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Abstract. Proofs in Ludics, have an interpretation provided by theircounter-proofs, that is the ob-
jects they interact with. We shall follow the same idea by proposing that sentence meanings are given
by thecounter-meaningsthey are opposed to in a dialectical interaction. In this aim, we shall de-
velop many concepts of Ludics likedesigns(which generalize proofs),cut-nets, orthogonalityand
behaviours(that is sets of designs which are equal to their bi-orthogonal). Behaviours give state-
ments their interactive meaning. Such a conception may be viewed at the intersection betweenproof-
theoreticandgame-theoreticalaccounts of semantics, but it enlarges them by allowing to deal with
possibly infinite processes instead of getting stuck to an atomic level when decomposing a formula.

1 Meanings, Proofs and Games

The dominant trend in Natural Language Semantics is based onFrege’s conceptions on Logics and Lan-
guage according to which the meaning of a sentence may be expressed in terms of its truth conditions.
There is however an alternative conception according to which we don’t find meanings in truth conditions
but in proofs, particularly expressed by theBrouwer-Heyting-Kolmogorov(BHK) - interpretation. This
conception has been used in philosophy, linguistics and mathematics. In Natural Language Semantics,
it has been for instance developed by Martin-Löf, Sundholmand Ranta ([Martin-Löf 84, Sundholm 86,
Ranta 94]), but this framework is limited because proofs arefinite objects. At a certain stage of the proof
of a formula, atomic formulae are obtained, butwhat is the proof of an atomic formula? Actually, we
expect a proof of a sentence to be an object of the same symbolic nature as the sentence. There is no way
to escape from language or from mind to directly reach the external world.
Other similar attempts to provide a foundation for meaning in natural language are based on works by
Hintikka, Kulas and Sandu ([Hintikka-Kulas 83, Hintikka-Sandu 97]). In their interpretation, meanings
are provided by strategies in alanguage game. Their views meet Wittgenstein’s according to whichmean-
ing is useand the use of language is showed in language games. But stillthose accounts meet difficulties
when dealing with atomic sentences: in this case, the logician is obliged to refer to some model (in the
traditional sense of Model Theory) in order to evaluate the truth value of an atomic sentence.
Still more seriously, they only take in consideration gameswhich are of a very particular kind: they are
oriented towards the notions ofwinner, winning strategy, scoreandpay-off function, contrarily to what
Wittgenstein suggested in hisPhilosophische Untersuchungenwhen he spoke of games for a very large
family (even mere pastimes). Neither Wittgenstein’s gamesdo refer toa priori rules which would be
attached, like in GTS, with logical particles (cf. [Pietarinen 07]).
Finally, none of these alternatives to the truth-conditions based framework ever envisaged to take proofs
or games as infinite devices (or partial and underspecified ones) and of course none of these traditions
took into account the fact that proofs and strategies can be thesameobjects, simply viewed from different
angles.
If this concerns formalized theories of meaning, what to sayof theories of meaning which have not been
formalized, like that ofargumentativemeaning, in O. Ducrot’s sense ([Ducrot 1984]). Ducrot pointed out
the so-calledpolyphonicaspect of language, that is the fact that utterrances are notsimple statements
which are confronted with ”reality”, but dynamical processes which are oriented towards possible or im-
possible continuations (for instanceI have a few bookscannot be pursued by∗and even none, while He



read few booksmay be). In the same way,dialoguesmay be studied according to what utterrance may be
an appropriate reply to another one, and what may not be.
In this paper, we shall present some applications of Ludics to these topics. In a nutshell, proofs in Ludics,
have an interpretation provided by their counter-proofs, that is the objects they interact with. We shall
follow the same idea by proposing that sentence meanings aregiven by thecounter-meaningsthey are
opposed to in a dialectical interaction.

