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Abstract

This paper presents a region merging process controlled by topological features on
regions in 3D images. Betti numbers, a well-known topological invariant, are used
as criteria. Classical and incremental algorithms to compute Betti numbers using
information represented by the topological map of an image are provided. The region
merging algorithm, which merges of any number of connected components of regions
together, is explained. A topological control of the merging process is implemented
using Betti numbers to control the topology of an evolving 3D image partition. The
interest of incremental approaches of Betti numbers computation is established by
providing processing times comparison. A visual example showing the result of the
algorithm and the impact of topological control is also given.

Key words: Topological constraint, Betti numbers, Region merging, Topological
map, Image processing

1 Introduction

In this paper, a basic image processing operation is introduced: the region
merging. This application uses a combinatorial model known as topological
map that represents cells and relations between cells to describe the partition
of the image into regions. A topological control of the merging process is
allowed using criterion on Betti numbers for regions.
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In image processing, many works have proposed methods to control the topol-
ogy of a partition of the image. Specific constraints, known from the field of ap-
plication, have to be enforced in order to provide realistic results. For instance,
in medical application, several works are interested in the brain topological
structure. One research subject is the extraction of a topologically correct
cortical surface[1] (surface of the brain) or the correction of the topology of a
previously extracted surface [2]. The cortical surface has the same topology as
a sphere. Other applications involve the segmentation of blood vessels or the
segmentation of trabecular bone. For this last application, [3] defines a classi-
fication of voxels based on the topology of the neighborhood of the voxel that
allows to construct a topologically correct surface for the studied structure.

Most of the current approaches regarding topological control run into mainly
two issues:

(1) they work on binary images to construct a binary partition of the space
such as the surface between foreground and background objects has some
particular topology. Some works are able to control topological features
on multiple regions. For instance, [4] proposes a framework using a de-
formable model to segment brain structures but under a strong hypothesis
allowing to convert the 4 class segmentation problem into a binary one.
From the authors own words, the real topology of brain structures does
not allow such hypothesis;

(2) they are interested in the control of topological features for surfaces and
not volumes. The goal of either the topological control or the topological
correction is often to obtain a 2D surface that has a particular topological
feature. The main criterion on surface is the genus, a topological feature
that allows to distinguish sphere surfaces from k-torus surfaces.

To overcome these issues, we propose to:

(1) work on sets of regions to represent any image partition;
(2) use Betti numbers: a topological feature allowing to characterize regions

in 3D.

Betti numbers are a well-known topological feature [5]. They are invariant
for homology groups and thus characterize some topological properties of the
described object. For regions in 3D images, Betti numbers count connected
components, tunnels and cavities. Several works have studied how to compute
Betti numbers, in particular with an incremental approach using cellular com-
plexes [6]. Betti numbers are also used in segmentation applications: in [7] the
authors define a segmentation process on 2D images. In this work, the topo-
logical control uses Betti numbers to put constraint on the geometric active
contour implemented by a traditional level set method. But in our knowledge,
there is no work that proposes 3D split and merge segmentation method with
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topological control.

Many works have studied models representing partitions of an image. Topo-
logical data structures describe images as a set of elements and their adjacency
relations. The most famous example is the Region Adjacency Graph (RAG)
[8] which represents each region by a vertex, and where neighboring regions
are connected by an edge. But the RAG suffers from several drawbacks as it
does not represent multi-adjacencies or makes no difference between inclusion
and adjacency relations. To solve these issues, the RAG model has been ex-
tended, for instance, in dual-graph structures to represent 2D images [9] or
in topological maps [10–15] used to represent 2D and 3D images. Topolog-
ical maps represent all the cells of the subdivision contrary to graph-based
approaches. Topological maps also have the advantage of being defined in
3D. Thus, topological maps are used in this work to represent the 3D image
partition.

The aim of this work is to provide a topological control during modification
operations on the topological maps. Region merging is one of the classical
modification operation in image processing. It allows to merge at least two
adjacent regions together in order to create the resulting region which is the
union of the merged regions [16]. Region merging is a very common operation
used for example in segmentation process. In this paper, the topological control
of the partition produced during a merging process is developed using Betti
numbers as a topological criterion.

The paper is organized as follow. Section 2 presents topological maps, the
model used to represent 3D images in this work. In Section 3, Betti numbers
are introduced and their computation using cellular models like topological
maps is given. Section 4 explains the algorithm used to merge regions in topo-
logical maps. An experimental criterion using Betti numbers to control region
merging is detailed in Section 5 and some processing times and one visual
example are given. Finally, Section 6 concludes the paper and gives some per-
spectives for this work.

2 3D Topological Maps

3D topological maps are an extension of combinatorial maps used to represent
3D image partitions. Notions on combinatorial maps, 3D images, intervoxel
elements and topological maps used in this work are presented in the following.

A combinatorial map [17] is a mathematical model describing the subdivision
of a space, based on planar maps. A combinatorial map encodes all the cells
of the subdivision and all the incidence and adjacency relations between the
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Fig. 1. (a) Example of combinatorial map representing two volumes. Arrows rep-
resent darts. Adjacency and incidence relations are deduced from the geometry. In
this example, β3(1) = 2, β2(1) = 3 and β1(3) = 4. (b) Intervoxel elements drawn in
black are from left to right: one surfel, one linel and one pointel.

different cells, and so, describes the topology of the space. Definition 1 presents
the formal definition of the combinatorial map in 3D.

