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Abstract—Measuring Inconsistency in ontologies is an im-
portant topic in ontology engineering as it can provide extra
information for dealing with inconsistency. Many approaches
have been proposed to deal with this issue. However, the
main drawback of these algorithms is their high computational
complexity. One of the main sources of the high complexity is
the intractability of the underlying Description Logics (DLs).
In this paper, we focus on an important tractable DL family,
DL-Lite. We define an inconsistency degree of aDL-Lite
ontology based on a three-valued semantics. We also present an
algorithm to compute this inconsistency degree and show that
its time-complexity is PTime in the size of ABox and TBox.
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gies;

I. I NTRODUCTION

Inconsistencies frequently occur within the ontology life-
cycle, such as ontology construction, ontology evolution
and ontology merging. Handling inconsistencies, especially,
handling logical inconsistency in ontologies is increasingly
recognized as an important research topic. When dealing
with logical inconsistency (or inconsistency for short), we
frequently need extra information that can facilitate us to
choose a proper strategy to resolve this problem. It has been
shown that measuring inconsistency in ontologies can pro-
vide valuable information for many different inconsistency
handling approaches, such as revising ontologies [1], [2],
debugging ontologies [3], [4] and evaluating inconsistent
ontologies [5].

There are some applications for inconsistency measure-
ments.

• Inconsistency measurements enable us to say how “un-
valued” an ontology is by showing how inconsistent
it is [6]. For example, given two ontologiesK1 and
K2, suppose that the inconsistency degree ofK1 is less
than that ofK2, then we can consider thatK1 is more
reliable thanK2.

• Inconsistency measurements can also give guidance to
resolve inconsistency. When resolving inconsistency,
there often have several alternative solutions. It would

be helpful to have some extra information (such as an
ordering on axioms of the ontology) to decide which
one is the best. For example, we can first rank the
axioms in an inconsistent ontology by applying the
method in [7], then remove or weaken those axioms
with lower priority to restore consistency. If the in-
consistency degree is low and repairing it is time-
consuming or error prone, we can tolerate it and apply
paraconsistent semantics (such as the one given in [8])
to reason with it.

A number of proposals have been made for measuring
the inconsistency of ontologies [4], [5], [7], [8]. They can
be roughly divided into the following two categories. The
first one is to countthe minimal number of formulaewhich
are responsible for an inconsistency [4]. The second one is
to computethe proportion of languagethat is affected by the
inconsistencies of ontologies [5], [9]. Our approach belongs
to the second category.

Deng et al. [7] provided a method for measuring incon-
sistency of axioms to identify which axioms need to be
removed or modified to resolve an inconsistency. However,
their algorithm needs exponential time in the worst case
[7]. Qi and Hunter [4] provided a method for measuring
incoherenceof an ontology based on the computation of
all the minimal incoherence-preserving sub-TBox (MIPS)
which is a hard task. For example, it has been shown in
[10] that computing all the MIPS of an ontology is NP-hard
for tractable DLEL+. Ma et al. [5] proposed a method for
measuring inconsistency of a DLALC knowledge base on
4-valued semantics, which can be realized by invoking a DL
reasoner [11]. The above approaches to measuring inconsis-
tency are usually based on expressive DLs which suffer from
worst-case exponential time behavior of reasoning [1]. This
may hinder their applications to ontologies with over large
amounts of data.

Recently, there have been some discussions on inconsis-
tency handling inDL-Lite (see [12]), an important tractable
DL family, which can keep all the reasoning tasks tractable,
in particular, with polynomial time complexity with respect



to the size of the ontology [13]. Like other DLs, inconsisten-
cies inDL-Lite can also easily occur because disjoint axioms
are allowed. The purpose of our research is to investigate
DL-Lite family to see how to compute the inconsistency
degree of aDL-Lite ontology in a tractable way.

In this paper, we propose an approach to measuring the
inconsistency of aDL-Lite ontology based on three-valued
semantics. Unlike the approach using the sequence of values
to measure inconsistency in [5], we use a single value to
measure inconsistency of aDL-Lite ontology. To compute
the inconsistency degree of aDL-Lite ontology based on
multi-valued semantics, one way is to list all models w.r.t a
specific domain to check preferred models and compute the
number of conflicting assertions in such a model. However,
listing all models is not an easy reasoning task even for
tractable DLs likeDL-Lite. To alleviate the problem of
intractability, we propose a polynomial-time algorithm to
compute the inconsistency degree of aDL-Lite ontology
based on a three-valued semantics by exploring the specific
feature ofDL-Lite. The main contributions of our paper can
be summarized as follows:

• We define a three-valued semantics for two important
DLs in DL-Lite family: DL-LiteF andDL-LiteR.

• Given aDL-Lite ontologyO = 〈T ,A〉, we show that it
is desirable to consider domain∆db(A) and〈cln(T ),A〉
to measure inconsistency. Then we give a definition of
the inconsistency degree of aDL-Lite ontology.

• An algorithm is presented to compute a preferred model
for 〈cln(T ),A〉 under the three-valued semantics. We
show the correctness of our algorithm and demonstrate
that its time-complexity is PTime in the size of an
ontology.

The rest of the paper is organized as follows. Section
II presents some basic notions forDL-Lite. Section III
gives a three-valued semantics forDL-Lite. Section IV
introduces our approach to measuring inconsistency for a
DL-Lite ontology. Section V gives an algorithm to compute
the inconsistency degree and analyzes its computational
complexity. We conclude our paper in Section VI.