2 Dialogues and Ludics

2.1 Ludics : a Theory of Interaction

Ludics can be sum up as an interaction theory, formulated by J.-Y. Girard ([Girard 01]) as the issue of
several changes of paradigms in Proof Theory : from provability to computation, then from computation
to interaction. The first change of paradigm arose with the intuitionnistic logic, while the second was due
to the development of linear logic.
Starting from a geometrical viewpoint on proofs, which provided an internal approach to the dynamics of
proofs, Ludics takes the notion of interaction (that is the cut rule and its process of elimination) asprimi-
tive. Therefore, it simply starts fromloci, or adresses (whereinteraction can take place) andformulaeare
given up, at least for a while, since the challenge is to regain them at the output of the construction.Proto-
formulaeare used as mere scaffoldings for building the main objects we shall deal with (the designs).
The central object of Ludics: the designUsing the metaphor of Games, a design can be understood
as astrategy, i.e. as a set ofplays (or chronicles) ending by answers of Proponent against the moves
planned by Opponent. The plays are alternated sequences ofmoves(actions). A move is defined as a
3-uple consisting in

– a polarity (positive for Proponent, negative for Opponent),
– an adress orlocus, coded by a finite sequence of integers (denoted byξ, ρ, σ . . . ), where the move is

said to beanchored,
– a finite set of integers, orramificationwhich indicates the positions which can be reached in one step.

A unusual positive move is also possible : thedäımon, which may end up a play.

Positions are organized inforks, which are presented under the general form:Γ ⊢ ∆; whereΓ and∆ are
finite sets of loci such thatΓ is either the empty set or a singleton. The fork corresponding to the starting
position is called thebaseof the design. WhenΓ is not empty, the following (opponent) move starts from
the only element it contains, and the fork is said to benegative, in the other case, Proponent chooses the
locus in∆ from where it starts and the fork is said to bepositive.

Perhaps this may seem not new with regards toGTS, let us notice however that moves are defined
abstractly, independently from any particular connectiveor quantifier, and that at each step, the whole
history of the previous moves is available.

Now, more importantly, a design may be also seen as aproof searchin some linear formal system,
according to the following methodological choices:

– the object we are building not only provides a proof, but at the same time, contributes to the deter-
mination of the formula which is proved. Loci point out the position where such a formula could be
located, and at the same time, the ”logical” decomposition this formula could have,

– by means of the focalisation property discovered by Andréoli [Andréoli 92] according to which in
linear logic, it is always possible to draw a proof by following a strict discipline (focusing) which
amounts to grouping together successive blocks of rule applications of the same polarity, it is possible
to have only two rules (one positive and one negative).



– it may happen that the research be not successful. In this case, one may give up the proof search, thus
using a specific non logical rule (orparalogism) : thedäımonrule.

A design can therefore be represented by a tree of forks, built by means of three rules :
Daı̈mon

†
⊢ Λ

Negative rule

... ⊢ ξ ⋆ J, ΛJ ...
(−, ξ,N )

ξ ⊢ Λ

Positive rule

... ξ ⋆ i ⊢ Λi ...
(+, ξ, I)

⊢ ξ, Λ

whereI andJ are finite subsets ofN, i ∈ I, with theΛi pairwise disjoints,N is a set (possibly infinite)
of finite subsets ofN, eachJ of the negative rule being an element of this set, all theΛJ are included in
Λ, and moreover each base sequent is well formed in the sense that all addresses are pairwise disjoint.

The FaxSince we have not yet introduced formulae, there is no opportunity to useaxiom-links. Instead,
we will have a particular design based on a forkξ ⊢ ξ′. Roughly speaking, this design ensures that both
loci ξ andξ′ could be locations of a same formula. That means that as soon as a logical decomposition
may be handled on the right hand side, the same may also be handled on the left hand side. Such a design,
calledFax, is recursively defined as follows:

Faxξ,ξ′ =
...

...

Faxξ′

i
,ξi

ξ′ ⋆ i ⊢ ξ ⋆ i ...
(+, ξ′, J)

⊢ ξ ⋆ J, ξ′ ...
(−, ξ,Pf(N))

ξ ⊢ ξ′

At the first (negative) step, the negativelocusis distributed over all the finite subsets ofN, then for each
set of addresses (relative to someJ), the positive locusξ′ is chosen and gives rise to a subaddressξ′ ⋆ i

for eachi ∈ Jk, and the same machinery is relaunched for the new loci obtained.