Definition 1 A 3D combinatorial map, (or 3-map) is a 4-tuple M = (D, β1, β2, β3)
where:

(1) D is a finite set of darts;
(2) β1 is a permutation 1 on D;
(3) β2 and β3 are two involutions 2 on D;
(4) β1 ◦ β3 is an involution.

The single basic elements used in the definition of combinatorial maps are
called darts, and adjacency relations are defined onto darts. βi is a relation
between two darts that describes an adjacency between two i-dimensional
cells also called i-cells (see Figure 1a as an example of combinatorial map
and [18] for more details on maps and comparisons with other combinatorial
models). Intuitively, with this model, the notion of cells is represented by a
set of darts linked by specific βi relations. For example, a face incident to a
dart d is represented by the set of darts accessible using any combination of
β1 and β3 relations. Moreover, given a dart d, which belongs to the i-cell c,
the i-cell adjacent to c along the (i − 1)-cell which contains d is found using
βi(d). For example, given a dart d that belongs to a face f and a volume v,
the volume adjacent to v along f is the 3-cell containing β3(d): in Figure 1a,
darts belonging to the same volume and the same face than 3 are 4, 5 and 6.

Few usual notions about images and intervoxel elements are now introduced. A
voxel is a point of the discrete space Z

3 associated to a value which could be a
color or a gray level. A three dimensional image is a finite set of voxels. In this
work, combinatorial maps are used to represent sets of voxels that have the

1 A permutation on a set S is a one to one mapping from S onto S.
2 An involution f on a set S is a permutation on S such that f = f−1.

4



1

3

2

Infinite

(a) (b) (c)

Infinite

1

3 2

(d) (e)

Fig. 2. The different parts of the topological map used to represent an image. (a) 3D
image. (b) Minimal combinatorial map. (c) Intervoxel matrix (embedding). (d) In-
clusion tree of regions. (e) Cellular representation of the same topological map.

same label and are 2-connected 3 . The label of a voxel is given by a labeling
function l : Z

3 → L that associates a label (a value in the finite set L) to
each voxel. A maximal set of 2-connected voxels with the same label is called
region. Let I be an image, the complement of a region r in I is denoted rC . It
is composed of voxels of I that do not belong to r. Since r is 2-connected, rC is
formed of 1-connected components of voxels. To avoid particular processes for
the voxels that belong to the border of the image, an infinite region, usually
called r0, surrounds the image. Using the previous notation, rC

0
= I. A region

rj is included in ri if each 1-connected set of voxels that contains at least one
voxel from rj and one voxel from r0 contains at least one voxel of ri (i.e. the
paths from rj to r0 pass through r1). Note that by using this definition, each
region in I is included in the infinite region.

In the intervoxel framework [19], an image is considered as a subdivision of a
3-dimensional space in a set of unit elements: voxels are the cubes, surfels are
the squares between two voxels, linels are the segments between surfels, and
pointels are the points between segments (see example in Figure 1b).

The topological map is a data structure used to represent the subdivision of
an image into regions. It is composed of three parts:

• a minimal combinatorial map representing the topology of the image;
• an intervoxel matrix used to retrieve geometrical information associated to

the combinatorial map. The intervoxel matrix is called the embedding of the
combinatorial map;

• an inclusion tree of regions.

Figure 2 presents an example of a topological map. The 3D image, composed
of three regions plus the infinite region (Figure 2a), is represented by the
topological map which is divided in three parts: the minimal combinatorial
map Figure 2b, the embedding Figure 2c, and the inclusion tree of regions
Figure 2d. Figure 2e represents the same topological map using a different
formalism, called cellular decomposition. The geometry is drawn with light

3 Two voxels are 2-connected if they are adjacent by a face. Two voxels adjacent
by a face or by an edge are 1-connected. Two voxels adjacent by a face, an edge or
a vertex are 0-connected.
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gray lines. Vertices and edges of the model are drawn in black. Faces are
implicit in this representation. Dashed lines represent elements usually hidden
by the geometry. This representation is used to simplify figures in the following
explanations.

In the topological map framework, the combinatorial map is used as a topo-
logical representation of the partition of an image in regions. Each face of the
topological map separates two adjacent regions and two adjacent faces do not
separate the same two regions. With these rules, the minimality in number of
cells of the topological map is guaranteed (see [10,20] for more details on topo-
logical maps). The intervoxel matrix is the embedding of the combinatorial
map. Each cell of the map is associated to intervoxel elements representing
the geometrical information of the cell. A face, in the combinatorial map, is
embedded by a set of surfels separating voxels of the two incident regions. The
edges, which are the border of faces, are represented by a set of linels. The
vertices, which are the border of edges, are embedded by pointels. The inter-
voxel matrix allows to retrieve the geometry of the labeled image represented
by the combinatorial map. The inclusion tree of regions represents inclusion
relations. Each region in the topological map is associated to a node in the
inclusion tree. Nodes are linked together by the inclusion relation previously
defined. In the inclusion tree, regions are grouped by connected components
using one representative region of the component called direct son. Note that
counting direct sons included in a region r gives the number of 1-connected
components of regions included in r, i.e. gives the number of cavities of r.

