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Optimal model selection in density estimation

Matthieu Lerasle*

Abstract

We build penalized least-squares estimators using the slope heuristic and re-
sampling penalties. We prove oracle inequalities for the selected estimator with
leading constant asymptotically equal to 1. We compare the practical perfor-
mances of these methods in a short simulation study.

Key words: Density estimation, optimal model selection, resampling methods, slope
heuristic.
2000 Mathematics Subject Classification: 62G07, 62G09.

1 Introduction

The aim of model selection is to construct data-driven criteria to select a model among a
given list. The history of statistical model selection goes back at least to Akaike [}, [B] and
Mallows [[[§]. They proposed to select among a collection of parametric models the one
which minimizes an empirical loss plus some penalty term proportional to the dimension
of the model. Birgé & Massart [J] and Barron, Birgé & Massart [f] generalized this
approach, making in particular the link between model selection and adaptive estimation.
They proved that previous methods, in particular cross-validation (see Rudemo [R(]]) and
hard thresholding (see Donoho et.al. [[J]) can be viewed as penalization methods. More
recently, Birgé & Massart [J], Arlot & Massart [f] and Arlot [}, (see also [[f]) arised the
problem of optimal efficient model selection. Basically, the aim is to select an estimator
satisfying an oracle inequality with leading constant asymptotically equal to 1. They
obtained such procedures thanks to a sharp estimator of the ideal penalty pen;;. We will
be interested in two natural ideas, that are used in practice to evaluate pen,; and proved
to be efficient in other frameworks. The first one is the slope heuristic. It was introduced
in Birgé & Massart [fl] in Gaussian regression and developed in Arlot & Massart [f] in
a M-estimation framework. It allows to optimize the choice of a leading constant in
the penalty term, provided that we know the shape of pen,;. The other one is Efron’s
resampling heuristic. The basic idea comes from Efron [[[4] and was used by Fromont [[j]
in the classification framework. Then, Arlot [[l] made the link with ideal penalties and
developed the general procedure. Up to our knowledge, these methods have only been
theoretically validated in regression frameworks. We propose here to prove their efficiency
in density estimation. Let us now explain more precisely our context.

1.1 Least-squares estimators

In this paper, we define and study efficient penalized least-squares estimators in the den-
sity estimation framework when the error is measured with the L?-loss. We observe n
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ii.d random variables X, ..., X,,, defined on a probability space (€2, .4,P), valued in a
measurable space (X, X'), with common law P. We assume that a measure p on (X, X)) is
given and we denote by L?(u) the Hilbert space of square integrable real valued functions
defined on X. L?(p) is endowed with its classical scalar product, defined for all ¢, in

L?(p) by
it = / Ha) (@) dpa(z)
X

and the associated L?-norm |.|, defined for all ¢ in L?(u) by ||t| = /<%, >. The
parameter of interest is the density s of P with respect to u, we assume that it belongs
to L?(p). The risk of an estimator 3 of s is measured with the L2-loss, that is ||s — 3|,
which is random when § is.

5 minimizes the integrated quadratic contrast PQ(t), where @ : L?(u) — L*'(P) is defined
for all ¢ in L?(u) by Q(t) = ||t||> — 2t. Hence, density estimation is a problem of M-
estimation. These problems are classically solved in two steps. First, we choose a ”model”
S that should be close to the parameter s, which means that inficg,, [|s — || is "small”.
Then, we minimize over S, the empirical version of the integrated contrast, that is, we
choose

Sm € arg trélén P,Q(t). (1)

This last minimization can be computationaly untractable for general sets S,,, leading to
untractable procedures in practice. However, it can be easily solved when S, is a linear
subspace of L?(u) since, for all orthonormal basis (1y)xem,

Smo= Y (Pathr)¥n. (2)

AEM

Thus, we will always assume that a model is a linear subspace in L?(p). The risk of the
least-squares estimator §,, defined in ([]) is then decomposed in two terms, called bias and
variance, thanks to Pythagoras relation. Let s, be the orthogonal projection of s onto
S,

Is = 8mll* = lIs = smll* + llsm — &mll*.

The statistician should choose a space S, realizing a trade-off between those terms. S,
must be sufficiently “large” to ensure a small bias ||s — s,,[|?, but not too much, for the
variance ||s;, — 81|/ not to explose. The best trade-off depends on unknown properties
of s, since the bias is unknown, and on the behavior of the empirical minimizer 3,, in
the space S,,. Classically, S,, is a parametric space and the dimension d,, of S,, as a
linear space is used to give upper bounds on D,, = nE (||sm - §m||2) This approach
is validated in regular models under the assumption that the support of s is a known
compact, as mentioned in section f]. However, this definition can fail dramatically because
there exist simple models (histograms with a small dimension d,,) where D,, is very
large, and infinite dimensional models where D,,, is easily upper bounded. This issue is
extensively discussed in Birgé [. Birgé chooses to keep the dimension d,, of S,, as a
complexity measure and build new estimators that achieve better risk bounds than the
empirical minimizer. His procedures are unfortunatly untractable for the practical user
because he can only prove the existence of his estimators. Even his bounds on the risk
are only interesting theoretically because they involve constants which are not optimal.
We will not take this point of view here and our estimator will always be the empirical
minimizer, mainly because it can easily be computed, see (B). We will focus on the quantity
Dy, /n and introduce a general Assumption (namely Assumption [V]) that allows to work



indifferently with D,,,/n or with the actual risk ||s,, — 4,4]|>. We will also provide and
study an estimator of D,,/n based on the resampling heuristic.

