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Abstract

The Logic WTµ is considered. We show decidability of the satisfiability

checking problem for a fragment of WTµ called C-WTµ. WTµ is an

extension of the modal µ-calculus with event-recording clocks. C-WTµ is

more expressive than Event-Recording logic, another EXPTIME complete

decidable extension of the modal µ-calculus with event-recording clocks.

Based on the techniques for deciding untimed µ-calculus, we present a set

of rules for constructing tableaux for formulas of C-WTµ. The decidability

problem is shown to be EXPTIME complete. We construct a witness

event-recording automaton that satisfies a given C-WTµ formula.

1 Introduction

Formal methods need ”good” and efficient formalisms to describe and specify
models of systems. In this context, temporal and modal logics allow elegant and
succinct representations for specifications. Decidability of satisfiability checking
problem together with construction of witness models are important for logics.
The satisfiability checking problem for a logic is to check whether a given formula
has a model. In this paper, we consider the satisfiability checking problem for
an interesting fragment of WTµ with respect to event-recording automata.

WTµ [12] is a ”weak” timed extension of the standard µ-calculus [10] for
Event-Recording Automata [3]. The syntax of WTµ extends the syntax of the
µ-calculus with two modal operators indexed with clock constraints. The exis-
tential modal operator indexed with a clock constraint (〈g〉) allows to describe
a behaviour in a future time instant at which the clock constraint g is satisfied.
The universal modal operator indexed with a clock constraint ([g]) allows to
describe all behaviours in all future time instants at which the constraint g is
satisfied. Formulas of WTµare boolean combinations of fixpoint formulas and
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formulas starting with modal operators. C-WTµ is a fragment of WTµ. When
formulas are viewed as trees, C-WTµ requires that every modal quantification
over events to be directly preceded by a modal quantification over delays; Ad-
ditionally universal quantification over events must not be directly preceded
by an existential quantification over delays. Models for WTµ and C-WTµ are
Event-Recording Automata (ERA) [3]. ERA are finite graphs. Transitions in
ERA are labelled with couples made of a clock constraint and an event. A
clock constraint is just a conjunction of comparisons of clocks with constants.
A transition can be fired when values of clocks satisfy its constraints; and when
a transition is fired the unique clock associated to the event of the transition
is reset. In ERA, Each clock refers to a single event. ERA are closed under
boolean operations [2].

The main contribution of this paper is an EXPTIME-Complete decision pro-
cedure for the satisfiability checking problem of C-WTµ. The procedure does
not require limit on constants of models; it also constructs witness models. We
briefly address relations between WTµ , C-WTµand other timed extensions of
the standard µ-calculus like the logic Lν [11] and Event-Recording Logic [17]
(ERL). Modal operators ERL can be translated into equivalent modal operator
of WTµand modal operators of WTµcan be translated into equivalent modal
operator of Lν . C-WTµ is more expressive than Event-Recording logic, an-
other EXPTIME-Complete timed µ-calculus for event-recording automata. C-
WTµ allows to characterise event-recording automata up to timed bisimulation
and timed simulation [13]. We also present a method to reduce the model-
checking problem of WTµ to the model-checking problem of the standard µ-
calculus which is the same as the problem of checking winning strategies in two
player parity game [20]. The reduction leads to and EXPTIME algorithm.

For the satisfiability problem of C-WTµ, we use similar techniques to the
satisfiability problem for the µ-calculus [18, 14] and ERL [17]. We present a set
of reduction rules for constructing tableaux for WTµ formulas. We show that a
formula is satisfiable if and only if its tableau contains a pre-model. From pre-
models we construct witness models. Pre-models are parts of tableaux. To keep
track of the actual values of the clocks, premises and conclusions in our tableaux
rules uses timing contexts. Timing contexts are well known equivalence classes
of valuations of clocks called regions [2]. Applying a rule not only reduces the
formula but also changes the values of the clocks, by performing operations such
as time elapse and clock reset. There will be finitely many labels for nodes of
tableaux (this is because there is finitely many regions), and nodes of tableaux
will be the states of witness models. Our tableau rules can not handle the
satisfiability checking problem for formulas like 〈ha > 1〉〈a〉tt ∧ 〈ha > 1〉[a]ff as
we will need to introduce new constants in models. The latter formula is not a
C-WTµ formula; it requires that after one time unit delay, there exists a future
time instant at which a can be fired and there exists another future time instant
at which a can not be fired.

Related results. Event-Recording Automata (ERA) [3] is a restricted class
of timed automata [2]. TML [9], Lt

µ [16], Tµ [19] and Lν [11] are timed logics for
for timed automata. Tµ is a timed extension of the µ-calculus. Lν is a fragment
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of Tµ and it does not have the least fixpoint operator. Lν allows to charac-
terise timed simulation and timed bisimulation between timed automata [1].
The model-checking of Lν is EXPTIME Complete and the satisfiability check-
ing problem for Lν have been left open [11]. The number of clocks in the models
cannot be deduced from the number of clocks in a Lν formula. But, the sat-
isfiability problem for Lν , with a restrictive bound assumption on clocks and
constants in models, is decidable [11]. The satisfiability problem for ERL, with-
out any bound assumption on constants in models, is EXPTIME Complete [17]
and the construction of witness model is effective. ERL is more expressive than
the event-recording part of timed linear-time logic EventClockTL [15]. WTµ is
expressive enough for characterising timed simulation and timed bisimulation
relations between ERA [13]. One can check that characteristic formulas in [13]
belong to C-WTµ. They have also shown that ERL is a fragment of WTµ.
D’Sousa [6] gives a logical characterisation of ERA with a monadic second or-
der logic, MSOer, interpreted over linear models.

Organisation of the paper. in the next section, we present Event-
Recording Automata. In Section 3, we define WTµ, and C-WTµ; we briefly
compare WTµ, C-WTµ with ERL and Lν . We also present a µ-calculus based
algorithm for the model-checking problem of WTµ. In Section 4, we consider
the satisfiability problem of C-WTµ. We show that a formula is satisfiable if
and only if its tableau contains a pre-model. At the end of Section 4, we discuss
about the satisfiability checking problem of WTµ.

2 Event-Recording automata

The sets N, R
+, are respectively the sets of natural and non-negative real num-

bers. We consider a finite set H of variables, called clocks. A clock valuation
over H is a mapping v : H → R

+ that assigns to each clock a time value. The
set of all clock valuations over H is denoted VH. Let t ∈ R

+, the valuation v+ t
is defined by (v + t)(h) = v(h) + t, ∀h ∈ H. For a clock h ∈ H, we denote
by v[h := 0] the valuation such that (v[h := 0])(h) = 0 and for every h 6= h′

(v[h := 0])(h′) = v(h′). Finally, v0 is the valuation that maps every clock on 0.

