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Abstract. Measuring inconsistency degrees of inconsistent knowledge bases is
an important problem as it provides context information for facilitating inconsis-
tency handling. Many methods have been proposed to solve this problem and a
main class of them is based on some kind of paraconsistent semantics. In this
paper, we consider the computational aspects of inconsistency degrees of propo-
sitional knowledge bases under 4-valued semantics. We first analyze its compu-
tational complexity. As it turns out that computing the exact inconsistency degree
is intractable, we then propose an anytime algorithm that provides tractable ap-
proximation of the inconsistency degree from above and below. We show that our
algorithm satisfies some desirable properties and give experimental results of our
implementation of the algorithm.

1 Introduction

Inconsistency handling is one of the central problems in the field of knowledge rep-
resentation. Recently, there is an increasing interest in quantifying inconsistency in an
inconsistent knowledge base. This is because it is not fine-grained enough to simply
say that two inconsistent knowledge bases contain the same amount of inconsistency.
Indeed, it has been shown that analyzing inconsistency is helpful to decide how to act
on inconsistency [1], i.e. whether to ignore it or to resolve it. Furthermore, measuring
inconsistency in a knowledge base can provide some context information which can
be used to resolve inconsistency [2–4], and proves useful in different scenarios such as
Software Engineering [5].

Different approaches to measuring inconsistency are based on different views of
atomic inconsistency [3]. Syntactic ones put atomicity to formulae, such as taking max-
imal consistent subsets of formulae [6] or minimal inconsistent sets [7]. Semantic ones
put atomicity to propositional letters, such as considering the conflicting propositional
letters based on some kind of paraconsistent model [8, 2, 3, 9, 10]. In this paper, we fo-
cus on the computational aspect of a 4-valued semantics based inconsistency degree
which is among the latter view.
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The main contributions of this paper lie in Section 4, 5, and 6 with new proposed
interesting theorems (their proofs are omitted due to space limitation). In Section 4, we
show that computing exact inconsistency degrees is a computational problem of high
complexity (Θp

2-complete). In Section 5, we present an anytime algorithm to provide
tractable approximations of the inconsistency degree from above and below, by com-
puting the lower and upper bounds defined in this paper. We show that our algorithm
satisfies some desirable properties. Section 6 will give experimental explanations of
the algorithm. To the best of our knowledge, this is the first work that (1) analyzes
the complexity issues of computing the inconsistency degree and that (2) attempts to
alleviate the intractability of computing the exact inconsistency degree for full propo-
sitional logic by approximating it from above and from below in an anytime manner.
Our results show that the computation of approximating inconsistency degree can be
done tractable; and can be performed to full propositional knowledge bases instead of
restricting to CNF to design a tractable paraconsistent reasoning [11].

2 Related Work

Most effort has been directed at theoretical accounts of inconsistency measures, i.e.
its definitions, properties, and possible applications. But few papers focus on the com-
putational aspect of inconsistency degree. Among the syntactic approaches, [6] shows
the possibility to compute inconsistency degrees using the simplex method. Among the
semantics methods, [12] and [10] provide algorithms for computing inconsistency de-
grees that can be implemented. The algorithm in [10] only deals with KBs consisting of
first-order formulas in the form Q1x1, ..., Qnxn.

∧
i(Pi(t1, ..., tmi)∧¬Pi(t1, ..., tmi)),

where Q1, ..., Qn are universal or existential quantifiers. In [12], an algorithm is pro-
posed for full FOL logic. Although it can be applied to measure inconsistency in propo-
sitional logic, its computational complexity is too high to be used in in general cases.
The anytime algorithm proposed in this paper for computing approximating inconsis-
tency degrees can avoid these shortcomings.

