed at the position of the
droplets in order to obtain the influence of the gas on the droplets : drag force, heat transfer,
etc. It is done with a third-order interpolation algorithm [110] first developed for Particle Image
Velocimetry. Moreover, in the framework of dispersed liquid phase, the influence of the liquid
on the gas is modeled by source terms obtained from the Lagrangian tracking of the droplets
and thus needing to be projected on the Eulerian gaseous grid. The projection used here is
described in [111]. These two drawbacks are linked to different issues. The first one leads to a
significant cost increase, while the second one is related to an approximation issue.

As far as time evolution is concerned, the coupling of Eulerian multi-fluid method (MUSES3D
solver) with the gaseous phase differs from the one used for the Eulerian/Lagrangian coupling.
Indeed, due to the kinetic scheme used for the multi-fluid (section 3.3), a simple “Euler-like”
time step is enough to obtain the second order in time and space and a Runge Kutta scheme will
not improve the global order of the method. Furthermore, an almost unity CFL for the physical
transport is needed in order to limit the numerical diffusion. Several time steps for the gas can
then be computed during one time step for the spray and the constant gas assumption, valid
for a Runge Kutta sub-step, can not be used for the whole time step. However, the coupling
with the gas only appears in the phase transport. A time interpolation of the gaseous fields is
then used to compute the corresponding ODE with the Radau5 method [112]. Moreover, for a
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two-way coupling, the source terms for the gaseous phase are also computed during this phase
transport and can the be ’transmitted’ to the gas equations at each gaseous time step.

6.1.2 Gaseous fuel vapor prediction and burning

Taking two-way effects, i.e., influence of the spray on the gaseous carrier phase, may be of great
importance for several applications, like for combustion where it is necessary in order to take into
account the vaporization of the droplets into the gaseous phase before burning. Nevertheless,
we restrict ourselves to one-way coupling since our objective is to evaluate multi-fluid models
and compare them to Lagrangian methods on the same gas computation.

A first way to see the influence of the droplet evaporation on the gas is to compute the evolu-
tion of the resulting fuel mass fraction, without tacking into account its influence on the gaseous
properties. This fuel mass fraction is then seen like a passive scalar, advected and diffused by
the flow and the gas composition is not affected by the spray evaporation. This procedure has
two advantages. First, it allows to have an insight of the fuel mass fraction evolution, without
dealing with two-way coupling difficulties. Second, as this ”virtual” evaporation does not modify
the gas phase dynamics, it is possible to compare the evaporation produced by the two differ-
ent spray methods with the same gas phase simulation, allowing to derive precise quantitative
comparisons focusing only on the spray methods aspects.

We also are interested in taking combustion into account. To do so, we use a simple model
with a global one-step non-reverible reaction between the fuel and an oxidizer. The important
point that has to be noticed is that we want to develop this simple combustion model in a one-way
coupling framework. Therefore, the mass fractions of fuel, oxidizer and burnt gases are not taking
part of the gaseous phase composition. They all can be seen as passive scalars, with formation
or destruction source terms, not taking part into account in the thermodynamics computation.
The reaction rate is given by an Arrhenius like law, but at a temperature extrapolated from
the burnt gases mass fraction [47]. Then we do not compute any heat release or gas thermal
expansion; we only consider a ”virtual” fuel and oxidizer consumption and ”virtual” products
formation. The gas phase is not modified by this combustion, that is called here Coldflame.

Numerically, we have to compute source term of fuel coming from evaporation, and the
evolution of this ”virtual” fuel, as well as oxidizer and product in the case of the Coldflame, are
computed by the gaseous solver. The coupling between ASPHODELE and MUSES3D, allows
to compute the fuel mass fraction obtained from the Lagrangian, Y Drop

F ′ and from the Eulerian
multi-fluid method, Y MF

F ′ . In the case of the Lagrangian spray description, the time evolution

of Y Drop
F ′ is resolved through a Runge Kutta algorithm, and is thus easily introduced within the

coupling algorithm. In the case of the Eulerian multi-fluid spray description, the insertion of
the fuel mass fraction in the coupling algorithm is not so natural. Indeed, we want to use the
same Runge Kutta algorithm for the evolution of the scalar, nevertheless, the spray being only
resolved within a Euler time step, we can only compute the mass source term at time tn+1, and
not at the intermediate times of the Runge Kutta algorithm. We therefore decide to resolve the
evolution of the fuel mass fraction using an operator splitting : solving first the evolution due
to transport, diffusion and reaction through a Runge Kutta algorithm. The evolution due to
spray evaporation is solved in a second time through a one-step Euler method.