External and internal surfaces are defined using the inclusion relation. For
each cavity, there is an internal surface: the border between the including
region and the included regions. For each region, there is one external sur-
face: the border between the region and regions that are at the same level of
inclusion (regions of the same connected component) or the including region.

Each dart d knows its belonging region (noted region(d)). Each region knows
a representative dart (noted rep(r)). By definition, rep(r) belongs to the ex-
ternal surface of r and its other incident region r′ = region(β3(rep(r))), is a
smaller region than r considering the sweeping order of the image voxels (i.e. r′

is found before r when we run through the image with a scan line algorithm).
It defines a full order on regions using the position of their first voxels. Let r1

and r2 be two adjacent regions such that r1 < r2: either r2 is included in r1,
or r1 and r2 belong to the same connected component of regions.
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Fig. 3. Representation of a 3D object having one connected component, three tunnels
and three cavities (drawn in gray). Note that one of the cavities is a torus and thus,
is responsible for one of the tunnels.

3 Betti Numbers Computation

Betti numbers are very useful basic topological invariants. From a practical
point of view for a 3D object, the Betti numbers represent the number of holes
in each dimension. The first Betti number, noted b0, counts connected compo-
nents of the object. The second Betti number, b1 counts tunnels, sometimes
called handles. The third Betti number, b2 counts the number of cavities also
called voids. For closed oriented 3D objects, as regions in a 3D image, Betti
numbers bk with k > 2 are equal to zero. For instance, the three first Betti
numbers of the 3D object presented in Figure 3 are b0 = 1, b1 = 3 and b2 = 3.

Lemma 2 links the number of surfaces of a region to the Betti numbers of this
region.

Lemma 2 The number of surfaces #s(r) of a region r is given by the sum of
the number of connected components and cavities of r: using Betti numbers,
#s(r) = 1 + b2(r).

PROOF. The number of surfaces of a region is the sum of external surfaces
and internal surfaces of that region. A region r in the topological map is a 2-
connected set of voxels. Voxels not in r form 1-connected sets of voxels known
as rC . In these sets of voxels, one connected component of voxels includes r
and the others are included in r. The surface splitting voxels of the region from
voxels of the including connected component form the external surface. Since
there is only one 2-connected component of voxels, there is only one external
surface. For each 1-connected component of voxels included in a region r, there
is one surface that surrounds the voxels and creates a cavity into r. There is
one internal surface for each cavity. There is no other surface since if such
a surface exists, the surface would at least surround a voxel and that means
there would be a cavity in the region. ✷
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3.1 Related definitions

The Betti numbers are related to the Euler characteristic, another topological
invariant, of a region by Definition 3.

Definition 3 The Euler characteristic χ(r) of a region r, considered as a
cellular complex, is defined as the alternating sum of Betti numbers: χ(r) =
b0(r) − b1(r) + b2(r) (see [5]).

Using the cellular decomposition of a region, Definition 4 gives another way
to compute the Euler characteristic using the alternating sum of number of
cells for each dimension.

Definition 4 Using the cellular decomposition of a region, the Euler charac-
teristic χ is also given by χ = k0 − k1 + k2 − k3, where ki denotes the number
of cells of dimension i (see [5]).

In [21] the authors define an incremental algorithm to compute the Euler
characteristic of the region border (i.e. by considering only OD, 1D and 2D
cells that belong to the border of the region). Let χ′ be the Euler characteristic
of the border of a region. It is obtained using Definition 4 with cells belonging
to the border of the region. Definition 5 presents the way to compute χ′.

Definition 5 Let χ′(r) be the Euler characteristic of the border of region r
(the border of a region is composed of surfaces). Let #v(r), #e(r) and #f(r)
be the number of vertices, edges and faces belonging to the border of r, then
χ′(r) = #v(r) − #e(r) + #f(r).

3.2 Computation of Betti numbers using Topological Maps: First Algorithm

A first approach to the computation of the Betti numbers in the topological
map framework is to use information provided by the model to obtain these
values. The effective computation of homology group generators is avoided
since only the rank of homology groups is required. The goal is to compute
the Betti numbers by counting connected components, tunnels and cavities.
In the following, formulas linking together the Betti numbers of a region and
some features easy to compute using a topological map are presented. The
algorithm is not given because it is straightforward: it consists in running
through the map and counting the different numbers required in the formulas.

8



3.2.1 First and Third Betti Numbers

The first Betti number, b0, counts connected components of a region. By defini-
tion in topological maps, a region is a 2-connected set of voxels and thus there
is only one connected component for each region. The first Betti number b0(r)
of a region r in a topological map M is always equal to one: ∀r ∈ M, b0(r) = 1.

The third Betti number, b2, counts the cavities of a region. In topological maps,
the inclusion tree represents inclusion relations between regions: for each 1-
connected component of included regions, there is a single cavity. As seen in
Section 2, regions are grouped in the tree structure by connected components
which are represented by direct sons. The number of cavities b2(r) of a region
r is directly obtained by counting direct sons of r.

3.2.2 Second Betti Number

The second Betti number, b1, counts the tunnels of a region. We have b0

and b2 easily and Definition 3 gives the relation between the Betti numbers
and the Euler characteristic. From [21] we know how to compute the Euler
characteristic χ′(r) of the border of r. In the following, the relation between
these three elements and b1(r) is established.