II. PRELIMINARIES

DL-Lite is a family of DLs that aims to capture some of
the most popular conceptual modeling formalisms, such as
Entity-Relationship model and UML class diagrams, while
preserving the tractability of the most important reasoning
tasks, such as ontology satisfiability. We mainly consider two
important DLs inDL-Lite family: DL-LiteF and DL-LiteR
[13].

The language ofDL-Litecore is the core language forDL-
LiteF andDL-LiteR , in which concepts and roles are formed
according to the following syntax:

B −→ A | ∃R R −→ P | P−
C −→ B | ¬B E −→ R | ¬R

Table I
SYNTAX AND SEMANTICS OF DL-Lite

Syntax Semantics
A AI ⊆ ∆I

∃R {d | ∃e, (d, e) ∈ RI}
¬A ∆I \AI

¬∃R ∆I \ (∃R)I

P P I ∈ ∆I ×∆I

P− {(o, o
′
) | (o′ , o) ∈ P I}

¬R (∆I ×∆I) \RI

Bl v Br BI
l ⊆ BI

r

R1 v R2 RI
1 ⊆ RI

2

(funct R) ∀d, e, e
′
, (d, e) ∈ RI ∧ (d, e

′
) ∈ RI → e = e

′

A(a) aI ∈ AI

P (a, b) (aI , bI) ∈ P I

where A and P denote an atomic concept and an atomic
role respectively;B denotes abasic concept(i.e., a concept
of the form A, ∃R); R denotes abasic role (i.e., a role
of the form P , P−), whereP− denotes the inverse of the
atomic role;C denotes ageneral concept(i.e., a concept of
the formB, ¬B), whereasE denotes ageneral role(i.e., a
concept of the formR, ¬R).

A DL-Litecore TBox is a set of inclusion axioms of the
form B v C. A DL-Litecore ABox is a set of mem-
bership assertions on atomic concepts and atomic roles:
A(a), P (a, b), wherea andb are constants.

DL-LiteR extendsDL-Litecore with the ability of specify-
ing inclusion assertions between roles of the formR v E,
whereR andE are defined as above.DL-LiteF extendsDL-
Litecore with the ability of specifying functionality on roles
or on their inverses. Assertions used for this purpose are
of the form (funct R) and called functionality assertions.
Hereinafter, we use the termDL-Lite to refer to eitherDL-
LiteR or DL-LiteF , we call assertions of the formB1 v B2

or of the form R1 v R2 positive inclusions (PIs), and
we call assertions of the formB1 v ¬B2 or R1 v ¬R2

negative inclusions (NIs). The semantics ofDL-Lite is given
by means of an interpretationI = (∆I , ·I), consisting of a
non-emptyinterpretation domain∆I and aninterpretation
function·I satisfying the conditions in Table I. The function
·I assigns to each conceptC a subsetCI of ∆I , and to
each roleR a binary relationRI over∆I . An interpretation
satisfies aDL-Lite ontologyK = 〈T ,A〉 (i.e., a model of
the ontology) if and only if it satisfies each axiom in both
ABoxandTBox. An ontology is satisfiable if it has at least
one model. An ontologyK logically implies an assertionα,
writtenK |= α, if all models ofK are also models ofα. The
unique name assumption on constants [14] is adapted byDL-
Lite. Furthermore,DL-LiteR has the finite model property,
that is, if a DL-LiteR is consistent, then it has a classical
model whose domain is finite [13], [14]. However,DL-LiteF
does not have finite model property [13].

Calvanese et al. [13] have given a novel property about a
DL-Lite ontology, that is, aDL-Lite ontologyK = 〈T ,A〉



is satisfiable iffdb(A) is a model of〈cln(T ),A〉, where
db(A) = 〈∆db(A), .db(A)〉 is an interpretation aboutA
defined as follows:

• ∆db(A) is the nonempty set consisting of all constants
occurring inA;

• adb(A) = a, for each constanta;
• Adb(A) = {a | A(a) ∈ A}, for each atomic conceptA;
• P db(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic

role P .

cln(T ) is the NI-closure ofT defined as follows:

• All negative inclusions inT are also incln(T ).
• All functionality assertions inT are also incln(T ).
• If B1 v B2 is in T andB2 v ¬B3 or B3 v ¬B2 is in

cln(T ), thenB1 v ¬B3 is in cln(T ).
• If R1 v R2 is in T and∃R2 v ¬B or B v ¬∃R2 is

in cln(T ), then∃R1 v ¬B is in cln(T ).
• If R1 v R2 is in T and∃R−2 v ¬B or B v ¬∃R−2 is

in cln(T ), then∃R−1 v ¬B is in cln(T ).
• If R1 v R2 is in T andR2 v ¬R3 or R3 v ¬R2 is in

cln(T ), thenR1 v ¬R3 is in cln(T ).
• In the case in whichT is aDL-liteF TBox, if one of the

assertions∃R v ¬∃R or ∃R− v ¬∃R− is in cln(T ),
then both such assertions are incln(T ).

• In the case in whichT is a DL-liteR TBox, if one of
the assertions∃R v ¬∃R, ∃R− v ¬∃R− or R v ¬R
is in cln(T ), then the three such assertions are all in
cln(T ).

In fact, cln(T ) is a special TBox that does not contain PIs
and is obtained by closing the NIs with respect to the PIs
in T .

III. T HREE-VALUED SEMANTICS FORDL-Lite

To measure the inconsistency of an ontology, we define a
three-valued semantics that allows a third truth valuecon-
tradictory. In this way, three-valued semantics provides an
approach to define the inconsistency degree of an ontology.
Since we only aim to analyze inconsistency, there is no need
to adopt other multi-valued semantics, such as four-valued
semantics which contains a fourth truth value for expressing
incomplete knowledge. In contrast, three-valued semantics
is easier to be used because it does not consider the fourth
truth valueunknown.