6.2 2D evaporating jets with MF method

The studied configuration is designed to enable the evaluation of the Eulerian multi-fluid method.
Turbulence is injected to destabilize the gasesous jet. Furthermore a polydisperse spray is in-
jected to study the multi-fluid size distribution description. The Lagrangian reference is not
taken as a converged Direct Simulation Monte-Carlo method in this study, in order to be closer
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to industrial concern. Given the DNS configuration used, we perform a Discrete Particle Simula-
tion. Indeed there is no need to use Stochastic Parcel method, since all the droplets contained in
the computational domain can be tracked. In order to focus on the Eulerian method evaluation,
a one-way coupling is considered, and simple droplet models, are used.

Part of this work was done during the Summer Program 2008 of the Center for Turbulence
Research at Stanford University in collaboration with J. Reveillon and R. O. Fox [54, 57].

6.2.1 Configuration

In order to assess the Eulerian methods we focus on a 2D cartesian free jet. A polydisperse spray
is injected in the jet core with a log-normal size distribution (Figure 29-right).The simulations
are conducted with a code that couples a gas solver to a Lagrangian solver (both developed at
CORIA) and to a Eulerian solver (developed at EM2C) wherein the multi-fluid and multi-fluid
multi-velocity methods are implemented.

As far as the gas phase is concerned, we used a 2D cartesian low Mach number compressible
solver. The gas jet is computed on a 400× 200 grid. To destabilize the jet, we inject turbulence
thanks to the Klein method with 10% fluctuations, [86]. The Reynolds number based on u0, ν0

and L is 1000, where u0 is the injection velocity, L is the jet width and ν0 is a typical kinematic
viscosity of the gas. We will eventually provide dimensional quantities for illustration purposes.
These will be based on an estimated velocity of u0 = 1 m/s and L = 1.5 × 10−2 m, as well as a
typical value of 1.6 × 10−5 m2/s for ν0. Finally we have d0 = L/300, where d0 is the diameter
corresponding to the typical droplet surface s0. The gas vorticity is presented in Figure 29-left.
Since we aim at validating the Eulerian models through comparisons to a Lagrangian simulation,
and at providing an evaluation of the relative computational cost, we restrict ourselves to one-way
coupling. We inject in this jet a polydisperse spray, with an initial log-normal size distribution,
see Figure 29-right. We take as a reference solution for the liquid phase a Lagrangian Discrete
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Figure 29: Free jet configuration: (left) gaseous vorticity at time t=20, obtained on a 400× 200
grid; (right) polydisperse log-normal distribution discretized with 5 (dashed lines) to 10 (dotted
lines) sections.

Particle Simulation with 10,000 up to 70,000 particles in the computational domain depending
on the cases. The number of droplets is determined by stoichiometry. We provide comparisons
between this Lagrangian reference and the Eulerian multi-fluid and multi-fluid multi-velocity
computations plotting the Lagrangian particle positions versus the Eulerian number density.
Thanks to the multi-fluid polydispersion resolution, we perform the comparisons for different
ranges of sizes and thus for various inertia, in the evaporating and non-evaporating cases.
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6.2.2 Lagrangian vs. multi-fluid for evaporating and non-evaporating sprays

Non-evaporating spray injection - For the non-evaporating case we use five sections for
the Eulerian multi-fluid simulation. We have 70,000 Lagrangian particles in the computational
domain at the considered time. We first present the results for the whole spray, regardless of the
droplet sizes. These results are plotted on Figure 30. Taking advantage of the multi-fluid model
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Figure 30: Non-evaporating polydisperse spray, Stokes 0.011 to 1.1 corresponding to diameters
d = 9µm to d = 90µm, at time t=20, : (top) Lagrangian particle positions with 70000 particles,
(bottom) Eulerian total number density with a 400 × 200 × 5 grid.

