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Abstract

This paper introduces a new Importance Sampling scheme, called Adaptive
Twisted Importance Sampling, which is adequate for the improved estimation
of rare event probabilities in he range of moderate deviations pertaining to the
empirical mean of real i.i.d. summands. It is based on a sharp approximation
of the density of long runs extracted from a random walk conditioned on its end
value.
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0.1 Introduction and notation

Importance Sampling procedures aim at reducing the calculation time which is
necessary in order to evaluate integrals, often in large dimension. We consider
the case when the integral to be numerically computed is the probability of an
event defined by a large number of random components; this case has received
quite a lot of attention, above all when the event is of small probability, typically
of order 10−8 or so, as occurs frequently in industrial applications or in commu-
nication devices. The order of magnitude of the probability to be estimated is
here somehow larger, and aims at coping with ”moderate probabilities” as dealt
with in statistics. The basic situation in IS can be stated as follows.
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Let Z be some random variable, say on R, with probability measure P and
density p. Let A be a subset of R with P (A) > 0. Let ZL

1 := (Z1, ..., ZL) denote
a sample of i.i.d. observations of Z . By the law of large numbers

PL :=
1

L

L∑

l=1

1A(Zl) (1)

estimates P (A) without bias, when the Z ′is are sampled under the density p.
An altenative unbiased estimate of P (A) can be defined through

P g
L :=

1

L

L∑

l=1

p(Yl)

g(Yl)
1A(Yl) (2)

for all density g when the support of p is a subset of the support of g, and
the Y ′i s.are i.i.d. observations of a r.v. Y with density g. As is well known the
optimal choice for the IS sampling density g is pZ/A , the density of Z conditioned
upon the event (Z ∈ A), unfortunately an unpracticable choice which presumes
the knowledge of P (A), the quantity to be estimated. Would this sampling
density be at hand, the required number L of replications of Y to be performed
would reduce to 1 and the estimate would be exactly P (A). This fact motivates
efforts in order to approximate pZ/A in the case when the variable Z has a
distribution which allows it. Sometimes the random variable Z is obtained as
a function of a large number of random variables, say Xn

1 := (X1, ...,Xn) and
the event (Z ∈ A) is of small or moderate probability. Also the density of Z

cannot be evaluated analytically, due to the very definition of Z, but the random
variables Xi ’s have known distribution. This happens for instance when Z is
a moment estimator or when it is the linear part of the expansion of an M or L
-estimate (see Section 4). The example which we have in mind is the following,
which helps as a benchmark case in the IS literature.

The r.v’s X′is are i.i.d. , are centered with variance 1, with common density
pX on R, and

Z :=
1

n

n∑

i=1

Xi =:
1

n
Sn

1

is the empirical mean of the X′is. The set A is

A := (an,∞) (3)

where an tends slowly to E(X1) from above and we intend to estimate

Pn := P

(
1

n
Sn

1 ∈ A

)

for large but fixed n. Many asymptotic results provide sharp estimates for
P (Z ∈ A) but it is a known fact that asymptotic expansions are not always
good tools when dealing with numerical approximations for fixed (even large)
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n. For example, citing Ermakov (2004, p 624, [7]), the Berry-Esseen approxima-
tion for the evaluation of risks of order 10−2 in testing is pertinent for sample
sizes of order 5000-10000; also the accuracy of available moderate deviation
probabilities as developped by Inglot, Kallenberg and Ledwina in [11] has not
been investigated. This motivates our interest in numerical techniques in this
field.

According to (1) the basic estimate of P (Z ∈ A) is defined as follows: gen-
erate L i.i.d. samples Xn

1 (l) with underlying density pX and define

P (n)(En) :=
1

L

L∑

l=1

1En (Xn
1 (l))

where
En := {(x1, ..., xn) ∈ R

n : sn
1/n > an} . (4)

Here sn
1 := x1+...+xn . The statistics P (n)(En) estimates the moderate deviation

probability of the sample mean of the X′is. Also denoting g a sampling density
of the vector Y n

1 the associated IS estimate is

P (n)
g (E) :=

1

L

L∑

l=1

pX (Y n
1 (l))

g (Y n
1 (l))

1E (Y n
1 (l)) . (5)

In the range of moderate deviations the two major contributions to IS
schemes for the estimation of Pn are Fuh and Hu [10] and Ermakov [8]. The
paper by Fuh and Hu does not consider events of moderate deviations as in-
tended here; it focuses on IS schemes for the estimation of P (Z ∈ A) where Z
is a given multinormal random vector and A is a fixed set in R

d. The authors
consider efficiency with respect to the variance of the estimate and state that
for the case of interest the efficient sampling scheme is deduced from the dis-
tribution of Z by a shift in the mean inside the set A. The papers by Ermakov
instead handle similar problems as we do. Ermakov’s 2007 paper [8] considers
a sampling scheme where g is the density of i.i.d. components. He proves that
this scheme is efficient in the sense that the computational burden necessary
to obtain a relative precision of the estimate with respect to Pn does not grow
exponentially as a function of n. He considers statistics of greater generality
than the sample mean, such as M and L estimators; in the range of moderate
deviations the asymptotic behavior of those objects is captured however through
their linear part which is the empirical mean of their influence function, which
puts the basic situation back at the center of the scene. We discuss efficiency
in Section 3 and present some results in connection with Ermakov’s pertaining
to M and L estimators in Section 4.

The numerator in the expression (5) is the product of the pX1(Yi)
′s while

the denominator need not be a density of i.i.d. copies evaluated on the Y ′i s.
Indeed the optimal choice for g is the density of Xn

1 conditioned upon En, say
pXn

1 /En
.
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Since the optimal solution is known to be pXn
1 /En

, the best its approximation,
the best the sampling scheme, at least when it does not impose a large calcu-
lation burden; classical sampling schemes consist in simulation of independent
copies of r.v.’s Yi(l) ,1 ≤ i ≤ n, and efficiency is defined in terms of variance of
the estimate inside this class of sampling, which, by nature, is suboptimal with
respect to sampling under good approximations of pXk

1/En
for long runs, i.e. for

large k = kn.The present paper explores the choice of good sampling schemes
from this standpoint. Obviously mimicking the optimal scheme results in a net
gain on the number L of replications of the runs which are necessary to obtain a
given accuracy of the estimate with respect to Pn . However the criterion which
we consider is different from the variance, and results as an evaluation of the
MSE of our estimate on specific subsets of the runs generated by the sampling
scheme, which we call typical subsets, namely having probability going to 1 un-
der the sampling scheme as n increases. On such sets, the MSE is proved to be
of very small order with respect to the variance of the classical estimate, whose
MSE cannot be diminuished on any such typical subsets. We believe that this
definition makes sense and prove it also numerically. This is the scope of Section
3 in which it will be shown that the relative gain in terms of simulation runs
necessary to perform an α% relative error on Pn drops by a factor

√
n− k/

√
n

with respect to the classical IS scheme.
Our proposal therefore hinges on the local approximation of the conditional

distribution of longs runs Xk
1 from Xn

1 . This cannot be achieved through the
classical theory of moderate deviations, first developped by De Acosta and more
recently by Ermakov; at the contrary the ad hoc procedure developped in the
range of large deviations by Diaconis and Freedman [6] for the local approxima-
tion of the conditional distribution of Xk

1 given the value of Sn
1 is the starting

point of the present approach. We find it useful to briefly expose these two
different points of view. We also mention the approximation technique for mod-
erate deviations of sub linear functionals of the empirical measure by Inglot,
Kallenberg and Ledwina [11], based on strong approximation techniques; these
results provide explicit equivalents for the probability of moderate deviations,
but do not lead to adequate approximations for the obtention of their numerical
counterparts by IS methods.

The following notation and assumptions will be kept throughout this paper.
We assume that X1 satisfies the Cramer condition, i.e. X1 has a finite

moment generating function Φ(t) := E exp tX1 in a non void neighborhood of
0; denote

m(t) :=
d

dt
log Φ(t) (6)

and

s2(t) :=
d

dt
m(t) (7)

when defined. The values of m(tα) := d
dt log Φ(tα) and s2(tα) := d

dtm(tα) are
the expectation and the variance of the tilted density

πα(x) :=
exp tαx

Φ(tα)
p(x) (8)
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where tα is the only solution of the equation m(t) = α when α belongs to the
support of p. Denote Πα the probability measure with density πα. The Chernoff
function of X1 is

I(x) := sup
t
tx− log Φ(t)

for x in the support of X1 and it holds

d

dx
I(x) = m←(x)

d2

dx2
I(x) =

1

s2 ◦m←(x)

where m←(x) denotes the reciprocal function of m.
Denote

ϕ(s) :=

∫ +∞

−∞
eisxpX(x)dx

the characteristic function of X1. Assume that
∫ +∞

−∞
|ϕ(s)|ν ds <∞ (9)

for some ν ≥ 1. This condition entails the validity of the Edgeworth expansions
to be used in the sequel (see e.g. Feller [9]).

The notation p(X = x) is used to denote the value of the density p of the r.v.
X at point x. The notation p(Sn

1 = s) is used to define the value of the density
of the r.v. Sn

1 under p, i.e. when the summands are i.i.d. with density p. Also
we may write p (f (Xn

1 ) = u) to denote the density (on the corresponding image
space) of some function f of the sample Xn

1 . We write Pn the distribution of
Xn

1 given En and pn its density. The symbol n denotes the standard normal
density on R.

0.1.1 From moderate deviations to conditional distribu-

tions

A basic requirement for a good IS sampling scheme is that it mimicks the con-
ditional density pXn

1 /En
. We first expose a general argument in this direction in

order to clarify that there is no bypass through the general theory of large or
moderate deviations to achieve this goal. Also the present discussion motivates
the choices of classical IS sampling schemes (Ermakov), emphasizing that the
general theory provides the proof that the marginal conditional distribution of
Xn

1 under En is well approximated by Πan a statement which is usually refered
to as a Gibbs conditional principle. We need some tools from the moderate
deviation principle as developped by [7] following [5].