For a given domain∆ and a conceptC (resp., a role
R), a three-valued interpretation over∆ assigns toC (resp.,
R) an extended truth value〈CP , CN 〉 (resp.,〈RP , RN 〉 ),
where CP is the subset of∆ (resp.,RP is the subset of
∆ × ∆) that supportsC (resp.,R) to be true andCN is
the subset of∆ (resp.,RN is the subset of∆ × ∆) that
supportsC (resp.,R) to be false [8], and the requirement
CP ∪CN = ∆ (resp.,RP ∪RN = ∆×∆) must hold under
three-valued semantics. We denoteproj+(〈P, N〉) = P and
proj−(〈P, N〉) = N [8]. The three-valued semantics ofDL-
Lite is given by means of an interpretationI = (∆I , ·I)

Table II
THREE-VALUED SEMANTICS OF DL-Lite

Constructor Semantics
C CI = 〈CP , CN 〉,whereCP , CN ⊆ ∆I and

CP ∪ CN = ∆I

R RI = 〈RP , RN 〉,whereRP , RN ⊆ ∆I ×∆I and
RP ∪RN = ∆I ×∆I

R− (R−)I = 〈R−P , R−N 〉,whereR−P , R−N represent
the inverse relations onRP andRN ,respectively.

¬C (¬C)I = 〈CN , CP 〉
¬R (¬R)I = 〈RN , RP 〉
∃R (∃R)I = 〈{x | ∃y ∈ ∆I , (x, y) ∈ RI

P },
{x | ∀y ∈ ∆I , (x, y) ∈ RI

N}〉
¬∃R (¬∃R)I = 〈{x | ∀y ∈ ∆I , (x, y) ∈ RI

N},
{x | ∃y ∈ ∆I , (x, y) ∈ RI

P }〉
= (=)I = 〈=P , =N 〉, where=P , =N∈ ∆I ×∆I

consisting of a non-emptyinterpretation domain∆I and an
interpretation function·I satisfying the conditions in Table
II. In Table II, we introduce the three-valued semantics to
“=” to represent the three-valued semantics of a functionality
assertion. For any given domain∆, we assign to “=” an
extended truth value〈=P ,=N 〉, where “=P ” stands for the
set of pairs of constants which are equal and “=N ” stands for
the set of pairs of constants which are not equal. The UNA
can be expressed as∀x, y ∈ ∆db(A), (x, y) ∈ proj−((=)I).

Based on the three-valued semantics, there are three truth
values for membership assertions. The three truth values are
true, false and contradictory, and we use the symbols
t, f,B to denote them respectively [5]. The corresponding
three-valued semantics for concept assertions is given as
follows:

Definition 1: [8] For any given instancea ∈ ∆I and
concept nameA,

• AI(a) = t, iff a ∈ proj+(AI) anda /∈ proj−(AI);
• AI(a) = f , iff a /∈ proj+(AI) anda ∈ proj−(AI);
• AI(a) = B, iff a ∈ proj+(AI) anda ∈ proj−(AI).
The corresponding three-valued semantics for role asser-

tion (or equality “=”) can be defined in a similar way.
In Table III, we give the three-valued semantics for axioms

in DL-Lite [15], where∆ \ S denotes the complementary
set of a setS w.r.t a domain∆. A three-valued model of a
DL-Lite ontologyK is a three-valued interpretationI which
satisfies each assertion and each axiom inK. A DL-Lite
ontology is three-valued satisfiable (unsatisfiable) if there
exists (does not exist) such a model.

Example1: Given a DL-Lite ontology K = 〈T ,A〉,
whereT ={PhDStudv Stud, PhDStudv Employee, Studv
¬Employee, Stud v ∃hasTutor, (funct hasTutor)},
A = {PhDStud(a), hasTutor(a, b), hasTutor(a, c)}. We
can find that it is an inconsistent ontology. Consider
the following three-valued interpretationI = (∆I , .I),
where ∆I = {a, b, c}, PhDStudI = 〈{a}, {b, c}〉, StudI =
〈{a}, {b, c}〉, EmployeeI = 〈{a}, {a, b, c}〉, hasTutorI =
〈{(a, c), (a, b)}, {(a, a), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)



Table III
THREE-VALUED SEMANTICS FOR AXIOMS IN DL-Lite

Syntax Semantics
B v C proj+(BI) ⊆ proj+(CI)

R1 v R2 proj+(RI
1) ⊆ proj+(RI

2)

(functR) ∀x, y, z, (x, y) ∈ proj+(RI) ∧ (x, z) ∈ proj+(RI)
→ (y, z) ∈ proj+((=)I)

A(a) aI ∈ proj+(AI)

P (a, b) (aI , bI) ∈ proj+(P I)

a = b (aI , bI) ∈ proj+((=)I)

a 6= b (aI , bI) ∈ proj−((=)I)

}〉, (=)I = 〈{(a, a), (b, b), (c, c), (b, c)}, {(a, b), (a, c), (b, a),
(b, c), (c, a), (c, b)}〉. We can find that I is a three-
valued model ofK and PhDStudI(a) = t, StudI(a) =
t, EmployeeI(a) = B and (=)I(b, c) = B. It is easy to
obtain three-valued semantics for other atomic assertions.