We insist here on the fact that, unlike classical methods, we will not use in this paper
strong extra assumptions on s, like ||s||,, < oo or assume that s is compactly supported.

1.2 Model selection

Recall that the choice of an optimal model S, is impossible without strong assumptions
on s, for example a precise information on its regularity. However, under less restrictive
hypotheses, we can build a countable collection of models (Sy,)menm, , growing with the
number of observations, such that the best estimator in the associated collection (8., )men,,
realizes an optimal trade-off, see for example Birgé & Massart [§] and Barron, Birgé &
Massart [f]. The aim is then to build an estimator 77 such that our final estimator, § = &,
behaves almost as well as any model m, in the set of oracles

My ={m, € My, ||5m, — 3H2 = inf |8, — 8”2}.
meM

n

This is the problem of model selection. More precisely, we want that § satisfies an oracle
inequality defined in general as follows.

Definition: (Trajectorial oracle inequality) Let (pp)nen be a summable sequence and let
(Cp)nen and (Rpyn)nen be sequences of positive real numbers. The estimator § = 3y,
satisfies a trajectorial oracle inequality TO(Ch, (Rmn)meM,,Pn) if

v e B (5= ol > Co int {8~ SmlP + R} ) < o 3)

When § satisfies an oracle inequality, C,, is called the leading constant.

In this paper, we are interested in the problem of optimal model selection defined as
follows.

Definition: (Optimal model selection) We say that § is optimal or that the procedure
of selection (X1,...,Xy) — m is optimal when § satisfies a trajectorial oracle inequality
TO + 7y, (Rmn)meM, Pn) with r, — 0 and for all n in N* and m in M,, Ry, ,, = 0. In
order to simplify the notations, when s is optimal we will say that § satisfies an optimal
oracle inequality OTO(ry,, pp).

In order to build m, we remark that, for all m in M,,,
HS - '§mH2 = H'§m||2 —2Ps,;, + HSH2 = PnQ(gm) + 2Vn(§m) + H8H27 (4)

where v, = P, — P is the centered empirical process. An oracle minimizes ||s — 3,,||?
and thus P,Q(8,,) + 2vy,(5,,). As we want to imitate the oracle, we will design a map
pen : M,, — RT and choose

m € arg min P,Q(8,,) + pen(m), § = 5y, (5)

me

It is clear that the ideal penalty is pen,;(m) = 2v,(8,,). For all m in M,,, for all orthonor-
mal basis (Yx)xems Sm = D aem (Patx)¥n and sy, = >3 ¢,, (PYn)1y, thus

Vn(gm - Sm) = Up <Z(Vn¢)\)7/})\> - Z(%ﬂ/&)z - Hgm - Sm”2’

AEM AEM



Let us define, for all m in M,
p(m) = vp(8m — sm) = [|8m — 3m||2-
From (), for all m in M,,,
ls =31 = 151" = 2P5 + [|s|* = [I3]]* — 2Pn5 + 203 + |15

< PuQ(3m) + pen(m) + (2, (3) — pen(im)) + | ||

= [ls = &mll” + (pen(m) — 20, (8m)) + (2v4(3) — pen(ih))
Hence, for all m in M,,,

Is = 31% < [ls = 8l + (pen(m) — 2p(m)) + (2p(ri) — pen(1h)) + 2n (s — sm).  (6)

Let us define, for all ¢1,cy > 0, the function

1—cox

RT - R* :
f01702 - » T +00 if > 1/62

{M—l if z<1/c 7)

It comes from inequality (f) that § satisfies an oracle inequality OTO( f2,2(€n), pn) as soon
as, with probability larger than 1 — p,

2p(m) — pen(m)|
s = 8]
20 (Sm/ — Sm)

s = &1 + Ils = 3l

Ym e M, < €, and (8)

V(m,m') € M2,

5 < €n. 9)

Inequality (E) does not depend on our choice of penalty, we will check that it can easily
be satisfied in classical collections of models. In order to obtain inequality (§), we use two
methods, defined in M-estimation, but studied only on some regression frameworks.

1.2.1 The slope heuristic

The first one is refered as the ”slope heuristic”. The idea has been introduced by Birgé
& Massart [[]] in the Gaussian regression framework and developed in a general algorithm
by Arlot & Massart [ff]. This heuristic states that there exist a sequence (A,;)men, and
a constant K i, satisfying the following properties,

1. when pen(m) < KpninQm, then Ay, is too large, typically Ay, > C maxmen,, Am,
2. when pen(m) ~ (Kpin + 0)A,, for some 6 > 0, then A, is much smaller,
3. when pen(m) ~ 2K,inA,,, the selected estimator is optimal.