Defining interaction Interaction is concretely expressed by a coincidence of twoloci in dual position in
the bases of two designs. This creates a dynamics of rewriting of the cut-net of the two designs, called, as
usual,normalisation. We sum up this process as follows: the cut link is duplicatedand propagates over all
immediatesublociof the initial cutlocusas long as the action anchored on the positive fork containing the
cut-locus corresponds to one of the actions anchored on the negative one. The process terminates either
when the positive action anchored on the positive cut-fork is thedäımon, in which case we obtain a design
with the same base as the starting cut-net, or when it happensthat in fact, no negative action corresponds
to the positive one. In the later case, the process fails (ordiverges). The process may not terminate since
designs are not necessarily finite objects.
When the normalization between two designsD andE (respectively based on⊢ ξ andξ ⊢) succeeds,
the designs are said to beorthogonal, and we note:D ⊥ E . In this case, normalization ends up on the
particular design :

[†]
⊢



Let D be a design,D⊥ denotes the set of all its orthogonal designs. It is then possible to compare two
designs according to their counter-designs. We setD ≺ E whenD⊥ ⊂ E⊥.

The separation theorem [Girard 01] ensures that this relation of preorder is an order, so that a design is
exactly defined by its orthogonal.

BehavioursOne of the main virtues of this ”deconstruction” is to help usrebuilding Logic.

– Formulas are now some sets of designs. They are exactly thosewhich are closed (or stable) by inter-
action, that is those which are equal to theirbi-orthogonal. Technically, they are calledbehaviours.

– The usual connectives of Linear Logic are then recoverable,with the very nice property ofinternal
completeness. That is : the bi-closure is useless for all linear connectives. For example, every design
in a behaviourC ⊕ D may be obtained by taking either a design inC or a design inD.

– Finally, proofswill be now designs satisfiying some properties, in particular that of not using the
daı̈mon rule.

2.2 Ludics as a Formal Framework for Dialogues

Concerning dialogues, let us focalize on the meresupportsof the interaction. That is thelocuswhere a
speech turn is anchored (among theloci previously created) and theloci that it creates, which are also
those which may be used later on.
Because Ludics may display the history of the dialogue by means ofchronicles, and it takes into account
the strategies of any speaker by means ofdesigns, it allows us to see a dialogue as the result of an
interaction between the strategies of two speakers. In thatcase, the rules have the following interpretation:

– when beingactive(that is using a positive rule), a speaker chooses alocusand therefore has an active
role,

– when beingnegative(that is using a negative rule), s/he has no choice and has a passive role

If, therefore, positive steps are understood as moves wherethe intervener asks a question or makes an as-
sertion, and negative steps as moves where s/he is apparently passive, recording an assertion and planning
a further reply, positive actions of one speaker are not opposed to positive actions of the other one (as it is
the case in most formal accounts of dialogue, even the logical ones) but to negative ones of the other. This
point meets an important requirement formulated by Ducrot according to whom ”the semantic value of an
utterrance is built by allusion to the possibility of another utterrance (the utterrance of the Other speaker)”.

Examples

– The following example is deliberately simple, and only given for a pedagogic purpose.
Let us consider the following dialogue between Annie and Barbara:
A : did you meet some friends yesterday evening to the party ?B : I only saw Bruno and Pierre.A :
Was Pierre still as nice as during the last year ?B : Yes, he did.A : That is what I wanted to know.
Such an exchange is represented by an interaction between two designs : one is seen from the point
of view of A and the other from the point of view ofB:

From A’s point of view From B’s point of view
†

⊢ 0.1.1.1.1 0.1.1.1.1 ⊢
0.1.1.1 ⊢ ⊢ 0.1.1.1

⊢ 0.1.1, 0.1.2 0.1.1 ⊢ 0.1.2 ⊢
0.1 ⊢ ⊢ 0.1
⊢ 0 0 ⊢



The trace of the interaction (the cut between the two loci0) is the alternated sequence of actions:
(+, 0, {1})(−, 0.1, {1, 2})(+, 0.1.1, {1})(−, 0.1.1.1, {1})†.
In this case the normalisation ends up on the daı̈mon. The interaction converges.