Firstly, implicit cells are defined in order to compute χ(r) from χ′(r). Defi-
nition 3 and Definition 4 suppose that the region is represented by a cellular
complex only composed of n-cells homeomorphic to n-balls. Actually, topolog-
ical maps represent cells that belong to the border of regions and thus regions
are not cellular complexes. Some cells, required to obtain such property, are
missing. To overcome this issue, implicit cells are introduced. Implicit cells de-
pend on the number of tunnels and cavities as seen in Definition 6 and allow
to obtain a cellular complex representation of a region (in which each i-cell is
homeomorphic to an i-ball).

Definition 6 Implicit cells are defined using topological information by the
following two rules:

• for each tunnel, one implicit face is added to obtain a volume homeomorphic
to a 3-ball.(Figure 4a);

• for each cavity, two implicit edges (being the new face border) and one im-
plicit face are added to obtain a volume homeomorphic to a 3-ball.(Figure 4b).

Proposition 7 gives the link between χ(r) and χ′(r).

Proposition 7 For a region r represented in a topological map, χ(r) = χ′(r)/2.
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(a) (b)

Fig. 4. Implicit cells in topological maps. Vertices and edges represented by topolog-
ical maps are drawn in black. For both cases, dark gray elements have been added:
they are implicit cells required to have a connected polyhedral decomposition of
the region and thus to be able to use the polyhedral formula to compute the Euler
characteristic. (a) Tunnels: one face for each tunnel is added. (b) Cavities: two edges
and one face for each cavity are added.

PROOF. Let ki be the number of cells of dimension i in the cellular de-
composition of r. By Definition 4, the Euler characteristic is given by χ(r) =
k0 − k1 + k2 − k3. Let #v(r), #e(r) and #f(r) be the number of vertices,
edges and faces belonging to the border of r. By Definition 5 the Euler char-
acteristic of the border of r is given by χ′(r) = #v(r) − #e(r) + #f(r). By
Definition 6, number ki of i-cells is given by k0 = #v(r), k1 = #e(r) + 2b2(r)
(two edges are added for each cavity) and k2 = #f(r)+ b1(r)+ b2(r) (one face
is added for each tunnel and one for each cavity). k3 is equal to b0(r) since
there is a volume for each connected component: k3 = b0(r) = 1. The Euler
characteristic is now given by:

χ(r) = k0 − k1 + k2 − k3

χ(r) = #v(r) − (#e(r) + 2b2(r)) + (#f(r) + b1(r) + b2(r)) − b0(r)

χ(r) = #v(r) − #e(r) + #f(r) − b0(r) + b1(r) − b2(r)

χ(r) = χ′(r) − χ(r).

As an immediate consequence, χ(r) = χ′(r)/2. ✷

Now that Proposition 7 has been introduced, b1(r) is computed using the
Euler characteristic of the border of r with respect to the formula presented
in Proposition 8: it gives the number of tunnels of a region.

Proposition 8 The second Betti number b1(r) of a region r is given by b1(r) =
b0(r) + b2(r) − χ′(r)/2.

PROOF. By Proposition 7 and Definition 3, b1 is given by:

χ(r) = χ′(r)/2

b0(r) − b1(r) + b2(r) = χ′(r)/2

b1(r) = b0(r) + b2(r) − χ′(r)/2 ✷
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3.3 Incremental Methods: Second Algorithm

The idea of this second approach is to compute the Betti numbers during
a region merging process using values previously computed for the two re-
gions merged. b0(r) being constant for each region r of a topological map, an
incremental method is not needed.

3.3.1 Third Betti Number b2

The incremental computation of the number of cavities consists in finding
changes in number of cavities when merging two regions r1 and r2. Three
configurations are possible. First, if r2 fills one cavity of r1 then merging the
two regions leads to the removal of one cavity. Since regions have only one
connected component, r2 cannot fill more than one cavity. The second case
occurs if the union of the two regions includes other regions. Depending on the
configuration, one or more cavities are created: one by connected component
of newly included regions. The last configuration happens if no cavity is filled
nor created: there is no change in the number of cavities.

The idea of this algorithm lies on the link between the number of surfaces
and the number of cavities presented in Lemma 2. Proposition 9 gives the
relation between b2(r) to the number of surfaces of a region r. The incremental
computation of b2 computes the new number of surfaces when considering the
union of two regions.

Proposition 9 Let #s(r1 ∪ r2) be the number of surface of the union of two
regions r1 and r2. Number of cavities b2(r1 ∪ r2) of this union is given by
b2(r1 ∪ r2) = #s(r1 ∪ r2) − 1.

PROOF. Direct by Lemma 2. ✷

The initialization part of the algorithm computes for each region the number
of surfaces. Therefore, the number of cavities is obtained by using the non-
incremental algorithm. The number of surfaces is computed using the relation
given by Lemma 2. The number of surfaces is stored and updated during the
merging process.

Suppose r1 < r2 in the order of regions defined in Section 3 when computing
b2 for r1∪r2. To compute #s(r1∪r2), the algorithm runs trough darts starting
from the external surface of r2. Let k be the number of connected components
of darts of r1∪r2 ignoring the darts belonging to inner faces (i.e. darts such as
d belongs to r2 and β3(d) belongs to r1). Each connected component of darts
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Fig. 5. Configuration with three regions
r1, r2 and r3 where r1 and r2 surround
r3. The merging of r1 and r2 leads to
the inclusion of r3. There is a cavity cre-
ation. #s(r1) = #s(r2) = #s(r3) = 1.
b2(r1) = b2(r2) = b2(r3) = 0.
#s(r1 ∪ r2) = 2. b2(r1 ∪ r2) = 1.