Let F be a class of measurable functions defined on R and MF be the class
of all signed finite measures on R which satisfy

∫
|f |d |Q| <∞ for all f in F.
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On MF define the τF topology, which is the coarsest for which all mappings
f →

∫
fdQ (Q ∈ MF ) are continuous for all f in F . For P a probability

measure and Q in M(R) the so-called Chi-square distance between P and Q is
defined through

χ2(Q,P ) :=
1

2

∫ (
dQ

dP
− 1

)2

dP

whenever Q is absolutely continuous with respect to P, and equals +∞ other-
wise.

The following moderate deviation Sanov result holds; see [8]. Assume that
an tends to 0 and an

√
n tends to infinity.

Let Pn := 1
n

∑n
i=1 δXi denote the empirical measure pertaining to an i.i.d.

sample X1,X2, ...,Xn. Write Mn := 1
an

(Pn − P ) . It holds

− inf
Q∈int(B)

χ2(Q,P ) ≤ lim inf
n

1

na2
n

log Pr (Mn ∈ B) (10)

≤ lim sup
n

1

na2
n

log Pr (Mn ∈ B) ≤ − inf
Q∈cl(B)

χ2(Q,P )

where the interior and closure of the set B refer to the τF topology on MF .
Consider now the asymptotic distribution of X1 conditionally upon the

sequence of events (Sn
1/n > anx), so-called moderate deviation events. With

F := B(R) ∪ (v → v) and B(R) the class of all bounded measurable functions,
(10) holds with B substitued by Ωx the subset of MF defined through

Ωx :=

{
Q :

∫
tdQ(t) ≥ x and

∫
dQ(t) = 0

}
.

With P the probability measure of the r.v. X1 denote Q∗ the χ2 projection
of P on Ωx, namely

Q∗ := arg inf
{
χ2(Q,P ), Q ∈ Ωx

}
.

The set Ωx is closed in MF (R) equipped with the τF topology. Existence of
a χ2 projection of P on a τF−closed subset of M(R) holds as a consequence
of Theorem 2.6 in [3] when

∫
|f |dP is finite for all f in F, which clearly holds

since E |X1| is finite. Uniqueness follows from the convexity of Ωx and the strict
convexity of Q→ χ2(Q,P ). From (10) it can easily be obtained that

P (X1 ∈ A/En,x) = P (A) + anxQ
∗(A) + o (an) (11)

with En,x := (Sn
1 ≥ nanx) which in turn yields the following

Proposition 1 With the above notation

P (X1 ∈ A/En,x) =

∫

A

πanx(y)dy + o(1) (12)
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The proofs of (11) and of the above Proposition are differed to the appendix.
This way cannot provide an equivalent expression for the conditional density of
X1 which requires strong regularity assumptions. Furthermore it cannot be
extended to the case of interest here, when X1 is substituted by Xk

1 for large
values of k = kn, i.e. when an approximation of the law of the path Xn

1 is
needed, at least on long runs.

However the result in Proposition 1 is a strong argument in favor of Er-
makov’s sampling scheme, namely simulating i.i.d. r.v.’s with common density
πan in (5).

0.1.2 Density of a partial path conditioned on the exact

value of the sum

The other way follows Zabell [16] and Diaconis and Freedman [6] approaches,
which were developped in the range of large deviations. See also van Camper-
hout and Cover [15], who considered the density or the c.d.f. of Xk

1 conditioned
on the value of Sn

1 for fixed k. It is restricted in essence to the context of the
sample mean. The sketch of the method is as follows.

The density of X1 given Sn
1 = ns writes

pX1/Sn
1 =ns(x1) =

pSn
2
(ns− x1)

pSn
1
(ns)

pX1(x1) (13)

where we used the symbol p to emphasize that the X′is are i.i.d. with common
density pX1 . It is a known fact, and easy to establish, that the density defined
in (13) is invariant when sampling from any density of the form (8) instead of
pX1 . This yields, selecting α = s

pX1/Sn
1 =nan

(x1) =
πs
Sn

2
(ns− x1)

πs
Sn

1
(ns)

πs
X1

(x1).

When the r.v’s Xi’s obey a local central limit theorem under the sampling
density πs

X1
it can be proved that

pX1/Sn
1 =ns(x1) = πs

X1
(x1)(1 + o(1)) (14)

as n tends to ∞. Diaconis and Freedman obtain such a statement when X1 is
substituted by Xk

1 with k/n → θ, 0 ≤ θ < 1. We will continue this approach
in the range of moderate deviations, enhancing it to the density of Xk

1 with
k/n → 1. Integrating with respect to the conditional distribution of Sn

1 under
the event En provides the required approximation.

The scope of the present paper is to present some technique which provides
typical realisations of runs Xk

1 under the conditional event En for very large k.
Therefore it aims at the exploration of the support of the distribution of Xn

1
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under En. The application which is presented pertains to Importance Sampling
for the estimation of rare events probabilities through the Adaptive Twisted IS
scheme.

Section 2 of this paper is devoted to the approximation of the conditional
density of Xk

1 under En. Section 3 presents the ATIS algorithm , a number of
remarks for its practical implementation, and discusses efficiency . Section 4 is
devoted to M and L estimates and their moderate deviation probabilities. We
have postponed many proofs to the Appendix, but the main one of Section 2.

0.2 Conditioned random walks

0.2.1 Three basic Lemmas

Moderate deviations results for sums of i.i.d. real valued random variables
under our assumptions have been studied since the 50’s by many authors. We
will make use of a local result, due to Richter [13], which we state as

Lemma 2 Under the general hypotheses and notation of this paper, when an is
a sequence satisfying limn→∞ an = 0 together with

√
nan → ∞ it holds

p

(
Sn

1

n
= an

)
=

√
n exp−nI(an)√

2π
(1 +O(an)) .

The global counterpart of Lemma 2 in the form used here is due to Jensen
(see [12], corollary 6.4.1) and states

Lemma 3 Under the same hypotheses as above

P

(
Sn

1

n
> an

)
=

exp−nI(an)√
2π

√
nψ(an)

(
1 +O(

1√
n

)

)

where ψ(an) := tans(tan).

The following known fact is used repetedly. It sets that the conditional
densities of sub-partial sums given the partial sum is invariant through any
tilting. Assume X1, ...,Xn i.i.d. with density p and note πa the corresponding
tilted density for some parameter a.

Lemma 4 For 1 ≤ i ≤ j ≤ n, for all a in the support of P, for all u and s

p
(
S

j
i = u/Sn

1 = s
)

= πa
(
S

j
i = u/Sn

1 = s
)
.
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0.2.2 Typical paths conditioned on their sum

The sequence of constants an defining A in (3) and (4) satisfies

(A)






limn→∞ an

√
n− k = ∞

limn→∞
nan√
n−k

= ∞
limn→∞ an (logn)

2+δ
= 0 for some positive δ

limn→∞
n−k

n = 0

In this section we obtain a close approximation for p
(
Xk

1 = Y k
1 /

Sn
1

n = σ
)

for

k = kn where an and k satisfy the following set of conditions.

The value of
Sn

1

n satisfies an ≤ σ ≤ an + cn with

(C)






limn→∞ nancn = ∞
limn→∞

ncn√
n−k

= 0

limn→∞
ncn

an(n−k) = 0

limn→∞
exp−nancn

an(log n)2+δ = 0

We denote (A1),...,(A4) , (C1),...,(C4) the above conditions.

It appears clearly from (5) that the optimal choice g = pXn
1 /Sn

1 >nan
need only

to hold on paths Y n
1 sampled under g and not on all R

n. In a similar way the
approximation of the optimal density need to be realized only when evaluated on
samples Y n

1 (l) generated according to this approximation, and approximation of
pXn

1 /E on the entire space R
n is not needed. The approximation of pn by such a

density gn is difficult to obtain on realizations under gn and much easier under
pXn

1 /Sn
1 >nan

. The following Lemma proves that approximating pn by gn under
pn is similar to approximating pn by gn under gn.

Let Rn and Sn denote two p.m’s on R
n with respective densities rn and sn.

Lemma 5 Suppose that for some sequence εn which tends to 0 as n tends to
infinity

rn (Y n
1 ) = sn (Y n

1 ) (1 + oRn(εn)) (15)

as n tends to ∞. Then

sn (Y n
1 ) = rn (Y n

1 ) (1 + oSn(εn)) . (16)

Proof. Denote

An,εn := {yn
1 : (1 − εn)sn (yn

1 ) ≤ rn (yn
1 ) ≤ sn (yn

1 ) (1 + εn)} .

It holds for all positive δ
lim

n→∞
I(n, δ) = 1

where

I(n, δ) :=

∫
1An,δεn

(yn
1 )

rn (yn
1 )

sn(yn
1 )

sn(yn
1 )dyn

1 .

9



Since
I(n, δ) ≤ (1 + δεn)Sn (An,δεn)

it follows that
lim

n→∞
Sn (An,δεn) = 1,

which proves the claim.
This shows that the approximation of pn need not to be achieved on the

whole space R
n but only on typical paths under the conditionning event En. It

appears that such a sharp approximation is possible on quite long portions Y k
1

of sample paths generated under Pn, when k tends to ∞ together with n and
k/n goes to 1.

Let σ such that an ≤ σ ≤ bn with bn − an small enough. We prove that the
sequence of conditional densities p

(
Xk

1 = Y k
1 /S

n
1 = nσ

)
is closely approximated

by a sequence of suitably modified tilted densities when evaluated at Y k
1 , a

realization under the density pn. This is the scope of Proposition 8 hereunder.
The size of bn − an is such that pn

(
Y k

1

)
can be substituted by an integral of

p
(
Xk

1 = Y k
1 /S

n
1 = nσ

)
with respect to the distribution of Sn

1 conditionally on
(Sn

1 ∈ (nan, nbn)) . This is the scope of Proposition 15.
Define Σi

1 := Y1 +...+ Yi and ti,n through

m(ti,n) = mi,n :=
n

n− i

(
σ − Σi

1

n

)
(17)

s2i,n :=
d2

dt2
(logEπmi,n exp tX1) (0)

and

µ
(i,n)
3 :=

d3

dt3
(logEπmi,n exp tX1) (0)

which are the variance and the kurtosis of πmi,n , reflecting the corresponding
characteristics of p, since ti,n is close to 0 as shown in the following result.

