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Explicit formulae for the sampling distribution of Play-the-Winner designs are given. These formulae involve familiar and easy-to-compute distributions. Two examples of applications are given. First, conditional test and confidence interval procedures for PW designs are developed. Second, the Bayesian predictive distributions associated with conjugate independent Beta priors are derived. Moreover, the correspondance between Bayesian posterior distributions and conditional tests is made explicit.

Introduction

In response-adaptive designs newly accrued subjects are assigned a treatment with a probability that is updated as a function of previous outcomes, according to some predefined rule. The intent is to favor the assignment of the "most effective treatment" given available information. Even if these designs can only be reasonably implemented in specific clinical situations, they are attractive competitors to 1:1 randomized designs for comparing the success rates of two treatments [START_REF] Pullman | Adaptive designs, informed consent, and the ethics of research[END_REF][START_REF] Rosenberger | Maximizing power and minimizing treatment failures[END_REF].

The Play-The-Winner (PW) allocation rule was designed for two treatments with a dichotomous (e.g. success/failure) outcome [START_REF] Zelen | Play the winner rule and the controlled clinical trial[END_REF]. It is based on the intuitive and empirical idea of translating the stochastic process of treatment success generation into a stochastic process of treatment allocation. If subject k -1 is assigned to treatment t (t ∈ {1, 2}) and if the outcome is a success (with probability ϕ t ), subject k is assigned to the same treatment; if the outcome is a failure, subject k is assigned to the other treatment. In spite of its apparent determinism, the play-the-winner rule is a stochastic process, since it depends on the probabilities of success on each treatment. [START_REF] Lecoutre | Adaptative designs for multi-arm clinical trials: The play-the-winner rule revisited[END_REF] demonstrated that the Play-the-Winner rule has optimal properties and always converges more rapidly than the Randomized Play-the-Winner rule, sometimes notably so, with less variability. Moreover, [START_REF] Lecoutre | Frequentist performance of Bayesian inference with response-adaptive designs[END_REF] showed that, in terms of the total number of failures, several response-adaptive designs, including recent ones, generally provide a modest advantage over 1:1 randomized designs. The only notable exceptions were found for the Play-The-Winner design, in the cases where the most effective treatment is clearly superior to the other treatment.

Explicit formulae for the sampling distribution of PW designs are given for two stopping rules. Let n 11 and n 21 be the respective numbers of successes to the two treatments, and n 10 and n 20 be the numbers of failures. A consequence of the PW rule is that n 10 and n 20 are equal or differ by only one unit. Hence, if the experiment stops after a fixed even number of subjects n has been included (stopping rule R1), n 10 and n 20 cannot be larger than n/2. Thus they cannot exceed the number of failures that can be observed in the 50-50 randomized design. Moreover, the expected total number of failures is less for the PW rule. If treatment t has probability π t (0 ≤ π t ≤ 1, π 1 + π 2 = 1) of being selected as the first treatment, the expected number of failures to treatment t is for rule R1 [START_REF] Lecoutre | Adaptative designs for multi-arm clinical trials: The play-the-winner rule revisited[END_REF] 

nψ t + (π t -ψ t ) 1 -h n 1 -h (1 -ϕ t ) where h = ϕ 1 + ϕ 2 -1
An alternative stopping rule (R2) is to stop the experiment after a fixed number of failures has been observed for one of the treatment (say treatment 2). This allows to tightly control the number of failures. An equal number of failures can be obtained for the other treatment if the first subject is assigned to this treatment (π 1 = 1).

Sampling distributions

The sampling probability to observe (n 11 , n 10 , n 21 , n 20 ) can be expressed from Binomial and Negative Binomial probabilities.

Stopping rule R1

The experiment stops after a fixed number of subjects n = n 11 +n 10 +n 21 +n 20 has been included. Recall that n 10 = n 20 or n 10 = n 20 + 1 or n 20 = n 10 + 1. 

P (n 11 , n 10 , n 21 , n 20 | π 1 , ϕ 1 , ϕ 2 ) = π 1 p Bin (
; n t1 + n t0 , ϕ t ) = ( n t1 +n t0 n t1 )ϕ n t1 t (1 -ϕ t ) n t0 p NBin (n t1 ; n t0 , ϕ t ) = ( n t1 +n t0 -1 n t1 )ϕ n t1 t (1 -ϕ t ) n t0 = n t0 n t1 + n t0 p Bin (n t1 ; n t1 + n t0 , ϕ t ), (1) 
with the conventions 0! = 1,

( N 0 ) = 1 if N ≥ 0, ( N k ) = 0 if k > N, 0 0 = 1.