Given a set of clocks H, the set of clock constraints over H is defined by the
grammar “g ::= h ∼ c | g ∧ g | true” where h ∈ H, c ∈ N, ∼ ∈ {≤, <,>,≥}
and true stands for true. We write v |= g (or v ∈ [[g]]) when the clock valuation
v satisfies the clock constraint g. A M -rectangular constraint is a constraint of
the form

∧
h∈H eh where eh is an equation of the form c ≤ h ≤ c, c < h < c+ 1,

M ≤ h ≤ M , or h > M with c < M . The bound Mg of a constraint g is the
maximal constant that occurs in g. It should be obvious that for every M ≥Mg,
a constraint g can be decomposed into a finite set RectM (g) of M -rectangular
constraints such that v |= g iff ∃g′ ∈ RectM (g) s.t v |= g′.

Given a constant M ∈ N, a set of clock H, the set VH can be partitioned
into a finite set, denoted by Reg(M), of equivalence classes called regions [2].
For a given M , the number of regions is bounded by |H|!.2|H|.(2.M + 2)|H|. It
is standard that any region r from Reg(M) can be represented by an atomic
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clock constraint that additionally uses equations of the form h − h′ ∼ c. For a
valuation v, [v]M (or [v] when it is clear from the context) denotes the region
that contains v. We also define r0 = [v0], v ↑= {v + t | t ∈ R

+}; and given a
region r, we define r↑= {[v + t] | t ∈ R

+ and v ∈ r}.

In the context of event-recording automata, each clock refers to a specific
event. Then, we associate clocks with letters of an alphabet. Given an alpha-
bet Σ, we then denote by HΣ the set of clocks {ha | a ∈ Σ}. Sets of valua-
tions, constraints, and M-rectangular constraints are denoted by VΣ, GdsΣ, and
AgdsΣ(M).

Definition 1 An event-recording automaton (ERA) is a tuple P = 〈P,Σ, p0,∆P〉
where, P is a finite set of locations, p0 ∈ P is the initial location, ∆P ⊆
P × GdsΣ × Σ × P is a transition relation. The ERA is deterministic if
[[g1 ∧ g2]] = ∅ whenever (p, g1, a, p1) ∈ ∆P and (p, g2, a, p2) ∈ ∆P .

The bound of an ERA P, MP is the maximal constant that occurs in its con-
straints. Given a constant M , we say an ERA is M -bounded iff its bound is
smaller than M . The semantics of ERA are labelled transition systems.

A state of an event-recording automaton P as above defined, is a pair (p, v)
where p is a location and v is a valuation over HΣ. The initial state of P is
(p0, v0) where v0 maps all clocks in HΣ to 0. The semantics of an event-recording
automaton P as above is the (Σ ∪ VΣ)-labelled transition system (LTS) [[P]] =
〈P×VΣ,Σ∪VΣ, (p

0, v0),→〉 where →⊆ (P×VΣ)×(Σ∪R
+)×(P×VΣ) is defined

by: (p, v)
v+t
−→ (p, v+ t) for every t ≥ 0; and (p, v)

a
−→ (p′, v[ha := 0]) if and only

if there is p
g,a
−→ p′ ∈ ∆P such that v |= g. Each clock of an event-recording

automata records the amount of time elapsed since the last occurrence of its
corresponding event. It is common to label continuous transition with delays in
R

+ instead of valuations as above. The two representations are equivalent; the
benefit of our representation will appear later in Sect. 3.

Let us present two abstractions for the semantics. The M -action abstraction
is obtained from the semantics by replacing valuations on delay-transitions with
M -rectangular constraints they satisfy.

Definition 2 The M -action abstraction of an ERA P, as above defined, is the
(Σ ∪ AgdsΣ(M))-LTS 〈[P]〉M = 〈P × VΣ,Σ ∪ AgdsΣ(M), (s0, v0),∆v〉 where,

∆v ⊆ (P ×VΣ)× (Σ∪AgdsΣ(M))× (P ×VΣ) is defined by: (p, v)
g′

−→ (p, v+ t)

for any t ∈ R
+ s.t v + t |= g′ with g′ ∈ Agds(M); and (p, v)

a
−→ (p′, v[ha := 0])

if there is (p, g, a, p′) ∈ ∆P with v |= g.

One can check that for every M ∈ N, [[P]] and 〈[P]〉M are isomorphic.

Definition 3 The M -region abstraction of P is 〈[P]〉Mr = 〈P × Reg(M),Σ ∪
Agds(M), (p0, r0),∆r〉 where, v0 ∈ r0, ∆r ⊆ (P ×Reg(M))×(Σ∪AgdsΣ(M))×

(P × Reg(M)) is given by: (p, r)
g′

−→ (p, r′) with r′ ⊆ r ↑ and r′ ⊆ g′; and

(p, r)
a

−→ (p′, r[ha := 0]) if there is (p, g, a, p′) ∈ ∆P with r ⊆ g.

4



Proposition 4 Let P be an ERA. ∀M ≥MP : 〈[P]〉M is bisimilar1 to 〈[P]〉Mr .

3 The Logic WTµ

We want a modal logic for semantics of ERA. Modalities of that logics should
allow to quantify delay or discrete successors of semantics of ERA. The logic
in [17] allows quantification on successions of a delay with an event. That kind
of quantification is “weak” as for example they do not allows to characterise
event-recording automata up to some behavioural relations [13]. We introduced
the logic WTµ [12].

3.1 Syntax and Semantics of WTµ

The syntax of WTµ[12] is the syntax of the standard µ-calculus [10] augmented
with two dual modalities indexed with constraints: the existential modality 〈g〉
and the universal modality [g].

Definition 5 Formulas of WTµ over an alphabet Σ, a finite set of variables
Var = {X,Y, . . .} and GdsΣ are defined by the following grammar:

ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX.ϕ | νX.ϕ

where g ∈ GdsΣ; the symbols tt and ff denote ”true” and ”false” formulas.