polydispersion description, we are able to present size-conditioned dynamics. We then present
a comparison for low inertia droplets and find a very good agreement for the droplets with a
Stokes range from 0.011 to 0.12 corresponding to diameters from 9 µm to 30 µm, as shown in
Figure 31. The multi-fluid method is thus shown to simulate the dynamics of a polydisperse
spray where droplet crossings are limited. Droplet dynamics are close to the gas dynamics for
this range of sizes, and the model remains therefore in its validity domain (see section 3.2).
For higher Stokes number, the droplets are ejected from the vortices and crossing trajectories
are likely to occur, breaking the monokinetic multi-fluid assumption described in section 3.1.
Nevertheless, the dynamics is still very well reproduced for higher inertia droplets. The results
are plotted in Figure 31-right for Stokes number from 0.48 to 1.1 corresponding to diameters
from 60 µm to 90µm.

Evaporating spray : Lagrangian versus multi-fluid - The free jet is also assessed with
an evaporating spray. For the d2 law, we take a constant evaporation, i.e. K = −1 and Ev = 0.2.
The results are presented the same way as for the non-evaporating case. In order to describe
accurately the evaporation process, we take ten sections for the Eulerian multi-fluid simulation,
whereas 30,000 Lagrangian particles are present in the domain at the considered time. As in
the non-evaporating case, we found a very good agreement between the Eulerian multi-fluid and
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Figure 31: Non-evaporating polydisperse spray at time t=20 : (left) low inertia droplets, Stokes
0.011 to 0.12 corresponding to diameters d = 9 µm to d = 30 µm, (right) high inertia droplets,
Stokes 0.48 to 1.1 corresponding to diameters d = 60 µm to d = 90 µm; (top) Lagrangian
particle positions with 40,000 particles over gas vorticity, (bottom) Eulerian number density on
a 400 × 200 × 5 grid.
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Figure 32: Evaporating polydisperse spray, Stokes 0.011 to 1.1 corresponding to diameters
d = 9µm to d = 90µm, at time t=20, : (top) Lagrangian particle positions with 30000 particles,
(bottom) Eulerian total number density with a 400 × 200 × 5 grid.
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the Lagrangian descriptions, for low inertia droplets in Figure 33-left, with Stokes numbers from
0.011 to 0.12 and for high inertia droplets in Figure 33-right, with Stokes number from 0.48 to
1.1. These more inertial droplets are ejected from the vortices and crossing trajectories are likely
to occur, breaking the monokinetic multi-fluid assumption described in section 3.1. Nevertheless,
the dynamics are still very well reproduced for higher Stokes numbers. One can notice that the
number density is concentrated in a few cells in this case and the numerical method does not
encounter any problem to capture it, illustrating again the method’s robustness and accuracy.
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Figure 33: Evaporating polydisperse spray at time t=20 : (left) low inertia droplets, Stokes
0.011 to 0.12 corresponding to diameters d = 9 µm to d = 30 µm, (right) high inertia droplets,
Stokes 0.48 to 1.1 corresponding to diameters d = 60 µm to d = 90 µm; (top) Lagrangian
particle positions with 7,000 particles over gas vorticity, (bottom) Eulerian number density with
a 400 × 200 × 10 grid.

This polydisperse evaporating free jet shows the ability of the multi-fluid method to treat
more complex cases, closer to realistic configurations. From these comparisons, we demonstrate
that the Eulerian method captures size-conditioned dynamics that carry droplets of different
size to different locations. It is then essential to evaluate the ability of the Eulerian model to
capture the evaporation process as a whole.

Gaseous fuel mass fraction : Lagrangian versus multi-fluid - Our interest being in
combustion applications, a key issue of evaporating spray modeling is the gaseous fuel mass
fraction prediction. We thus present comparisons between this gaseous fuel mass fraction, ob-
tained from the Lagrangian and the Eulerian multi-fluid descriptions of the spray. These results
are obtained within the same coupled code run, the spray being described on one hand by the
Lagrangian method and on the other hand by the Eulerian multi-fluid model. This simulation
is still done using a one-way coupling. Indeed, the evaporated fuel is not added as a mass source
term in the gaseous equations, but is stored in two passive scalars, one for each description
of the spray, that are transported by the flow. The Lagrangian gaseous fuel mass fraction is
obtained through a projection of the droplet evaporation over the neighbor cells of the gaseous
mesh. These two fields are plotted in Figure 34. One can see the very good agreement of both
descriptions for spray evaporation. This comparison underlines the efficiency of the Eulerian
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Figure 34: Comparison of the gaseous fuel mass fraction at time t = 20, obtained from evapora-
tion using (top) a Lagrangian method with 30,000 droplets at the considered time and (bottom)
a Eulerian multi-fluid model with a 400 × 200 × 10 mesh.