Lemma 6 Let σ belong to (an, bn) and assume that (A) holds together with

(C2) and (C3). Then under Pn , ti,n tends to 0, s2i,n tends to 1 and µ
(i,n)
3 tends

to the third centered moment of p uniformly upon σ in (an, bn).

Proof. Write

m(ti,n) =
n

n− i
(σ − an) +

n

n− i

(
an − Σi

1

n

)

which goes to 0 under Pn uniformly upon σ under (C2) and (C3) where we used
Lemma ??; therefore ti,n goes to 0 uniformly in σ which concludes the proof.

The following density gσ(yk
1 ) defined in (20) on R

k provides the sharp ap-
proximation of p(Xk

1 = yk
1/S

n
1 = nσ). This density is defined on R

k as a product

10



of conditional densities which are set in the following displays. It only approx-
imates p(Xk

1 = yk
1/S

n
1 = nσ) on typical vectors yk

1 which are realizations of
Xk

1 under En. Chose any density g0(y1) (for convenience denoted g0(y1/y0) in
(20).and for 1 ≤ i ≤ k−1 define recursively the sequence of conditional densities
gi(yi+1/y

i
1) through

g0(y1) = πσ(y1)

and

gi(yi+1/y
i
1) =

exp

(
yi+1

(
ti,n +

µ
(i,n)
3

2s4
i,n(n−i−1)

)
− y2

i+1/
(
2s2i,n (n− i− 1)

))
p(yi+1)

Ki(yi
1)

(18)
a density on R , with ti,n the unique solution of the equation

m(ti,n) =
n

n− i

(
σ − si

1

n

)

where si
1 := y1 + ...+ yi. The normalizing factor Ki(y

i
1) is

Ki(y
i
1) =

∫
exp

(
x

(
ti,n +

µ
(i,n)
3

2s4i,n (n− i− 1)

)
− x2/

(
2s2i,n (n− i− 1)

)
)
p(x)dx.

(19)
Define gσ the density on R

k through

gσ(yk
1 ) :=

k−1∏

i=0

gi(yi+1/y
i
1). (20)

The definition in,(18) can also be stated as

gi+1(yi+1/x
i
1) = Cip(yi+1)n (ab, a, yi+1)

where n
(
µ, σ2, x

)
is the normal density with mean µ and variance σ2 at x. Here

a = s2i,n (n− i− 1)

b = ti,n +
µ

(i,n)
3

2s4i,n (n− i− 1)

and the constant Ci is
(
Ki(y

i
1)
)−1

. This form is appropriate for the simulation.

The density gi(yi+1/y
i
1) is a slight modification from πm(ti,n). It approxi-

mates sharply p
(
Xi+1 = yi+1/S

n
1 = nσ, yi

1

)
. For small values of i, the contribu-

tion of yi+1
µ

(i,n)
3

2s4
i,n(n−i−1)

and of y2
i+1/

(
2s2i,n (n− i− 1)

)
is small and gi(yi+1/y

i
1)

fits nearly with πan(yi+1), when σ is close to an, which is in accordance both
with Diaconis and Freedman’s approximation when translated in the moderate
deviation range and with Ermakov’s IS scheme.
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Remark 7 When the Xi’s are i.i.d. normal then gi(yi+1/y
i
1) = p(yi+1/y

i
1,

Sn

n =
σ) for all i.

We then have

Proposition 8 Set σ with an ≤ σ ≤ bn and assume (A) together with (C2)
and (C3). Let Y n

1 be a sample with distribution Pn. Then uniformly upon σ

p(Xk
1 = Y k

1 /S
n
1 = nσ) = gσ(Y k

1 )(1 + oPn(an (logn)
2+δ

)). (21)

Proof. The proof uses a Bayes formula to write p(Xk
1 = Y k

1 /S
n
1 = nσ) as a

product of k conditional densities of individual terms of the trajectory evaluated
at Y k

1 , and the invariance property stated in Lemma 4. Each term of this product
is approximated through an Edgeworth expansion which together with the three
preceeding lemmas, conclude the proof. It holds

p(Xk
1 = Y k

1 /S
n
1 = nσ) = p(X1 = Y1/S

n
1 = nσ) (22)

k−1∏

i=1

p(Xi+1 = Yi+1/X
i
1 = Y i

1 ,S
n
1 = nσ) (23)

=

k−1∏

i=0

p
(
Xi+1 = Yi+1/S

n
i+1 = nσ − Σi

1

)

by the independence of the r.v’s Xi; we have set S0
1 := 0. By Lemma 4

p
(
Xi+1 = Yi+1/S

n
i+1 = nσ − Σi

1

)

= πmi,n
(
Xi+1 = Yi+1/S

n
i+1 = nσ − Σi

1

)

= πmi,n (Xi+1 = Yi+1)
πmi,n

(
Sn

i+2 = nσ − Σi+1
1

)

πmi,n
(
Sn

i+1 = nσ − Σi
1

)

where we used Bayes formula and the independence of the Xj ’s under πmi,n . A
precise evaluation of the dominating terms in this lattest expression is needed
in order to handle the product (22).

Under the sequence of densities πmi,n the i.i.d. r.v’s Xi+1, ...,Xn define a
triangular array which satisfies a local central limit theorem, and an Edgeworth
expansion. Under πmi,n , Xi+1 has expectation mi,n and variance s2i,n. Center
and normalize both the numerator and denominator in the fraction which ap-

pears in the last display. Denote π
mi,n

n−i−1 the density of the normalized partial

sum
(
Sn

i+2 − (n− i− 1)mi,n

)
/
(
si,n

√
n− i− 1

)
when the summands are i.i.d.

with common density πmi,n . Hence, evaluating both π
mi,n

n−i−1 and its normal ap-
proximation at point Yi+1,

p
(
Xi+1 = Yi+1/S

n
i+1 = nσ − Σi

1

)
(24)

=

√
n− i√

n− i− 1
πmi,n (Xi+1 = Yi+1)

π
mi,n

n−i−1

(
(mi,n − Yi+1) /si,n

√
n− i− 1

)

π
mi,n

n−i (0)
.

12



The sequence of densities π
mi,n

n−i−1 converges pointwise to the standard normal
density under the assumptions, when n − i tends to infinity, i.e. when n − kn

tends to infinity, and an Edgeworth expansion to the order 5 is performed for
the numerator and the denominator.

Set Zi+1 := (mi,n − Yi+1) /si,n

√
n− i− 1. Using Lemma 24 we have

mi,n − Yi+1 = an − Yi+1 +
n (σ − an)

n− i− 1
+OPn

(
1√
n− i

)
. (25)

It then holds

π
mi,n

n−i−1 (Zi+1) = n(Zi+1)

[
1 + 1√

n−i−1
P3(Zi+1) + 1

n−i−1P4(Zi+1)

+ 1
(n−i−1)3/2P5(Zi+1)

]
(26)

+OPn

(
1

(n− i− 1)
3/2

)
.

We perform an expansion in n(Zi+1) up to the order 3, with a first order term
n
(
−Yi+1/

(
si,n

√
n− i− 1

))
, namely

n(Zi+1) = n
(
−Yi+1/

(
si,n

√
n− i− 1

))
(27)




1 − Yi+1mi,n

s2
i,n(n−i−1)

+
m2

i,n

2s2
i,n(n−i−1)

(
Y 2

i+1

s2
i,n(n−i−1)

− 1
)

+
m3

i,n

6s3
i,n(n−i−1)3/2

n(3)

„

Y ∗

(si,n
√

n−i−1)

«

n(−Yi+1/(si,n

√
n−i−1))


 (28)

where Y ∗ = 1
si,n

√
n−i−1

(−Yi+1 + θmi,n) with |θ| < 1. Only the first order term

is relevant when handling the conditional density of the sub trajectory Y k
1 .

Write

mi,n =
n

n− i− 1

(
an − Σi

1

n

)
+

n

n− i− 1
(σ − an)

and use Lemmas ?? and 26 to obtain

|Yi+1mi,n|
s2i,n (n− i− 1)

=
OPn(log k)

n− i− 1

(
an +OPn

(
1√
n− i

))
(1 + oPn(1))(29)

+n (σ − an)
OPn(log k)

(n− i− 1)
2 (1 + oPn(1))

and

m2
i,n

s2i,n (n− i− 1)
=

1

n− i− 1

(
an +OPn

(
1√
n− i

))2

(1 + oPn(1)) (30)

+
n2

(n− i− 1)
3 (σ − an)

2
(1 + oPn(1))

+2
n (σ − an)

(n− i− 1)
2

(
an +OPn

(
1√
n− i

))
(1 + oPn(1)).

13



where the 1 + oPn(1) terms stem from the convergence of s2i,n to 1 by Lemma
6. Assuming (C2) it follows that

|Yi+1mi,n|
s2i,n (n− i− 1)

=
OPn(log k)

n− i− 1

(
an +OPn

(
1√
n− i

))
(1 + oPn(1))

and

m2
i,n

s2i,n (n− i− 1)
=

1

n− i− 1

(
an +OPn

(
1√
n− i

))2

(1 + oPn(1))

which yields

n(Zi+1) = n
(
−Yi+1/

(
si,n

√
n− i− 1

))(
1 +OPn

(
an log k

n− i

))
. (31)

The Hermite polynomials depend upon the moments of the underlying den-

sity πmi,n . Since π
mi,n

1 has expectation 0 and variance 1 the terms correspond-
ing to P1 and P2 vanish. Up to the order 4 the polynomials write P3(x) =

µ
(i)
3

6(si,n)3
(x3 − 3x), P4(x) =

µ
(i,n)
3

72(si,n)6
(x3 − 3x) +

µ
(i,n)
4 −3(si,n)4

24(si,n)4

(
x4 + 6x2 − 3

)
.