Although our algorithm is inspired by the algorithm in [12], It is significantly dif-
ferent from the existing one. Firstly, ours is motivated by the theoretical results of the
tractability of S-4 entailment (Theorems 3,4,5). In contrast, the algorithm in [12] is
based on a reduction to hard SAT instances, which makes it inherently intractable. Sec-
ondly, ours is designed towards obtaining an approximation with guaranteed lower and
upper bounds that gradually converge to the exact solution. Thirdly, we implement a
new strategy to achieve polynomial time approximations. We present the preliminary
evaluation results of the implementation of the algorithm in Section 6. Our evaluation
results show our algorithm outperforms that given in [12] and the approximating values
are reasonable to replace the exact inconsistency degree.

3 Preliminaries

Let P be a countable set of propositional letters. We concentrate on the classical propo-
sitional language formed by the usual Boolean connectives ∧ (conjunction), ∨ (disjunc-
tion),→ (implication), and ¬ (negation). A propositional knowledge base K consists of



a finite set of formulae over that language. We use Var(K) for the set of propositional
letters used in K and |S| for the cardinality of S for any set S.

Next we give a brief introduction on Belnap’s four-valued (4-valued) semantics.
Compared to two truth values used by classical semantics, the set of truth values for
four-valued semantics [13, 14] contains four elements: true, false, unknown and both,
written by t, f, N, B, respectively. The truth value B stands for contradictory infor-
mation, hence four-valued logic leads itself to dealing with inconsistencies. The four
truth values together with the ordering � defined below form a lattice, denoted by
FOUR = ({t, f, B, N},�): f � N � t, f � B � t, N 6� B,B 6� N . The four-
valued semantics of connectives ∨,∧ are defined according to the upper and lower
bounds of two elements based on the ordering �, respectively, and the operator ¬ is
defined as ¬t = f,¬f = t,¬B = B, and ¬N = N . The designated set of FOUR
is {t, B}. So a four-valued interpretation I is a 4-model of a knowledge base K if and
only if for each formula φ ∈ K, φI ∈ {t, B}. A knowledge base which has a 4-model is
called 4-valued satisfiable. A knowledge base K 4-valued entails a formula ϕ, written
K |=4 ϕ, if and only if each 4-model of K is a 4-model of ϕ. We write K for a knowl-
edge base, andM4(K) for the set of 4-models of K throughout this paper. Four-valued
semantics provides a novel way to define inconsistentcy measurements [1].

Let I be a four-valued model of K. The inconsistency degree of K with respect
to I, denoted IncI(K), is a value in [0, 1] defined as IncI(K) = |Conflict(I,K)|

|Var(K)| , where
Conflict(I,K) = {p | p ∈ Var(K), pI = B}. It measures to what extent a given
knowledge base K contains inconsistencies with respect to its 4-model I. Preferred
models defined below are used to define inconsistency degrees and especially useful to
explain our approximating algorithm later.

Definition 1 (Preferred Models) The set of preferred models, written PreferModel(K),
is defined as PreferModel(K) = {I | ∀I′ ∈M4(K), IncI(K) ≤ IncI′(K)}.

Definition 2 (Inconsistency Degree) The inconsistency degree of K, denoted by ID(K),
is defined as the value IncI(K), where I ∈ PreferModels(K).

Example 1 Let K = {p,¬p ∨ q,¬q, r}. Consider two 4-valued models I1 and I2 of
K with pI1 = t, qI1 = B, rI1 = t; and pI2 = B, qI2 = B, rI2 = t. We have
IncI1(K) = 1

3 , while IncI2(K) = 2
3 . Moreover, I1 is a preferred model of K because

there is no other 4-model I′ of K such that IncI′(K) < IncI1(K). Then ID(K) = 1
3 .

One way to compute inconsistency degree is to recast the algorithm proposed in
[12] to propositional knowledge bases, where S-4 semantics defined as follows is used:

Definition 3 (S-4 Model) For any given set S ⊆ Var(K), an interpretation I is called
an S-4 model of K if and only if I ∈M4(K) and satisfies the following condition:

I(p) ∈
{
{B} if p ∈ Var(K) \ S,
{N, t, f} if p ∈ S.