Fig. 6. Inner cells (drawn in dark gray)
are cells that fully belong to the surface
between r1 and r2. Black cells belonging
to the border of the surface also belong to
the border of the union of the two regions
and thus, are not inner cells. In this ex-
ample, there are 2 inner vertices, 5 inner
edges and 4 inner faces.

represents a distinct surface of r1 ∪ r2. The number of new surfaces is k − 2
since the k surfaces replace two previously counted surfaces: one surface for
r1 and the external surface of r2. The number of surfaces of the union of r1

and r2 is given by #s(r1 ∪ r2) = #s(r1)+#s(r2)+k−2. Using Proposition 9,
b2(r1 ∪ r2) is given by b2(r1 ∪ r2) = #s(r1) + #s(r2) + k − 3.

Figure 3.3.1 presents an example of a classic configuration creating a new
inclusion. There are three regions in the figure: two regions r1 and r2 surround
r3. If r1 and r2 are merged, r3 becomes included. The two inner cells (one face
and one edge), drawn in dark gray, cannot be passed through when counting
connected component of darts. Thus, the surface discovery process finds two
surfaces on r1 ∪ r2: k is equal to 2. One of the new surface is the external
surface of r1 ∪ r2 and the other one is the internal surface corresponding to
the new cavity. This last surface also corresponds to the external surface of
r3. These two surfaces replace the external surface of r1 and the external
surface of r2, and thus the number of surfaces of the union of r1 and r2 is
given by #s(r1 ∪ r2) = #s(r1) + #s(r2) + k − 2 = #s(r1) + #s(r2) + 2 − 2 =
#s(r1) + #s(r2). Using the formula, the resulting number of cavities is given
by b2(r1 ∪ r2) = #s(r1 ∪ r2) − 1 = #s(r1) + #s(r2) − 1 = 1.

3.3.2 Second Betti Number b1

As seen in Proposition 8 the second Betti number b1(r) is computed using
b0(r), b2(r) and the Euler characteristic χ′(r) of the border of r. To compute
b1 the idea is to compute each part of the formula using an incremental al-
gorithm. Incremental algorithms for b0(r) and b2(r) have already been given.
This section explains the incremental computation of χ′ for the union of two
regions r1 and r2.

For each couple (r1, r2) of adjacent regions, there is at least one surface be-
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tween them (in case of multiple adjacencies, there are several surfaces). These
surfaces might be composed of many cells. From these cells, let us qualify some
of them as inner. Inner cells are cells that only belong to an inner surface. Cells
that belong to the border of these surfaces are not considered (called outer
cells as all the other cells). Note 1 details why these cells are not considered
during the incremental computation. For instance, Figure 3.3.1 presents two
regions, r1 and r2, simply adjacent. Only one surface lies between the two re-
gions, but there are several cells that compose this surface. Actually, there are
2 inner vertices, 5 inner edges and 4 inner faces for r1 ∪ r2. Let in(r1 ∪ r2) be
the set of inner cells for r1 ∪ r2 and χ′(in(r1 ∪ r2)) be the Euler characteristic
of inner surfaces of r1 ∪ r2. Proposition 10 gives an incremental definition of
χ′.

Proposition 10 χ′(r1 ∪ r2) = χ′(r1) + χ′(r2) − 2χ′(in(r1 ∪ r2))

PROOF. Since inner and outer cells are defined for the union of two regions,
the notation #cout(r1∪r2|r1) is introduced where c is the type of counted cells
(v for vertices, e for edges and f for faces). It stands for the number of outer
cells for r1∪r2 restricted to cells that belong to r1. With this notation, and by
decomposition of the number of cells between inner cells (in) and outer cells
(out) and using Definition 5, the value of χ′(r1) is given by:

χ′(r1) =#v(r1) − #e(r1) + #f(r1)

χ′(r1) = + #vin(r1 ∪ r2) + #vout(r1 ∪ r2|r1) − #ein(r1 ∪ r2)

− #eout(r1 ∪ r2|r1) + #fin(r1 ∪ r2) + #fout(r1 ∪ r2|r1).

Using the same process for r2, χ′(r2) is defined by:

χ′(r2) =#v(r2) − #e(r2) + #f(r2)

χ′(r2) = + #vin(r1 ∪ r2) + #vout(r1 ∪ r2|r2) − #ein(r1 ∪ r2)

− #eout(r1 ∪ r2|r2) + #fin(r1 ∪ r2) + #fout(r1 ∪ r2|r2).