– The second example is taken from Schopenhauer’s ”Dialectica eristica” (or ”The Art of Always
Being Right”) which provides a series of so-calledstratagemsin order to be always right in a debate.
It formalizes the first given stratagem.
“I asserted that the English were excellent in drama. My opponent attempted to give an instance of
the contrary, and replied that it was a well-known fact that in opera, they were bad. I repelled the
attack by reminding him that, for me, dramatic art only covered tragedy and comedy ....”
We give an account of this dialogue by the following interaction:

⊢ ξ.1.1 ⊢ ξ.1.2
C

ξ.1 ⊢
A

⊢ ξ

ξ.1.3 ⊢
B

⊢ ξ.1

ξ ⊢

Where the action A corresponds with the claim: ”The English are excellent in drama” ; the action B with “I
disagree, it is a well-known fact that in opera, they could donothing at all.” and the action C with “But by
dramatic art, I only mean tragedy and comedy.”
Of course, the net built with these two designs does not converge. In fact, things don’t happen this
way: initially, the set of loci the first speaker has in mind could also coveropera. What happens
when willing to repel the attack is retracting one branch (orreplay the game according to a different
strategy). This leads us to enter more deeply into the decomposition of dialogues and in what we
consider asunitsof action.

While, at the most elementary level, which is relevant as long as the dialogues we consider are simple
(for instance exchanges of information), the interaction is between elementary actions, those elementary
actions are replaced by (sub)-designs as soon as we are concerned by dialogues of a more complex nature
like controversies.

– A third example comes from Aristotle’sSophistical Refutations, where it is given the namemultiple
questions.
Let us imagine a judge asking a man the question:
“Do you still beat your father ?”.
The judge asks a question that presupposes something that has not necessarily been accepted by the
man. S/he imposes to him the following implicit exchange:
- “Do you beat your father?” - “ Yes” - “ Do you stop beating him ?” .
This exchange between the judgeJ and the manD must be represented by the following interaction
:

ξ.0.1.0 ⊢

⊢ ξ.0.1 ⊢ ξ.0.2

ξ.0 ⊢

⊢ ξ

⊢ ξ.0.1.0

ξ.0.1 ⊢

⊢ ξ.0

ξ ⊢

J D

In fact, the judge utterance: -“Do you still beat your father ?”contains what we call nowadays
a presupposition. It can’t therefore be represented bya single action, but by the whole chronicle:
(+, ξ, {0}) (−, ξ.0, {1}) (+, ξ.0.1, {0}). This enables us to give an account of the fact that one of



the loci where the interaction might continue is in fact not available ; in some sense the action giving
this possibility is skipped, some successive one is immediately proposed and, by this way, constrains
the answers.

The ludical approach thus allows us to get a formalized conception of stratagems and fallacies, something
which appeared out of reach for many researchers (see for instance [Hamblin 70]). Moreover, we claim
that it could improve some issues in formal semantics, like we try to show it in the following section.

3 Logical Forms and Ludics

In the sequel, we propose a conception of interactive meaning based on Ludics. In the same way a design
is defined by its orthogonal (according to the separation theorem), we may postulate that the meaning of
a sentence is given by the set of all its dual sentences: that is all the sentences with which the interaction
converges. For this purpose, we associate a behaviour or a family of behaviours with a sentence. Such
behaviours are built in a compositional way, like in standard formal semantics, but their ultimate compo-
nents are neitheratomsnor atomic formulae, like in the Intensional Logic Montague was using. Let us
underline the points which are slightly different and new and which could favourably extend the standard
models of semantics:

– The fact that the mathematical object associated with the meaning of a sentence may bemore and
more refinedseems to us very important. Such an objective is realized because of the order on designs
involved by theseparation theorem, which enables one to explore more and more precisely the ar-
gumentative potential of a sentence. Moreover, new designsmay always be added to such an object,
thus enlarging our conception of meaning.