Stopping rule R2

The experiment stops after a fixed number of failures n 20 has been observed for treatment 2. Recall that n 10 = n 20 or n 20 = n 10 + 1.

P (n 11 , n 10 , n 21 , n 20 | π 1 , ϕ 1 , ϕ 2 ) = π t p NBin (n 11 ; n 10 , ϕ 1 )p NBin (n 21 ; n 20 , ϕ 2 ) (2)
where t = 1 if n 10 = n 20 and t = 2 if n 20 = n 10 + 1.

Proof

The sampling distribution involves the standard combinatory problem of distributing N nondistinguishable objects to k numbered drawers, hence the number of possible filling patterns ( N +k-1 N ).

Stopping rule R1. For each treatment t (t = 1, 2), for given numbers n t1 and n t0 , there are n t0 ordered drawers of type t that contain exactly one failure and from zero to n t1 successes. In addition, there is a final drawer, possibly empty, that contains no failure and contains also from zero to n t1 successes. Hence, for each treatment t, there are N = n t1 objects to distribute, either to k = n t0 + 1 drawers if the final drawer is of type t, or to k = n t0 drawers if the final drawer is of the other type. The number of corresponding samples is the binomial coefficient ( n t1 +n t0 n t1 ) in the first case, and the negative binomial coefficient ( n t1 +n t0 -1 n t1

) in the second case. If the first drawer is of type 1 (with probability π 1 ), this implies that either n 10 = n 20 +1 (the last, with no success, drawer being of type 2) or n 10 = n 20 (the last drawer being of type 1). If the first drawer is of type 2 (with probability π 2 ), this implies that either n 20 = n 10 + 1 (the last drawer being of type 1) or n 10 = n 20 (the last drawer being of type 2).

Note that, for this stopping rule, various marginal and conditional probabilities, as well as factorial moments derived from recurrence relations, were given in [START_REF] Elqasyr | Modélisation et Analyse Statistique des Plans d'Expérience Séquentiels[END_REF].

Stopping rule R2. In this case, there is no additional drawer, the final drawer being of type 2 by definition. Hence, for each treatment t, there are N = n t1 objects to distribute to k = n t0 drawers. The number of corresponding samples is the negative binomial coefficient ( n t1 +n t0 -1 n t1

) The fact that the final drawer is of type 2 implies that either n 10 = n 20 if the first drawer is of type 1 (with probability π 1 ) or n 20 = n 10 +1 if the first drawer is of type 2 (with probability π 2 ).

Conditional sampling distributions

Conditional procedures are obtained from the conditional sampling distribution of n 11 . Owing to the strong dependence between the numbers of failures for the two treatments, it appears appropriate to condition on n 10 and n 20 , rather than on fixed margins (n .1 = n 11 + n 21 is not fixed).

Stopping rule R1

The conditional probability is derived from the marginal probability (1), replacing n 21 with n -n 11 -n 10 -n 20 . It involves only the ratio ϕ 1 /ϕ 2 . We get after simplification (the notation [n] recall that n is fixed by the stopping rule):

P (n 11 | [n], n .0 , π 1 , ϕ 1 , ϕ 2 ) = P (n 11 | [n], n 10 , n 20 , ρ = ϕ 1 /ϕ 2 ) = P (n 11 , n 10 , n -n 11 -n 10 -n 20 , n 20 ) n-n 10 -n 20 j=0 P (j, n 10 , n -j -n 10 -n 20 , n 20 ) = Q 1 (n 11 , n 10 , n 20 , n)ρ n 11 n-n 10 -n 20 j=0 Q 1 (j, n 10 , n 20 , n)ρ j (0 ≤ n 11 ≤ n -n 10 -n 20 ),
where Q 1 (j, n 10 , n 20 , n) = ( j+n 10 -1 j )( n-j-n 10 n-j-n 10 -n 20 ) if n 10 = n 20 + 1 = ( j+n 10 j )( n-j-n 10 -1 n-j-n 10 -n 20 -1 ) if n 20 = n 10 + 1 = π 1 ( j+n 10 j )( n-j-n 10 -1 n-j-n 10 -n 20 -1 ) + π 2 ( j+n 10 -1 j )( n-j-n 10 n-j-n 10 -n 20 ) if n 10 = n 20 (3)