Because of the unique name assumption of theDL-Lite,
a three-valued interpretation can be a model only if the
cardinality of its domain is equal to or greater than the
number of constants in an ontology [5]. For aDL-Lite
ontologyK = 〈T ,A〉, ∆db(A) contains all the constants in
K. In the following, we only consider those domains whose
cardinalities are equal to or greater than that of∆db(A).

Proposition1: Any DL-Lite ontology has the finite
model property under three-valued semantics.

Proposition 1 tells us that anyDL-Lite ontology has at
least a three-valued model whose domain is finite. We will
use this property to compute preferred models ofDL-Lite
ontologies later.

Example2: Consider a DL-LiteF ontology K =
〈T ,A〉 with T = {A v ∃P, ∃P− v A, (funct P−), B v
∃P, B v ¬A)} and A = {B(a)}. It is easy to see that
K admits only infinite models under classical semantics.
However we can give a three-valued model ofK as follows:
I = (∆I , .I), where∆I = {a}, AI(a) = B, BI(a) = t,
P I(a, a) = t.

IV. M EASURING INCONSISTENCY

In this section, we will give a formal definition of the in-
consistency degree of aDL-Lite ontology. We first give some
definitions and theorems which will be used to motivate our
definition of inconsistency degree.

Definition 2: Let I be a three-valued model of aDL-
Lite ontology K = 〈T ,A〉 with domain ∆I , and letLK
be the set of atomic concepts and roles in ontology. The
inconsistency set ofI for K, written asConSet(I,K), is
defined as follows:ConSet(I,K) = ConConcepts(I,K) ∪
ConRoles(I,K) ∪ ConEqus(I,K), where
• ConConcepts(I,K) = {A(a) | AI(a) = B, A ∈
LK, a ∈ ∆I },

• ConRoles(I,K) = {R(a1, a2) | RI(a1, a2) = B, R ∈
LK, a1, a2 ∈ ∆I },

• ConEqus(I,K) = {=(a1, a2) | (=)I(a1, a2) =
B, a1, a2 ∈ ∆I }.

ConSet(I,K) is the set of conflicting atomic assertions inK.
From Definition 2, we can deduce that aDL-Lite ontology
K is inconsistent if and only ifConSet(I,K) 6= 0 for every
three-valued modelI of K.

Example3 (Example 1 contd.):It is easy to check that
ConSet(I,K) = {Employee(a),=(b, c)}.

In Example 1, if we only change the three-valued inter-
pretation ofPhDStudas 〈{a}, {a, b, c}〉 and obtain another
three-valued interpretationI

′
of K. We can find thatI

′
is

also a three-valued model ofK. For I
′
, ConSet(I

′
,K) =

{Employee(a),=(b, c), PhDStud(a)}. We can obtain that
|ConSet(I

′
,K)| > |ConSet(I,K)|. That is, given an ontol-

ogy K and a domain, there may exist different models of
K with different numbers of conflicting atomic individual
assertions.

Definition 3 (Model Ordering): For a DL-Lite ontol-
ogy K = 〈T ,A〉, let I1, I2 be two three-valued models
of K w.r.t a domainD, we say I1 is preferred toI2,
written I1 ¹ConSet I2 if and only if |ConSet(I1,K)| ≤
|ConSet(I2,K)|.

As usual, I1 ≺ConSet I2 denotesI1 ¹ConSet I2 and
I2 �ConSet I1. I1 ≡ConSet I2 denotesI1 ¹ConSet I2 and
I2 ¹ConSetI1. In the following, we use the model ordering
to define preferred models.

Definition 4: For a DL-Lite ontology K, suppose3-
ModelD(K) is the set of all three-valued models of
K w.r.t a domain D. The set of preferred models
of K w.r.t domain D, written preferModelD(K) is de-
fined as follows: preferModelD(K) = { I | ∀I ′ ∈
3-ModelD(K) impliesI ¹ConSetI

′ }.
Calvanese et al. [13] have proposed an important fea-

ture aboutDL-Lite ontologies, that is, aDL-Lite ontology
K = 〈T ,A〉 is satisfiable if and only ifdb(A) is a model
of 〈cln(T ),A〉. Therefore, we can check whether aDL-Lite
ontology is satisfiable through checking whetherdb(A) is
a model of〈cln(T ),A〉. They have also pointed out that a
contradiction on aDL-LiteR or a DL-LiteF ontology exists
only if a membership assertion in the ABox contradicts a
functionality assertion or a NI that is implied by the closure
cln(T ). These results motivate us to define an inconsistency
degree by using the domaindb(A) and〈cln(T ),A〉. Before
we give the definition of inconsistency degree, we would
like to show why it is reasonable to considerdb(A) and
〈cln(T ),A〉. We first give some properties about the relation
between〈T ,A〉 and 〈cln(T ),A〉 when they are used to
define the inconsistency set.

Theorem2: Let K = 〈T ,A〉 be aDL-LiteR ontology.
SupposeK′ = 〈cln(T ),A〉, I ∈ preferModel∆db(A)(K′)
and aI = a for each constanta ∈ ∆db(A). We have
ConSet(I,K′) ⊆ A.