– The fact that Ludics strictly encompasses logic and that logical concepts like formulas, proofs or
connectives are defined in a world which is larger than the strictly logical one (let us remember that
we haveparalogismslike the däımon, and counter-proofs in that world!) makes us to expect more
freedom in defining ”logical” forms. For instance it may be the case that behaviours are composed
by means of a non-logical operator (but which could nevertheless be interpreted).

The following example illustrates a classical problem of ambiguty (scopeambiguity).

3.1 Meaning through Dual Sentences

The meaning of a sentence is given by all the utterances whichcorrectly interact (that means :converge)
with it.
Let us consider the statement (from now on denoted byS): “Every linguist speaks some african language”.
Usually two logical forms can be associated with such a sentenceS, depending on whethersomehas the
narrow or the wide scope. Namely:

S1 = ∀x(L(x) ⇒ ∃y(A(y) ∧ P (x, y)))
S2 = ∃y(A(y) ∧ ∀x(L(x) ⇒ P (x, y)))

whereL(x) means ”x is a linguist” ,A(y) means ”y is an african language” andP (x, y) means ”x speaks
y”.
When ”some” has the narrow scope, we assume that the logical form converges with the LF of sentences
like:

(1) There is a linguist who does not know any african language.
(2) Does even John, who is a linguist, speak an african language ?
(3) Which is the African language spoken by John ?

On the opposite, if ”some” has the wide scope, the logical form converges with :
(4) There is no african language which is spoken by all the linguists.
(5) Which african language every linguist speaks ?



3.2 Meaning as a Set of Justifications

We materialize the claim according to which meaning is equated with a set of dual sentences by asso-
ciating with the meaning ofS a set of designs. Such designs may be seen asjustificationsof S. That is
the supports of the dialogues during which a speakerP asserts and justifies the statementS against an
adresseeO who has several tests at his/her disposal.

Let us make such a design, based on the arbritary fork⊢ 0, more precise:

– the first action corresponds to the assertion ofS. Its ramification is a singleton ; only one locus is
created for continuing the interaction. Nevertheless, thespeaker who has to anticipate the reactions
of his/her adressee is committed to one of the readings ofS. S/he is ready to assume one of the two
possibilities, the wide or the narrow scope for ”some”. Thisis taken into account by distinguishing
between two possible first actions, that we symbolize for instance by(+, 0, {0}) and(+, 0, {1}). It is
then possible to distinguish between two kinds of designs, considered as justifications ofS according
to the choice of the first action.

– let us for instance focus on the first reading ofS. We then simulate an interaction betweenP andO

who tries to negateP ’s claim:

P O

Dd′

...

0.0.2d.1e ⊢ 0.0.2d.2e ⊢
3

⊢ 0.0.1d, 0.0.2d

Dd′′

...
2

0.0 ⊢
1

⊢ 0

0.0.1d ⊢

Ee′

...
† 4

⊢ 0.0.2d.1e, 0.0.2d.2e

Ee′′

...
3′

0.0.2d ⊢
2′

⊢ 0.0
1′

0 ⊢

The normalisation stages may be commented as follows:

1 P assertsS and is ready to continue the interaction with the first reading of S
1’ O records the claim made byP and is ready to answer it.Notice that ifO had been ready to answer

according to the second reading, its action would have been(−, 0, {1}) and the interaction would have diverged
2 P is ready to give justifications for any individual :d,d′,. . .
2’ O proposes an individuald (arguing thatd is a linguist (localized in0.0.1d) and thatd doesn’t know

any african language (localized in0.0.2d))
3 P exhibits some languagee (arguing thate is an african language andd speakse)
3’ at the same time,O is ready to receive such a claim byP for some language amonge′,e, e′′ . . .
4 if P has given some languagee such thatd speaks it,O may be ready to give up.