In order to obtain a development of the polynomial bracket in (26) in terms
of powers of (n− i) only the term in x from P3 and the constant term from P4

are relevant. It holds

P3(Zi+1)√
n− i− 1

= − µ
(i,n)
3

2s4i,n (n− i− 1)
(an − Yi+1) −

µ
(i,n)
3

2s4i,n

n (σ − an)

(n− i− 1)
2

− µ
(i,n)
3 (mi,n − Yi+1)

3

6 (si,n)
6
(n− i− 1)2

+OPn

(
1

(n− i)
3/2

)
.

When (C3) holds then

P3(Zi+1)√
n− i− 1

= − µ
(i,n)
3

2s4i,n (n− i− 1)
(an − Yi+1) +OPn

(
1

(n− i)
3/2

)
(32)

=
µ

(i,n)
3

2s4i,n (n− i− 1)
Yi+1 +OPn

(
1

(n− i)
3/2

)
+ anO

(
1

n− i

)
.

For the term of order 4 it holds

P4(Zi+1)

n− i− 1
=

1

n− i− 1

(
1

12s3i,n
P3(Zi+1) +

µ
(i,n)
4 − 3s4i,n

24s4i,n (n− i− 1)

(
Z4

i+1 + 6Z2
i+1 − 3

)
)
.

(33)
When (C2) and (C3) hold it follows that

P4(Zi+1)

n− i− 1
= −

µ
(i,n)
4 − 3s4i,n

8s4i,n (n− i− 1)
+OPn

(
1

(n− i− 1)
3/2

)
.

14



The fifth term in the expansion plays no role in the asymptotics, under (A). To
sum up and using (A) and Lemma 26 we get

π
mi,n

n−i−1 (Zi+1) = n
(
−Yi+1/

(
si,n

√
n− i− 1

))



1 +
µ

(i,n)
3

2s4
i,n(n−i−1)

Yi+1

− µ
(i,n)
3 −s4

i,n

8s4
i,n(n−i−1)

+OPn

(
an log n

n−i

)


 .

(34)
Turn back to (24) and do the same Edgeworth expansion in the demomina-

tor, which writes

π
mi,n

n−i (0) = n(0)

(
1 −

µ
(i,n)
3 − s4i,n

8s4i,n(n− i)

)
+OPn

(
1

(n− i)
3/2

)
. (35)

Summarizing and using both (32) and (33) we obtain

p
(
Xi+1 = Yi+1/S

n
i+1 = nσ − Σn

i

)
(36)

=

√
n− i√

n− i− 1
exp

(
Yi+1

(
ti,n +

µ
(i,n)
3

2s2i,n (n− i− 1)

)
− Y 2

i+1/
(
2s2i,n (n− i− 1)

)
)

p(Yi+1)

φ(ti,n)

(
1 +OPn

(
an logn

n− i

))
.

The term exp−Y 2
i+1/2s

2
i,n(n−i−1) in gi(Yi+1/Yi) comes from the ratio of the

two gaussian densities n(Zi+1) and n(0). Taking logarithms and using standard

calculus provides the result in (18); indeed the constant term − µ
(i,n)
3 −3s4

i,n

8s4
i,n(n−i−1)

in

(33) combines with the corresponding one in (35) to produce a term of order

OPn

(
1

(n−i)2

)
whose sum is OPn

(
1

(n−k)

)
= oPn

(
an (logn)

2+δ
)
.

We now prove that Ki as defined in (19) satisfies

Ki(Y
i
1 ) = φ(ti,n)

(
1 − 1

2(n− i− 1)

)
+OPn

(
1

(n− i)3/2

)
. (37)

This will conclude the proof.
Use the classical bounds

1 − u+
u2

2
− u3

6
≤ e−u ≤ 1 − u+

u2

2

to obtain on both sides of the above inequalities the second order approximation
of Ki(Y

i
1 ). The upper bound is

Ki(Y
i
1 ) ≤ φ (ti,n) +

µ
(i,n)
3

2s2i,n (n− i− 1)
φ′ (ti,n) +

µ
(i,n)2
3

(2)2s4i,n (n− i− 1)
2φ” (ti,n)

− 1

2s2i,n(n− i− 1)

[
φ” (ti,n) +

µ
(i,n)
3

2s2i,n (n− i− 1)
φ(3)(ti,n)

]
.

15



The lower bound is the same up to order 2 and the third order term plays no
role.

Use Lemma 6 to conclude, making a Taylor expansion in φ (ti,n) , φ′ (ti,n)
and φ” (ti,n) . The dominating terms are due to φ (ti,n) and 1

2s2
i,n(n−i−1)

φ” (ti,n)

which yield the 1 − 1
2(n−i−1) term in (37). The other terms are indeed

OPn

(
1

(n− i)3/2

)

using Lemma 24, leading to (37). Hence (??) writes as

(36) = gi(Yi+1/Y
i
1 )

(
1 +OPn

(
an logn

n− i

))
.

Putting the pieces together yields under (A)

p(Xk
1 = Y k

1 /S
n
1 = nσ) =

(
1 + oPn

(
an (logn)2+δ

)) k∏

i=1

gi(Yi+1/Y
i
1 ).

Uniformity upon σ is a consequence of Lemma 6. This closes the proof of the
Proposition.

Remark 9 When the Xi’s are i.i.d. normal, then the result in the above Propo-
sition holds with k = n stating that p(Xn

1 = xn
1/S

n
1 = nσ) = gσ (xn

1 ) for all xn
1

in R
n .

Remark 10 The density in (18) is a slight modification of πmi,n . However
second order terms are required here in order to handle the approximation of the
density of Xi+1 conditioned upon Xi

1 and Sn
1/n. The modification from πmi,n to

gi is a small shift in the location parameter, which reflects the asymmetry of the
underlying distribution p, and a change in the variance : large values of Xi+1

have smaller weight for large i, which is to say that the distribution of Xi+1

tends to concentrate around mi,n as i approaches k.

Remark 11 The ”moderate deviation” case is typically an = n−τ , for τ in
(0, 1/2) . In this case the condition an (logn)

2+δ → 0 holds for all values of τ.
The other case is when an is ”nearly constant”, in the range an = (logn)

−γ
,γ <

2, decreasing very slowly to 0, with γ > 2 + δ, δ > 0.

Remark 12 In Lemmas ?? and 27 , as in the previous Proposition, we use
an Edgeworth expansion for the density of the normalized sum of the n−th row
of some triangular array of row-wise independent r.v’s with common density.
Consider the i.i.d. r.v’s X1, ...,Xn with common density πσ(x) where σ may
depend on n but remains bounded. The Edgeworth expansion pertaining to πσ

n

can be derived following closely the proof given for example in [9], pp 532 and
followings substituting the cumulants of p by those of πσ. Denote ϕσ(z) the
characteristic function of πσ(x). Clearly for any δ > 0 there exists qσ,δ < 1
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such that |ϕσ(z)| < qσ,δ and since an is bounded, supn qσ,δ < 1. Therefore the
inequality (2.5) in [9] p533 holds. With ψn defined as in [9] (2.6) holds with
ϕ replaced by ϕσ and σ by s(tσ); (2.9) holds, which completes the proof of the
Edgeworth expansion in the simple case. The proof goes in the same way for
higher order expansions. This justifies our argument in the Lemmas cited above.
In the proofs of Proposition 8 we made use of such expansions when the r.v’s
Xi+1, ...,Xn are i.i.d. with common density πmi,n(x).The same argument as
sketched hereabove applies in this case also.

0.2.3 Conditioning on final events E
n

Let T := Sn
1/n with distribution under the conditioning event En. Hence for

any Borel set A

P (T ∈ A) = Pn

(
Sn

1

n
∈ A

)
. (38)

The distribution of T is concentrated on a small neighborhood of an. Indeed we
have

Lemma 13 Assume that (A1) holds. For any sequence cn such that (C1) holds,

P (an ≤ T ≤an + cn) = 1 +O (exp−nancn) .

Proof. Use Lemma 3.

Moreover T is asymptotically exponentially distributed. The asymptotic
distribution of T is captured in the following

Lemma 14 When (A1) holds then for all u in R
+ the r.v. Z :=ntan (T−an)

satisfies
pZ (u) = e−u (1 + o(1))

where m(tan) = an and therefore T = an +OP

(
1

nan

)
.

Proof. Write

pZ (u) =
1

ntan

pSn/n (an + u/ (ntan))

P (Sn/n > an)

and use Lemmas 2and 3. A first order expansion yields an = m(tan) =
tan (1 + o(1)) which proves the claim.

In this Section Proposition 8 is extended in order to provide an approxima-
tion of pn(Y k

1 ) when Y k
1 is a random vector generated under pn. This is obtained

through an integration w.r.t. σ in (21); indeed it holds

pn(Y k
1 ) :=

∫ ∞

an

p
(
Xk

1 = Y k
1 /T = σ

)
pT (σ) dσ (39)
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and the domain of integration can be reduced to a small neighborhood of an

which contains nearly all the realizations of T under En . This argument allows
the interchange of asymptotic equivalents and integration.

Define

gn(xk
1) :=

∫ ∞

an

gσ(xk
1)pT (σ) dσ

where gσ(x) is defined in (20).
When gσ is substituted by gn then

pn(Y k
1 ) = gn(Y k

1 ) (1 + oPn(1))

does not stand.
Let

bn = an + cn

where cn is fitted compatibly with Proposition 8.
Define

gn(yk
1 ) :=

∫ bn

an
gσ(yk

1 )pT (σ) dσ

P (T ∈ (an, bn))
. (40)

Proposition 15 When Y k
1 is a random vector generated with density pn and

(A) and (C) hold then

pn(Y k
1 ) = gn(Y k

1 )
(
1 + oPn(an (logn)

2+δ
)
)
. (41)

The proof of Proposition 15 relies upon the following Lemma, whose proof
is postponed to the Appendix.

