Yue Ma 
email: yue.ma@lipn.univ-paris13.fr
  
Guilin Qi 
  
Guohui Xiao 
  
Pascal Hitzler 
email: pascal@pascal-hitzler.de
  
Zuoquan Lin 
  
An Anytime Algorithm for Computing Inconsistency Measurement

Measuring inconsistency degrees of inconsistent knowledge bases is an important problem as it provides context information for facilitating inconsistency handling. Many methods have been proposed to solve this problem and a main class of them is based on some kind of paraconsistent semantics. In this paper, we consider the computational aspects of inconsistency degrees of propositional knowledge bases under 4-valued semantics. We first analyze its computational complexity. As it turns out that computing the exact inconsistency degree is intractable, we then propose an anytime algorithm that provides tractable approximation of the inconsistency degree from above and below. We show that our algorithm satisfies some desirable properties and give experimental results of our implementation of the algorithm.

Introduction

Inconsistency handling is one of the central problems in the field of knowledge representation. Recently, there is an increasing interest in quantifying inconsistency in an inconsistent knowledge base. This is because it is not fine-grained enough to simply say that two inconsistent knowledge bases contain the same amount of inconsistency. Indeed, it has been shown that analyzing inconsistency is helpful to decide how to act on inconsistency [START_REF] Hunter | How to act on inconsistent news: Ignore, resolve, or reject[END_REF], i.e. whether to ignore it or to resolve it. Furthermore, measuring inconsistency in a knowledge base can provide some context information which can be used to resolve inconsistency [START_REF] Hunter | Measuring inconsistency in knowledge via quasi-classical models[END_REF][START_REF] Hunter | Approaches to measuring inconsistent information[END_REF][START_REF] Hunter | Shapley inconsistency values[END_REF], and proves useful in different scenarios such as Software Engineering [START_REF] Mu | Measuring inconsistency in requirements specifications[END_REF].

Different approaches to measuring inconsistency are based on different views of atomic inconsistency [START_REF] Hunter | Approaches to measuring inconsistent information[END_REF]. Syntactic ones put atomicity to formulae, such as taking maximal consistent subsets of formulae [START_REF] Knight | Measuring inconsistency[END_REF] or minimal inconsistent sets [START_REF] Hunter | Measuring inconsistency through minimal inconsistent sets[END_REF]. Semantic ones put atomicity to propositional letters, such as considering the conflicting propositional letters based on some kind of paraconsistent model [START_REF] Grant | Classifications for inconsistent theories[END_REF][START_REF] Hunter | Measuring inconsistency in knowledge via quasi-classical models[END_REF][START_REF] Hunter | Approaches to measuring inconsistent information[END_REF][START_REF] Grant | Measuring inconsistency in knowledgebases[END_REF][START_REF] Grant | Analysing inconsistent first-order knowledge bases[END_REF]. In this paper, we focus on the computational aspect of a 4-valued semantics based inconsistency degree which is among the latter view.

The main contributions of this paper lie in Section 4, 5, and 6 with new proposed interesting theorems (their proofs are omitted due to space limitation). In Section 4, we show that computing exact inconsistency degrees is a computational problem of high complexity (Θ p 2 -complete). In Section 5, we present an anytime algorithm to provide tractable approximations of the inconsistency degree from above and below, by computing the lower and upper bounds defined in this paper. We show that our algorithm satisfies some desirable properties. Section 6 will give experimental explanations of the algorithm. To the best of our knowledge, this is the first work that (1) analyzes the complexity issues of computing the inconsistency degree and that (2) attempts to alleviate the intractability of computing the exact inconsistency degree for full propositional logic by approximating it from above and from below in an anytime manner. Our results show that the computation of approximating inconsistency degree can be done tractable; and can be performed to full propositional knowledge bases instead of restricting to CNF to design a tractable paraconsistent reasoning [START_REF] Coste-Marquis | A unit resolution-based approach to tractable and paraconsistent reasoning[END_REF].