The merging process removes inner cells in order to obtain the resulting region:
χ′(r1 ∪ r2) is only expressed using outer cells:

χ′(r1 ∪ r2) = + #vout(r1 ∪ r2|r1) + #vout(r1 ∪ r2|r2) − #eout(r1 ∪ r2|r1)

− #eout(r1 ∪ r2|r2) + #fout(r1 ∪ r2|r1) + #fout(r1 ∪ r2|r2)

χ′(r1 ∪ r2) =χ′(r1) + χ′(r2) − 2(#vin(r1 ∪ r2) − #ein(r1 ∪ r2) + #fin(r1 ∪ r2))

χ′(r1 ∪ r2) =χ′(r1) + χ′(r2) − 2χ′(in(r1 ∪ r2)). ✷

Note 1 Outer cells that belong to r1 ∩ r2 are not specifically considered in
the previous proof. Actually, these cells are edges and vertices belonging to the
border of inner surfaces. There are as many vertices as edges in the border

13



Fig. 7. Example of inner cells: the two faces drawn in dark gray are inner cells for
r1 ∪ r2. b1(r1) = b2(r2) = 0. χ′(r1) = χ′(r2) = 2. χ′(r1 ∪ r2) = 0. b1(r1 ∪ r2) = 1

of the surface, which means that its local Euler characteristic is equal to zero.
Since the Euler characteristic is the value of interest and not the actual number
of cells, vertices and edges that belong to r1∩r2 but are not inner have no effect
on the Euler characteristic computation, even if they are counted twice.

In the initialization step, numbers of cells of the border of each region are
computed. The number of cells is computed incrementally during the extrac-
tion of the topological map using the algorithm proposed in [21]. Thus, χ′(r)
is stored and then updated for each region r during the merging process.

When looking at r1∪r2, the number of cells that fully belong to the intersection
of the two regions is computed. These cells belong to inner faces of r1 ∪ r2.
Suppose r1 < r2 in the order of regions defined in Section 3. Each dart of the
external surface of r2 is traversed and each cell that fully belongs to an inner
face is counted. A cell fully belongs to inner faces if each dart used to represent
the cell belongs to either r1, or r2. This step gives #vin(r1 ∪ r2), #ein(r1 ∪ r2)
and #fin(r1∪r2) which are respectively the number of vertices, edges and faces
that fully belong to inner faces. These values are used to compute χ′(in(r1∪r2))
using Definition 4. The final step is to use Proposition 10 to obtain χ′(r1∪r2).
Using the incremental value of b2, Proposition 8 is applied to compute the
number of tunnels b1(r1 ∪ r2).

Figure 7 presents the incremental computation of χ′(r1 ∪ r2). The Euler char-
acteristic for the border of r1 and for the border of r2 is given by the alternated
sum of two vertices, three edges and three faces: χ′(r1) = χ′(r2) = 2. The inner
cells of r1 ∪ r2 are the two faces drawn in dark gray: the Euler characteristic
of inner cells is 2. Using the incremental formula, the Euler characteristic of
the border of the union of the two regions is given by χ′(r1 ∪ r2) = 0. Thus
b1(r1 ∪ r2) = 1: the resulting region has one tunnel. The first Betti number
of r1 ∪ r2 is b0(r1 ∪ r2) = 1 and the third Betti number b2(r1 ∪ r2) = 0 since
k = 1, #s(r1) = 1 and #s(r2) = 1.
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4 Region Merging in Topological Maps

Merging regions in the topological map can be useful for automated segmen-
tation process like the bottom-up segmentation process proposed in [22] or for
special operation like the removal of small regions. To provide time efficient
algorithm for region merging, a global approach has been defined. Algorithm 1
presents the global approach of the region merging operation. More informa-
tion about region merging operations are available in [16].

Algorithm 1: Global approach of the region merging operation

Data: Topological map M; Oracle function
Result: Merge all the regions by connected components according to

Oracle in M.

foreach dart d of M do1

if Oracle(region(d), region(β3(d))) then2

Union of the disjoint-sets of region(d) and region(β3(d));3

Remove inner faces for each disjoint-set;4

Simplify the cells incident to the removed faces;5

Build the new inclusion tree of regions;6

The global region merging is divided in two main steps: the symbolic merg-
ing and the effective merging. The symbolic merging (line 1 of Algorithm 1)
consists in merging regions into a disjoint-set data structure to create an high
level partition of the regions. Two useful operations are defined onto disjoint-
set data structures: find that retrieves the belonging set of an element, and
union that merges two sets together. The merging of the region is guided by an
oracle which indicates if two regions should be merged together. The effective
merging modifies the topological map to represent the resulting partition of
the image. To obtain the resulting topological map, inner faces, between two
regions belonging to a same disjoint-set, are first removed and the associated
surfels are switched off in the embedding (line 4). Second, the topological map
is simplified (line 5) to obtain the minimal representation of the partition.
Third, the inclusion tree is build (line 6) from the resulting regions and the
combinatorial map (see [10] for more details about the map simplification and
the built of the inclusion tree).

The time complexity of Algorithm 1 is in O(c × #d + #sremoved) where c is
the complexity of the oracle, #d is the number of darts of the topological map
and #sremoved is the number of removed surfel in the embedding.
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4.1 Topological Control of Region Merging

To implement topological control of the region merging process, the Betti
numbers are used as criteria. Computing Betti numbers on regions during the
symbolic merging allows to use Betti numbers values in the oracle function.
Before any merge, the process is initialized. Betti numbers are computed and
stored for each region represented in the topological map. During the incre-
mental process, stored values are updated.

The oracle function is divided into three steps. A first step allows the merge
of regions according to a criterion (for instance, regions having the same label
or regions having about the same color). Then, if the merge is allowed, incre-
mental algorithms are used to compute Betti numbers values for the union
of the two regions. The evaluation function of topological properties allows
or denies the merge depending on the newly computed values. For example,
we can deny the merging of two regions if it creates a new tunnel or if the
number of cavities becomes greater than 5. If the merge is finally allowed,
then the disjoint-sets of the two regions are merged and incremental features
are updated for the resulting region. Using the final part of the global merge
algorithm allows to obtain the desired topological map.