Thus, the interaction between ”Every linguist speaks some african language” and the attempt to negate it
”There is some linguist which doesn’t speak any african language” normalizes.
Let us denote byD the foregoing design ofP . We could also find another design as justification ofS with
its first reading :P may ask tocheck if d is really a linguist,O may ask tocheck if d really speakse and
so on thus providing a deeper interaction. Further exchanges may enter into debates on what it means for
a person to be a linguist, or on what it means for a language to be an african one, or on what it means for
a person and a language to be such that the person speaks the language and so on...
In any way, ifS1 denotes the set of designs representing the first reading ofS and if S2 denotes the set
of designs representing the second one, the set of designs representing the meaning ofS is the union of
both sets :S = S1 ∪ S2.



3.3 Meaning as Behaviour

The previous attempt to associate a set of design with the meaning ofS is still general and imprecise.D
actually belongs to the following behaviour3:

∀x(↓ L(x) −◦ ∃y(↓ A(y)⊗ ↓ P(x, y)))

provided thatL(x) , A(y) andP(x, y))) are behaviours. Indeed, following the correspondance between
designs and proofs of the hypersequentialized polarised linear logicH which is given in the annex, the
designD may be seen as an attempt to prove the formulaS = S1 ⊕ S2 whereS1 and S2 are the
(proto) - formulas associated with the first and second reading ofS in their linear and hypersequentialized
formulations :

Dd′

...

↓ A⊥(ed) ⊢ ↓ P⊥(d, ed) ⊢

⊢↓ L⊥(d),∃y(↑ A(y)⊗ ↑ P (d, y))

Dd′′

...

(∀x(↑ L(x) −◦ ∃y(↑ A(y)⊗ ↑ P (x, y))))⊥ ⊢

⊢ S

We retrieve the semantical notion of “logical form” but resting onbehavioursinstead of, simply, logical
formulae. There are finally two possible ways to associate a behaviour with a sentence:

- either, we can consider that the design obtained (as in the previous section) as a minimal justification
of S may generate a behaviour associated withS. ThusSgen = D⊥⊥.

- or we can consider that the behaviour associated withS corresponds to the linear formula (in an
hypersequentialised formulation):

S = (∀x(↓ L(x) −◦ ∃y(↓ A(y)⊗ ↓ P(x, y)))) ⊕ ∃y(↓ A(y) ⊗ ∀x ↑ (↓ L(x) −◦↓ P(x, y))).

The later interpretation ofS’s meaning is in fact afamily of behavioursbecauseS depends on the be-
havioursL(x) , A(y) andP(x, y))).

Remark 1 As a logical formula, S is seen as the disjunction ofS1 and S2 , namely as the formula
S = S1⊕ ↓ S2, and as abehaviour, seen as the union4 of the two behaviours associated with the two
terms of the disjunct. Hence we get a logical account of the fact that interaction may activate only one of
both logical sub-formulas, depending on the scope of “some”.

Remark 2 The behaviourSgen contains all the behaviours logically built from the behaviours associated
with the elemantary piecesL(x), A(y) andP (x, y). This way we get a first (and still rough) account of
the logical particles of meaning.

Finally, Ludics enables us to go further into the specification of the logical form.

Decomposing “atomic formulas”

3 ∀ and∃ are used here because of their intuitive appeal, but in fact they stand for the generalized additives con-
nectives&x and⊕y (cf. annex). There is nevertheless a slight difference between both pairs of concepts: strictly
speaking, in Ludics the correct use of first order quantifierswith regards to mathematical formulas would involve
a uniformity property ([Fleury-Quatrini 04]) which is neither relevant nor satised here.

4 This is one of the mains results of Ludics: the internal completeness ensures that the elementary operation of union
is enough to obtain all the designs of the disjunction.



1. It is of course possible to consider the leaves of a decomposition as atomic formulae, if decomposition
ends up. In this case, they are seen asdata items5.
We can thus consider the following designD′ as a justification ofS :

Dd′

...