Related Work

Most effort has been directed at theoretical accounts of inconsistency measures, i.e. its definitions, properties, and possible applications. But few papers focus on the computational aspect of inconsistency degree. Among the syntactic approaches, [START_REF] Knight | Measuring inconsistency[END_REF] shows the possibility to compute inconsistency degrees using the simplex method. Among the semantics methods, [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF] and [START_REF] Grant | Analysing inconsistent first-order knowledge bases[END_REF] provide algorithms for computing inconsistency degrees that can be implemented. The algorithm in [START_REF] Grant | Analysing inconsistent first-order knowledge bases[END_REF] only deals with KBs consisting of first-order formulas in the form Q 1 x 1 , ..., Q n x n . i (P i (t 1 , ..., t mi ) ∧ ¬P i (t 1 , ..., t mi )), where Q 1 , ..., Q n are universal or existential quantifiers. In [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF], an algorithm is proposed for full FOL logic. Although it can be applied to measure inconsistency in propositional logic, its computational complexity is too high to be used in in general cases. The anytime algorithm proposed in this paper for computing approximating inconsistency degrees can avoid these shortcomings.

Although our algorithm is inspired by the algorithm in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF], It is significantly different from the existing one. Firstly, ours is motivated by the theoretical results of the tractability of S-4 entailment (Theorems 3,4,5). In contrast, the algorithm in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF] is based on a reduction to hard SAT instances, which makes it inherently intractable. Secondly, ours is designed towards obtaining an approximation with guaranteed lower and upper bounds that gradually converge to the exact solution. Thirdly, we implement a new strategy to achieve polynomial time approximations. We present the preliminary evaluation results of the implementation of the algorithm in Section 6. Our evaluation results show our algorithm outperforms that given in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF] and the approximating values are reasonable to replace the exact inconsistency degree.

Preliminaries

Let P be a countable set of propositional letters. We concentrate on the classical propositional language formed by the usual Boolean connectives ∧ (conjunction), ∨ (disjunction), → (implication), and ¬ (negation). A propositional knowledge base K consists of a finite set of formulae over that language. We use Var(K) for the set of propositional letters used in K and |S| for the cardinality of S for any set S.

Next we give a brief introduction on Belnap's four-valued (4-valued) semantics. Compared to two truth values used by classical semantics, the set of truth values for four-valued semantics [START_REF] Belnap | A useful four-valued logic[END_REF][START_REF] Arieli | The value of the four values[END_REF] contains four elements: true, false, unknown and both, written by t, f, N, B, respectively. The truth value B stands for contradictory information, hence four-valued logic leads itself to dealing with inconsistencies. The four truth values together with the ordering defined below form a lattice, denoted by

FOUR = ({t, f, B, N }, ): f N t, f B t, N B, B N .
The fourvalued semantics of connectives ∨, ∧ are defined according to the upper and lower bounds of two elements based on the ordering , respectively, and the operator ¬ is defined as ¬t = f, ¬f = t, ¬B = B, and ¬N = N . The designated set of FOUR is {t, B}. So a four-valued interpretation I is a 4-model of a knowledge base K if and only if for each formula φ ∈ K, φ I ∈ {t, B}. A knowledge base which has a 4-model is called 4-valued satisfiable. A knowledge base K 4-valued entails a formula ϕ, written K |= 4 ϕ, if and only if each 4-model of K is a 4-model of ϕ. We write K for a knowledge base, and M 4 (K) for the set of 4-models of K throughout this paper. Four-valued semantics provides a novel way to define inconsistentcy measurements [START_REF] Hunter | How to act on inconsistent news: Ignore, resolve, or reject[END_REF].

Let I be a four-valued model of K. The inconsistency degree of K with respect to I, denoted Inc I (K), is a value in [0, 1] defined as Inc

I (K) = |Conflict(I,K)| |Var(K)|
, where Conflict(I, K) = {p | p ∈ Var(K), p I = B}. It measures to what extent a given knowledge base K contains inconsistencies with respect to its 4-model I. Preferred models defined below are used to define inconsistency degrees and especially useful to explain our approximating algorithm later.

Definition 1 (Preferred Models) The set of preferred models, written PreferModel(K), is defined as PreferModel(K) = {I | ∀I ∈ M 4 (K), Inc I (K) ≤ Inc I (K)}.

Definition 2 (Inconsistency Degree) The inconsistency degree of K, denoted by ID(K), is defined as the value Inc I (K), where I ∈ PreferModels(K).