In the particular case ρ = 1 (ϕ 1 = ϕ 2 ), the conditional distribution of n 11 is a Beta-Binomial distribution when n 10 = n 20 , and is a mixture of Beta-Binomial distributions when n 10 = n 20 :

P (n 11 | [n], n 10 , n 20 , ϕ 1 = ϕ 2 ) = p B-Bin (n 11 ; n -n 10 -n 20 , n 10 , n 20 + 1) if n 10 = n 20 + 1 = p B-Bin (n 11 ; n -n 10 -n 20 , n 10 + 1, n 20 ) if n 20 = n 10 + 1 = π 1 p B-Bin (n 11 ; n -n 10 -n 20 , n 10 + 1, n 20 ) + π 2 p B-Bin (n 11 ; n -n 10 -n 20 , n 10 , n 20 + 1) if n 10 = n 20 ,
where p B-Bin (x; N, a, b) is the probability function of the Beta-Binomial distribution with parameters N, a, b:

p B-Bin (x; N, a, b) = ( N x ) B(x + a, N -x + b) B(a, b) = ( x+a-1 x )( N -j+b-1 N -j ) ( N +a+b-1 N )
.

Stopping rule R2

In this case, the distribution is also conditioned on the observed n. The stopping rule implies that either n 10 = n 20 (t 1 = 1) or n 20 = n 10 + 1 (t 1 = 2). From (2), we get in the same way ([n 20 ] recall that n 20 is fixed by the stopping rule):

P (n 11 | n, n .0 , [n 20 ], π 1 , ϕ 1 , ϕ 2 ) = P (n 11 | n, n 10 , [n 20 ], ρ) = Q 2 (n 11 , n 10 , n 20 , n)ρ n 11 n-n 10 -n 20 j=0 Q 2 (j, n 10 , n 20 , n)ρ j (0 ≤ n 11 ≤ n -n 10 -n 20 ), ( 4 
)
where Q 2 (j, n 10 , n 20 , n) = ( j+n 10 -1 j )( n-j-n 10 -1 n-j-n 10 -n 20 ).

In the particular case ρ = 1, it is a Beta-Binomial distribution with parameters n -n 10 -n 20 , n 10 , and n 20 :

P (n 11 | n, n 10 , [n 20 ], ϕ 1 = ϕ 2 ) = p B-Bin (n 11 ; n -n 10 -n 20 , n 10 , n 20 )

Application: Conditional tests and intervals

Using the appropriate conditional distribution, the null hypothesis ρ = ρ 0 can be tested against the alternative ρ > ρ 0 by declaring the result significant at level α if

p ρ 0 inc = n-n 10 -n 20 j=n 11 P (n 11 = j | t 1 , n, n 10 , n 20 , ρ 0 ) ≤ α.
In the same way, ρ = ρ 0 can be tested against the alternative ρ < ρ 0 , by declaring the result significant at level α if the observed level

p ρ 0 inc = n 11 j=0 P (n 11 = j | t 1 , n, n 10 , n 20 , ρ 0 ) ≤ α.
The summation is over all values of j, consistent with the fixed numbers of failures, which are "more extreme" than the observed frequency. The observed frequency n 11 is included in the summation, hence the subscript inc for inclusive test. Since this inclusive test can be highly conservative, an alternative solution would be to exclude n 11 , hence the subscript exc for exclusive test. Let p ρ 0 exc = 1 -p ρ 0 inc and p ρ 0 exc = 1 -p ρ 0 inc be the corresponding probabilities. This exclusive test is anti-conservative. Consequently, a solution which gives probabilities typically closer to the nominal level than "inclusive" or "exclusive" approaches consists in considering a mid-p-value, defined as the mean of the inclusive and exclusive p-values [START_REF] Berry | Mid-P confidence intervals: A brief review[END_REF][START_REF] Lecoutre | Bayesian methods for experimental data analysis[END_REF][START_REF] Routledge | Practicing safe statistics with the mid-p*[END_REF])

p ρ 0 mid = (p ρ 0 inc + p ρ 0 exc )/2 and p ρ 0 mid = (p ρ 0 inc + p ρ 0 exc )/2.
In the particular case ρ 0 = 1 (ϕ 1 = ϕ 2 ), the conditional test is the Fisher's randomization test. Its p-values are given by the corresponding Beta-Binomial distribution. More generally, for ϕ 1 = ϕ 2 , they are given by ( 3) or (4), which are generalized Beta-Binomial distributions.