Based on Theorem 2, we give the following theorem.
Theorem3: Consider a DL-LiteR ontology K =

〈T ,A〉, let A′
= A \ ConSet(I, 〈cln(T ),A〉), where

I ∈ preferModel∆db(A)(〈cln(T ),A〉) and aI = a for each



constanta ∈ ∆db(A). Let Krepair = 〈T ,A′〉, thenKrepair

is satisfiable.
Proof: (sketch) First we can give a three-

valued model Itemp of 〈cln(T ),A′〉 such that
ConSet(Itemp, 〈cln(T ),A′〉) = 0. Assume by contradiction
that Krepair is not satisfiable, then through Theorem
15 in paper [13], we can obtain thatdb(A′

) is not a
model of 〈cln(T ),A′〉 under classical semantics. By
construction, db(A′

) cannot contradict a membership
assertion in A′

, so we can deduce thatdb(A′
)

cannot satisfycln(T ). In this case, we can prove that
ConSet(Itemp, 〈cln(T ),A′〉) 6= 0 which contradicts the
conclusion of ConSet(Itemp, 〈cln(T ),A′〉) = 0. So the
claim holds.

From Theorem 3, we know that aDL-LiteR ontologyK
will be consistent when we remove fromK the conflicting
assertions of〈cln(T ),A〉 obtained from a three-valued pre-
ferred model of〈cln(T ),A)〉 with the domain∆db(A).

Note that Theorem 2 and Theorem 3 also hold forDL-
LiteF without functionality assertions. Now we are ready to
show an important property that holds forDL-LiteF with
functionality assertions.

Theorem4: Consider a DL-LiteF ontology K =
〈T ,A〉, let Tf be the set of functionality assertions
in T and D be a domain where|D| ≥ |∆db(A)|.
We have: |ConSet(I, 〈Tf ,A〉)| = |ConSet(I

′
, 〈Tf ,A〉)|,

where I ∈ preferModel∆db(A)(〈Tf ,A〉) and I
′ ∈ prefer-

ModelD(〈Tf ,A〉).
Proof: (sketch) Since〈Tf ,A〉 only contains function-

ality assertions, if〈Tf ,A〉 is inconsistent, we know that
there are some membership assertions inA that contradict
some functionality assertions. So the conflict set is only
related with those membership assertions and corresponding
functionality assertions. So the claim holds.

Theorem 4 tells us that for any three-valued preferred
model I of 〈Tf ,A〉 w.r.t any domain whose cardinality is
equal to or greater than that of∆db(A), |ConSet(I, 〈Tf ,A〉)|
is a fixed value. Whilst for any domain whose cardinality is
less than that of∆db(A), we cannot find a model of〈Tf ,A〉.
Based on Definition 9 in [13], we also know that〈Tf ,A〉 is
equal to〈cln(Tf ),A〉. So we obtain that the conflicting set
of |ConSet(I, 〈Tf ,A〉)| can be obtained by computing the
conflicting set of〈cln(Tf ),A〉 with the domain∆db(A).

Theorem 4 only discusses the conflicting set caused by
functionality assertions inDL-LiteF , we give the relation
between the conflicting set caused by NIs and the conflicting
set caused functionality assertions as follows.

Theorem5: Given aDL-LiteF ontologyK = 〈T ,A〉,
let Tf be the set of functionality assertions inT
and let Kf = 〈Tf ,A〉. Let Ti be the set of in-
clusion assertions inT and Ki = 〈Ti,A〉. We have
|ConSet(I, 〈cln(T ),A〉)| = |ConSet(Ii, 〈cln(Ti),A〉)| +
|ConSet(If , 〈cln(Tf ),A〉)|, where I ∈ preferModel∆db(A)

(〈cln(T ),A〉), Ii ∈ preferModel∆db(A)(〈cln(Ti),A〉) and

If ∈ preferModel∆db(A)(〈cln(Tf ),A〉).
In fact, Ki in Theorem 5 is theDL-LiteR ontology

obtained from K by removing all functionality asser-
tions in T . So Ki will be consistent when removing
ConSet(Ii, 〈cln(Ti),A〉) from Ki. By Theorem 5, we know
that for aDL-LiteF ontologyK = 〈T ,A〉, we only need to
compute the conflicting set of〈cln(T ),A〉 directly instead
of considering NIs and functionality assertions separately.

Based on Theorem 3, Theorem 4, Theorem 5, we know
that for aDL-LiteF ontologyK = 〈T ,A〉, there exist two
conflicting sets. One set is caused by NIs incln(T ), A is
consistent with NIs when this set is removed. The other
set is caused by functionality assertions incln(T ) whose
cardinality is fixed for any domain and it is easy to check
thatK be aDL-LiteR ontology if there is no functionality
assertions. Furthermore, based on Theorem 5, we know these
two sets can be obtained through computing the conflicting
set of 〈cln(T ),A〉 directly.

Based on the theorems and discussions given in this
section, we have the following definition of an inconsistency
degree of aDL-Lite ontology.

Definition 5 (Inconsistency Degree):Let K = 〈T ,A〉
be aDL-Lite ontology, and letI be a three-valued preferred
model of 〈cln(T ),A〉 w.r.t ∆db(A). The inconsistency de-
gree ofK, calledOntoInc(K), is defined as:OntoInc(K) =
|ConSet(I,〈cln(T ),A〉)|

|GroundSet(K)| , whereConSet(I, 〈cln(T ),A〉) is the set
of conflicting atomic individual assertions in〈cln(T ),A〉
and GroundSet(K) is the collection of all possible atomic
individual assertions.