Example 1 Let K = {p, ¬p ∨ q, ¬q, r}. Consider two 4-valued models I 1 and I 2 of K with p I1 = t, q I1 = B, r I1 = t; and p I2 = B, q I2 = B, r I2 = t. We have Inc I1 (K) = 1 3 , while Inc I2 (K) = 2 3 . Moreover, I 1 is a preferred model of K because there is no other 4-model I of K such that Inc I (K) < Inc I1 (K). Then ID(K) = 1 3 . One way to compute inconsistency degree is to recast the algorithm proposed in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF] to propositional knowledge bases, where S-4 semantics defined as follows is used: Definition 3 (S-4 Model) For any given set S ⊆ Var(K), an interpretation I is called an S-4 model of K if and only if I ∈ M 4 (K) and satisfies the following condition:

I(p) ∈ {B} if p ∈ Var(K) \ S, {N, t, f } if p ∈ S.
For a given S ⊆ Var(K), the knowledge base K is called S-4 unsatisfiable iff. it has no S-4 model. Let ϕ be a formula and Var({ϕ}

) ⊆ Var(K). ϕ is S-4 entailed by K, written K |= 4 S ϕ, iff. each S-4 model of K is an S-4 model of ϕ. Theorem 1 ([12]) For any KB K, we have ID(K) = 1 -A/|Var(K)|, where A = max{|S| : S ⊆ Var(K), K is S-4 satisfiable}.
Theorem 1 shows that the computation of ID(K) can be reduced to the problem of computing the maximal cardinality of subsets S of Var(K) such that K is S-4 satisfiable.

Computational Complexities

Apart from any particular algorithm, let us study the computational complexity of the inconsistency degree to see how hard the problem itself is. First we define following computation problems related inconsistency degrees:

-ID ≤d (resp. ID <d , ID ≥d ,ID >d ): Given a propositional knowledge base K and a number d

∈ [0, 1], is ID(K) ≤ d (resp. ID(K) < d, ID(K) ≥ d, ID(K) > d)? -EXACT-ID: Given a propositional knowledge base K and a number d ∈ [0, 1], is ID(K) = d? -ID: Given a propositional knowledge base K, what is the value of ID(K)?
We have the complexities of these problems indicated by following theorem.

Theorem 2 ID ≤d and ID <d are NP-complete; ID ≥d and ID >d are coNP-complete;

EXACT-ID is DP-complete; ID is FP NP[log n] -complete 1 .

Anytime Algorithm

According to results shown in the previous section, computing inconsistency degrees is usually intractable. In this section, we propose an anytime algorithm to approximate the exact inconsistency degree. Our results show that in P-time we can get an interval containing the accurate value of ID(K). We first clarify some definitions which will be used to explain our algorithm.

Formal Definitions

Definition 4 (Bounding Values) A real number x (resp. y) is a lower (resp. an upper) bounding value of the inconsistency degree of K, if and only if

x ≤ ID(K) (resp. ID(K) ≤ y).
Intuitively, a pair of lower and upper bounding values characterizes an interval containing the exact inconsistency degree of a knowledge base. For simplicity, lower (resp. an upper) bounding value is called lower (resp. upper) bound.

Definition 5 (Bounding Models) A four-valued interpretation I is a lower (resp. an upper) bounding model of K if and only if for any preferred model I of K, Condition 1 holds (resp. Condition 2 holds and I ∈ M 4 (K)):

Condition 1: |Conflict(I , K)| ≤ |Conflict(I, K)| Condition 2: |Conflict(I , K)| ≥ |Conflict(I, K)|
Intuitively, the lower and upper bounding models of K are approximations of preferred models from below and above. We call two-valued interpretations J trivial lower bounding models since Conflict(J, K) = 0 and ID(K) = 0 always holds. We are only interested in nontrivial bounding models for inconsistent knowledge bases, which can produce a nonzero lower bound of ID(K).

Example 2 (Example 1 continued) K has a lower bounding model I 3 and an upper bounding model I 4 defined as: p I3 = t, q I3 = t, r I3 = t; and p I4 = B, q I4 = B, r I4 = t.

Next proposition gives a connection between lower (resp. upper) bounds and lower (resp. upper) bounding models.

Proposition 1 If I is a lower (an upper) bounding model of K, Inc I (K) is a lower (an upper) bounding value of ID(K).