The following definitions are taken from [14] and they are used in the context
of WTµ. A variable X is bound in a formula ϕ if there is a sub formula σX.ψ(X)
of ϕ with σ ∈ {µ, ν}. A well named formula is such that an expression µX.ϕ(X)
(or νX.ϕ(X)) occurs at most once for each variable X. By renaming variables
if necessary, every formula can be translated into an equivalent well named
formula. In what follows, w.l.o.g we assume that formulas are well named. The
binding definition of a bound variable X in a well named formula ϕ, Bdϕ(X) is
the unique sub formula of ϕ of the form σX.ψ(X); we call X a µ-variable when
σ = µ, otherwise we callX a ν-variable. We will omit subscript ϕ when it causes
no ambiguity. The dependency order over the bound variables of a formula ϕ,
is the least partial order such that X is older than Y (and we write X ≤ϕ Y ) if
X occurs in Bdϕ(Y ) (and Bdϕ(Y ) is a sub formula of Bdϕ(X)). Given ϕ, Bdϕ,
and ψ a sub formula of ϕ, the expansion ExpBdϕ

(ψ) of ψ w.r.t Bdϕ is defined
by ExpBdϕ

(ψ) = ψ[Bdϕ(Xn)/Xn] · · · [Bdϕ(X1)/X1], where {X1, X2, · · · , Xn}
is an increasing chain of bound variables of ϕ with respect to ≤ϕ.

WTµ is interpreted over (Σ∪VΣ)-LTS that may represent semantics of ERA.

Definition 6 For a (Σ ∪ VΣ)-LTS S = 〈S,Σ ∪ VΣ, s
0,∆S〉 and an assignment

V al : Var → 2S, the set of states in which a formula ϕ is true, [[ϕ]]SV al is defined

1One considers the timed-abstract bisimilarity relation between [[P]] and 〈[P]〉Mr [2].
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inductively as follows:

[[X]]SV al := V al(X)

[[ϕ1 ∨ ϕ2]]
S
V al := [[ϕ1]]

S
V al ∪ [[ϕ2]]

S
V al

[[ϕ1 ∧ ϕ2]]
S
V al := [[ϕ1]]

S
V al ∩ [[ϕ2]]

S
V al

[[〈a〉ϕ]]SV al := {s | ∃s
a

−→ s′ and s′ ∈ [[ϕ]]SV al}

[[〈g〉ϕ]]SV al := {s | ∃s
v

−→ s′ s.t v ∈ [[g]] and s′ ∈ [[ϕ]]SV al}

[[[a]ϕ]]SV al := {s | ∀s
a

−→ s′. s′ ∈ [[ϕ]]SV al}

[[[g]ϕ]]SV al := {s | ∀s
v

−→ s′ s.t v ∈ [[g]]. s′ ∈ [[ϕ]]SV al}

[[µX.ϕ(X)]]SV al :=
⋂

{T ⊆ S | [[ϕ(X)]]SV al[X/T ] ⊆ T}

[[νX.ϕ(X)]]SV al :=
⋃

{T ⊆ S |T ⊆ [[ϕ(X)]]SV al[X/T ]}

where for a set of states T ⊆ S, the assignment V al[X/T ] is such that Y ∈ Var,
V al[X/T ](Y ) = T if Y = X and V al[X/T ](Y ) = V al(Y ) otherwise. We will
omit V al when ϕ is a sentence.

Definition 7 Let P = 〈P,Σ, p0,∆P〉 be an ERA and V al : Var → 2P×VΣ be an

assignment. P is a model of ϕ with respect to V al iff (p0, v0) ∈ [[ϕ]]
[[P]]
V al.

In example, the formula ϕ = 〈0 < ha < 1〉((〈b〉tt∧ [a]ff)∨ 〈c〉tt) is such that
events a, b and c are in the scope of the modality 〈0 < ha < 1〉. The formula ϕ
says that there is a time at which 0 < ha < 1 holds and at that time, the event
c or b can be completed and the event a can not be completed.

M -rectangular formulas are formulas that only use M -rectangular con-
straints from Agds(M). The M -rectangular formula associated to a formula
ϕ is the formula RectM (ϕ) defined inductively as follows:

• RectM (ff) = ff, RectM (tt) = tt, RectM (X) = X,

• RectM (ϕ ∧ ψ) = RectM (ϕ) ∧RectM (ψ),

• RectM (ϕ ∨ ψ) = RectM (ϕ) ∨RectM (ψ),

• RectM (〈a〉ϕ) = 〈a〉RectM (ϕ), RectM ([a]ϕ) = [a]RectM (ϕ),

• RectM (〈g〉ϕ) =
∨

g′∈RectM (g)〈g
′〉RectM (ϕ),

• RectM ([g]ϕ) =
∧

g′∈RectM (g)[g
′]RectM (ϕ),

• RectM (σX.ϕ(X)) = σX.RectM (ϕ(X)) where σ is one of {µ, ν}.

Let g, g1, g2, . . . , gn such that [[g]] =
⋃

i=1..n[[gi]]. One can show that 〈g〉ϕ is
equivalent to

∨
i=1..n〈gi〉ϕ, and [g]ϕ is equivalent to

∧
i=1..n[gi]ϕ; and then one

can show the following result.

Proposition 8 Given a formula ϕ, a (Σ ∪ VΣ)-LTS S, for every M ≥ Mϕ,
s ∈ [[ϕ]]SV al iff s ∈ [[RectM (ϕ)]]SV al.
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Modal operators are monotonic. As usual the Knaster-Tarski theorem allows
to approximate fixpoints by iterative computations as follows:

• s ∈ [[µX.ϕ(X)]]SV al iff s ∈
⋃

λ[[µλX.ϕ(X)]]SV al and s ∈ [[νX.ϕ(X)]]SV al iff
s ∈

⋂
λ[[µλX.ϕ(X)]]SV al where λ is an ordinal and:

– s 6∈ [[µ0X.ϕ(X)]]SV al and s ∈ [[ν0X.ϕ(X)]]SV al

– s ∈ [[σλ+1X.ϕ(X)]]SV al iff s ∈ [[ϕ(X)]]SV al[X/σλX.ϕ(X)] (regeneration

step).

– When β is a limit ordinal, s ∈ [[µβX.ϕ(X)]]SV al iff s ∈
⋃

λ<β [[µλX.ϕ(X)]]SV al

and s ∈ [[νβX.ϕ(X)]]SV al iff s ∈
⋂

λ<β [[µλX.ϕ(X)]]SV al.