multi-fluid model in describing polydisperse evaporating sprays. Furthermore, as we can see
in Figure 34, the Eulerian description provides a smoother field than the Lagrangian one. It
illustrates the difficulties arising when coupling the Lagrangian description of the liquid to the
Eulerian description of gas and underlines the advantage of the Eulerian description of the spray
for the liquid-gas coupling. These results are a first step towards combustion computations.

A first combustion case : coldflame computation - In order to assess a first combustion
case, we study the gaseous combustion of the evaporated fuel. As it is aimed to conserve an
approach devoted to spray resolution method evaluation, the combustion should not modify
the gas phase thermodynamics. A peculiar framework is thus defined for combustion, given in
details in [47], and referred to as coldflame. Therefore, as for the gaseous fuel mass fraction,
the burnt gases and the oxidizer are defined in scalars that are not taken into account in the
gas thermodynamics. The burnt gases mass fraction sets the temperature of the coldflame. The
reaction is taken as a global one-step non-reversible reaction. The reaction rate is given by an
Arrhenius law modified by GKAS technique. The ignition is done at the chemical equilibrium.

The fuel vapor fraction field obtained with the Eulerian multi-fluid description, Figure 34,
can be burnt using the coldflame framework. In this configuration, the only information available
about combustion process is the burnt gases mass fraction. It is represented in Figure 35-bottom,
as well as the resulting fuel vapor mass fraction, Figure 35-top. This achievement provides a first
step toward multi-fluid description of two-phase combustion applications, in multi-dimensional
configurations.

The results obtained for the fuel vapor mass fraction description and for the coldflame
computation demonstrate three main points in the study of the multi-fluid model:

• the efficiency of the multi-fluid size distribution description as well as the size-velocity
correlations;

• the global efficiency of the multi-fluid monokinetic formulation in turbulent jet configura-
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Figure 35: Coldflame at time t=20 using a Eulerian multi-fluid model with a 400 × 200 × 10
mesh : (top) gaseous fuel mass fraction; (bottom) burnt gas mass fraction.

tions;

• the relevance of the multi-fluid model for combustion applications.

6.3 2D evaporating jets with MF-MV

For the simulations with multi-velocity model, the first step is to show the good level of agreement
between the Eulerian model and the Lagrangian simulation. Thus, Figure 36-left presents a fair
comparison, similar to the level obtained in previous simulations. In order to quantify the
ability of the method to capture droplet crossing, we have also plotted in the right part of the
figure the half trace of the covariance matrix, which amount to a “temperature” in the case of
isotropic velocity distributions. However, since this is also present in areas of very small mass
due to numerical diffusion, we have also plotted the absolute value of the difference of the two
eigenvalues of this matrix, thus showing areas where there is strong anisotropy and corresponding
to crossing “in progress”. This very beautifully fits with the plots in Figure 36-left.

Finally, we have plotted the results of the multi-velocity model with evaporation in the case
of the polydisperse spray jet in Figure 37. Once again, this figure demonstrates the ability of
the proposed method to capture the dynamics conditioned by size as well as evaporation for a
range of small to finite Stokes numbers.

6.4 Frozen Homogeneous Isotropic Turbulence DNS

The study of a polydisperse spray dispersion in a 3-D Homogeneous Isotropic turbulence repre-
sents a first step for 3-D multi-fluid evaluation. It completes the evaluation of its applicability
to industrial scale computations.

The key point in this computation is to illustrate its feasibility of a 3D simulation.multi-
fluid description of the spray. This computation represents a challenge concerning scientific
computing issues. Indeed, due to the size phase space discretization performed in the multi-fluid,
this computation is 4-D. Therefore, MUSES3D solver has been parallelized with the help of MPI
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Figure 36: Non-evaporating polydisperse spray, high inertia droplets, Stokes from 0.48 to 1.1
corresponding to diameters d = 60 µm to d = 90 µm, at time t=20: (left-top) Lagrangian
particle positions with 20,000 particles over gas vorticity, (left-bottom) Eulerian number density
with a 400× 200× 5 grid. Evaluation of the trace of the covariance matrix (right-top) as well as
the absolute value of the difference between the two eigenvalues highlighting the zones of droplet
crossing (right-bottom).