By borrowing the idea of guidelines for a theory of approximating reasoning [START_REF] Schaerf | Tractable reasoning via approximation[END_REF], we require that an anytime approximating algorithm for computing inconsistency degrees should be able to produce two sequences r 1 , ..., r m and r 1 , ..., r k :

r 1 ≤ ... ≤ r m ≤ ID(K) ≤ r k ≤ ... ≤ r 1 , (1) 
such that these two sequences have the following properties:

-The length of each sequence is polynomial w.r.t |K|; -Computing r 1 and r 1 are both tractable. Generally, computing r j and r j becomes exponentially harder as j increases, but it is not harder than computing ID(K). -Since computing r i and r j could become intractable as i and j increase, we need to find functions f (|K|) and g(|K|) such that computing r i and r j both stay tractable as long as i ≤ f (|K|) and j ≤ g(|K|). each r i (r j ) corresponds to a lower (an upper) bounding model, which indicates the sense of the two sequences.

In the rest, we will describe an anytime algorithm which can produce such two sequences.

Tractable Approximations from Above and Below

We know that S-4 entailment is generally intractable, which makes algorithms based on S-4 semantics to compute inconsistency degrees time-consuming. In this section, we will distinguish a tractable case of S-4 entailment (proportional to the size of input knowledge base), by which we can compute approximating inconsistency degrees.

Lemma 1 Let S = {p 1 , ..., p k } be a subset of V ar(K) and ϕ be a formula such that Var(ϕ) ⊆ Var(K). K |= 4 S ϕ if and only if

K ∧ q∈Var(K)\S (q ∧ ¬q) |= 4 ϕ ∨ (c 1 ∨ ... ∨ c k )
holds for any combination {c 1 , ..., c k }, where each c i is either

p i or ¬p i (1 ≤ i ≤ k).
This lemma shows a way to reduce the S-4 entailment to the 4-entailment. Specially note that if ϕ is in CNF (conjunctive normal formal), the righthand of the reduced 4entailment maintains CNF form by a little bit of rewriting, as follows: Theorem 3 shows that S-4 entailment and S-4 satisfiability can both be decided in polynomial time w.r.t the size of K, exponential w.r.t that of S, though. So they can be justified in P-time if |S| is limited by a logarithmic function of |K|.

Suppose ϕ = C 1 ∧ ... ∧ C n . Then ϕ ∨ (c 1 ∨ ... ∨ c k ) = (C 1 ∨ c 1 ∨ ... ∨ c k ) ∧ ... ∧ (C n ∨ c 1 ∨ ... ∨ c k ) which is still in CNF and its size is linear to that of ϕ ∨ (c 1 ∨ ... ∨ c k ).
Next we study how to use Theorem 3 to tractably compute upper and lower bounding values of inconsistency degrees.

Lemma 3 Given two sets S and S satisfying S ⊆ S ⊆ P, if a theory K is S-4 unsatisfiable, then it is S -4 unsatisfiable.

By Lemma 3, we get a way to compute upper and lower bounds of ID(K) shown by Theorems 4 and 5, respectively.

Theorem 4 Given S ⊆ Var(K), if K is S-4 satisfiable, then ID(K) ≤ 1 -|S|/|Var(K)|.
Theorems 3 and 4 together show that for a monotonic sequence of sets S 1 ,...,S k , where ,k) satisfiable one by one, then we can get a sequence of decreasing upper bounding values of the inconsistency degree of

|S i | < |S i+1 | for any 1 ≤ i ≤ k -1, if we can show that K is S i -4 (i = 1, ...
K in time O(|K||S i | • 2 |Si| ). If |S i | = O(log |K|)
, it is easy to see that the computation of an upper bound is done in polynomial time with respect to the size of K. In the worst case (i.e., when S = Var(K)), the complexity of the method coincides with the result that ID ≤ is NP-complete (Theorem 2). 

Proposition 2 Let f (n) = O( n k • 2 k ) where 0 ≤ k ≤ n.
There exists a p ∈ N such that f (n) = O(n p ) if and only if k is limited by a constant which is independent of n.

Suppose r i , r j in Inequation 1 are defined as follows:

r j = 1 -|S|/|Var(K)|, where K is |S|-4 satisfiable, j = |S|; r i = 1 - |S| -1 |Var(K)| , where K is |S|-4 unsatisfiable, i = |S|.
By Theorems 3, 4 and 5 and Proposition 2, we get a way to compute the upper and lower bounds of ID(K) which satisfy: if j ≤ log(|K|) and i ≤ M (M is a constant independent of |K|), r j and r i are computed in polynomial time; Both i and j cannot be greater than |Var(K)|. This is a typical approximation process of a NP-complete problem ID ≥d (resp. coNP-complete problem ID ≤d ) via polynomial intermediate steps, because each intermediate step provides a partial solution which is an upper (resp. lower) bound of ID(K).