For a given S ⊆ Var(K), the knowledge base K is called S-4 unsatisfiable iff. it has
no S-4 model. Let ϕ be a formula and Var({ϕ}) ⊆ Var(K). ϕ is S-4 entailed by K,
written K |=4

S ϕ, iff. each S-4 model of K is an S-4 model of ϕ.



Theorem 1 ([12]) For any KB K, we have ID(K) = 1 − A/|Var(K)|, where A =
max{|S| : S ⊆ Var(K), K is S-4 satisfiable}.

Theorem 1 shows that the computation of ID(K) can be reduced to the problem of com-
puting the maximal cardinality of subsets S of Var(K) such that K is S-4 satisfiable.

4 Computational Complexities

Apart from any particular algorithm, let us study the computational complexity of the
inconsistency degree to see how hard the problem itself is. First we define following
computation problems related inconsistency degrees:

– ID≤d (resp. ID<d, ID≥d,ID>d): Given a propositional knowledge base K and a
number d ∈ [0, 1], is ID(K) ≤ d (resp. ID(K) < d, ID(K) ≥ d, ID(K) > d)?

– EXACT-ID: Given a propositional knowledge base K and a number d ∈ [0, 1], is
ID(K) = d?

– ID: Given a propositional knowledge base K, what is the value of ID(K)?

We have the complexities of these problems indicated by following theorem.

Theorem 2 ID≤d and ID<d are NP-complete; ID≥d and ID>d are coNP-complete;
EXACT-ID is DP-complete; ID is FPNP[log n]-complete1.

5 Anytime Algorithm

According to results shown in the previous section, computing inconsistency degrees
is usually intractable. In this section, we propose an anytime algorithm to approximate
the exact inconsistency degree. Our results show that in P-time we can get an interval
containing the accurate value of ID(K). We first clarify some definitions which will be
used to explain our algorithm.

5.1 Formal Definitions

Definition 4 (Bounding Values) A real number x (resp. y) is a lower (resp. an up-
per) bounding value of the inconsistency degree of K, if and only if x ≤ ID(K)
(resp. ID(K) ≤ y).

Intuitively, a pair of lower and upper bounding values characterizes an interval contain-
ing the exact inconsistency degree of a knowledge base. For simplicity, lower (resp. an
upper) bounding value is called lower (resp. upper) bound.

1 A language L is in the class DP[15] iff there are two languages L1 ∈ NP and L2 ∈ coNP
such that L = L1 ∩ L2. Complexity PNP[log n] is defined to be the class of all languages
decided by a polynomial-time oracle machine which on input x asks a total ofO(log |x|) SAT
(or any other problem in NP) queries. FPNP[log n] is the corresponding class of functions.



Definition 5 (Bounding Models) A four-valued interpretation I′ is a lower (resp. an
upper) bounding model of K if and only if for any preferred model I of K, Condition 1
holds (resp. Condition 2 holds and I′ ∈M4(K)):

Condition 1: |Conflict(I′,K)| ≤ |Conflict(I,K)|
Condition 2: |Conflict(I′,K)| ≥ |Conflict(I,K)|

Intuitively, the lower and upper bounding models of K are approximations of preferred
models from below and above. We call two-valued interpretations J trivial lower bound-
ing models since Conflict(J,K) = 0 and ID(K) = 0 always holds. We are only in-
terested in nontrivial bounding models for inconsistent knowledge bases, which can
produce a nonzero lower bound of ID(K).

Example 2 (Example 1 continued) K has a lower bounding model I3 and an upper
bounding model I4 defined as: pI3 = t, qI3 = t, rI3 = t; and pI4 = B, qI4 =
B, rI4 = t.

Next proposition gives a connection between lower (resp. upper) bounds and lower
(resp. upper) bounding models.

Proposition 1 If I is a lower (an upper) bounding model of K, IncI(K) is a lower (an
upper) bounding value of ID(K).