There is an issue to overcome. Since regions are handled using disjoint-sets
during the symbolic merging, regions are not yet merged. A special algorithm
is needed to traverse darts of the surface of a region ignoring inner faces. This
allows to consider all the regions belonging to a same disjoint-set as only one
region.

5 Experiments and Performance Analysis

In this section, experiments using region merging with and without topological
control are shown. An application implementing the topological map model
with operations allowing to extract the topological map from an image and
merge regions has been developed. The computation of the Betti numbers has
also been implemented using the classical approach and the incremental one.

Betti numbers provide an intuitive description of a topological object: they
give tunnels and cavities count for regions. To provide an example of criterion
using the Betti numbers, a predicate that makes the Betti numbers converge
until reaching threshold values has been proposed. Two adjacent regions are
allowed to merge if that does not create nor remove any tunnel or cavity or
if their number evolve toward threshold values. Other example of criteria and
different predicates should be defined depending on the application.
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5.1 Processing Times Comparison

In this section, processing times of the region merging operation are studied.
To compare results, a small (37x44x37) medical image has been used: it rep-
resents a region of interest (ROI) in a TEP image with 43198 regions. On
this image a labeling function proposes a partition of this volume in 1784 re-
gions. An algorithm that merges initial regions having the same label has been
implemented. Experiments have been carried on a personal computer (AMD
Athlon64, 2.0GHz, 512Mo RAM). The application is written in C++ and has
been compiled using GCC 4.0.

The idea of the comparison is to measure processing times of the region merg-
ing with and without computing the Betti numbers. First, the classical ap-
proach of the computation of the Betti numbers is compared to the incre-
mental one. In this comparison, the Betti numbers are only computed and
not taken as a criterion for merges. Second, two examples of region merging
with different values for the convergence criterion are used to illustrate the
increase in number of resulting regions and the increase in processing time for
the symbolic merging part of the algorithm.

Table 1 presents measured values during experiments. The first two rows de-
scribe the number of regions before and after the merging. The next three
rows present the number of tested couple of adjacent regions, the number of
computation of the Betti numbers, and the number of symbolic merging. The
last four rows present processing times of different parts of the algorithm. Each
column is described in the following paragraphs.

Column (1) presents results without computation of the Betti numbers. The
final number of regions corresponds to the number given by the labeling func-
tion. The total processing time is about 2 seconds. The symbolic merging is, in
this case, a fast processing since retrieving the label of a region is direct. In col-
umn (2), results with computation of Betti numbers by the classical approach
are given. b1 and b2 are computed from scratch each time they are required
during the oracle function. This process uses the classical algorithm that com-
putes the Betti numbers from the topological map without taking previously
computed values into account. The number of computation is equal to the
number of symbolic merges since the Betti numbers are not considered as a
criterion in this experiment. Dividing the overall processing time by the num-
ber of effective computation leads to an average value of 58 milliseconds per
computation. Column (3) shows results of the same experiments but using the
incremental approach instead of the classical one. Except for processing times
results, the measured values are the same since the incremental approach in-
tends to do the same as the classical computation algorithm. In this case, the
symbolic merging part is about ten times faster than in the previous experi-
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Table 1
Results from experiments: (1) without computing Betti numbers; (2) computing
Betti numbers with a classical algorithm; (3) computing Betti numbers with an
incremental algorithm; (4) using convergence thresholds (b1 → 0 and b2 → 0);
(5) using convergence thresholds (b1 → 5 and b2 → 1).

Experiment (1) (2) (3) (4) (5)

co
u
n
t Initial regions 43198

Final regions 1784 1938 2158

Possible merges 80398 100886 91535

Computation 0 41414 62429 54057

Symbolic merges 41414 41260 41040

p
ro

ce
s.

ti
m

e
(s

)

Initialization 1.05 1.05 1.05 1.05 1.05

Symbolic merging 0.07 2415.11 263.87 550.07 444.92

Effective merging 0.94 0.93 0.95 0.93 0.95

Total 2.06 2417.09 265.88 552.05 446.93

ment. This result shows the interest of the incremental approach as the average
cost of one computation is 6.3 milliseconds. Column (4) presents results using
convergence thresholds on both Betti numbers values. The aim of this thresh-
old is to make the Betti numbers converge toward zero. This configuration
leads to less effective merges. Thus, the more pair of regions are processed,
the more regions remain in the final result. The average processing time of one
computation is in this case of 8.8 milliseconds. The increase compared with
the previous result is explained by the complexity of the regions not merged
according to the Betti numbers constraint. If the merge of two regions is re-
jected, then other merging with adjacent regions are tried. The computation
is performed more times. In column (5), results using a different threshold are
given. In this experiment, the number of tunnels converges toward 5 and the
number of cavity converges toward 1. The average processing time increases
again because of the same problem. The final number of regions is greater
since the convergence criterion is harder to satisfy.