Example 3 Suppose K = {p i ∨ q j , ¬p i , ¬q j | 1 ≤ i, j ≤ N }. So |Var(K)| = 2N . To know whether ID(K) < 3 4 , by Theorem 4 we only need to find an S of size 2N 4 such that K is S-4 satisfiable. This is true by choosing S = {p i | 1 ≤ i ≤ 2N 4 }. To know whether ID(K) > 1 3 , Theorem 5 tells us to check whether K is S-4 unsatisfiable for all S of size 4N 3 + 1. This is true also. So ID(K) ∈ [ 1 3 , 3 4 ].

An interesting consequence of the above theoretical results is that we can compute the exact inconsistency of some knowledge bases in P-time. Let us first look at an example.

Example 4 Let K = {(p i ∨ p i+1 ) ∧ (¬p i ∨ ¬p i+1 ), p i1 ∧ ... ∧ p i N -5 , ¬p j1 ∧ ... ∧ ¬p j N -10 , p 2t , ¬p 3j+1 ∨ ¬p 5u+2 , }(1 ≤ i ≤ N -1, 1 ≤ 2t, 3j + 1, 5u + 2 ≤ N ).
Var(K) = N . To approximate ID(K), we can check whether K is l-4 satisfiable for l going larger from 1 by one increase on the value each time. Obviously, K's inconsistency degree is close to 1 if N 10. By Theorem 3, we can see that all of these operations can be done in P-time before the exact value obtained.

More formally, we have the following proposition.

Proposition 3 If ID(K) ≥ 1 -M/|Var(K)|, where M is an arbitrary constant which is independent of |K|, then ID(K) can be computed in polynomial time.

Given a knowledge base K with |Var(K)| = n. By the analysis given after Theorem 4 and Theorem 5, we know that in the worst case, it takes O( n w |K|w2 w ) time to get an upper (resp. a lower) bounding value. By Fermat's Lemma3 , its maximal value is near w = 2n+1 3 when n is big enough. It means that to do dichotomy directly on size n 2 will be of high complexity. To get upper and lower bounding values in P-time instead of going to intractable computation straight, we propose Algorithm 1, which consists of two stages: The first one is to localize an interval [l 1 , l 2 ] that contains the inconsistency degree (line 1-8), while returning upper and lower bounding values in P-time; The second one is to pursue more accurate approximations within the interval [l 1 , l 2 ] by binary search (line 9-17).

Algorithm 1 is an anytime algorithm that can be interrupted at any time and returns a pair of upper and lower bounding values of the exact inconsistency degree. It has five parameters: the knowledge base K we are interested in; the precision threshold ε which is used to control the precision of the returned results; the constant M |Var(K)| to guarantee that the computation begins with tractable approximations; a pair of positive reals a, b which determines a linear function h(l 2 ) = al 2 + b that updates the interval's right extreme point l 2 by h(l 2 ) during the first stage (line 5). h(•) decides how to choose the sizes l to test l-4 satisfiability of K. For example, if h(l 2 ) = l 2 + 2, line 5 updates l from i to i + 1 (suitable for ID(K) near 1); If h(l 2 ) = 2l 2 , line 5 updates l from i to 2i (suitable for ID(K) near 0.5); While if h(l 2 ) = 2(|Var(K)| -M ), line 5 updates l by |Var(K)| -M (suitable for ID(K) near 0). We remark that h(l 2 ) can be replaced by other functions.

Next we give detailed explanations about Algorithm 1. To guarantee that it runs in P-time run at the beginning to return approximations, we begin with a far smaller search interval [l 1 , l 2 ] = [0, M ] compared to |Var(K)|. The while block (line 3) iteratively tests whether the difference between upper and lower bounding values is still lager than the precision threshold and whether K is l-satisfiable, where l = l2