Expressiveness and relations with Lν and ERL. The fragment of WTµ with-
out the least fixpoint operator is a fragment of Lν for ERA. The inclusion is a
consequence of that the modal operators [g]ϕ, 〈g〉ϕ, [a]ϕ and 〈a〉ϕ of WTµ are
respectively equivalent to [δ](g → ϕ), 〈δ〉(g ∧ ϕ), [a](ha in ϕ) and 〈a〉(ha in ϕ)
of Lν . As Lν is a fragment of Tµ without the least fixpoint operator, we get
that WTµ is a fragment of Tµ.

ERL is a fragment of C-WTµ. One can check that the proof in [13] for the
inclusion of ERLto WTµworks for C-WTµ. Moreover characteristic formulas
in [13] also belong to C-WTµ .The time-liveliness property requires an ERA to
be able to fire an event e, in all states and in all future time instants (this is an
important property in control theory[4, 5]). The property can be describe with
the C-WTµ formula ϕ := νX.[tt]〈e〉X.

3.2 Model-Checking

The model-checking problem for WTµ is to check whether a given ERA is a
model of a given formula. This section provides a new proof for the EXPTIME-
Complete membership of the model-checking problem of WTµ. Another proof
of this result appeared in [13]. The original idea is to reduce the model-checking
problem of WTµto the model-checking problem of the standard µ-calculus.

First, we present an inductive procedure for checking whether a formula ϕ
is true in a state s of a (Σ ∪ VΣ)-LTS:

• If ϕ is ff then return ”no”

• If ϕ is tt then return ”yes”

• If ϕ is ϕ1 ∨ ϕ2 then check if ϕ1 is true in s or check if ϕ2 is true in s

• If ϕ is ϕ1 ∧ ϕ2 then check if ϕ1 is true in s and check if ϕ2 is true in s

• If ϕ is 〈a〉ϕ1 then check whether ϕ1 is true in some a successor of s or
return ”no” if s does not have an a-successor
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• If ϕ is [a]ϕ1 then check whether ϕ1 is true in every a-successor of s or
return ”yes” if s does not have an a-successor

• If ϕ is 〈g〉ϕ1 then check whether ϕ1 is true in some v-successor of s such
that v ∈ [[g]] or return ”no” if s does not have an v-successor such that
v ∈ [[g]]

• If ϕ is [g]ϕ1 then check whether ϕ1 is true in every v-successor of s such
that v ∈ [[g]] or return ”yes” if s does not have an v-successor such that
v ∈ [[g]]

• If ϕ is µX.ϕ1(X) then check if µλX.ϕ1(X) is true at s for some ordinal λ

• If ϕ is νX.ϕ1(X) then check if νλX.ϕ1(X) is true at s for every ordinal λ

The last two rules follows the Knaster-Tarski fixpoint computation rules. In
the rule for the least fixpoint, one guesses a number for computation steps for
showing that s ∈ [[µX.ϕ1(X)]]. In the rule for the greatest fixpoint operator,
there is no guess and one must ensure that νX.ϕ1(X) is true in s at every
computation step. In the rules for the operators ∨, 〈a〉, 〈g〉 and µX., one
chooses (or guesses) sub formulas, successors or ordinals.

A formula ϕ is true in a state s if some choices can be made in the above
procedure to return ”yes”. If the procedure return ”yes”, it also assigns a set of
true formulas to every state of the LTS meaning that every state of the LTS is
an abstraction of the set of formulas assigned to it. Every step of the procedure
makes a relation between a formula to verify and a next formula. A path in the
procedure shows a trace of that relation. It is worth noticing that, according to
the Knaster-Tarski fixpoint computation method, a trace that starts with a least
fixpoint formula always ends while a trace that starts with a greatest fixpoint
formulas may not. Additionally, traces that do not contains fixpoint formulas
are necessarily finite, as each step reduces the size of the formula. Finite traces
may ends with tt, ff or a formula of one of the forms 〈a〉ϕ1, [a]ϕ1, 〈g〉ϕ1, [g]ϕ1.

For the model-checking of WTµwith respect to ERA, an effective procedure
may work on finite structures. But semantics of ERA are infinite structures. We
use the region representation of semantics and we reduce the model-checking
problem for WTµwith respect to ERA to the model-checking problem of the
standard µ-calculus. For that purpose, we define the abstract semantics 〈[ϕ]〉SV al

for a WTµ formula ϕ over a (Σ∪GdsΣ)-LTS S and a valuation V al : Var → 2S .
The abstract semantics for all the operators but the modal operators indexed
with constraints are obvious:

〈[〈g〉ϕ]〉PV al := {p | ∃p
g

−→ p′ s.t p′ ∈ 〈[ϕ]〉PV al}

〈[[g]ϕ]〉PV al := {p | ∀p
g

−→ p′. p′ ∈ 〈[ϕ]〉PV al}

The abstract semantics of WTµis very close to the semantics of the µ-calculus;
equality tests are performed between labels of transitions and indexes in modal
operators. The two non standard steps of an abstract model-checking procedure
work as follows: if ϕ is 〈g〉ϕ1 then check whether ϕ1 is true in some g-successor
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of s or return ”no” if s does not have a g-successor such that v ∈ [[g]]. If ϕ is
[g]ϕ1 then check whether ϕ1 is true in every g-successor of s or return ”yes” if
s does not have an v-successor such that v ∈ [[g]].

Proposition 9 For any ERA P, any sentence ϕ, for every M ≥ max(Mϕ,MP),

(p, v) ∈ [[ϕ]][[P]] iff (p, [v]M ) ∈ [[RectM (ϕ)]]〈[P]〉M
r ,.

Our proof for Proposition 9 will use Proposition 4 and Proposition 8. It follows
that model-checking algorithms for the µ-calculus [10] can be easily adapted for
the model-checking of WTµ.

Theorem 10 The model-checking problem for WTµ is EXPTIME Complete.

The lower bound comes from that ERL is a fragment of WTµand the model-
checking of ERL is EXPTIME Complete [17]. The EXPTIME membership
(see [12] for more details) is a consequence of the EXPTIME membership of
the model-checking problem of the standard µ-calculus [8] in relation with the
problem of checking the existence of winning strategy in a two player parity
game [20]. The use of regions does not change the complexity.

4 Satisfiability of C-WTµ

The satisfiability problem is to check whether a given formula has a model.
Model for formulas are event-recording automata or more precisely (R+ ∪ Σ)-
LTS that may represent the semantics of event-recording automata. It is worth
noticing that the satisfiability problem is somehow related to the model-checking
problem. Here, the exercise is to guess ERA from formulas.