For each conditional test, a lower and an upper confidence limits for ρ can be found by solving respectively p ρ 0 = α and p ρ 0 = α.

Application: Bayesian predictive probabilities

The likelihood function is proportional to ϕ n 11 1 (1-ϕ 1 ) n 10 ϕ n 21 2 (1-ϕ 2 ) n 20 , hence identical (up to a multiplicative constant) with the likelihood function associated with the comparison of two independent binomial (or negative binomial) proportions. A simple and usual Bayesian solution assumes two independent Beta prior distributions for ϕ 1 and ϕ 2 : respectively Beta(ν 11 , ν 10 ) and Beta(ν 21 , ν 20 ) [START_REF] Lecoutre | Bayesian predictive approach for inference about proportions[END_REF].

Posterior and predictive distributions

This is a conjugate prior and the marginal posterior distributions are again two independent Beta distributions: Beta(ν 11 + n 11 , ν 10 + n 10 ) and Beta(ν 21 + n 21 , ν 20 + n 20 ). The predictive probability of observing (n 11 , n 10 , n 21 , n 20 ) is a mixture of the sampling probabilities. Consequently, it can be expressed from Beta-Binomial and Beta-Negative-Binomial distributions. The predictive probability of observing (n , 11 , n , 10 , n , 21 , n , 20 ) in a future independent sample of size n , can be obtained in the same way, replacing the prior Beta distributions with the posterior Beta distributions.

Correspondence with the p-values of the conditional tests

There is a correspondence between the above exclusive and inclusive p-values of the conditional tests for ρ 0 = 0 and the posterior Bayesian probabilities that ϕ 1 < ϕ 2 associated with particular choices of the prior. We have the following equalities.

Stopping rule R1

p 1 inc = 1 -p 1 exc = P 0,0,1,1 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) if n 10 = n 20 + 1 = P 0,1,1,0 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ). if n 20 = n 10 + 1 = π 1 P 0,1,1,0 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) + π 2 P 0,0,1,1 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) if n 10 = n 20 . p 1 exc = 1 -p 1 inc = P 1,0,0,1 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) if n 10 = n 20 + 1 = P 1,1,0,0 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) if n 20 = n 10 + 1 = π 1 P 1,1,0,0 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) + π 2 P 1,0,0,1 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) if n 10 = n 20 .
where P ν 11 , ν 10 , ν 21 , ν 20 (ϕ 1 < ϕ 2 ) | n 11 , n 10 , n 21 , n 20 ) is the posterior probability associated with the prior defined by (ν 11 , ν 10 , ν 21 , ν 20 ). This extends the previous correspondence obtained for the Binomial and Negative Binomial sampling [START_REF] Lecoutre | Bayesian methods for experimental data analysis[END_REF] and for the multinomial sampling [START_REF] Altham | Exact Bayesian analysis of a 2×2 contingency table and Fisher's "exact"significance test[END_REF]?).

Stopping rule R2

p

1 inc = 1 -p 1 exc = P 0,0,1,0 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) p 1 exc = 1 -p 1 inc = P 1,0,0,0 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 )

Proof

Given ϕ 2 , the conditional posterior probability P (ϕ 1 < ϕ 2 | ϕ 2 ) (omitting the references to the prior weights and to the data counts) is the incomplete Beta (Johnson, Kemp and Kotz, 1993, p. 117). From the marginal Beta distribution of ϕ 2 , it results that the posterior probability P (ϕ 1 < ϕ 2 ) is the probability that a Beta-Binomial distribution with parameters n 11 + n 10 + ν 11 + ν 10 -1, n 21 + ν 21 and n 20 + ν 20 is greater or equal to n 11 + ν 11 . Hence, 