2 . If both yes, the upper bound r + is updated, the testing interval becomes [l, h(l 2 )], and the iteration continues; Otherwise (line 7), the lower bound r -is updated and the search interval becomes [l 1 , l]. This completes the first part of the algorithm to localize an interval. If r + -r -is already below the precision threshold, the algorithm terminates (line 8). Otherwise, we get an interval [l 1 , l 2 ] such that K is l 1 -4 satisfiable and l 2 -4 unsatisfiable. Then the algorithm turns to the second "while" iteration (line 9) which executes binary search within the search internal [l 1 , l 2 ] found in the first stage. If there is a subset |S| = l 1 + l2-l1 2 such that K is S-4 satisfiable, then the search internal shortens to the right half part of [l 1 , l 2 ] (line 12), otherwise to the left half part (line 14). During this stage, K keeps l 2 -4 unsatisfiable and l 1 -4 satisfiable for [l 1 , l 2 ]. Until r + -r -below the precision threshold, the algorithm finishes and returns upper and lower bounds.

Theorem 6 (Correctness of Algorithm 1) Let r + and r -be values computed by Algorithm 1. We have r -≤ ID(K) and r + ≥ ID(K). Moreover, r

+ = r -= ID(K) if ε = 0. Algorithm 1 Approx Incons Degree(K, ε, M, a, b) Input: KB K; precision threshold ε ∈ [0, 1[ ; constant M |Var(K)|; a, b ∈ R + Output: Lower bound r-and upper bound r+ of ID(K) 1: r-← 0; r+ ← 1 {Initial lower and upper bounds} 2: ε ← r+ -r-; n ← |Var(K)|; l1 ← 0; l2 ← M ; l ← l 2 2 3: while ε > ε and K is l-4 satisfiable do 4: r+ ← (1 -l/n); ε ← r+ -r- {Update upper bound} 5: l1 ← l; l2 ← h(l2); l ← l 2 2
{Update search interval} 6: end while

7: r-← 1 -(l -1)/n; ε ← r+ -r-; l2 ← l 8: if ε ≤ ε then return r+ and r-end if 9: while ε > ε do 10: l ← l1 + l 2 -l 1 2 11: if K is l-4 satisfiable then 12: r+ ← (1 -l/n); ε ← r+ -r-; l1 ← l 13: else 14: r-← 1 -(l -1)/n; ε ← r+ -r-; l2 ← l 15:
end if 16: end while 17: return r+ and r-

The following example gives a detailed illustration. Unlike Example 5, for the knowledge base in Example 4, since its inconsistency degree is quite close to 1, it becomes S-4 satisfiable for an S such that |S| is less than a constant M . Therefore, after the first stage of Algorithm 1 applying on this knowledge base, the localized interval [l 1 , l 2 ] is bounded by M . For such an interval, the second stage of the algorithm runs in P-time according to Theorem 3 and Proposition 2. So Algorithm 1 is a P-time algorithm for the knowledge base given in Example 4. However, it fails for other knowledge bases whose inconsistency degrees are far less than 1. Fortunately, the following proposition shows that by setting the precision threshold ε properly, Algorithm 1 can be executed in P-time to return approximating values. Proposition 4 Let s be an arbitrary constant independent of |K|. If ε ≥ 1 -h s (M ) 2|Var(K)| , where h s (•) is s iterations of h(•), Algorithm 1 terminates in polynomial time with the difference between upper and lower bounds less than ε (r + -r -≤ ε).

The following proposition shows that r -and r + computed by Algorithm 1 have a sound semantics in terms of upper and lower bounding models defined in Definition 5.

Proposition 5 There is a lower (an upper) bounding model J (J ) of K such that Inc J (K) = r -(Inc J (K) = r + ).

Summing up, we have achieved an anytime algorithm for approximately computing inconsistency degrees which is:

computationally tractable: Each approximating step can be done in polynomial time if |S| is limited by a logarithmic function for upper bounds (Theorems 3 and 4) and by a constant function for lower bounds (Theorems 3 and 5). dual and semantical well-founded: The accurate inconsistency degree is approximated both from above and from below (Theorem 6), corresponding to inconsistency degrees of some upper and lower bounding models of K (Proposition 5). convergent: More computation resource available, more precise values returned (Theorems 4 and 5). It always converges to the accurate value if there is no limitation of computation resource (Theorem 6) and terminates in polynomial time for special knowledge bases (Proposition 3).