Figure 37: Evaporating polydisperse spray, high inertia droplets, Stokes from 0.48 to 1.1 cor-
responding to diameters d = 60 µm to d = 90 µm, at time t=15: (top) Lagrangian parti-
cle positions with 7,000 particles over gas vorticity, (bottom) Eulerian number density with a
400 × 200 × 10 grid.

(Message Passing Interface) library. The gas phase computation, as well as the Lagrangian one,
used to provide a validation of the multi-fluid, were done at CORIA, [111, 113]. Eulerian results
are compared to the Lagrangian ones for the description of the spray dynamical equilibrium
arising in HIT flows.

These recently obtained results provide an interesting basis to study the physics of the spray
in HIT through a Eulerian size-conditioned description, that should be done in future works.
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The Homogeneous Isotropic Turbulence configuration appears to be interesting to assess 3-D
multi-fluid for three reasons:

• a spray dynamical equilibrium with the turbulence is reached, that corresponds to a sta-
tionary slip velocity standard deviation, [111]. This equilibrium leads to a stationary
repartition of the spray density in the flow, conditioned by droplet size. This equilibrium
is thus very interesting to compare the Eulerian and Lagrangian descriptions of the spray.
This result can be linked with the work done in [87] showing the existence of an equilibrium
velocity conditioned by size.

• HIT configuration provides very interesting points to assess Eulerian spray description, as
crossing trajectories that can occur for inertial droplets. Furthermore, the study of the
Eulerian velocity field of the spray conditioned by size is also a relevant issue. Although
these points are not studied here, the required basis are provided.

• Thanks to the use of a spectral solver, associated to a relatively low computational cost,
the HIT configuration is also interesting for practical reasons.

6.4.1 3-Dimensional DNS configuration

The Eulerian multi-fluid description of the spray dynamics are presented for two Stokes number,
based on the Kolmogorov length scale:

• St = 0.17, corresponding to droplet with diameter d= 20µm.

• St = 1.05, corresponding to droplet with diameter d= 48µm;

These two different inertia allows to study a spray ejected from the center core and segregated in
weak vorticity areas, [111]. They are thus well suited for robustness evaluation of the multi-fluid
method. Indeed high density regions, as well as vacuum, are created, that represent a challenging
issue for a Eulerian method. Higher Stokes number are not tackled here since [111] shows that
for Stokes number greater than unity, the droplets are inertial enough to cross high-vorticity
areas, leading to a less segregated spray. In this case droplet trajectory crossings have a strong
impact on the spray repartition and the monokinetic assumption of the multi-fluid might not
allow to describe it. A precise study extending the notion of critical Stokes number, introduced
in section 3.2.2, to this 3-D HIT configuration would be needed to analyze precisely the impact
of the monokinetic assumption on the spray modeling. Nevertheless, our aim here is only to
provide a first realization of 3-D multi-fluid spray computation as well as a first validation. The
number density of the spray is plotted in planes at the edges and inside the domain, Figure 38
and Figure 39 respectively to provide a global comprehension of the spray repartition. Both
Stokes number St = 0.17 and St = 1.05 are plotted in each figure.

Figures 38 and 39 show, as expected, two different dynamics, with a higher segregation for
the Stokes St = 1.05, and thus with high concentration regions and vacuum.

6.4.2 Parallel multi-fluid computation for 3-D spray

As far as the grid is concerned, the same Cartesian grid as the gas phase is chosen. One has to
note that the gas is resolved through a cell-vertex finite-difference scheme, whereas the multi-
fluid method uses a cell-center finite-volume method. Therefore the gas cell vertexes are taken
as the multi-fluid cell centers. This choice was made for practical reason, in order to avoid
spatial interpolation, nevertheless it is possible to use a more refined grid for the multi-fluid. A
space domain decomposition is chosen for the multi-fluid. Therefore each process of the parallel
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Figure 38: Eulerian spray number density at the edges of the domain, obtained with the multi-
fluid method on a 1293 Cartesian grid : (left) St = 0.17, (right) St = 1.05.