∅

⊢ A(ed)

↓ A⊥(ed) ⊢

∅

⊢ P (d, ed)

↓ P⊥(d, ed) ⊢

⊢↓ L⊥(d),∃y(↑ A(y)⊗ ↑ P (d, y))

Dd′′

...

(∀x(↑ L(x) −◦ ∃y(↑ A(y)⊗ ↑ P (x, y))))⊥ ⊢

Let us remark thatD′ is more defined thanD. In Ludics this means thatD⊥ ⊂ D′⊥ and this may be
understood here that the justification is more informative,more precise.

2. But we may also consider thatL(x), A(y) andP (x, y) are still decomposable. That amounts to
recognize thatS1 contains other designs: all those which are more defined thanD. Designsmore
defined thanD are built on the same schema thanD′ but instead of ending on the the empty set, they
continue on non empty ramifications, thus allowing the exploration ofA(ef ) or P (f, ef ) which were
alleged atomic formulae in the previous designs.

The vericonditional interpretation is here retrieved as anindirect (and secondary) consequence of our
”(para)proofs as meanings”6 interpretation because now,D′ is really a proof provided thatA(f) and
P (f, ef ) are either data items, that is the true linear formula1 or are provable when they are decompos-
able.

3.4 How to go further ?

Towards speech acts - and the use ofFax Instead of simple yes/no questions, where convergence occurs
for ”yes” and divergence for “no”, we may take so calledwh-questions into consideration, for example
“which is the african language that John speaks ?”. In this casewe expect that the interaction has the
answer as its by-product (or its side effect).
To reach this goal, let us associate with such a question (that we may see as aspeech act) a design in which
there is a locus for storing the answer. In our formulation of designs asHS-paraproofs, this question will
be associated with a paraproof of the sequentS ⊢ A whereA is a formula equal to↑ A1 ⊕ · · · ⊕ ↑ An

corresponding to the logical form of ” is some african language” (afar, peul, ewe, ewondo...). A complex

design usingFax will be associated with the question ”which is the african language that John speaks ?”

. The result of the interaction of this design withD′ is :

∅

⊢ Ae

↓ A⊥
e ⊢

⊢ A which can be read as “Ae is this african
language” (whereAe is the african language that John speaks (inD′)).

In our opinion, this suggests a way to perform in Ludics a unified treatment of Logical Forms and Speech
Acts. At the same time, this underlines the richness of the ludical framework to give an account of the
interactions in language.

5 in Ludics this is possible by means of the use of the linear multiplicative constant1
6 In the opposition of two processes of proof search, both cannot be ”real” proofs, it is the reason why we call them

paraproofs



4 Conclusion

In this paper, we tried to give an account of Ludics and of the new way it allows to specify Meaning
in Language: not by considerations on truth conditions but by using the important concept ofinterac-
tion. To access the meaning of a sentence is mainly to know how to question, to answer to or to refute
this sentence, and to know how to extend the discourse (or thedialogue) to which it belongs. In such a
conception, the meaning of a sentence is a moment inside an entire process which coud be conceived as
infinite (if for instance we admit that the interpretation orthe argumentation process with regards to any
statement is potentially infinite). Ludics gives a precise form to these views by means of the notions of
normalizationandbehaviour.
Otherwise, the emphasis put onloci has, as a valuable consequence, the fact that we may conceiveseveral
instances of the samesign (a sentence, a word etc.) as having various meanings, according to the loca-
tion it has in a discourse or a dialogue, thus giving suggestions for dealing with many rhetorical figures
(andfallacies). The infinite designFax allows to delocate such meanings but its use is not mandatory.
Moreover, the fact (not much developed in this extended abstract) that a design may be viewed either as a
kind of proof (in a syntactic setting of the framework) or as agame (in a semantic setting of it) provides
us with interesting insights on Pragmatics and Wittgensteinian language games. In a pragmatic theory of
presupposition, for instance,presupposingimplies making an assertion where the hearer has no access to
a previous step made by the speaker, if (s)he rejects this step, (s)he makes the process to diverge. Other
”games” may be explored. Wittgenstein for instance quotedelicitation, that is the way in which some-
body may obtain an answer to a question. Every time,Fax is used to transfer a meaning from a location
to another one (for instance from the discourse or the brain of the other speaker to the one of the eliciter).
Those games may be envisaged without any kind of ”winning strategy”. In a speech act seen as a game,
there is no win, simply the appropriate use of some designs inorder to reach an objective (which may be
a common one). Future works will be done in those directions.