Lemma 16 Let bn satisfy bn = an + cn and (A) and (C) hold then when Y n
1

is generated under pn it holds

pn

(
Y k

1

)
=

∫ bn

an

p
(
Y k

1 /T = σ
)
p (T = σ) dσ (1 +OPn (exp−nancn)) .

We now prove Proposition 15 through an integration of the local approxi-
mation given in Proposition 8.

For all σ in (an, bn)

gσ

(
Y k

1

)
= p

(
Y k

1 /T = σ
) (

1 + oPn(an (logn)
2+δ

)
)

(42)

uniformly on σ when Y n
1 is sampled under pn. It then holds

gn(Y k
1 ) : =

∫ bn

an
gσ

(
Y k

1

)
p(T=σ)dσ

P (an < T < bn)

=

∫ bn

an

p
(
Y k

1 /T = σ
)
p(T = σ)dσ

(
1 + oPn(an (logn)

2+δ
)
)

= pn

(
Y k

1

)(
1 + oPn(an (logn)

2+δ
)
)

18



where we used Lemmas 16 together with (C4) which helps to keep the oPn

(
an (logn)2+δ

)

term. This concludes the proof of Proposition 15.

As a consequence of Lemma 5 the following result holds, which asseses that
when sampled under gn the likelihood of the random vector Xk

1 approximates
pn(Xk

1 ).

Proposition 17 Assume (A) and (C). Let Xk
1 be a random vector with p.m.

Gn with density gn on R
k defined in (40). It holds

gn

(
Xk

1

)
= pn(Xk

1 )
(
1 + oGn

(an (logn)
2+δ

)
)

as n→ ∞.

0.3 The Adaptive Twisted Importance Sampling

scheme

The last result in Proposition 17 above suggests that an Importance Sampling
density deduced from gn would benefit from some optimality as defined in the
Introduction since it fits with the conditional density on long runs. It is enough
to approximate the conditional distribution of T = Sn

1/n under En by Lemma
14 and to plug in this approximation in (40).

Let E denote a r.v. with exponential distribution with parameter nan on
(an,+∞)

pE(t) := nane
−nan(t−an)1(an,+∞)(t). (43)

Using again Lemmas 2 and 3 it is easily checked that

sup
nan≤s≤nbn

p(E = s)

p(T = s)
= 1 + o(εn)

for some sequence εn whinch tends to 0, from which

g
(
Xk

1

)
:=

∫ bn

an
gσ

(
Xk

1

)
p(E = σ)dσ

∫ bn

an
p(E = σ)dσ

= pn

(
Xk

1

)
(1 + oPn(ε′n)) (44)

with limn→∞ ε′n = 0, which proves that we may substitute T by the exponential
r.v. E while keeping the properties of the IS procedure. We denote

g (xn
1 ) := g

(
xk

1

) n∏

i=k+1

παk(xi) (45)

the sampling scheme under which the estimate (5) is computed; in (45) the
value of αk is defined through

αk := m(tk)
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with

m(tk) =
n

n− k

(
an − sk

1

n

)
.

0.3.1 The Adaptive Twisted IS algorithm

Since the r.v. E is highly concentrated in a small neighborhood of an we suggest
to forget about bn in the definition (45) of g above and to integrate on (an,∞)
instead of (an, bn). Numerical experiments argue in favor of this heuristic. The
remarks at the end of this paragraph provide simple and efficient solutions for
the effective calculation of the estimate.

1- Draw M independent random variables E1..., EM with distribution
(43) and define the density on R

n

g(xn
1 ) :=

1

M

M∑

m=1

(
gEm(xk

1)

n∏

i=k+1

παk(xi
i)

)
(46)

where gEm is defined as

gEm(xk
1) :=

k−1∏

i=1

gi+1(xi+1/x
i
1) (47)

where gi+1(xi+1/x
i
1) is defined in (18) for i ≥ 1 , g0(x1) = πan(x1) and

παk(x) :=
exp tkx

Φ(tk)
p(x) (48)

where αk = m(tk) and tk is the only solution of the equation

m(tk) =
n

n− k

(
an − sk

1

n

)
(49)

with sk
1 := x1 + ...+ xk, with s01 = 0.

2-Define L which is the number of replications of the simulated random
trajectory to be performed

3-For l between 1 and L do
{

draw a random variable E(l) with distribution (43)
draw the first k variables Xk

1 (l) recursively with density gE(l)(x
k
1) as

defined in (47) with Em substituted by E(l).
Draw the n−k random variables Xn

k+1(l) independently with common
density παk(x) defined in (48) with Em substituted by E(l).

}
4- Define

P̂n :=
1

L

L∑

l=1

∏n
i=0 p(Xi(l))

g(Xn
1 (l))

1En(l) (50)
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where
1En(l) := 1(an,∞) (Sn

1 (l)/n) (51)

Some remarks for the implementation of the algorithm

A number of remarks hereunder show that ATIS is not difficult to implement.
Since the first order efficiency of i.i.d sample schemes is reached if and only if
the sampling distribution is the twisted one with parameter an (see [8]), the
present algorithm should be compared with it. The classical IS scheme which
uses i.i.d. replicates with density πan is easy to implement but may lead to
biased estimates of Pn; the simulation of a r.v. with density πan is difficult in
non standard cases When p is easy to simulate then an Acceptance/Rejection
algorithm can be used; however this requires to truncate the support of p, what
should precisely be avoided in order to obtain unbiaised estimates; see [2]. When
πan is easy to simulate, ATIS may take more time to run, due to the various
intermediate calculations which are required at each stage of the algorithm.

The generation of the r.v. Xk
1 (l) above is easy and fast and does not require

any simulation according to a twisted density. It holds

gi+1(xi+1/x
i
1) = Cip(xi+1)n (ab, a, xi+1) (52)

where n
(
µ, σ2, x

)
is the normal density with mean µ and variance σ2 at x. Here

a = s2i,n (n− i− 1)

b = ti,n +
µ

(i,n)
3

2s4i,n (n− i− 1)
.

A r.v. Y with density g(x) = Cp(x)n(x), with C =
(∫
p(x)n(x)dx

)−1
and

where p is a given density and n(x) = n
(
µ, σ2, x

)
is easy to simulate: De-

note N the c.d.f. with density n
(
µ, σ2, x

)
. It is easily checked that g(x) is

the density of the r.v. Y := N←(X) where X is a r.v. on [0, 1] with den-
sity h(u) := 1

C p (N←(u)) ; N← denotes the reciprocal function of N . Now an
acceptance/rejection algorithm provides a realisation of X . Indeed let f(x)
be a density such that p (N←(u)) ≤ Kf(x) for some constant K and all x
in [0, 1]; Let P be uniformly distributed on the hypograph of Kf, namely
P := (XP , YP = KUf (XP)) where XP has density f and U is uniform [0, 1]
independent of XP . When YP is less than p (N←(XP)) then XP has density h.

The calculation of g(Xn
1 (l)) above requires the value of Ci =

(∫
p(x)n (ab, a, x) dx

)−1

in (52). A Monte Carlo technique can be used: simulate N i.i.d. r.v’s Zj with

density n (ab, a, .), which is fast, and substitute Ci by Ĉi :=
(

1
N

∑N
j=1 p(Zj)

)−1

,

which provides a very accurate approximation to be inserted in the calculation
of the estimate.

It may seem that this algorithm requires to solve Lk equations of the form

m(t) = n
n−i

(
σ − Si

1

n

)
in order to obtain the ti,n which are necessary to perform
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the simulation of Xk
1 (l) as described above as well as the calculation of g(xn

1 ).
Such is is not the case, and only L equations have to be solved. Consider for
example the simulation of Xk

1 (l) with density gE(l)(x
k
1). This is achieved as

follows:
1- Solve the equation

m(t) = E(l)

whose solution is t0,n. Generate X0(l) according to πE(l).
2- Since

m(ti+1,n) −m(ti,n) = − 1

n− i
(m(ti,n) +Xi(l))

use a first order approximation to derive

ti+1,n ≃ ti,n − 1

(n− i) s(ti,n)
(m(ti,n) +Xi(l))

from which (52) is derived and Xi+1(l) can be simulated as mentioned above.
In the moderate deviation scale the function s2(.) does not vary from 1 and the
above approximation is fair.

Remark 18 The density g(x) on R
n is a Monte Carlo approximation of gn

defined by

gn(x) :=

∫
gσ(x)p (T = σ) dσ

where p (T = σ) is replaced by p(E =σ) and the integral is replaced by a fi-
nite mixture. M is a free parameter. Also notice that the n − k i.i.d. r.v’s
have common tilted density παk(x) with parameter given by (49), thus identi-

cal to Ermakov’s sampling scheme with end point in
(
an − sk

1

n ,∞
)
, and not in

(
m(tk−1) − sk

1

n ,∞
)
.

0.3.2 The choice of the tuning parameters

Choosing k

The critical parameter k is the length of the partial sum run which is to
be simulated according to the density g(xk

1) as defined in (44). By (44) it
would be enough to establish some statistics averaging the estimate ratios

g
(
Xj

1

)
/pn

(
Xj

1

)
on a set of runs , and to select k as some j ensuring that this

ratio keeps close to 1. In the case when the r.v’s Xi are normally distributed
the density gi(yi+1/y

i
1) as defined in (18) coincides with p(yi+1/yi,

Sn

n = σ) for
all value of i between 1 and n− 1 which entails that k can be set equal to n− 1.
This very peculiar case is illustrated in Figure 1, for n = 100, and Pn is close to
0.01. We can see that ATIS produces a very sharp estimate of Pn for a small
value of L when compared to the classical IS scheme.
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In the other cases, when gi(yi+1/y
i
1) approximates p(yi+1/yi,

Sn

n = σ) only
under some conditions on k as described in Conditions (A), we propose the
following heuristics, which works well and is easy to implement; other choices
are possible, which provide similar acceptable results. Instead of g consider the
following construction, which will also be used in the IS algorithm: simulate
E1..., EM , i.i.d. with distribution (43) and define the density on R

j+1

g(xj
0) :=

1

M

M∑

m=1

gEm(xj
1)π

Em

(x0)

where gEm is defined as

gEm(xj
0) :=

j−1∏

i=1

gi+1(xi+1/x
i
1)

where gi+1(xi+1/x
i
1) is defined in (18) for i ≥ 1. The density g(xj

0) is a Monte

Carlo approximation of g
(
xj

0

)
.