Figure 39: Eulerian spray number density in perpendicular planes inside the domain, obtained
with the multi-fluid method on a 1293 Cartesian grid : (left) St = 0.17, (right) St = 1.05.
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computation has a domain Nx ×Ny ×Nz ×Ns, where Nx ×Ny ×Nz is the number of grid
points of the process sub-domain and Ns is the number of multi-fluid size sections.

The best efficiency for MUSES3D solver in this configuration is obtained for 100 MPI parallel
processes. This setup has been obtained with the EM2C cluster of 204 AMD Opteron cores, with
124 cores at 2.4 GHz and 80 cores at 2.2GHz with infinyBand network connection. The domain
decomposition minimizing the communication time is obtained for (Npx,Npy,Npz)=(5,5,4), where
Npi is the number of processes in the ith direction.

6.4.3 3-D multi-fluid Lagrangian validation

A Lagrangian DPS computation with two Million droplets uniformly distributed in the domain is
used to perform comparisons. This computation has been done at CORIA laboratory, [111, 113].

Global qualitative comparisons with a Lagrangian description of the spray are provided in
order to assess the multi-fluid description in the range of Stokes number studied. Comparisons
are carried out in two planes x = 1.75 and z = 1.75. In the chosen inertial range, the spray is
ejected from the vortex cores and accumulated in low vorticity areas. In order to link the spray
dispersion given by both methods, to the gas vorticity structure, the square norm of the gas
vorticity is given in Figure 40 in the considered plane. The comparisons are provided for the low

Figure 40: Gas vorticity square norm in the (y − z) plane at x = 1.75 and in the (x − y) plane
at z = 1.75.

Stokes droplets, St = 0.17, in Figures 41 and 42 for planes x = 1.75 and z = 1.75 respectively.
For higher Stokes droplets, St = 1.05, comparisons are given in Figure 43 and 44.

Qualitative comparisons between both approach can be done focusing on the vacuum zones
description. These zones correspond to the gas vortex cores, that can be identified from the
vorticity representation provided in Figure 40. The repartition of these vacuum zones and their
evolution with droplet inertia is described with a good qualitative agreement by the Lagrangian
and the Eulerian method.
Interesting perspectives can be thought of from these results. Indeed, they provide the basis
for physical studies on Eulerian description of spray ejection in 3-D vortices. The analysis of
the Eulerian velocity field, will enable to assess the existence of an equilibrium velocity variety,
introduced in [43]. The study of this attracting velocity field will provide comprehension of
droplet ejection dynamics. Furthermore, droplet trajectory crossings can be studied, in order to
provide a Stokes criteria to foresee their formation. This study could also assess the interest of
Eulerian method describing out of equilibrium velocity distribution, [54, 90, 55].
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Figure 41: Eulerian-Lagrangian comparisons in the plane (y − z) at x = 1.75 for low iner-
tia droplets, St = 0.17: (left) Eulerian multi-fluid number density, (left) Lagrangian droplet
positions.

Figure 42: Eulerian-Lagrangian comparisons in the plane (x − y) at z = 1.75 for low iner-
tia droplets, St = 0.17: (left) Eulerian multi-fluid number density, (left) Lagrangian droplet
positions.

7 Conclusion and Directions

In this contribution we have tried to provide a global picture about the status of Eulerian multi-
fluid models for the description of polydisperse evaporating sprays, an important issue as far as
a lot of industrial applications are concerned. Its main advantage as compared to the usual two-
fluid approaches is the ability to describe the dynamics, evaporation and heating conditioned
by droplet size without having to cope with the difficult task of retrieving for example the
size/velocity correlation from mixed global moments.

After having described the derivation of the semi-kinetic system of conservation, we have
identified the underlying assumptions at the kinetic level, which are equivalent to a closure of
the system of “fluid” or macroscopic equations. As for many of the moment methods, there is a
loss of information; however, we are able to characterize it and to determine the mathematical
singularities stemming from such assumptions. This is a major advantage in order to design
efficient and robust numerical methods in order to solve the resulting systems of conservations
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Figure 43: Eulerian-Lagrangian comparisons in the plane (y − z) at x = 1.75 for higher in-
ertia droplets, St = 1.05: (left) Eulerian multi-fluid number density, (left) Lagrangian droplet
positions.