Consider the WTµ formula ϕ := 〈ha > 1〉[a]ff∧〈ha > 1〉〈a〉tt. The formula ϕ
requires that there are one time instant satisfying ha > 1 at which event a must
occur and one time instant satisfying ha > 1 at which event a never occurs. The
union of the semantics of constraints on the outgoing transitions from the initial
state of a model of ϕ should be strictly contained in the semantics of ha > 1.
For instance the constraint on the transition of a model with a single must have
one of the forms n < ha or m1 < ha < m2 where n > 1 and m2 are new
constants. Procedure for the satisfiability checking problem of WTµ must be
able to introduce constants that do not appears in formulas. Such a procedure (if
it exists) may become very sophisticated for formulas with fixpoints operators.

In this section we consider the satisfiability checking problem of C-WTµ.
C-WTµ is a fragment of WTµ. Formulas of C-WTµ are such that if we look
at a formula as a tree, then the modalities indexed with constraints and with
events must alternate on each path. C-WTµ also requires that in the tree
representation of a modality [a] must not follow a modality 〈g〉.

Definition 11 Formulas ϕ of C-WTµ (WTµ for control) over an alphabet Σ,
a finite set of variables Var and GdsΣ are defined by the following grammar:

ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈g〉ψe | [g]ϕe | νX.ϕ | µX.ϕ
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where X ∈ Var, g ∈ GdsΣ, ϕe is a boolean combination of formula of the forms
〈a〉ϕ or [a]ϕ and ψe is a boolean combination of formulas of the form 〈a〉ϕ.

The formula ϕ just above is not from C-WTµbecause the formula [a]ff appears
in the scope of 〈0 < ha < 1〉. We stress that C-WTµ is an interesting fragment
of WTµ. It allows to characterise ERA up to behavioural relation such as timed
bisimulation and timed simulation. Indeed one can check that characteristic
formulas in [13] conform to the syntax C-WTµ. C-WTµallows to describe basic
requirement for controllers of event-recording automata.

Our method for the satisfiability checking problem use tableaux-based meth-
ods like in [18, 14, 17]. W.l.o.g we consider rectangular formulas.

4.1 Tableau, Trace and Pre-model

Tableaux are built using the system of tableau rules. A rule is of the form
T1 T2 ...Tn

T where T and Ti for every i = 1..n are sequent made of a set of formulas
(satisfiability objectives) and a region (timing context). The tuples over the lines
of a rules (Ti for every i = 1..n) are the premises and the tuple T below the line
of a rule is the conclusion. A rule as above is interpreted as follows: verifying
whether the formulas in the conclusion are satisfiable from the timing context
is reduced to checking if the formulas in all (some) hypothesis are satisfiable in
their corresponding timing context.

Definition 12 Let a ϕ be a C-WTµformula and let Bdϕ be its binding func-
tion. We define the system of tableau rules SRϕ

c parametrised by ϕ, its binding
function and the set of regions Reg(M):

{ff}; ∅

{ϕ,Γ}; ∅
(ff

r
)

{ϕ1,Γ}; r {ϕ2,Γ}; r

{ϕ1 ∨ ϕ2,Γ}; r
(∨)

{ϕ1, ϕ2,Γ}; r

{ϕ1 ∧ ϕ2,Γ}; r
(∧)

{ff}; ∅

{〈g〉ϕ,Γ}; r s.t [[g]] ∩ r↑= ∅
(fte)

{Γ}; r

{[g]ϕ,Γ}; r s.t [[g]] ∩ r↑= ∅
(wtt)

{ϕ(X),Γ}; r

{νX.ϕ(X),Γ}; r
(ν)

{ϕ(X),Γ}; r

{X,Γ}; r
(reg) Bdϕ(X) = σX.ϕ(X)

{ϕ(X),Γ}; r

{µX.ϕ(X),Γ}; r
(µ)

{ϕ | (g)ϕ ∈ Γri
}; ri ∀ri ∈ r↑

Γ; r
(delay)

ϕ ∪ {ψ | [a]ψ ∈ Γ}; r[ha := 0] for each 〈a〉ϕ ∈ Γ

Γ; r
(mod)

where Γri
is the set of formulas in Γ of the of form 〈g〉ϕ or [g]ϕ s.t ri ⊆ [[g]].
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The system of rules above has ten rules; almost as many rules as in the model
checking procedure in the previous subsection. Formulas can not be satisfied
from an empty timing context and then the rule ffr replaces formulas in the
conclusion by the formula ff. The rule fte is applied when a formula in the
conclusion (〈g〉ϕ) requires that the future of the timing context in conclusion
satisfies a constraint whereas it is not possible. The rule wtt discards formulas
that start with universal modality indexed with a constraint which can not be
satisfied by the future of the timing context in the conclusion. When applying
the rule (delay) we require that every formula in the conclusion should be one
of the forms ff, tt, 〈g〉ψ or [g]ψ with g ∩ r ↑6= ∅; in this case the satisfiability
checking of the conclusion is reduced to the satisfiability checking of formulas
behind the modal operators in the appropriate timing context. When applying
the rule (mod) we require the form of every formula in conclusions to be one of
ff, tt, 〈a〉ψ or [a]ψ; as we are trying to build a model, a reduction with the rule
(mod) is done as soon as conclusions contain a formula of the form 〈a〉ψ.

Definition 13 A tableau for a formula ϕ from a region r0 is a tree T ϕ =
〈N,E,L〉 where N is the set of nodes, E is the set of edges, and L is a labeling
function such that:

1. The root n0 of T ϕ is labeled by {ϕ}; r0

2. The sons of any node n are created and labeled according to the rules of
systems SRϕ. It is required the rules (mod) and (delay) are applied only
when no other rule is applicable.

Remark that a conclusion in a tableau never contains at the same time a formula
starting with a modality indexed with a guard and a formula starting with a
modality indexed with an event. The formula part of timed sequents on which
no rule is applicable never contain formulas of the forms 〈a〉ψ, 〈g〉ψ and [g]ψ.
Given a node n of a tableau with L(n) = Γ; r, L1(n) = Γ and L2(n) = r denotes
respectively the formula and the timing part of L(n). A L(n) is satisfiable iff
every formula ϕ in L1(n) is satisfiable from the timing context L2(n). The
construction of a tableau for a formula can be seen as a procedure for checking,
for every node n whether every formula ϕ ∈ L1(n) is satisfiable from L2(n).
This procedure is inductive; therefore there are links between formulas in the
conclusion and formulas in premises. How we get a path in the (abstract)
model-checking procedure is very similar to how we get a path in the tableau.
But paths of the (abstract) model-checking procedure contains links between
formulas while paths in tableaux do not. This is because formula part of sequents
are sets of formulas.