Table 2 presents the distribution of regions by the Betti numbers. The first
two rows present the distribution of the regions of the initial partition. Few
regions have Betti numbers greater than 0. The next two rows present the
distribution of the regions if a topological constraint is applied: Betti numbers
converge toward 0. There is a smaller number of regions having Betti num-
bers greater than 0. The convergence threshold cannot be reached due to the
labeling function: the merge of some regions is forbidden. The last two rows
present the distribution of the regions if a topological constraint is applied: b1

converges toward 5 and b2 converges toward 1. In this case, the number of re-

18



Table 2
Distribution of regions by Betti numbers: (1-3) without topological constraint on
Betti numbers; (4) using convergence thresholds (b1 → 0 and b2 → 0); (5) using
convergence thresholds (b1 → 5 and b2 → 1).

Regions Value 0 1 2 3 4 5 6 7 > 7

1-3 1784
b1 1768 6 1 2 1 1 0 0 5

b2 1781 2 0 0 0 0 0 0 1

4 1938
b1 1932 2 2 0 0 0 1 1 0

b2 1934 1 1 0 0 0 0 0 2

5 2158
b1 2099 24 6 9 11 5 0 2 2

b2 2147 4 2 0 1 0 1 0 3

gions having more than 0 tunnel increases. The number of regions having more
than 5 tunnels decreases. The number of regions that have cavities increases.
However, as in the previous case, the convergence criteria of b1 and b2 conflict,
which forbids the algorithm to reach the specified convergence threshold.

5.2 Example of Use on Artificial Image

To show the results of the topological criterion, a constraint on the second
Betti number is applied to an artificial image in Figure 8. Figure 8a shows
voxels of a gray-scale 3D image. In the original image, there is one region
for each voxel. The application merges these regions in an order depending
on voxel gray levels: the convergence criterion on Betti numbers controls the
topology of the obtained regions. In Figure 8b, the criterion converges through
the zero threshold: no tunnels are allowed. The 2-torus region that clearly
appears is divided into three main regions that do not contain any tunnel.
Figure 8c shows the result using a convergence threshold of 1. Two regions
appear, one having a tunnel and not the other one. Different orders in the
region merging lead to other results but no region has more than one tunnel
according to the criterion. In Figure 8d, the threshold on b1 is 5. Merges are
allowed while the number of tunnel increases. In the example, the 2-torus is
fully retrieved.

6 Conclusion

In this paper, two approaches of the Betti numbers computation for regions
in topological maps have been presented. Firstly, an algorithm counting tun-
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(a) (b) (c) (d)

Fig. 8. Experiments on 3D artificial images. The convergence threshold on the num-
ber of tunnels b1 is given for each image. (a) voxels of a 2-torus object. Each voxel
belongs to a different region. (b) 2-torus with b1 → 0. The object is divided into
three main regions, none of them having any tunnel. (c) 2-torus with b1 → 1. One
of the two main regions has a tunnel and the other one has none. Two 1-torus are
not obtained due to the order in region merging. (d) 2-torus with b1 → 5. Actually,
b1 increases until reaching its maximal value (2) driven by voxels data.

nels and cavities by using information stored in topological maps is given to
compute b1 and b2. Then, an incremental algorithm that allows the compu-
tation of the Betti numbers for the union of two regions is presented. It uses
the Euler characteristic of the border and the number of surfaces of the two
regions to retrieve b1 and b2. A region merging algorithm is presented to allow
the modification of the represented partition of the image. This work proposes
the Betti numbers as a new tool to control the topology of the regions during
modification operations. Experiments show the results of the implementation
of the Betti numbers criterion in the region merging operation.

The direct computation of the Betti numbers is presented. b0 is always equals
to one as there is only one single 2-connected component of voxels for each
region. b1 is computed using a formula that links the number of tunnels and the
Euler characteristic of borders of a region. b2 is computed using the inclusion
tree of regions to count cavities. The incremental computation algorithm gives
the Betti numbers for the union of two regions. b1 depends on the change of the
Euler characteristic of the border of the union of the two regions. The Euler
characteristic computation counts cells of the border of regions represented by
topological maps. The incremental computation of b2 counts the number of
newly created cavities using the number of surfaces of the two regions.

Global region merging operation has been developed. This operation allows
the merging of any number of sets of connected regions. This approach of
the region merging is well suited for automated processing like the bottom-up
segmentation. The complexity of this operation is given and the integration
of topological control to the region merging is explained. Processing times
have been measured during experiments on real medical data. This shows
the advantage of the incremental computation algorithm over the classical
approach. Effects of the topological criterion are then shown by controlling
the number of tunnels on an artificial image that represents a 2-torus region.

The results exposed in this paper show an encouraging progress toward solving
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the problem of controlling the topology of regions in a 3D image. The funda-
mental point lies in the control of the topological information attached to each
cell in the image. The topological map framework is well suited to compute
complex topological features for each region in a 3D image as demonstrated by
the computation of the Betti numbers. A direct perspective is to improve pro-
cessing times of the Betti numbers computation algorithms. Currently, most
of the processing time of the computation is consumed into map traversal. An
idea would be to precompute some values in order to speed up computation.

To extend the work presented in this paper, other operations will be studied
to allow different approaches to modify the partition of the image. For in-
stance, the region splitting algorithm that divides a region into several ones is
a key operation for split and merge segmentation. Implementing topological
control during the split operation should allow to segment complex structures
like brains. Further research will aim at the computation of other topological
features like homology groups generators in order to provide more tools to
develop segmentation within the topological map framework. Lastly, we want
to use topological criterion in order to solve real world segmentation issues.
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