By borrowing the idea of guidelines for a theory of approximating reasoning [16],
we require that an anytime approximating algorithm for computing inconsistency de-
grees should be able to produce two sequences r1, ..., rm and r1, ..., rk:

r1 ≤ ... ≤ rm ≤ ID(K) ≤ rk ≤ ... ≤ r1, (1)

such that these two sequences have the following properties:

– The length of each sequence is polynomial w.r.t |K|;
– Computing r1 and r1 are both tractable. Generally, computing rj and rj becomes

exponentially harder as j increases, but it is not harder than computing ID(K).
– Since computing ri and rj could become intractable as i and j increase, we need to

find functions f(|K|) and g(|K|) such that computing ri and rj both stay tractable
as long as i ≤ f(|K|) and j ≤ g(|K|).

– each ri (rj) corresponds to a lower (an upper) bounding model, which indicates the
sense of the two sequences.

In the rest, we will describe an anytime algorithm which can produce such two se-
quences.

5.2 Tractable Approximations from Above and Below

We know that S-4 entailment is generally intractable, which makes algorithms based
on S-4 semantics to compute inconsistency degrees time-consuming. In this section,
we will distinguish a tractable case of S-4 entailment (proportional to the size of input
knowledge base), by which we can compute approximating inconsistency degrees.



Lemma 1 Let S = {p1, ..., pk} be a subset of V ar(K) and ϕ be a formula such that
Var(ϕ) ⊆ Var(K). K |=4

S ϕ if and only if

K ∧
∧

q∈Var(K)\S

(q ∧ ¬q) |=4 ϕ ∨ (c1 ∨ ... ∨ ck)

holds for any combination {c1, ..., ck}, where each ci is either pi or ¬pi(1 ≤ i ≤ k).

This lemma shows a way to reduce the S-4 entailment to the 4-entailment. Specially
note that if ϕ is in CNF (conjunctive normal formal), the righthand of the reduced 4-
entailment maintains CNF form by a little bit of rewriting, as follows: Suppose ϕ =
C1 ∧ ...∧Cn. Then ϕ∨ (c1 ∨ ...∨ ck) = (C1 ∨ c1 ∨ ...∨ ck)∧ ...∧ (Cn ∨ c1 ∨ ...∨ ck)
which is still in CNF and its size is linear to that of ϕ ∨ (c1 ∨ ... ∨ ck).

Lemma 2 ([17]) For K in any form and ϕ in CNF, there exists an algorithm for deciding
if K |=4 ϕ in O(|K| · |ϕ|) time.

By Lemma 1 and 2, we have the following theorem:

Theorem 3 (Complexity) There exists an algorithm for deciding if K |=4
S ϕ and de-

ciding if K is S-4 satisfiable inO(|K||ϕ||S|·2|S|) andO(|K||S|·2|S|) time, respectively.

Theorem 3 shows that S-4 entailment and S-4 satisfiability can both be decided in
polynomial time w.r.t the size of K, exponential w.r.t that of S, though. So they can be
justified in P-time if |S| is limited by a logarithmic function of |K|.

Next we study how to use Theorem 3 to tractably compute upper and lower bound-
ing values of inconsistency degrees.

Lemma 3 Given two sets S and S′ satisfying S ⊆ S′ ⊆ P , if a theory K is S-4
unsatisfiable, then it is S′-4 unsatisfiable.

By Lemma 3, we get a way to compute upper and lower bounds of ID(K) shown
by Theorems 4 and 5, respectively.

Theorem 4 Given S ⊆ Var(K), if K is S-4 satisfiable, then ID(K) ≤ 1− |S|/|Var(K)|.

Theorems 3 and 4 together show that for a monotonic sequence of sets S1,...,Sk,
where |Si| < |Si+1| for any 1 ≤ i ≤ k − 1, if we can show that K is Si-4 (i = 1, ..., k)
satisfiable one by one, then we can get a sequence of decreasing upper bounding values
of the inconsistency degree of K in time O(|K||Si| · 2|Si|). If |Si| = O(log |K|), it is
easy to see that the computation of an upper bound is done in polynomial time with
respect to the size of K. In the worst case (i.e., when S = Var(K)), the complexity of
the method coincides with the result that ID≤ is NP-complete (Theorem 2).