Definition 14 Given a path π of T ϕ = 〈N,E,L〉, a trace on π will be a func-
tion Tr that assigns a tuple made of a formula and a region to each node in
some initial segment of π, according to the rules applied for the construction
of π. Tr1 and Tr2 denotes the formula part and the timing part of Tr(n). Tr
satisfies the following conditions:

11



1. If Tr(n) is defined then Tr1(n) ∈ L1(n) and Tr1(n) = L1(n).

2. If the rule applied at the node m is not directed (ordered) by Tr(m) then
the son n ∈ π of m is such that Tr(m) = Tr(n).

3. If the rule applied at the node m differs from (mod), then the tuple Tr(n)
of the son n ∈ π of m is one of the results of the application.

4. If the rule (delay) is applied at the node m and the son n ∈ π of m is
labeled by {ϕ | (g)ϕ ∈ Γri

}; ri then:

• Tr(n) is equal to ϕ; ri if Tr(m) = (g)ϕ; r

• Otherwise Tr(n) is undefined.

5. If the rule (mod) is applied at m and the son n ∈ π of m is labeled by
ϕ ∪ {ψ | [a]ϕ ∈ Γ}; r[ha := 0] for some 〈a〉ϕ ∈ Γ then:

• Tr(n) = ϕ; r[ha := 0] if Tr(m) = 〈a〉ϕ; r

• Tr(n) = ψ; r[ha := 0] if Tr(m) = [a]ψ; r

• Otherwise Tr(n) is undefined and Tr(m) is the last element of the
trace.

The notion of traces in paths of tableaux links formulas in premises with
formulas in conclusion. By this way, we are able to handle computational steps
for fixpoint formulas. We recall that in the rules above computational steps are
given by the rules (reg) and (σ).

A variable X is regenerated on a trace Tr of some path if and only if for
some m and its son n on the path Tr1(m) = X and Tr1(n) = ψ(X) with
Bdϕ(X) = σX.ψ(X). A µ-trace is a infinite trace on which the oldest variable
regenerated infinitely often is a µ-variable; or a maximal finite trace, ending
with a tuple the formula part of which contains ff. A pre-model Prem is a part
of a tableau T ϕ satisfying the four conditions: the root of T ϕ belongs to Prem;
if a disjunctive node belongs to Prem, then only one of its son belongs to Prem;
for all other kinds of nodes, if a node belongs to Prem then all its successors
too; there is no path with a µ-trace in Prem.

Formulas part of sequents are set of formulas and we need to count com-
putational steps for every fixpoint formulas in sequents. A signature sig =
(α1, α2, . . . , αn) is a sequence of ordinals value of which depends on a state. We
distinguish µ-signature from ν-signature that we simply call signature when it
is clear from the context.

Let S = 〈S,Σ ∪ VΣ, s
0,∆S〉 be a (Σ ∪ VΣ)-LTS. Let ψ be a sentence. If

s ∈ [[ExpBdϕ
(ψ)]]S then, ψ has the µ-signature µsig(ψ, s) = (α1, . . . αdµ) in s if

µsig(s, ψ) is the least (in lexicographical order) sequence of ordinals such that
s ∈ [[ExpBd′

ϕ
(ψ)]]S where Bd′ϕ is obtained from the binding function Bdϕ by

changing definitions of Xi (for i = 1, . . . , dµ) from Bdϕ(Xi) = µXi.ϕi(Xi) to
Bd′ϕ(Xi) = µαiXi.ϕi(Xi).

If s 6∈ [[ExpBdϕ
(ψ)]]S then, ψ has the ν-signature νsig(ψ, s) = (α1, . . . αdν ) in
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s if νsig(s, ψ) is the least (in lexicographical order) sequence of ordinals such
that s 6∈ [[ExpBd′

ϕ
(ψ)]]S where Bd′ϕ is obtained from the binding function Bdϕ

by changing definitions of Yi (for i = 1, . . . , dν) from Bdϕ(Yi) = νYi.ϕi(Yi) to
Bd′ϕ(Yi) = ναiYi.ϕi(Yi).

The proof of Lemma 15 is standard from the proof a similar Lemma in [14].

Lemma 15 Let µsig(ϕ, s) the signature of ϕ at s, it is true that:

• µsig(ϕ1 ∧ ϕ2, s) = max{µsig(ϕ1, s),
µ sig(ϕ2, s)}

• µsig(ϕ1 ∨ ϕ2, s) =µ sig(ϕ1, s) or µsig(ϕ1 ∨ ϕ2, s) =µ sig(ϕ2, s)

• µsig(〈a〉ϕ, s) =µ sig(ϕ, s′) for some s′ such that s
a

−→ s′

• µsig([a]ϕ, s) = max{µsig(ϕ, s′) for all s’ such that s
a

−→ s′}

• µsig(〈g〉ϕ, s) =µ sig(ϕ, s′) some s′ such that s
g

−→ s′

• µsig([g]ϕ, s) = max{µsig(ϕ, s′) for all s′ such that s
g

−→ s′}

• If Xi is the i − th variable of Bdϕ and Bdϕ(Xi) = µXiϕ(Xi), then the
prefix of length i− 1 of µsig(µXi.ϕ(Xi), s) and µsig(ϕ(X), s) are equal

• µsig(νX.ϕ(X), s) =µ sig(ϕ(X), s) where Bdϕ(X) = νX.ϕ(X)

• If Bdϕ(Y ) = µY.ϕ(Y ), then µsig(Y, s) >µ sig(ϕ(Y ), s)

• If Bdϕ(Y ) = νY.ϕ(Y ), then µsig(Y, s) =µ sig(ϕ(Y ), s)

Proof

Considering the last cases, we suppose that S, s |= ExpBdϕ
(Xi) with Bdϕ(Xi) =

µXi.ψi(Xi). Xj occurs in ψi(Xi) implies that Xi ≤ϕ Xj and Xj is free ψi(Xi).
Let µsig(Xi, s) = (α1, α2, . . . , αn) and Bd′ obtained from Bdϕ by changing
definitions of Xi (for i = 1, . . . , dµ) from Bdϕ(Xi) = µXi.ψi(Xi) to Bd′ϕ(Xi) =
µαiXi.ψi(Xi).