5 Annexe A : A hypersequentialized version of the linear sequent calculus

We give here a short presentation of a hypersequentialized version of linear calculus, which enables one
to manipule the designs as (para)proofs of a logical calculus.

5.1 Formulas and sequents

By means of polarity, we may simplify the calculus by keepingonly positive formulae. Of course, there
are still negative formulae... but they are simply put on theleft-hand side after they have been changed into
their negation. Moreover, in order to make paraproofs to look like sequences of alternate steps (like it is
the case in ordinary games), we will make blocks of positive and of negative formulae in such a way that
each one is introduced in only one step, thus necessarily using synthetic connectives. Such connectives
are still denoted⊕ and⊗ but are of various arities. We will distinguish the case where both⊕ and⊗ are
of arity 1 and denote it↓.

- The only linear formulae which are considered in such a sequent calculus are built from the setP of
linear constants and propositionnal variables according to the following schema :

F = P |(F⊥ ⊗ · · · ⊗ F⊥) ⊕ · · · ⊕ (F⊥ ⊗ · · · ⊗ F⊥)| ↓ F⊥

– The sequents aredenotedΓ ⊢ ∆ where∆ is a multiset of formulas andΓ contains at most a formula.



5.2 Rules

– There are some axioms (logical and non logical axioms):

P ⊢ P ⊢ 1 ⊢↓ T, ∆
†

⊢ ∆

whereP is a propositionnal variable ;1 andT are the usual linear constants (respectively positive
and negative).

– The ”logical” rules are the following ones :
Negative rule

⊢ A11, . . . , A1n1
, Γ . . . ⊢ Ap1, . . . , Apnp

, Γ

(A11 ⊗ · · · ⊗ A1n1
) ⊕ · · · ⊕ (Ap1 ⊗ · · · ⊗ Apnp

) ⊢ Γ

Positive rule

Ai1 ⊢ Γ1 . . .Aini
⊢ Γp

⊢ (A11 ⊗ · · · ⊗ A1n1
) ⊕ · · · ⊕ (Ap1 ⊗ · · · ⊗ Apnp

), Γ

where∪Γk ⊂ Γ and fork, l ∈ {1, . . . p} theΓk ∩ Γl = ∅.

5.3 Remarks on Shifts

Using the shift is a way to break a block of a given polarity. Separate steps may be enforced by using the
shiftoperators↓ and↑ which change the negative (resp. positive) polarity into the positive (resp. negative)
one. The rules introducing such shifted formulas are particular cases of the positive and the negative one:

A⊥ ⊢ Γ
[+]

⊢↓ A, Γ

⊢ A⊥, Γ
[−]

↓ A ⊢ Γ

whereA is a negative formula.
Example In a block likeA ⊗ B ⊗ C in principle,A, B andC are negative, but if we don’t want to
deal withA, B, C simultaneously, we may change the polarity ofB ⊗ C (which is positive) and make it
negative by means of↑. We write thenA⊗ ↑ (B ⊗ C).
Compare the two following partial proofs, where (1) does notuse any shifts and (2) uses one :

instead of (1):
A⊥ ⊢ B⊥ ⊢ C⊥ ⊢

⊢ A ⊗ B ⊗ C we get (2) :

A⊥ ⊢

B⊥ ⊢ C⊥ ⊢

⊢ B ⊗ C

↓ (B ⊗ C)⊥ ⊢

⊢ A⊗ ↑ (B ⊗ C)

We may use the notation⊕y (and dually&x) instead ofFy1
⊕ · · · ⊕ Fyn

or simply∃y (dually∀x) when
it is clear in context thaty belongs to a finite set.
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