Theorem 5 For a given w (1 ≤ w ≤ |Var(K)|), if for each w-size subset S of Var(K),
K is S-4 unsatisfiable, then ID(K) ≥ 1− (w − 1)/|Var(K)|.



Theorems 3 and 5 together show that for a monotonic sequence of sets S1, ..., Sm

satisfying |Si| < |Si+1|, if we can prove that K is |Si|-4 unsatisfiable2 for each i ∈
[1,m], then we can get a series of increasing lower bounds of the inconsistency degree
of K. For each w, it needs at most

(|Var(K)|
w

)
times tests of S-4 unsatisfiability. So it

takes O(
(|Var(K)|

w

)
|K|w · 2w) time to compute a lower bound 1 − (w − 1)/|Var(K)|. If

and only if w is limited by a constant, we have that each lower bound is obtained in
polynomial time by Proposition 2.

Proposition 2 Let f(n) = O(
(
n
k

)
· 2k) where 0 ≤ k ≤ n. There exists a p ∈ N such

that f(n) = O(np) if and only if k is limited by a constant which is independent of n.

Suppose ri, r
j in Inequation 1 are defined as follows:

rj = 1− |S|/|Var(K)|, where K is |S|-4 satisfiable, j = |S|;

ri = 1− |S| − 1
|Var(K)|

, where K is |S|-4 unsatisfiable, i = |S|.

By Theorems 3, 4 and 5 and Proposition 2, we get a way to compute the upper and lower
bounds of ID(K) which satisfy: if j ≤ log(|K|) and i ≤ M (M is a constant independent
of |K|), rj and ri are computed in polynomial time; Both i and j cannot be greater
than |Var(K)|. This is a typical approximation process of a NP-complete problem ID≥d

(resp. coNP-complete problem ID≤d) via polynomial intermediate steps, because each
intermediate step provides a partial solution which is an upper (resp. lower) bound of
ID(K).

Example 3 Suppose K = {pi ∨ qj ,¬pi,¬qj | 1 ≤ i, j ≤ N}. So |Var(K)| = 2N . To
know whether ID(K) < 3

4 , by Theorem 4 we only need to find an S of size d 2N
4 e such

that K is S-4 satisfiable. This is true by choosing S = {pi | 1 ≤ i ≤ d 2N
4 e}. To know

whether ID(K) > 1
3 , Theorem 5 tells us to check whether K is S-4 unsatisfiable for all

S of size b 4N
3 c+ 1. This is true also. So ID(K) ∈ [ 13 , 3

4 ].

An interesting consequence of the above theoretical results is that we can compute the
exact inconsistency of some knowledge bases in P-time. Let us first look at an example.

Example 4 Let K = {(pi ∨ pi+1) ∧ (¬pi ∨ ¬pi+1), pi1 ∧ ... ∧ piN−5 ,¬pj1 ∧ ... ∧
¬pjN−10 , p2t,¬p3j+1 ∨ ¬p5u+2, }(1 ≤ i ≤ N − 1, 1 ≤ 2t, 3j + 1, 5u + 2 ≤ N).
Var(K) = N . To approximate ID(K), we can check whether K is l-4 satisfiable for
l going larger from 1 by one increase on the value each time. Obviously, K’s incon-
sistency degree is close to 1 if N � 10. By Theorem 3, we can see that all of these
operations can be done in P-time before the exact value obtained.

More formally, we have the following proposition.

2 For the sake of simplicity, we say that K is l-4 satisfiable for l ∈ N, if there is a subset
S ⊆ Var(K) such that K is S-4 satisfiable. We say that K is l-4 unsatisfiable if K is not l-4
satisfiable.



Proposition 3 If ID(K) ≥ 1−M/|Var(K)|, where M is an arbitrary constant which is
independent of |K|, then ID(K) can be computed in polynomial time.