Example4 (Example 1 contd.):
We can compute cln(T ) = {PhDStud v
¬Employee, Stud v ¬Employee, PhDStud v ¬Stud,
PhDStud v ¬PhDStud, (funct hasTutor)}. A three-
valued preferred model of〈cln(T ),A〉 is as follows:
I1 = (∆I1 , .I1), where ∆I1 = {a, b, c}, PhDStudI1 =
〈{a}, {a, b, c}〉, StudI1 = 〈{ø}, {a, b, c}〉, EmployeeI1 =
〈{ø}, {a, b, c}〉, hasTutorI1 = 〈{(a, b), (a, c)}, {(a, a), (b, a),
(b, b), (b, c), (c, a), (c, b), (c, c)}〉, (=)I1 = 〈{(a, a), (b, b),
(c, c), (b, c)}, {(b, a), (c, a), (a, b), (c, b), (a, c), (b, c)}〉. For
this model, GroundSet(K) = {PhDStud(a), PhDStud(b),
PhDStud(c), Employee(a), Employee(b), Employee(c),
Stud(a), Stud(b), Stud(c), hasTutor(a, a), hasTutor(b, a),
hasTutor(c, a), hasTutor(a, b), hasTutor(b, b), hasTutor(c, b),
hasTutor(a, c), hasTutor(b, c), hasTutor(c, c), = (a, a),
=(b, a), =(c, a), =(a, b), = (b, b), =(c, b), =(a, c),=(b, c),
=(c, c)}, ConSet(I1, 〈cln(T ),A〉) = {PhDStud(a),=(b, c)},
so OntoInc(K) = 2

27 .
From Definition 5, we can show the following properties

for DL-Lite ontologies.
Proposition6: Let K = 〈T ,A〉, K1, K2 are DL-Lite

ontologes, we have the following properties:
(R1) OntoInc(K)=0 whenK is consistent.
(R2) OntoInc(K1) ≤ OntoInc(K2) when GroundSet(K1) =
GroundSet(K2) andK1 ⊆ K2.



(R3) OntoInc(K) ≤ OntoInc(K ∪ S), where S is a set
of membership assertions which are not inK but in
GroundSet(K).

In Proposition 6, R2 says that the inconsistency degree of
an ontology will not decrease if we add to it new axioms
which do not change its ground set. R3 is a special case of
R2. It says that the inconsistency degree of an ontology will
not decrease if we add to it more membership assertions in
its ground set.

V. A LGORITHM FOR COMPUTING INCONSISTENCY

DEGREE

In this section, we give an algorithm to compute a
preferred modelI of 〈cln(T ),A〉 with the domain∆db(A).
First, we need to extend some definitions in [13]. We will
use the symbol “∗” to denote all constants in the domain∆.
For example, assume a domain∆ = {a, b, c}, thenR(a, ∗)
denotes the set{R(a, a), R(a, b), R(a, c)}.

We start with definingapplicable negative inclusions (NIs)
and applicable functionality assertions (FunAss), then we
use applicable NIs and FunAss to construct a chase for
〈cln(T ),A〉, written chase-cln(K). With the notionchase-
cln(K) in place, we give an algorithm to compute a preferred
model of 〈cln(T ),A〉.

Definition 6 (Applicable Negative Inclusions):For
a DL-Lite ontology K = 〈T ,A〉, let Sp = A and x
be a constant in∆db(A). SupposeS is a certain set of
membership assertions. A NIα ∈ cln(T ) is applicable in
S to a membership assertionf ∈ Sp if
• α = A1 v ¬A2, f = A1(a) and¬A2(a) /∈ S;
• α = ∃R v ¬A, f = R(a, b) and¬A(a) /∈ S;
• α = ∃R− v ¬A, f = R(a, b) and¬A(b) /∈ S;
• α = R1 v ¬R2, f = R1(a, b) and¬R2(a, b) /∈ S;
• α = R1 v ¬R−2 , f = R1(a, b) and¬R2(b, a) /∈ S;
• α = R−1 v ¬R2, f = R1(a, b) and¬R2(b, a) /∈ S;
• α = R−1 v ¬R−2 , f = R1(a, b) and¬R2(a, b) /∈ S;
• α = A v ¬∃R, f = A(a) and∃x,¬R(a, x) /∈ S;
• α = A v ¬∃R−, f = A(a) and∃x,¬R(x, a) /∈ S;
• α=∃R1 v ¬∃R2, f =R1(a, b) and∃x,¬R2(a, x) /∈ S;
• α=∃R−1 v¬∃R−2 , f =R1(a, b) and∃x,¬R2(x, b) /∈ S;
• α=∃R1v¬∃R−2 , f =R1(a, b) and∃x,¬R2(x, a) /∈ S;
• α=∃R−1 v¬∃R2, f =R1(a, b) and∃x,¬R2(b, x) /∈ S.

Definition 7 (Applicable Functionality assertion):
For a DL-Lite ontology K = 〈T ,A〉, let Sp = A and x
be a constant in∆db(A). SupposeS is a certain set of
membership assertions. A FunAssα ∈ cln(T ) is applicable
in S to a membership assertionf ∈ Sp if
• α = (funct R), f = R(a, b) and ∃x,R(a, x) ∈
Sp,=(b, x) /∈ S;

• α = (funct R−), f = R(a, b) and ∃x,R(x, b) ∈ Sp,
=(a, x) /∈ S.

Applicable NIs and FunAss can be used to construct
chase-cln(K). Roughly speaking,chase-cln(K) is a set as-
sertion constructed step-by-step fromA andS. At each step

of construction, a NI or a functionality assertionα ∈ cln(T )
is applied to a membership assertionf ∈ Sp, so that a new
suitable membership assertion is added toS, thus obtaining
a new setS ′ in which α is no longer applicable tof . For
example, ifα = A1 v ¬A2 is applicable tof = A1(a), the
membership assertion to be added toS is ¬A2(a), that is,
S ′=S ∪ ¬A2(a). Our construction process about thechase-
cln(K) is precisely given below.