By (39) and following the same heuristics as for g define , with a new set of
i.i.d. Em’s

pn

(
xj

0

)
:=

1

M

M∑

m=1

p
(
X

j
0 = xj

0/T = Em
)
.

We use Lemma 2 in order to obtain an explicit approximation for pn. It holds

p
(
X

j
0 = xj

0/T = Em
)

=
p
(
Sn

j+1 = n
(
Em − sj

0

n

))

p (Sn
1 = nEm)

p
(
X

j
0 = xj

0

)

=

√
n− j

n

exp−(n− j)I
(

n
n−j

(
Em − sj

0

n

))

exp−nI (Em)
p
(
X

j
0 = xj

0

)
(1 + o(1)) .

Define therefore

(
p̂n

)
m

(
xj

0

)
:=

√
n− j

n

exp−(n− j)I
(

n
n−j

(
Em − sj

0

n

))

exp−nI (Em)
p
(
X

j
0 = xj

0

)

and

p̂n

(
xj

0

)
:=

1

M

M∑

m=1

(
p̂n

)
m

(
xj

0

)
.

Fix some integer L which is the number of runs to be simulated in order to fix
k; L need not be large. For all l between 0 and L draw independently a random
variable El with density (43) and the run Xj

0(l) with density gEl defined as in
(20) with k substituted by j and σ by El.

1

L

L∑

l=1

g(Xj
0(l))

p̂n

(
Xj

0(l)
) .

Fix k as the smallest j which indicates a departure of this statistics from 1.
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The choice of M

In ATIS the distribution in (44) is substituted by a numerical approximation of

∫ ∞

an

gσ

(
Xk

1

)
p(E = σ)dσ (53)

which is suboptimal with respect to (44) but is easily implemented. A Monte
Carlo procedure produces g(xn

1 ) as described above in (46). It appears that M
should be large when k is large. For example in the normal case with n = 100,
for k = 60, then M = 30 produces excellent estimates for values of L of order
5000, whereas for k = 98, the value of M should increase up to 2000, with
the same L .as seen in Figure2. The reason for this increase in M is that (53)
is a mixture of densities in very high dimension, which seems very sensitive
with respect to the approximation of the mixture measure. This point should
deserve a specific study, out of the scope of the present paper. However the
normal case is quite specific, since it allows k to be as close to n as wanted. In
the other cases, as examplified in the figures pertaining to the exponential case,
k is resticted to lower values and M is rather low.

0.3.3 Asymptotic efficiency of the adaptive twisted IS scheme

The evaluation of the performances of IS algorithm is a controversal argument.
Many criterions are at hand, for example the probability of hits which counts
the relative number of simulations hitting the target (an,∞) , or the variance
of the estimator. We refer to the book by Bucklew [4] for a discussion on the
relative merits of each approach.

The variance of an IS estimate of Pn under the sampling density g writes

V arP (n)
g (E) =

1

L

(
Eg (Pg(l))

2 − P 2
n

)

with

Pg(l) :=
p (Y n

1 (l))

g (Y n
1 (l))

1En (Σn
1 (l)) .

The situation which we face with our proposal lacks the possibility to provide
an order of magnitude of the variance our our IS estimate, since the properties
necessary to define it have been obtained only on typical paths under the sam-
pling density g defined in (45) and not on the whole space R

n (but in the case
when the Xi’s are normally distributed). We will prove , however, that the per-
formance of this new procedure can be considered favorably. Not surprisingly
the loss of performance with respect to the optimal sampling density pXn

1 /En
is

due to the n − k last i.i.d. simulations, leading a quasi- MSE of the estimate
proportional to

√
n− k.

In order to discuss this we first go back to the classical IS scheme, for which
we evaluate the asymptotic variance.

24



The variance of the classical IS scheme and a discussion on efficiency

The asymptotic variance of the estimate of P (En) can be evaluated as follows.
The classical IS is defined simulating L times a random sample of n i.i.d.

r.v’s Xn
1 (j), 1 ≤ j ≤ L, with tilted density πan . The standard IS estimate is

defined through

Pn :=
1

L

L∑

l=1

1En(l)

∏n
i=1 p(Xi(l))∏n

i=1 π
an(Xi(l))

where the Xi(l) are i.i.d. with density πan and 1En(l) is as in (51). Set

Pn(l) := 1En(l)

∏n
i=1 p(Xi(l))∏n

i=1 π
an(Xi(l))

.

The variance of Pn is given by

V arPn =
1

L

(
Eπan

(
Pn(l)

)2 − P 2
n

)
.

The relative accuracy of the estimate P IS
n is defined through

RE(Pn) :=
V arPn

P 2
n

=
1

L

(
Eπan

(
Pn(l)

)2

P 2
n

− 1

)
.

It holds

Proposition 19 The relative accuracy of the estimate P IS
n is given by

RE(Pn) =

√
2π

√
n

L
an(1 + o(1)) as n tends to infinity.

Proof. It holds, omitting the index l for brevity and noting a for an

Eπa

(
Pn(l)

)2
= Ep

(
1En(Xn

1 )
p(Xn

1 )

πa(Xn
1 )

)

= φn(ta) exp−nata
∫ ∞

na

exp−ta (s− na) pSn(s)ds.

The Laplace integral above satisfies

∫ ∞

na

exp−ta (s− na) pSn(s)ds = Pn(1 + o(1))

as n tends to infinity, which, together with the expansion

φn(ta) exp−nata = Pn

√
n
√

2πta(1 + o(1))

(which holds when limn→∞ a
√
n = ∞) concludes the proof. We have used

Lemma 6 to assess that limn→∞ s(t
a) = 1.
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We now come to a discussion of the above result. It is well known that
the variance is not a satisfactory criterion to describe the variability of the out-
comes of a random phenomenon: for example, a sequence of symmetric r.v’s Xn

taking values − exp expn, 0, exp expn with relative frequencies defined through
P (Xn = expn) = exp−n has variance going to ∞ while being concentrated at 0.
In this case we can define an increasing family of sets Bn with P (Xn ∈ Bn) → 1
on which E

(
1BnX2

n

)
= 0, a much better indicator, obtained through trim-

ming. We will prove that such an indicator cannot be defined for the classical
IS scheme, stating therefore that the variance rate obtained in Proposition 19
is indeed meaningfull.

The easy case when X1, ...,Xn are i.i.d. with standard normal distribution
is sufficient for our need.

The variance of the IS estimate is proportional to

V : = Ep1(nan,∞) (Sn
1 )

p (Xn
1 )

πan (Xn
1 )

− P 2
n

= Ep1(nan,∞) (Sn
1 )

(
exp

na2
n

2

)
(exp−anS

n
1 ) − P 2

n

A set Bn resulting as reducing the MSE should penalize large values of −Sn
1

while bearing nearly all the realizations of Sn
1 under the i.i.d. sampling scheme

πan as n tends to infinity. It should therefore be of the form (nbn,∞) for some
bn so that

(a)
lim

n→∞
Eπan 1(nbn,∞) (Sn

1 ) = 1

and
(b)

lim
n→∞

sup
Ep1(nan,∞)∩(nbn,∞) (Sn

1 )
p(Xn

1 )

πan(Xn
1 )

V
< 1

which means that the IS sampling density πan can lead a MSE defined by

MSE(Bn) := Ep1(nan,∞)∩(nbn,∞)
p (Xn

1 )

πan (Xn
1 )

− P 2
n

with a clear gain over the variance indicator. However when bn ≤ an (b) does
not hold and when bn > an (a) does not hold.

So no reduction of this variance can be obtained by taking into account the
properties of the typical paths generated under the sampling density: a reduction
of the variance is possible only by conditioning on ”small” subsets of the sample
paths space. On no classes of subsets of R

n with probability going to 1 under
the sampling is it possible to reduce the variability of the estimate, whose rate
is definitely proportional to

√
n, imposing a burden of order L

√
nα in order to

achieve a relative efficiency of α% with respect to Pn.
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The MSE of our estimate on a growing class of typical paths

We will evaluate the performance of our estimate under g since the algorithm
envolves technical parameters (typically M); in practice the Monte Carlo ap-
proximation introduces no significant bias.

At the contrary to just evidenced hereabove, the procedure which we propose
has a small asymptotic variability when evaluated through trimming on classes
of subsets of R

n whose probability goes to 1 under the sampling g . These
subsets of R

n get smaller and smaller as n increases as measured through the
MSE of the estimate with respect to the MSE of the classical IS estimate.

We prove the existence of these trimming sets in the present section and
state that the resulting gain in terms of the MSE of our estimate is the proper
measure of its performance.

These sets are the Cn described in the following Lemma, whose proof is
differed to the appendix. For sake of notational simplicity denote εn the ε′n
defined in (44).

Lemma 20 With the just mentioned εn, define the family of sets Cnin R
n such

that for all xn
1 in Cn, ∣∣∣∣∣

pn(xk
1)

g
(
xk

1

) − 1

∣∣∣∣∣ < εn

and ∣∣∣∣
m(tk)

an
− 1

∣∣∣∣ < δn

where tk is defined through

m(tk) :=
n

n− k

(
an − sk

1

n

)

and δn satisfies
lim

n→∞
δn = 0

together with
lim

n→∞
δnan

√
n− k = ∞.

Then
lim

n→∞
G (Cn) = 1.

Furthermore on Cn

tks(tk) = an (1 + o(1)) . (54)

We now prove that our IS algorithm provides a net improvement over the
classical IS scheme in terms of Mean Square Error when evaluated on this family
of sets.

Define

RE
(
P̂n

)
=

1

L



Eg

(
1CnP̂n(l)

)2

P 2
n

− 1



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P̂n(l) :=

∏n
i=0 p(Xi(l))

g(Xn
1 (l))

1En (Sn
1 (l)) .