Given a knowledge base K with |Var(K)| = n. By the analysis given after Theorem
4 and Theorem 5, we know that in the worst case, it takes O(

(
n
w

)
|K|w2w) time to get

an upper (resp. a lower) bounding value. By Fermat’s Lemma 3, its maximal value is
near w = d 2n+1

3 e when n is big enough. It means that to do dichotomy directly on
size n

2 will be of high complexity. To get upper and lower bounding values in P-time
instead of going to intractable computation straight, we propose Algorithm 1, which
consists of two stages: The first one is to localize an interval [l1, l2] that contains the
inconsistency degree (line 1-8), while returning upper and lower bounding values in
P-time; The second one is to pursue more accurate approximations within the interval
[l1, l2] by binary search (line 9-17).

Algorithm 1 is an anytime algorithm that can be interrupted at any time and returns
a pair of upper and lower bounding values of the exact inconsistency degree. It has five
parameters: the knowledge base K we are interested in; the precision threshold ε which
is used to control the precision of the returned results; the constant M � |Var(K)| to
guarantee that the computation begins with tractable approximations; a pair of positive
reals a, b which determines a linear function h(l2) = al2 + b that updates the interval’s
right extreme point l2 by h(l2) during the first stage (line 5). h(·) decides how to choose
the sizes l to test l-4 satisfiability of K. For example, if h(l2) = l2 + 2, line 5 updates
l from i to i + 1 (suitable for ID(K) near 1); If h(l2) = 2l2, line 5 updates l from i to
2i (suitable for ID(K) near 0.5); While if h(l2) = 2(|Var(K)| −M), line 5 updates l
by |Var(K)| −M (suitable for ID(K) near 0). We remark that h(l2) can be replaced by
other functions.

Next we give detailed explanations about Algorithm 1. To guarantee that it runs in
P-time run at the beginning to return approximations, we begin with a far smaller search
interval [l1, l2] = [0,M ] compared to |Var(K)|. The while block (line 3) iteratively tests
whether the difference between upper and lower bounding values is still lager than the
precision threshold and whether K is l-satisfiable, where l = d l2

2 e. If both yes, the upper
bound r+ is updated, the testing interval becomes [l, h(l2)], and the iteration continues;
Otherwise (line 7), the lower bound r− is updated and the search interval becomes [l1, l].
This completes the first part of the algorithm to localize an interval. If r+−r− is already
below the precision threshold, the algorithm terminates (line 8). Otherwise, we get an
interval [l1, l2] such that K is l1-4 satisfiable and l2-4 unsatisfiable. Then the algorithm
turns to the second ”while” iteration (line 9) which executes binary search within the
search internal [l1, l2] found in the first stage. If there is a subset |S| = l1 + d l2−l1

2 e
such that K is S-4 satisfiable, then the search internal shortens to the right half part
of [l1, l2] (line 12), otherwise to the left half part (line 14). During this stage, K keeps
l2-4 unsatisfiable and l1-4 satisfiable for [l1, l2]. Until r+ − r− below the precision
threshold, the algorithm finishes and returns upper and lower bounds.

Theorem 6 (Correctness of Algorithm 1) Let r+ and r− be values computed by Al-
gorithm 1. We have r− ≤ ID(K) and r+ ≥ ID(K). Moreover, r+ = r− = ID(K) if
ε = 0.

3 V.A. Zorich, Mathematical Analysis, Springer, 2004.



Algorithm 1 Approx Incons Degree(K, ε,M, a, b)
Input: KB K; precision threshold ε ∈ [0, 1[ ; constant M � |Var(K)|; a, b ∈ R+

Output: Lower bound r− and upper bound r+ of ID(K)
1: r− ← 0; r+ ← 1 {Initial lower and upper bounds}
2: ε← r+ − r−; n← |Var(K)|; l1 ← 0; l2 ←M ; l← d l2

2
e

3: while ε > ε and K is l-4 satisfiable do
4: r+ ← (1− l/n); ε← r+ − r− {Update upper bound}
5: l1 ← l; l2 ← h(l2); l← d l2

2
e {Update search interval}

6: end while
7: r− ← 1− (l − 1)/n; ε← r+ − r−; l2 ← l
8: if ε ≤ ε then return r+ and r− end if
9: while ε > ε do

10: l← l1 + d l2−l1
2
e

11: if K is l-4 satisfiable then
12: r+ ← (1− l/n); ε← r+ − r−; l1 ← l
13: else
14: r− ← 1− (l − 1)/n; ε← r+ − r−; l2 ← l
15: end if
16: end while
17: return r+ and r−

The following example gives a detailed illustration.