Evaluation

Our algorithm has been implemented in Java using a computer with Intel E7300 2.66G, 4G, Windows Server 2008. Algorithm 1 gives a general framework to approximate inconsistency degrees from above and below. In our implementation, we set M = 2, h(l 2 ) = l 2 + 2. That is, the first while loop (see line 3) keeps testing l-4 satisfiability of K from l = i to i + 1. So the interval [l 1 , l 2 ] localized in the first stage of the algorithm satisfies l 2 = l 1 + 1 and the second binary search is not necessary. According to our analysis in Section 5, this avoids direct binary search which needs to test all n!

(n/2)!(n/2)! subsets of Var(K), where n = |Var(K)|.

There are tow main sources of complexity to compute approximating inconsistency degrees: the complexities of S-4 satisfiability and of search space. The S-4 satisfiability that we implemented is based on the reduction given in Lemma 1 and the tractable algorithm for 4-satisfiability in [START_REF] Cadoli | On the complexity of entailment in propositional multivalued logics[END_REF]. Our experiments told us that search space could heavily affect efficiency. So we carefully designed a truncation strategy to limit the search space based on the monotonicity of S-4 unsatisfiability. That is, if we have found an S such that K is S-4 unsatisfiable, then we can prune all supersets S of S which makes K S -4 unsatisfiable. We implemented this strategy in breadth-first search on the binomial tree [START_REF] Malouf | Maximal consistent subsets[END_REF][START_REF] Mu | An approach to measuring the significance of inconsistency in viewpoints framework[END_REF] of subsets of Var(K). For large knowledge bases, it is time-consuming to compute the exact inconsistency degrees. For example, for N = 10, our algorithm took 239.935s to get the accurate inconsistency degree. In contrast, by costing much less time, approximating values (upper bounds for these examples) can provide a good estimation of the exact value and are much easier to compute. For example, when N = 10, the algorithm told us that the inconsistency degree is less than 0.8 at 3.9s; and when N = 5, we got the upper bound 0.6 at 0.152s. Note that in these experiments, the lower bounds were updated slowly. In fact, the exact inconsistency degrees were obtained as soon as the first nonzero lower bounding values were returned. This is because we set M = 2, h(l 2 ) = l 2 + 2 in our implementation. If we set M and h(•) differently, the results will be changed, as shown in Example 3 in Section 5.

We need to point out that our truncation strategy cannot be applied to the test data used in the experiments because no subsets can be pruned. Therefore, although our experiments show the benefits of the approximations, our algorithm can increase significantly when the truncation strategy is applicable and if we carefully set M and h(•). Take {p i , ¬p j | 0 ≤ i, j < 20, j is odd} for example, our optimized algorithm run less than 1s whilst it run over 5min without the truncation strategy.

In this paper, we investigated computational aspects of the inconsistency degree. We showed that the complexities of several decision problems about inconsistency degree are high in general. To compute inconsistency degrees more practically, we proposed an general framework of an anytime algorithm which is computationally tractable, dual and semantical well-founded, and improvable and convergent. The experimental results of our implementation show that computing approximating inconsistency degrees is much faster than computing the exact inconsistency degrees in general. The approximating inconsistency degrees can be useful in many applications, such as knowledge base evaluation and merging inconsistent knowledge bases. We will further study on the real applications of approximating inconsistency degree in the future work.

Lemma 2 (

 2 [START_REF] Cadoli | On the complexity of entailment in propositional multivalued logics[END_REF]) For K in any form and ϕ in CNF, there exists an algorithm for decidingif K |= 4 ϕ in O(|K| • |ϕ|) time.By Lemma 1 and 2, we have the following theorem: Theorem 3 (Complexity) There exists an algorithm for deciding if K |= 4 S ϕ and deciding if K is S-4 satisfiable in O(|K||ϕ||S|•2 |S| ) and O(|K||S|•2 |S| ) time, respectively.

Theorem 5

 5 For a given w (1 ≤ w ≤ |Var(K)|), if for each w-size subset S of Var(K), K is S-4 unsatisfiable, then ID(K) ≥ 1 -(w -1)/|Var(K)|. Theorems 3 and 5 together show that for a monotonic sequence of sets S 1 , ..., S m satisfying |S i | < |S i+1 |, if we can prove that K is |S i |-4 unsatisfiable 2 for each i ∈ [1, m], then we can get a series of increasing lower bounds of the inconsistency degree of K. For each w, it needs at most |Var(K)| w times tests of S-4 unsatisfiability. So it takes O( |Var(K)| w |K|w • 2 w ) time to compute a lower bound 1 -(w -1)/|Var(K)|. If and only if w is limited by a constant, we have that each lower bound is obtained in polynomial time by Proposition 2.