We prove that

Proposition 21 The relative accuracy of the estimate P IS
n is given by

RE(P̂n) =

√
2π

√
n− k − 1

L
an(1 + o(1)) as n tends to infinity.

Proof. Denote EPn the expectation with respect to the p.m. Pn of Xn
1 (l)

conditioned upon En(l) := (Sn
1 (l)/n > an); we omit the index l for brevity.

Using the definition of Cn we get

Eg

(
1CnP̂n(l)

)2

= PnEPn1Cn(Xn
1 )

p(Xk
1 )p(Xn

k+1)

g(Xk
1 )g(Xn

k+1/X
k
1 )

≤ Pn(1 + εn)EPn1Cn(Xn
1 )

p(Xk
1 )

p(Xk
1 /En)

p(Xn
k+1)

g(Xn
k+1/X

k
1 )

= P 2
n(1 + εn)EPn1Cn(Xn

1 )
1

p(En/Xk
1 )

p(Xn
k+1)

g(Xn
k+1/X

k
1 )

= P 2
n(1 + εn)

√
2π

√
n− k − 1EPn1Cn(Xn

1 )tks(tk)(1 + o(1))

= P 2
n

√
2π

√
n− k − 1an(1 + o(1)).

The second line uses Ak
εn
. The third line is Bayes formula. The fourth line

is Lemma 3. The fifth line uses (54) and uniformity in Lemma 3, where the
conditions in Corollary 6.1.4 of Jensen (1995) are easily checked since, in his
notation, J(θ) = R , condition (i) holds for θ in a neighborhood of 0 (Θ0

undeed is resticted to such a set in our case), (ii) clearly holds and (iii) is (9).

Proposition 22 When an = n−γ then under (A) the ratio of the relative effi-
ciencies of the Adaptive IS algorithm with respect to the standard IS scheme is
of order

√
n− k/

√
n.. The same result holds when an = (logn)

−α

0.4 Importance Sampling for M-estimators

This Section provides some application of the previous results for some classical
types of estimators for which sharp moderate deviation probabilities can be
obtained through linear approximations. We follow closely the work by [8]; see
also [1].

Let T denote a real valued statistical functional defined on the space MF ,
where we assume that T has an Influence Function. Let P be a given p.m. We
assume that for all Q in MF there exists a function g (depending on P ) such
that ∣∣∣∣T (Q) − T (P ) −

∫
gdQ

∣∣∣∣ < ω (N (Q− P )) (55)
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where N is a seminorm defined on MF , continuous in the τF topology, and
ω is a continuous and strictly monotone function which satisfies ω(t)/t → 0 as
t→ 0.

The function g is the Influence Function of T at P. The class F considered
here contains B(R)∪ {g} .

Let ψ(x, t) be real valued function defined on R
2 and assume that P satisfies∫

|ψ(x, t)| dP <∞. Define T (P ) as any solution of the equation
∫
ψ(x, t)dP = 0 (56)

if defined. When P = Pt depends upon a real valued parameter t such that

T (Pt) = t

then T is Fisher consistent and the substitution of Pt by Pn in (56), the empirical
measure pertaining to an i.i.d. sample with unknown p.m. Pt0 provides a
consistent estimate of t0 under appropriate regularity conditions; see [14]. Such
estimate is an M-estimator. We assume that all conditions M1 to M5 in [8]
hold, which implies that (55) above holds (see [8] Theorem 4.2). Also in this
case the function g writes

g(x) =
ψ(x, t0)

d
dt

∫
ψ(x, t0)dPt0

.

The same situation holds for L-estimators,
When (10) holds in MF it can be checked that a strong MDP holds for

T (Pn); Indeed when g belongs to the class F and

lim
n→∞

(
na2

n

)−1
log [nPt0 (|g(X1)| > nan)] = −∞

then using (55) and (10) it can be proved that the remaining term in T (Pn) −
T (Pt0) is negligible w.r.t. the linear approximation

∫
g(x, t0)dPn on the moder-

ate deviation scale, as follows from (2.14) and (2.15) in [8]. Furthermore in this
case the strong moderate deviation holds for Pt0 (|T (Pn) − T (Pt0)| > an) and

lim
n→∞

Pt0 (T (Pn) − T (Pt0) > an)

Pt0

(
1
n

∑n
i=1 g(Xi) > an

) = 1

in the range an = n−α, 1
3 < α < 1

2 ; . see also Inglot, Kallenberg and Ledwina
[11].

0.5 Simulation results

0.5.1 The gaussian case

Typical paths under the final value

This graph illustrates Proposition 8.
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Figure 1Gauss

The graph shows the role of k in the behavior of the estimate. The Xi’s are
standard normal, n = 100 and Pn = 10−2. When k is less than 70 the new esti-
mate improves on the classical i.i.d. scheme. A change in M leads no significant
change (here M = 30). The value of L is L = 2000.

Figure 2 Gauss

The graph illustrates the accuracy of the asymptotic results in Propositions 19
and 21. The Xi’s are standard normal, n = 100,Pn = 10−2, k = 60.
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Figure 3 Gauss

The graph is an illustration of Proposition 22. The r.v’s Xi’s are standard
normal, n = 100 and Pn = 10−2. In ordinate is the ratio of the empirical value
of the MSE of the adaptive estimate w.r.t. the empirical MSE of the i.i.d.
twisted one. The value of k is k = 60; this ratio stabilizes to

√
n− k/

√
n for

large L, in full accordance with Proposition 22.

0.5.2 The exponential case

typical paths

The graphs above are typical paths under the conditional distribution (with
Sn/n = 0.239) and under the i.i.d. sampling with tilted density. The value of n
is 100 and the approximation of the conditional density of the random walk is
fair up to k = 80, as indicated by the fact that the IS estimator of Pn is correct
up to k = 80, which can be seen as a pertinent indicator.

The random variables X ′is are i.i.d. with exponential distribution with pa-
rameter 1 on (−1,∞) . The case treated here is P

(
Sn

n > an

)
= Pn with n = 100,

Pn = 0.013887 and an = 0.232. These values are computed through a very long
run of the standard IS algorithm (with i.i.d. sampling according to the twisted)
and are used as a benchmark.The estimates are calculated with L = 1000, and
L = 10000 for k = 0, i.e. for the classical i.i.d. twisted sampler (lower values of
L lead unstable estimates)
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0.6 Appendix

0.6.1 Proof of Proposition 1

We first state

Lemma 23 Denote q∗ := dQ∗

dλ (λ the Lebesgue measure). Then q∗(y) = xyp(y)

Proof. By Theorem 3.4 (2) in Broniatowski and Keziou (2006) it holds q∗(y) =
(αy + β) p(y) for some constants α and β. The projection Q∗ satisfies both∫
vdQ(v) = x and

∫
dQ(v) = 0 which yield α = x and β = 0.

For any set A in B(R), it holds

P (X1 ∈ A/ (Sn
1/n > anx)) = P (A) + anxQ

∗(A) + o (an) . (57)

Indeed it holds

1

na2
n

(P (X1 ∈ A/En,x) − P (A)) =
1

na2
n

E (1A(X) − P (A)/En,x)

= E

(
1

na2
n

(
1

n

n∑

i=1

1A(Xi) − P (A)

)
/En,x

)

=

∫ 0

−∞
P

(
1

na2
n

(
1

n

n∑

i=1

1A(Xi) − P (A)

)
< t/En,x

)
dt

+

∫ ∞

0

P

(
1

na2
n

(
1

n

n∑

i=1

1A(Xi) − P (A)

)
> t/En,x

)
dt.

Observe that En,x = {Mn ∈ Ωx} . Also denote A+
t (resp A−t ) the subset of

M(R) defined through A+
t :=

{
Q ∈M(R) : Q(R) = 0,

∫
1A(v)dQ(v) ≥ t

}
, resp

A−t :=
{
Q ∈M(R) : Q(R) = 0,

∫
1A(v)dQ(v) < t

}
. Using Bayes formula and
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the above moderate deviation result (10) it follows that for any measurable set
G in M(R)

lim
n→∞

Pr (Mn ∈ G/Mn ∈ Ωx) =
1 if Q∗ belongs to G
0 otherwise

Proof. For any positive (resp. negative) t it then holds limn→∞ Pr
(
Mn ∈ A+

t /Mn ∈ Ωx

)
=

1 if t < Q∗(A) and Q∗(A) > 0 (resp limn→∞ Pr
(
Mn ∈ A−t /Mn ∈ Ωx

)
= 1

if t > Q∗(A) and Q∗(A) < 0 ), which is to say, going to the limit in n,

that limn→∞
1

an
(P (X1 ∈ A/En,x) − P (A)) =

∫ 0

−Q∗−(A) dt +
∫ Q∗+(A)

0 dt where

Q∗ = Q∗+ −Q∗− is the Lebesgue decomposition of Q∗. This closes the proof of
(57). A second order expansion of πanx(y) in a neighborhood of t = 0 yields

πanx(y) = (1 + anxy + a2
nx

2gn(y))p(y).

Hence for all Borel set A it holds
∫

A π
anx(y)dy = P (A)+anxQ

∗(A)+a2
nx

2
∫

A gn(y))p(y)dy.
Since both

∫
A π

anx(y)dy tends to P (A) and Q∗ is a finite measure it follows that
a2

nx
2
∫

A
gn(y))p(y)dy tends to 0.

0.6.2 Two Lemmas pertaining to the partial sum under

its final value

We now state two lemmas which describe some functions of the random vector
Xn

1 conditioned on En.

Lemma 24 Assume that (A) holds. Then for all i between 1 and k

n

n− i

(
an − Si

1

n

)
= an +OPn

(
1√
n− i

)
.

Proof. Select s in (an, bn) and denote P s
n the p.m on R

n conditioned on
(Sn

1 = ns) It holds

√
n− i (mi,n − an) =

√
n− i

(
Sn

i+1

n− i
− s

)
+
√
n− i (an − s) .