Figure 44: Eulerian-Lagrangian comparisons in the plane (x − y) at z = 1.75 for higher in-
ertia droplets, St = 1.05: (left) Eulerian multi-fluid number density, (left) Lagrangian droplet
positions.

equations. We have also proposed a dedicated algorithm as well as a series of validations cases
in order to study the accuracy and computational cost of the method, as well as its limitations
in terms of droplet crossing. Even though this approach has recently been extended to higher
order, the necessity to discretize the size phase space too finely because of numerical diffusion
in the size discretization shows the necessity to create some new schemes in the field.

Thus, in Chapter 4, we have presented natural extensions of the original method based on
high order moment methods and shown how its usual limitations can be overcome. Such a
direction of research is currently very active and will probably lead to interesting new tools;
however, as far as nanoparticles are concerned, only the new tools devoted to the size phase
space will be useful since most of the time, the particles will not have sufficient inertia to initiate
particle crossing.

Another way around is to use the recently developed direct quadrature method of moments
(DQMOM) [96] to treat Williams-Boltzmann equation in a Eulerian framework. As its name
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implies, DQMOM is a moment method that closes the non-linear terms using weighted quadra-
ture points (abscissas) in phase space. The method distinguishes itself from other quadrature
methods (e.g., QMOM [31, 32]) by solving transport equations for the weights and abscissas
directly (instead of transport equations for the moments). We have recently compared the two
approaches on several test cases and the advantages and drawbacks of both approaches are
analyzed in [36]. Where the multi-fluid experiences some numerical diffusion in the size phase
space, the principle of the DQMOM allows to avoid such a problem. However, the question of
droplet evaporation and the associated flux of disappearing droplets is difficult to accurately
tackle in the framework of moment methods, whereas it is an easy task for the multi-fluid. We
then believe that one way to really improve the capability of the actual methods would be to use
the proposes new multi-fluid multi-moment method which combines the flexibility of multi-fluid
models to the efficiency of DQMOM methods.

Finally, we have presented another set of validation through comparisons with experimental
measurements obtained with coupled Laser diagnostics on a dedicated well-controlled configu-
ration of an acoustically pulsated free jet with polydisperse spray injection in Chapter 5. To our
knowledge, this is the first time such comparisons have been conducted.

One of the key issues in developing a new model for applications such as two-phase combus-
tion, as well as the associated numerical methods and algorithm is its capabilities in terms of
accuracy and high performance computing in order to tackle complex configurations. The last
chapter has shown that we can perform ”Computational Multi-fluid Dynamics”, that it leads
to a Eulerian description which suffers from very reasonable numerical diffusion and provides
numerical solution very close to the solution obtained with a Lagrangian solver. Besides, the
scalability of the algorithms is such that it leads to an efficiency of almost one so that problems
which are three-dimensional in space and one-dimensional in size can be resolved within a day of
computation. Such results allow to envision that such a method has a lot of potential for mode
complex applications in order to better resolve the complex physics of polydisperse evaporating
sprays in turbulent gaseous flow fields.

These results have initiated new directions of research among which three main directions
are currently under investigation. The first one is the extension of the presented results to the
two-way coupling with the related difficulties, especially in the configuration where there exists
some zone of high droplet concentrations. Besides, in terms of modeling and numerical methods,
it is very important to extend the capability of the code to LES, which is the second direction
of research. Two stumbling blocks have to be overcome in order to obtain an efficient code, the
first one is related to the detailed modeling of the influence of the small unresolved scales and
the derivation of the related semi-kinetic model and multi-fluid model, the second one being the
design of a new numerical scheme and related algorithm which allows to reach the same level of
accuracy and optimization as the one presented in these Lecture Notes. The third direction is
related to the design of a new experimental configuration and the related diagnostics in order
to be able to validate the models and methods. These directions constitutes actual scientific
challenges.
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[57] S. de Chaisemartin, L. Fréret, D. Kah, F. Laurent, R.O. Fox, J. Reveillon, and M. Massot.
Eulerian models for turbulent spray combustion with polydispersity and droplet crossing.
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aéronautiques. PhD thesis, Institut National Polytechnique de Toulouse, France, 2007.

[71] M. W. Reeks. On a kinetic equation for the transport of particles in turbulent flows. Phys.
Fluids, 3:446–456, 1991.

RTO-EN-AVT-169 - 83 - 02-2009



Eulerian multi-fluid models : modeling and numerical methods
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