Definition 8: Given a DL-Lite KB K = 〈T ,A〉,
cln(T ) is the closure ofT . We construct a sequence of
setsSj inductively as follows:
Sp = A, S0 = Ø. Sj+1 = Sj ∪ fnew, where fnew is
a membership assertion obtained as follows: Letf be a
membership assertion inSp such that there exists an axiom
α ∈ cln(T ) applicable inSj to f .
Caseα, f of
(cr1) α = A1 v ¬A2 andf = A1(a) then fnew = ¬A2(a)
(cr2) α = ∃R v ¬A andf = R(a, b) then fnew = ¬A(a)
(cr3) α = ∃R− v ¬A andf = R(a, b) then fnew = ¬A(b)
(cr4) α = R1 v ¬R2 andf = R1(a, b)

then fnew = ¬R2(a, b)
(cr5) α = R1 v ¬R−2 andf = R1(a, b)

then fnew = ¬R2(b, a)
(cr6) α = R−1 v ¬R2 andf = R1(a, b)

then fnew = ¬R2(b, a)
(cr7) α = R−1 v ¬R−2 andf = R1(a, b)

then fnew = ¬R2(a, b)
(cr8) α = A v ¬∃R andf = A(a)

then fnew = ¬R(a, ∗)
(cr9) α = A v ¬∃R− andf = A(a)

then fnew = ¬R(∗, a)
(cr10) α = ∃R1 v ¬∃R2 andf = R1(a, b)

then thenfnew = ¬R2(a, ∗)
(cr11) α = ∃R−1 v ¬∃R−2 andf = R1(a, b)

then fnew = ¬R2(∗, b)
(cr12) α = ∃R1 v ¬∃R−2 andf = R1(a, b)

then fnew = ¬R2(∗, a)
(cr13) α = ∃R−1 v ¬∃R2 andf = R1(a, b)

then fnew = ¬R2(b, ∗)
(cr14) α = (funct R) andf = R(a, b),∀x,R(a, x) ∈ Sp

then fnew = (=(b, x))
(cr15) α = (funct R−) andf = R(a, b), ∀x,R(x, b) ∈ Sp

then fnew = (=(x, a)).
In Definition 8, we know that the number of NIs and

FunAss incln(T ) is fixed and the number of membership
assertions inSp is also fixed becauseSp = A. Furthermore,
a NI or a FunAss incln(T ) can be applied at most once to a
membership assertion inSp (afterwards, the precondition is
not satisfied and the NI or FunAss is no longer applicable),
and a rule can be applied at mostm times to some member-
ship assertions, wherem is the number of NIs and FunAss in
cln(T ). We also know that no new constant is produced in
the construction process. So the set of membership assertions
obtained, writtenSn, is the finite union of allSj , namely,



Sn =
⋃

j∈N Sj .
Let chase-cln(K) = Sp ∪ Sn, whereSp equals toA, Sn

is composed by membership assertions which are obtained
through applying NIs or FunAss to membership assertions
in Sp. Note that Sp and Sn are both finite, sochase-
cln(K) is finite. Furthermore,chase-cln(K) is unique because
cln(T ) andSp have not been changed in the construction
process, and the construction ofchase-cln(K) only depends
on cln(T ), Sp and all constants occurring inA (uses for
obtaining membership assertions of the form¬R(∗, a) or
¬R(a, ∗)).

Example5 (Example 1 contd.):From K, we can ob-
tain that ∆db(A) = {a, b, c} and cln(T ) = {PhDStudv
¬Employee, Stud v ¬Employee, PhDStud v ¬PhDStud,
PhDStudv ¬Stud, (funct hasTutor)}. Sp = {PhDStud(a),
hasTutor(a, b), hasTutor(a, c)}, S0 = Ø.
• For PhDStudv ¬PhDStud, becausePhDStud(a) ∈ Sp

and¬PhDStud(a) /∈ S0, these would trigger the chase
rule cr1, so ¬PhDStud(a) will be added toS0 ob-
taining S1 = {¬PhDStud(a)}; In an analogous way,
¬Employee(a) will be added toS1 obtainingS2 and
¬Stud(a) will be added toS2 obtaining S3, that is
S3 = {PhDStud(a), Employee(a),¬Stud(a)};

• For (functhasTutor)}, becausehasTutor(a, b) ∈ Sp and
hasTutor(a, c) ∈ Sp,=(b, c) /∈ S3, these would trigger
the chase rulecr14, so=(b, c) will be added toS3 ob-
tainingS4 = {PhDStud(a), Employee(a),¬Stud(a),=
(b, c)};

So Chase-cln(K) = Sp ∪ Sn, whereSp = {PhDStud(a),
hasTutor(a, b), hasTutor(a, c)}, Sn = S1 ∪ S2 ∪ S3 =
{¬PhDStud(a),¬Employee(a),¬Stud(a),=(b, c)}.

In this paper, inclusion axioms are interpreted asinter-
nal inclusionswhich propagate contradictory information
forwardly, but not backwardly as it does not allow for
contraposition reasoning (see [8] for definition of internal
inclusion). Indeed,Sn is a result of propagating contradic-
tory information based on internal inclusion throughABox.
This is because in the process of constructingSn, only
negative inclusions and function assertions are considered,
regardless of positive inclusions. Algorithm 1 gives an al-
gorithm for computing a three-valued interpretationIcln for
〈cln(T ),A〉, written asIcln=〈∆Icln , .Icln〉, based onchase-
cln(K), i.e.,Sp andSn. The returned valueIcln of Algorithm
1 is a preferred three-valued model of〈cln(T ),A〉 (see
Theorem 7).