P

P

  (n 11 , n 10 , n 21 , n 20 ) = π 1 p B-Bin (n 21 ; n 21 + n 20 , ν 21 , ν 20 ) p B-NBin (n 11 ; n 10 , ν 11 , ν 10 ) if n 10 = n 20 + 1 = π 2 p B-Bin (n 11 ; n 11 + n 10 , ν 11 , ν 10 ) p B-NBin (n 21 ; n 20 , ν 21 , ν 20 ) if n 20 = n 10 + 1 = π 1 p B-Bin (n 11 ; n 11 + n 10 , ν 11 , ν 10 ) p B-NBin (n 21 ; n 20 , ν 21 , ν 20 ) + π 2 p B-Bin (n 21 ; n 21 + n 20 , ν 21 , ν 20 ) p B-NBin (n 11 ; n 10 , ν 11 , ν 10 ) if n 10 = n 20 , where p B-NBin (j; r, a, b) is the probability function of the Beta-Negative-Binomial distribution of parameters r, a and b p B-NBin (j; r, a, b) = ( Bin (j; j + r, a, b). Stopping rule R2 P (n 11 , n 10 , n 21 , n 20 ) = π t p B-NBin (n 11 ; n 10 , ν 11 , ν 10 )p B-NBin (n 21 ; n 20 , ν 21 , ν 20 ) where t = 1 if n 10 = n 20 and t = 2 if n 20 = n 10 + 1.

  ν 11 , ν 10 , ν 21 , ν 20 (ϕ 1 < ϕ 2 | n 11 , n 10 , n 21 , n 20 ) = 1 -F B-Bin (n 11 + ν 11 -1; n 11 + n 10 + ν 11 + ν 10 -1, n 21 + ν 21 , n 20 + ν 20 ), where F B-Bin (x; N, a, b) is the distribution function of the Beta-Binomial distribution with parameters N , a and b. F B-Bin (x; N, a, b) = x j=0 p B-Bin (j; N, a, b).The correspondence with the p-values of the conditional tests can be deduced from the fact thatF B-Bin (x; x + c, a, b) = F B-Bin (x; x + a, c, b),This equality results from the link with the distribution function of the Hypergeometric distribution(Johnson, Kemp and Kotz, 1993, p. 254)F B-Bin (x; x + c, a, b) = F HG (x; x + a + b + c -1, x + a, x + c) F B-Bin (x; x + a, c, b) = F HG (x; x + a + b + c -1, x + c, x + a),using the fact thatF HG (x; N, K, n) = F HG (x; N, n, K).It follows thatF B-Bin (n 11 + ν 11 ; n 11 + n 10 + ν 11 + ν 10 -1, n 21 + ν 21 , n 20 + ν 20 ) = F B-Bin (n 11 + ν 11 ; n -n 10 -n 20 + ν 11 + ν 21 -1, n 10 + ν 10 , n 20 + ν 20 ), from which we can easily deduce the appropriate priors.

  n 21 ; n 21 + n 20 , ϕ 2 )p NBin (n 11 ; n 10 , ϕ 1 ) if n 10 = n 20 + 1 = π 2 p Bin (n 11 ; n 11 + n 10 , ϕ 1 )p NBin (n 21 ; n 20 , ϕ 2 ) if n 20 = n 10 + 1 = π 1 p Bin (n 11 ; n 11 + n 10 , ϕ 1 )p NBin (n 21 ; n 20 , ϕ 2 ) + π 2 p Bin (n 21 ; n 21 + n 20 , ϕ 2 )p NBin (n 11 ; n 10 , ϕ 1 ) + + if n 10 = n 20 ,

	where, for t = 1, 2,
	p Bin (n t1

  function I ϕ 2 (n 11 + ν 11 , n 10 + ν 10 ). Consequently, if ν 11 , ν 10 , ν 21 and ν 20 are non-null integers, it is equal to the probability that a Binomial distribution with parameters n 11 + n 10 + ν 11 + ν 10 -1 and ϕ 2 is greater or equal to n 11 + ν 11

Numerical illustration

Let us consider for illustration the results of an experiment with a fixed number of n = 150 subjects. The first treatment is randomly selected (π 1 = 1/2). The observed rates of success are respectively 68 out of 90 attributions for treatment 1 and 38 out of 60 attributions for treatment 2 (22 failures in each case). The p-values of the conditional test of the null hypothesis ϕ 1 = ϕ 2 against the alternative ϕ 1 > ϕ 2 are