Example 5 ( 2 .

 52 Example 3 contd.) Let ε = 0.1, h(l 2 ) = 2l 2 , and M = 4 N . Algorithm 1 processes on K as follows: Denote the initial search interval [l 0 1 , l 0 2 ] = [0, 4]. After initializations, l = 2 and line 3 is executed. Obviously, K is S-4 satisfiable for some |S| = l (e.g. S = {p 1 , p 2 }). So we get a newer upper bound r + = 2N -l 2N . Meanwhile, the difference between upper and lower bounds ε becomes 2N -l 2N > ε, and the search interval is updated as [l 1 1 , l 1 2 ] = [l, 2l 2 ] and l = 4. Stage 1. The while iteration from line 3 is repeatedly executed with double size increase of l each time. After c times such that 2 c-1 ≤ N < 2 c , l = 2 c and K becomes l-4 unsatisfiable. The localized interval is [2 c-1 , 2 c ]. It turns to line 7 to update the lower bound by 1 -l-1 2N . The newest upper bound is 1 -2 c-2 /N , so ε = 2 c-2 /N . If ε ≤ ε, algorithm ends by line 8. Otherwise, it turns to stage 2.Stage By dichotomy in the interval [2 c-1 , 2 c ], algorithm terminates until ε ≤ ε.

Fig. 1 .

 1 Fig. 1. Evaluation results over KBs in Example 3 with |K| = N 2 + 2N and |Var(K)| = 2N for N = 5, 7, 8, 9, 10.

Figure 1

 1 Figure1shows the evaluation results over knowledge bases4 in Example 3 with |K| = N 2 + 2N and |Var(k)| = 2N for N = 5, 7, 8, 9, 10. The left part of the figure shows how the preset precision threshold ε affects the run time performance of our algorithm: the smaller ε is, the longer it executes. If ε ≥ 0.7, the algorithm terminated easily (at most 18.028s for N = 9 and much less for N < 9). The quality of the approximations at different time points is shown on the right part of the figure. The decreasing (resp. increasing) curves represent upper (resp. lower) bounds for N = 5, 7, 10, respectively. Note that the inconsistency degrees of all the three knowledge bases are 0.5.For large knowledge bases, it is time-consuming to compute the exact inconsistency degrees. For example, for N = 10, our algorithm took 239.935s to get the accurate inconsistency degree. In contrast, by costing much less time, approximating values (upper bounds for these examples) can provide a good estimation of the exact value and are much easier to compute. For example, when N = 10, the algorithm told us that the inconsistency degree is less than 0.8 at 3.9s; and when N = 5, we got the upper bound 0.6 at 0.152s. Note that in these experiments, the lower bounds were updated slowly. In fact, the exact inconsistency degrees were obtained as soon as the first nonzero lower bounding values were returned. This is because we set M = 2, h(l 2 ) = l 2 + 2 in our implementation. If we set M and h(•) differently, the results will be changed, as shown in Example 3 in Section 5.We need to point out that our truncation strategy cannot be applied to the test data used in the experiments because no subsets can be pruned. Therefore, although our experiments show the benefits of the approximations, our algorithm can increase significantly when the truncation strategy is applicable and if we carefully set M and h(•). Take {p i , ¬p j | 0 ≤ i, j < 20, j is odd} for example, our optimized algorithm run less than 1s whilst it run over 5min without the truncation strategy.

A language L is in the class DP[START_REF]Computational Complexity[END_REF] iff there are two languages L1 ∈ NP and L2 ∈ coNP such that L = L1 ∩ L2. Complexity P NP[log n] is defined to be the class of all languages decided by a polynomial-time oracle machine which on input x asks a total of O(log |x|) SAT (or any other problem in NP) queries. FP NP[log n] is the corresponding class of functions.

For the sake of simplicity, we say that K is l-4 satisfiable for l ∈ N, if there is a subset S ⊆ Var(K) such that K is S-4 satisfiable. We say that K is l-4 unsatisfiable if K is not l-4 satisfiable.

V.A. Zorich, Mathematical Analysis, Springer, 2004.

We use instances of Example 3 because they are the running examples through the paper and meet the worst cases of the algorithm (e.g. the truncation strategy discussed later cannot be applied). We want to show the performance of our algorithm in its worst case.
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