It follows from the definition of the signature that S, s |= µαiXi.ψ(Xi).
Since αi should be a finite ordinal, it follows that S, s |= ψ(µαi−1X.ψ(Xi)),
which means that the signature of ψ(µαi−1Xi.ψ(Xi)) at s is (α1, . . . , αi−1, αi −
1, α′

i+1, . . . , α
′
dµ) and is lower than sig(Wi, s). The difference occurs at the po-

sition i.
Observe that Lemma 15 translates to ν-signature after interchanging µ with

ν, 〈〉 with [], ∨ with ∧.

4.2 Satisfiability Results

Now we will sketch a proof for the following theorem.

Theorem 16 There is an EXPTIME Complete decision procedure in the size
of the formula that checks if a formula ϕ is satisfiable. The construction of a
witness model is effective.
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We need some definition for the construction of witness model. From the defini-
tion of the tableau system of rules, applying a rule different from (mod), (delay)
and (∨) to a node of a tableau generates a unique successor. In a pre-model
we choose only one son of a disjunctive node and all the sons of a modal or a
delay node. It follows that in a symbolic pre-model, the nodes with more that
one successor are modal or delay nodes. Given a node n of Prem we denote
desα(n) the closest descendant of n or n itself in Prem that is either a delay
node, a modal node, or a leaf. Observe that, if n is the root of Prem or n is a
successor of a modal node of Prem, then desα(n) is a delay node or a leaf; if n
is a successor of a delay node of Prem, then desα(n) is a modal node.
Given a pre-model Prem for a formula ϕ, the model based on Prem is the ERA
P = 〈P,Σ, p0,∆P〉 such that: p0 = desα(n0) where n0 is the root of Prem; P
consists of all the leaves and delay nodes of Prem; (p, g, a, desα(n′)) ∈ ∆P if
there is in Prem a successor n of p obtained by reducing a region ri ⊆ g with
g ∈ Agds(Mϕ) and a successor n′ of desα(n) obtained by reducing an action
a. In Consequence, the maximal constant in the model constructed from a pre-
model and the maximal constant in the formula are equal; constraints in the
model are rectangular.

A detailed proof for Proposition 17 can be found in Appendix.

Proposition 17 A formula ϕ is satisfiable iff T ϕ contains a pre-model.

The Proof of Proposition 17 is decomposed into the proof of Lemma 18 for
the ”if” part and the proof of Lemma 19 for the ”only if” part.

Lemma 18 Given a formula ϕ, ϕ is satisfiable if there is a pre-model in T ϕ

Proof

If ϕ is satisfiable then there exists an ERA model of ϕ, and by definition
(p0, v0) ∈ [[ϕ]][[P]]. Without the loss of generality we can assume that ϕ is
rectangular. By Proposition 9, for every M ≥ max(MP ,Mϕ), we have that

(p0, [v0]M ) ∈ 〈[ϕ]〉P
M
reg .

Consider T ϕ the tableau for ϕ; then we choose the nodes of T ϕ that we
include in the pre-model Prem accordingly to a marking relation M : N →
2P×Reg(M)S. It will be defined in such a way that (1): (p, r) ∈ M(n) if and

only if (p, r) ∈ 〈[ϕ]〉P
M
reg for every ϕ ∈ L1(n). First, we put (p0, [v0]M ) in M(n0)

with n0 being the root of Tϕ. This is consistent as P is a model of ϕ and then

(p0, [v0]M ) ∈ 〈[ϕ]〉〈[P]〉M
reg . Let us denote by sn a state (p, r) of 〈[P]〉Mreg assigned to

a node n of the tableau.
Then, if we assume that the node n has been included in the pre-model Prem

with sn ∈ M(n), we choose the next node to include in the tableau using the
following rules:

• The only son n′ of some node n, marked with sn, on which an unary rule
(ffr, fte, wtt,∧, reg, µ, or ν) was applied is included in Prem and we set
sn ∈M(n′).
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• If n is a disjunctive node, then sn is put into the marking of the son for
which it has the least µ-signature. By Lemma 15, such a son exists.

• If n is a delay node, then we add all the sons of n in Prem. Each son n′

of n is the result of the reduction of a set of formulas of the form 〈g〉ψ or
[g]ψ with respect to a region ri. Then, we set sn′ ∈ M(n′) where sn′ is

the unique state such that sn
g

−→ sn′ .

• If n is a modal node, then we add all the sons of n in Prem. Each son n′ of
n is the result of the reduction of a formula of the form 〈a〉ψ. Then, we set

sn′ ∈M(n′) where sn′ is a state such that sn
a

−→ sn′ and µsig(〈a〉ϕ, sn) ≥µ

sig(ϕ, sn′). By Lemma 15, such a son exists.

By Property (1) above, it is obvious that every leaf of Prem does not contain ff.
It remains to show that the tree we have constructed does not have an infinite
with a µ-trace.

Now, assume that there is an infinite path π that has a µ-trace on it. Then,
there is an oldest µ-variable Xi infinitely often regenerated along the trace.
According to Lemma 15, from the point when no variable older that Xi is
regenerated µ-signatures of formulas on that trace never increase on position
1, . . . , i − 1. Then maximal signature of formulas on the trace considered up
to position i never increases and decreases every time Xi is regenerated. In
the other words, µ-signature decreases infinitely often in position i. This is a
contradiction because sequences of ordinals of bounded length are well-ordered.

Lemma 19 Given a formula ϕ, if there is a pre-model in T ϕ, then ϕ is satis-
fiable.

Proof

The proof is dual to the proof of Lemma 18. Assume that ϕ has a symbolic
pre-model Prem and ϕ is not satisfiable. Let M = Mϕ. Consider P, the model
associated to Prem. From the remark above, MP = Mϕ. If (p0, v) 6∈ [[ϕ]][[P]],

then by Proposition 9 we get that, (p0, [v]M ) 6∈ 〈[ϕ]〉〈[P]〉M
reg . Now, we show that

Prem contains a path π with a µ-trace Tr = {ϕm; rm}m∈π. The path π and the
trace Tr are built in the following way:

• π starts at m0 and ϕm0
= ϕ.

• Assume that, we built Tr up to the tuple ϕm; rm with, ϕm ∈ L1(m)

and rm ∈ L2(m), such that (desα(m), rm) 6∈ 〈[Expbdϕ
(ϕm)]〉〈[P]〉M

reg . The
formula of the next tuple (the timing part is obvious) is selected as follows:

1. If m is not a delay nor a modal node, then the only son m′ of m is
such that

– L2(m) = L2(m
′) and there are equal to rm.