We prove that for m = n− i

varP s
n

(√
m

(
Sm

1

m
− s

))
= O(1)

as m→ ∞ where varP s
n
Z denotes the variance of Z conditionally on

(
Sn

1

n = s
)
.

Integrating with respect to the distribution of Sn
1 conditioned upon En concludes

the proof. Using
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ps
n(X1 = x) =

pSn
2

(ns− x) pX1(x)

pSn
1

(ns)
=
πt
Sn

2
(ns− x)πt

X1
(x)

πt
Sn

1
(ns)

with m(t) = s , normalizing both πt
Sn

2
(ns− x) and πt

Sn
1

(ns) and making use of
a first order Edgeworth expansion in those expressions yields

EP s
n

(X1) = s+ 0

(
1

n

)

and

EP s
n

(
X2

1

)
= s2(t) + s2 + 0

(
1

n

)
.

With a similar development for the joint density pn(X1 = x,X2 = y), using the
same tilted distribution πt it readily follows that

EP s
n

(X1X2) = s2 + 0

(
1

n

)
.

Since

varP s
n
Sm

1 = m(m− 1)EP s
n

(X1X2) +mEP s
n

(
X2

1

)
−m2EP s

n
(X1)

2

it follows that when m/n tends to 0, then varP s
n
Sm

1 = m (1 + o(1)) . Since
m ≤ n− k this amounts to

lim
n→∞

n− k

n
= 0.

Integration with respect to the distribution of Sn
1 conditioned upon En and

splitting the integeral on (an, an + cn) and (an + cn,∞), using (C2) concludes
the proof.

Remark 25 It can be proved that

√
m

(
Sm

1

m
− an

)
⇒ N(0, 1) when m/n→ 0

conditionally on (Sn
1 /n > an) . This result is to be compared with the Gibbs prin-

ciple for moderate deviations stated in the Introduction which assets that for fixed
m the joint distribution of (X1, ...,Xm) conditioned upon En converges weakly ,
as n→ ∞, to the joint distribution of m r.v’s X∗1, ...,X

∗
m which are independent

copies of X∗ .The above result says that even for sequences depending upon n,
we may replace the original m variables by the m independent tilted ones when

exploring the behavior of Sm
1 under En, since

√
m
(

Sm
1

m − an

)
shares the same

limit distribution.

We also need the order of magnitude of max (X1, ...,Xk) under Pn which is
stated in the following result.
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Lemma 26 It holds for all k between 1 and n

max (X1, ...,Xk) = OPn(logn).

Let s such that nan ≤ s ≤ an +cn . Denote P s
n the probability measure of

Xn
1 given the the value of Sn

1 = s. Since

Pn (max (X1, ...,Xk) > t) =

∫ ∞

nan

P s
n (max (X1, ...,Xk) > t) p (Sn

1 = s/En) ds

we first state the order of magnitude of max (X1, ...,Xk) under P s
n in the next

Lemma.

Lemma 27 For all k between 1 and n,max (X1, ...,Xk) = OP s
n

(log k) .

Proof. Define τ := s/n. For all t it holds

P s
n (max (X1, ...,Xk) > t) ≤ kP s

n (Xn > t)

= k

∫ ∞

t

p(Xn = u/Sn
1 = s)p(Sn

1 = s/En)du

= k

∫ ∞

t

πτ (Xn = u)
πτ (Sn−1

1 = s− u)

πτ (Sn
1 = s)

du.

Center and normalize both Sn
1 and Sn−1

1 with respect to the density πτ in the
last line above, denoting πτ

n the density of Sn
1 := (Sn

1 − nτ) /sτ
√
n when X has

density πτ with mean τ and variance s2τ , we get

P s
n (max (X1, ...,Xk) > t) ≤ k

√
n√

n− 1

∫ ∞

t

πτ (Xn = u)

πτ
n−1

(
Sn−1

1 = (nτ − u− (n− 1)τ)) /
(
sτ

√
n− 1

))

πτ
n

(
Sn

1 = 0
) du.

Under the sequence of densities πτ the triangular array (X1, ...,Xn) obeys a
first order Edgeworth expansion

P s
n (max (X1, ...,Xk) > t) ≤ k

√
n√

n− 1

∫ ∞

t

πτ (Xn = u)

n
(
(τ − u) /sτ

√
n− 1

)
P (u, i, n) + o(1)

n (0) + o(1)
du

≤ kCst

∫ ∞

t

πτ (Xn = u) du.

for some constant Cst independent of n and τ and where

P (u, i, n) := 1 + P3

(
(τ − u) /sτ

√
n− 1

)
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where P3(x) =
µ

(τ)
3

6(σ(τ))
3

(
x3 − 3x

)
is the third Hermite polynomial;

(
σ(τ)

)2
and

µ
(τ)
3 are the second and third centered moments of πτ . We used uniformity

upon u in the remaining term of the Edgeworth expansions. Let tτ such that
m(tτ ) = τ. Making use of Chernoff Inequality

P s
n (max (X1, ...,Xk) > t) ≤ k

φ(tτ )

∫ ∞

t

exp− (C − tτ )u du

≤ kCst
φ(tτ + λ)

φ(tτ )
e−λt

for any λ such that φ(tτ + λ) is finite.

t/ log k → ∞
it holds

P s
n (max (X1, ...,Xk) < t) → 1,

which proves the lemma.
We now prove Lemma 26
As above write

Pn (max (X1, ...,Xk) > t) ≤ kPn (Xn > t)

≤ k

∫ ∞

nan

(∫ ∞

t

πτ (Xn = u)
πτ (Sn−1

1 = s− u)

πτ (Sn
1 = s)

du

)

p (Sn
1 = s/En) ds

where τ is defined as in the above Lemma through τ := s/n. Use the same
argument as in Lemma 27 to assess that when t/ logn goes to infinity then
the.RHS above tends to 0. This closes the proof.

0.6.3 Proof of Lemma 16

It holds

pn

(
Y k

1

)
=

∫∞
an
pXk

1 ,Sn

(
Y k

1 , t
)
dt

P (En)

=
npXk

1
(Y k

1 )

(n− k)P (En)

∫ ∞

an

pSn
k+1

/(n−k)

(
n

(n− k)

(
t− Σk

1

n

))
dt.

By Lemma 14 it holds under (C1)

Σn
1

n
= an +Rn

where Rn := OPn

(
1

nan

)
> 0. Denote S :=

Sn
k+1

n−k . Set

I =

∫∞
b
pS(u)du∫∞

a
pS(u)du

=
P (S > b)

P (S > a)
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with a := n
n−k

(
an − Σk

1

n

)
and b := n

n−k

(
bn − Σk

1

n

)
. It holds

pn

(
Y k

1

)
= (1 + I)

∫ bn

an

p
(
Y k

1 /T = σ
)
p (T = σ) dσ.

Use Lemma ?? to obtain

I =
P
(
S > αn + n

n−k cn

)

P (S > αn)

where αn := an +OPn

(
1√

n−k

)
= an (1 + oPn(1)) . Use Lemma 3 to obtain

I = (exp−ncnan)

(
exp

n2c2n
n− k

)

which tends to 0 under (C).

0.6.4 Proof of Lemma 20

The approximation in (44) holds only on

An,εn := Ak
εn

× R
n−k.

In the above display,

Ak
εn

:=

{
xk

1 :

∣∣∣∣∣
pn(xk

1)

g
(
xk

1

) − 1

∣∣∣∣∣ < εn

}
.

By the above definition
lim

n→∞
Pn (An,εn) = 1 (58)

Note also that

G (An,εn) : =

∫
1An,εn

(xn
1 )g (xn

1 ) dxn
1 =

∫
1Ak

εn
(xk

1)g
(
xk

1

)
dxn

1

≥ 1

1 + εn

∫
1Ak

εn
(xk

1)pn(xk
1)dxk

1

=
1

1 + εn
(1 + o(1))

which goes to 1 as n tends to ∞, where we have used Proposition 15. In the
above displays g

(
xk

1

)
is the density of Xk

1 when Xn
1 is sampled under g. We

have just proved that the sequence of sets An,εn contains roughly all the sample
paths Xn

1 under the importance sampling density g.
We use the fact that tk defined through

m(tk) =
n

n− k

(
an − Σk

1

n

)
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is close to an under Pn uniformly upon σ in (an, bn).
Let δn tend to 0 and limn→∞ anδn

√
n− k = ∞ and

Bn :=

{
xn

1 :

∣∣∣∣
m(tk)

an
− 1

∣∣∣∣ < δn

}
.

We prove that on Bn

tks(tk) = an (1 + o(1)) (59)

holds.
By Lemma 24 and (C3)

lim
n→∞

Pn (Bn) = 1. (60)

There exists δ′n such that for any xn
1 in Bn∣∣∣∣

tk
an

− 1

∣∣∣∣ < δ′n. (61)

Indeed ∣∣∣∣
m(tk)

an
− 1

∣∣∣∣ =

∣∣∣∣
tk (1 + vk)

an
− 1

∣∣∣∣ < δn

and limn→∞ vk = 0. Therefore

1 − vktk
an

− δn <
tk
an

< 1 − vktk
an

+ δn.

Since m(tk)
an

is bounded so is tk

an
and therefore vktk

an
→ 0 as n→ ∞ which implies

(61).
Further (61) implies that there exists δn” such that

∣∣∣∣
tks(tk)

an
− 1

∣∣∣∣ < δn”.

Indeed ∣∣∣∣
tks(tk)

an
− 1

∣∣∣∣ =

∣∣∣∣
tk (1 + uk)

an
− 1

∣∣∣∣

≤ δ′n + (1 + δ′n)uk = δn”

where limn→∞ uk = 0. Therefore (59) holds.
Define

Cn := Bn ∩An,εn

Since ∫
1Cn(xn

1 )g
(
xk

1

)
dxn

1 ≥ 1

1 + εn

∫
1Cnpn(xn

1 )dxn
1

and by (58) and (60)
lim

n→∞
Pn (Cn) = 1

we obtain
lim

n→∞
G (Cn) = 1.

which concludes the proof.
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