Example 5 (Example 3 contd.) Let ε = 0.1, h(l2) = 2l2, and M = 4 � N . Algorithm
1 processes on K as follows:

Denote the initial search interval [l01, l
0
2] = [0, 4]. After initializations, l = 2 and

line 3 is executed. Obviously, K is S-4 satisfiable for some |S| = l (e.g. S = {p1, p2}).
So we get a newer upper bound r+ = 2N−l

2N . Meanwhile, the difference between upper
and lower bounds ε becomes 2N−l

2N > ε, and the search interval is updated as [l11, l
1
2] =

[l, 2l2] and l = 4.
Stage 1. The while iteration from line 3 is repeatedly executed with double size

increase of l each time. After c times such that 2c−1 ≤ N < 2c, l = 2c and K becomes
l-4 unsatisfiable. The localized interval is [2c−1, 2c]. It turns to line 7 to update the
lower bound by 1 − l−1

2N . The newest upper bound is 1 − 2c−2/N , so ε = 2c−2/N . If
ε ≤ ε, algorithm ends by line 8. Otherwise, it turns to stage 2.

Stage 2. By dichotomy in the interval [2c−1, 2c], algorithm terminates until ε ≤ ε.

Unlike Example 5, for the knowledge base in Example 4, since its inconsistency
degree is quite close to 1, it becomes S-4 satisfiable for an S such that |S| is less
than a constant M . Therefore, after the first stage of Algorithm 1 applying on this
knowledge base, the localized interval [l1, l2] is bounded by M . For such an interval, the
second stage of the algorithm runs in P-time according to Theorem 3 and Proposition
2. So Algorithm 1 is a P-time algorithm for the knowledge base given in Example
4. However, it fails for other knowledge bases whose inconsistency degrees are far
less than 1. Fortunately, the following proposition shows that by setting the precision
threshold ε properly, Algorithm 1 can be executed in P-time to return approximating
values.



Proposition 4 Let s be an arbitrary constant independent of |K|. If ε ≥ 1 − hs(M)
2|Var(K)| ,

where hs(·) is s iterations of h(·), Algorithm 1 terminates in polynomial time with the
difference between upper and lower bounds less than ε (r+ − r− ≤ ε).

The following proposition shows that r− and r+ computed by Algorithm 1 have a
sound semantics in terms of upper and lower bounding models defined in Definition 5.

Proposition 5 There is a lower (an upper) bounding model J′ (J′′) of K such that
IncJ′(K) = r− (IncJ′′(K) = r+).

Summing up, we have achieved an anytime algorithm for approximately computing
inconsistency degrees which is:

– computationally tractable: Each approximating step can be done in polynomial
time if |S| is limited by a logarithmic function for upper bounds (Theorems 3 and
4) and by a constant function for lower bounds (Theorems 3 and 5).

– dual and semantical well-founded: The accurate inconsistency degree is approxi-
mated both from above and from below (Theorem 6), corresponding to inconsis-
tency degrees of some upper and lower bounding models of K (Proposition 5).

– convergent: More computation resource available, more precise values returned
(Theorems 4 and 5). It always converges to the accurate value if there is no lim-
itation of computation resource (Theorem 6) and terminates in polynomial time for
special knowledge bases (Proposition 3).