Example6 (Example 5 continue):By Algorithm 1,
we can obtainIcln = 〈∆Icln , .Icln〉, where ∆Icln =
{a, b, c}, PhDStudIcln = 〈{a}, {a, b, c}〉, EmployeeIcln =
〈∅, {a, b, c}〉, StudIcln = 〈∅, {a, b, c}〉, hasTutorIcln =
〈{(a, b), (a, c)}, {(a, a), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)
}〉, (=)Icln = 〈{(a, a), (b, b), (c, c), (b, c))}, {(a, b), (a, c), (b,
a), (b, c), (c, a), (c, b)}〉.

The following theorem shows the correctness of our
algorithm.

Algorithm 1 Algorithm for computingIcln

1: Input: Sp,Sn

2: Output:Icln

3: ∆Icln = ∆db(A)

4: for each constantx occurring inChase-cln(K) do
5: xIcln = x
6: end for
7: for each atomic conceptA do
8: AIcln = 〈{a | A(a) ∈ Sp}, {b | ¬A(b) ∈ Sn} ∪

(∆db(A) \ {a | A(a) ∈ Sp})〉
9: end for

10: for each atomic roleP do
11: P Icln = 〈{(a1, a2) | P (a1, a2) ∈ Sp}, {(b1, b2) |

¬P (b1, b2) ∈ Sn} ∪ ((∆db(A) ×∆db(A)) \ {(a1, a2) |
P (a1, a2) ∈ Sp})〉

12: end for
13: =Icln= 〈{(a1, a2) | (a1 = a2) ∈ Sn} ∪ {(a, a) | ∀a ∈

∆db(A)}, {(b1, b2) | ∀b1, b2 ∈ ∆db(A) andb1 6= b2}〉.

Theorem7: Let K = 〈T ,A〉 be a DL-Lite ontology,
then the three-valued interpretationIcln obtained by Algo-
rithm 1 is a preferred three-valued model of〈cln(T ),A〉
with the domain∆db(A).

Proof: (sketch) We first show thatIcln is a model of
〈cln(T ),A〉. BecauseA ⊆ chase-cln(K), so Icln satisfies
all membership assertions inA. Then, we only need to
prove thatIcln |= cln(T ). Suppose by contradiction that
a NI of the form A1 v ¬A2 ∈ cln(T ), where A1 and
A2 are atomic concepts, is not satisfied byIcln. Then there
exists a constanta ∈ ∆db(A) such thatA1(a) ∈ Sp and
¬A2(a) /∈ Sn. However, such a situation would trigger the
rule cr1, thus causing the adding of¬A2(a) in Sn at some
step, hence contradicting the assumption. NIs of other form
can be proved in an analogous way.

Second we show thatIcln is a preferred model of
〈cln(T ),A〉. SupposeIcln is not a preferred model of
〈cln(T ), A〉. So there must exist a preferred model of
〈cln(T ),A〉, namedI, and an atomic assertionα such that
αIcln = B, αI 6= B. Supposeα = A(a). By Definition
8 and Algorithm 1, there must exist the following cases:
{C v ¬A,C(a), A(a)} or {∃R v ¬A,R(a, b), A(a)}
or {∃R− v ¬A,R(b, a), A(a)} in 〈cln(T ),A〉. Because
AI(a) 6= B, so AI(a) = t. According to the three-valued
semantics of internal inclusion,I can not satisfy either case
above. That is,I is not a three-valued model of〈cln(T ),A〉,
contradictive with the assumption. Similarly, we can get the
same result for the cases thatα is R(a, b) or = (a, b). So
Icln is a preferred model of〈cln(T ),A〉.

Example7 (Example 6 continue):|GroundSet(K)| =
27, ConSet(Icln, 〈cln(T ),A〉) = {PhDStud(a),=(b, c)}, so
OntoInc(K) = 2

27 .
We consider the complexity of computing the inconsis-



tency degree as follows.
Theorem8: Given a DL-Lite ontology K = 〈T ,A〉,

the inconsistency degree ofK can be computed in PTime in
the size ofK.

Proof: (sketch) Firstcln(T ) is polynomially related
to the size of TBoxT [13]. By Definition 8, the time of
computingchase-cln(K) is at most|A|× |cln(T )| ×|∆db(A)|
because|Sp| = |A| and |Sn|=|A|× |cln(T )| ×|∆db(A)| in
the worst case. That is,|Sn| is polynomial to the size of
K. By Algorithm 1, we know that the time of computing
modelIcln is c×(|Sp|+|Sn|+|∆db(A)|) +r×(|Sp|+|Sn|+
|∆db(A)|), wherec andr denote the number of concepts and
roles inK respectively. SoIcln is obtained in polynomial
time to the size ofK. From Icln, the inconsistency degree
can be computed in polynomial time to|∆Icln |, which is
polynomially related to the size ofK.

VI. CONCLUSION AND FUTURE WORK

Measuring inconsistency in inconsistent ontologies is an
important problem in ontology engineering. In this paper, we
considered the problem of computing inconsistency degree
for DL-Lite ontologies. We first gave a three-valued seman-
tics for DL-Lite. Then we defined an inconsistency degree
of DL-Lite ontologies. The inconsistency degree is only a
single value, not a sequence. Arguably, this single value is
easier to be used to deal with inconsistencies than a sequence
of values given in [5]. Furthermore, we also proposed a
polynomial-time algorithm to compute the inconsistency
degree of an ontology. As a future work, we will implement
our algorithm and provide experimental results.
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