– ϕm′ = ϕm if ϕm was not reduced by the rule.
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– ϕm′ = ϕ1 with ϕm = ϕ1 ∧ ϕ2, if νsig(ϕm, (des
α(m), r)) ≥ν

sig(ϕ1, (des
α(m), r)); otherwise ϕm′ = ϕ2.

– ϕm′ is the formula that occurs in L1(m
′) if ϕm = ϕ1 ∨ ϕ2. We

remark that, the choice in this case is directed by Prem.

– In the other sub cases i.e (ff, fte, wtt, µ, ν or reg), we just take
the resulting formula as the one for the next tuple of the trace.

2. If m is a delay node and ϕm is of the form 〈g〉ψ or [g]ψ and there
is a son m′ of m the formula part of which contains ψ, then we take
ϕm′ = ψ. The region part of m′ is a region r′ ∈ rm ↑. Of course,
desα(m′) is a modal node.

3. If m is a modal node, it is necessarily the closest descendant of a
successor n′ (with respect to some region rm) of some delay node n;
then,

– if ϕm = 〈a〉ψ, there is a son m′ of m the formula part of which
was obtained by reducing ϕm, and the timing part of which is
rm[ha := 0]. We take ϕm′ = ψ.

– if ϕm = [a]ψ, then because (desα(m), rm) 6∈ 〈[ϕm]〉〈[P]〉M
reg , there

exists a state p′, g such that desα
n

g,a
−→ p′ is in P and

νsig([a]ψ, (desα(n), rm)) =ν sig(ψ, (p′, rm[ha := 0]) with rm ∈ g
and g ∈ Agds(Mϕ). We take ϕm′ = ψ and rm′ = rm[ha := 0]

We remark that Tr is a valid trace of Prem and we distinguish two cases:

1. The trace is finite;

• If the trace ends with the formula ff, then we get a contradiction with
that P derived from Prem; Indeed a trace of Prem never ends with
ff.

• If the trace ends at the node m with the formula ϕm = tt, then m is a

leaf or delay node and obviously, (desα(m), rm) ∈ 〈[tt]〉〈[P]〉M
reg , leading

to a contradiction with the hypothesis.

• If the trace ends with a formula of form [g]ϕ, then the region at node
m can never reached g meaning that [g]ϕ is satisfied at m. We also
get a contradiction with our hypothesis.

• Assume that the trace ends at the node m with a formula of the
form [a]ϕ. There is a unique ancestor n of node m which is a delay
node such that no delay node occurs between n and m. The selected
formula at the node n that occurs in the trace is of the form (g)ψ
and ψ is a boolean combination of formulas containing [a]ϕ.
Let p be the state in P that corresponds to the node n. Such a state
exits because n is a delay node. Let r be the region at the node m
and r′ be region at the node n. Because m is a son of n, we have that

r ∈ r′ ↑. Additionally, by hypothesis, (p, r′) 6∈ 〈[(g)ψ]〉〈[P]〉M
reg . Because

the trace is maximal, there is no transition from p labelled with (g, a)
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for the unique constraint g ∈ Agds(M) such that r ⊆ g. It follows

that in 〈[P]〉Mreg there a unique outgoing transition (p, r′)
g

−→ (p, r) and
there is no outgoing transition from (p, r) labelled with a, involving

that (p, r) ∈ 〈[[a]ϕ]〉〈[P]〉M
reg . This leads to a contradiction with that

in the trace νsig((g)ψ, (p, r′)) =ν sig([a]ϕ, (p, r)). Indeed, remember
that the trace has been built by choosing at every node, the formula
and the configuration with the least ν-signature.

2. If the trace is infinite, then because the ν-signature decreases along the
trace and the formula is of finite length, there is necessarily a µ-variable
X that is infinitely often regenerated and no older variable than X is
infinitely often regenerated. This is a contradiction with that Prem does
not contain such a trace.

Let us discuss the complexity of the satisfiability problem for C-WTµ. The
satisfiability problem for C-WTµ is EXPTIME Complete in the size of the
formula, in the size of the alphabet, and in the size of the encoding of the
maximal constant appearing in constraints of the formula. The EXPTIME
hardness follows from ERL is included in C-WTµ and the satisfiability problem
of ERL is EXPTIME hard [17]. Arguments for the EXPTIME membership
are the same as arguments for the EXPTIME membership for the satisfiability
procedure for ERL [17] and the µ-calculus [18, 14]. Indeed, One can construct
is a finite Rabin tree-automaton over a single alphabet, with n = 0(2|ϕ| ×
|Reg(Mϕ)|) states andm = |ϕ| pairs2, which recognises pre-models for a formula
ϕ. We recall that |Reg(Mϕ)| ∈ O(2HΣ × 2CMϕ ) where CMϕ

is the length of the
binary encoding of Mϕ. It have been shown [7] that for a Rabin tree-automaton
over a single alphabet that have an accepting run, there is a graph with states of
the automaton as nodes which unwinds to an accepting run of the automaton.
The test of the emptiness of the graph obtained from the pre-model and the
Rabin-tree automaton is in O((mn)3m). In consequence we get the EXPTIME
membership.

4.3 On the Satisfiability of WTµ

The procedure above can not work for the satisfiability problems of WTµ. This
is because models may need constants that are strictly greater than the maximal
constant occurring in formulas. We can also consider a situation when we impose
a maximal constant with which the clocks can be compared in the models. Such
a constant can be greater than the maximal constant occurring in the formula.
Under such an assumption, the satisfiability problems (non deterministic and
deterministic model) for WTµ are decidable and the construction of witness
model is also effective.

2The construction of pairs follows the relation order between fixpoint variables in formulas.
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5 Conclusion and Perspectives

We presented WTµ as a timed µ-calculus for Event-Recording Automata. We
presented an EXPTIME Complete decidable fragment of WTµ called C-WTµ.
The decision procedure for the satisfiability problem of C-WTµ does not need
limit assumption on constants the models and it constructs witness models.
C-WTµ is more expressive than Event-Recording Logic and it allows to charac-
terise event-recording automata up to timed simulation and timed bisimulation
relations whereas ERL does not. The complexity for the satisfiability checking
problems for C-WTµ and ERL are the same. Relation between modalities of
C-WTµ and Lν , and results in [5] let us believe the existence of an interesting
decidable fragment of Lν(with timed automata) without limit assumption on
constants of models, but with a bound assumption on the clocks in the models.
Work in progress apply the decidability result for the satisfiability checking prob-
lem of C-WTµ to the synthesis of event-recording automata based controller.
Future works include the satisfiability checking problem of full WTµ.
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