6 Evaluation

Our algorithm has been implemented in Java using a computer with Intel E7300 2.66G,
4G, Windows Server 2008. Algorithm 1 gives a general framework to approximate
inconsistency degrees from above and below. In our implementation, we set M =
2, h(l2) = l2 + 2. That is, the first while loop (see line 3) keeps testing l-4 satisfia-
bility of K from l = i to i + 1. So the interval [l1, l2] localized in the first stage of the
algorithm satisfies l2 = l1 + 1 and the second binary search is not necessary. Accord-
ing to our analysis in Section 5, this avoids direct binary search which needs to test all

n!
(n/2)!(n/2)! subsets of Var(K), where n = |Var(K)|.

There are tow main sources of complexity to compute approximating inconsistency
degrees: the complexities of S-4 satisfiability and of search space. The S-4 satisfiability
that we implemented is based on the reduction given in Lemma 1 and the tractable
algorithm for 4-satisfiability in [17]. Our experiments told us that search space could
heavily affect efficiency. So we carefully designed a truncation strategy to limit the
search space based on the monotonicity of S-4 unsatisfiability. That is, if we have found
an S such that K is S-4 unsatisfiable, then we can prune all supersets S′ of S which
makes K S′-4 unsatisfiable. We implemented this strategy in breadth-first search on the
binomial tree [18, 19] of subsets of Var(K).
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Fig. 1. Evaluation results over KBs in Example 3 with |K| = N2 + 2N and |Var(K)| = 2N for
N = 5, 7, 8, 9, 10.

Figure 1 shows the evaluation results over knowledge bases4 in Example 3 with
|K| = N2 + 2N and |Var(k)| = 2N for N = 5, 7, 8, 9, 10. The left part of the figure
shows how the preset precision threshold ε affects the run time performance of our al-
gorithm: the smaller ε is, the longer it executes. If ε ≥ 0.7, the algorithm terminated
easily (at most 18.028s for N = 9 and much less for N < 9). The quality of the approx-
imations at different time points is shown on the right part of the figure. The decreasing
(resp. increasing) curves represent upper (resp. lower) bounds for N = 5, 7, 10, respec-
tively. Note that the inconsistency degrees of all the three knowledge bases are 0.5.

For large knowledge bases, it is time-consuming to compute the exact inconsistency
degrees. For example, for N = 10, our algorithm took 239.935s to get the accurate in-
consistency degree. In contrast, by costing much less time, approximating values (upper
bounds for these examples) can provide a good estimation of the exact value and are
much easier to compute. For example, when N = 10, the algorithm told us that the
inconsistency degree is less than 0.8 at 3.9s; and when N = 5, we got the upper bound
0.6 at 0.152s. Note that in these experiments, the lower bounds were updated slowly. In
fact, the exact inconsistency degrees were obtained as soon as the first nonzero lower
bounding values were returned. This is because we set M = 2, h(l2) = l2 + 2 in our
implementation. If we set M and h(·) differently, the results will be changed, as shown
in Example 3 in Section 5.

We need to point out that our truncation strategy cannot be applied to the test data
used in the experiments because no subsets can be pruned. Therefore, although our
experiments show the benefits of the approximations, our algorithm can increase sig-
nificantly when the truncation strategy is applicable and if we carefully set M and h(·).
Take {pi,¬pj | 0 ≤ i, j < 20, j is odd} for example, our optimized algorithm run less
than 1s whilst it run over 5min without the truncation strategy.

4 We use instances of Example 3 because they are the running examples through the paper and
meet the worst cases of the algorithm (e.g. the truncation strategy discussed later cannot be
applied). We want to show the performance of our algorithm in its worst case.



7 Conclusion

In this paper, we investigated computational aspects of the inconsistency degree. We
showed that the complexities of several decision problems about inconsistency degree
are high in general. To compute inconsistency degrees more practically, we proposed
an general framework of an anytime algorithm which is computationally tractable, dual
and semantical well-founded, and improvable and convergent. The experimental results
of our implementation show that computing approximating inconsistency degrees is
much faster than computing the exact inconsistency degrees in general. The approxi-
mating inconsistency degrees can be useful in many applications, such as knowledge
base evaluation and merging inconsistent knowledge bases. We will further study on
the real applications of approximating inconsistency degree in the future work.
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