Thanks to the third point, when A,, and K, are known, this heuristic says that the
penalty pen(m) = 2K,inA,, selects an optimal estimator. When A, only is known, the
first and the second point can be used to calibrate K, in practice, as shown by the
following algorithm (see Arlot & Massart [{]):

Slope algorithm

For all K > 0, compute the selected model 7(K) given by () with the penalty pen(m) =
KA, and the associated complexity Ay, (k.

Find the constant K., such that Am( K) 18 large when K < K, and "much smaller”



when K > Kin.
Take the final m = Mm(2Kin)-

We will justify the slope heuristic in the density estimation framework for A, = E(]|s,, —
§m|]2) = Dy, /n and Kpin, = 1. In general, D,, is unknown and has to be estimated, we
propose a resampling estimator and prove that it can be used without extra assumptions
to obtain optimal results.

1.2.2 Resampling penalties

Data-driven penalties have already been used in density estimation in particular cross-
validation methods as in Stone [R1]], Rudemo (] or Celisse [[L1]]. We are interested here
in the resampling penalties introduced by Arlot [fl]. Let (Wi,...,W,,) be a resampling
scheme, i.e. a vector of random variables independent of X, X1, ..., X,, and exchangeable,
that is, for all permutations 7 of (1,...,n),

(W1,...,Wy) has the same law as (Wr(1), ..., Wr(n))-

Hereafter, we denote by W,, = >, Wi/n and by EW and LW respectively the expectation
and the law conditionally to the data X, X1, ..., X,,. Let PYV =" Wiox, /n, v}V = PV —
W,, P, be the resampled empirical processes. Arlot’s procedure is based on the resampling
heurististic of Efron (see Efron [[J]), which states that the law of a functional F'(P, P,)
is close to its resampled counterpart, that is the conditional law LV (Cy F(W,, P,,, PV)).
Cyw is a renormalizing constant that depends only on the resampling scheme and on F.
Following this heuristic, Arlot defines as a penalty the resampling estimate of the ideal
penalty 2D,, /n, that is

pen(m) = 2CwE" (1) (3)))), (10)
where 8V minimizes PV Q(t) over S,,. We prove concentration inequalities for pen(m)

and deduce that pen(m) provides an optimal procedure.

The paper is organized as follows. In Section ], we state our main results, we prove the
efficiency of the slope algorithm and the resampling penalties.

In Section B, we compute the rates of convergence in the oracle inequalities using classical
collections of models. Section [] is devoted to a short simulation study where we compare
different methods in practice. The proofs are postponed to Section . Section [ is an
Appendix where we add some probabilistic material, we prove a concentration inequality
for Z%, where Z = sup,c v, (t) and B is symmetric. We deduce a simple concentration
inequality for U-statistics of order 2 that extends a previous result by Houdré & Reynaud-
Bouret [Iq].

2 Main results

Hereafter, we will denote by ¢, C', K, k, L, o, with various subscripts some constants that
may vary from line to line.

2.1 Concentration of the ideal penalty

Take an orthonormal basis (1))xem of Sp,. Easy algebra leads to

sm= 3 _(PU)¥x, $m = > (Patha)thn, thus [[sm — $ml* = Y (va (1))’

rem AEM AEM



S, 18 an unbiased estimator of s,, and
pen, g (m) = 2un (5m) = 20n(5m — Sm) + 20n(5m) = 2|5m — ml|> + 200 (5m).
For all m,m' in M,,, let
p(m) = l[sm = 8ml> = D (wa(¥2))?, 8(m,m') = 2un(sm — spm).- (11)
AeEm

From (), for all m in M,,,
s = 3112 < lls — $ml2 + (pen(m) — 2p(m)) + (2p(2) — pen(i) + 8, m).  (12)

In this section, we are interested in the concentration of p(m) around E(p(m)) = Dy, /n.
Let us first remark that, for all m in M,,, p(m) is the supremum of the centered empirical
process over the ellipsoid B, = {t € Sy, ||t|| < 1}. From Cauchy-Schwarz inequality, for
all real numbers (by)xem,

Z v = ( sup Z a>\b>\> . (13)

Aem Y a3<1\gm

We apply this inequality with by = v,(1)). We obtain, since the system (1))rem is
orthonormal,

2
> (wa@n))? = sup <Z axVn 7/),\) = sup (Vn <Z GA¢A>> = sup (va(1))*.

AEM > a3<1 AEM > a3<1 AEM t€Bm

Hence, p(m) is bounded by a Talagrand’s concentration inequality (see Talagrand [RJ]).
This inequality involves Dy, = nE (||, — s, [|*) and the constants

1
em = — sup ||t]% and vZ, = sup Var(t(X)). (14)
" teBm t€Bm,

More precisely, the following proposition holds:

Proposition 2.1 Let X, X1,..., X, be iid random variables with common density s with
respect to a probability measure . Assume that s belongs to L*(u) and let Sy, be a
linear subspace in L?(u). Let s, and 3, be respectively the orthogonal projection and the
projection estimator of s onto Sy,. Let p(m) = ||$m — 8m||?, Dm = nE(p(m)) and let vy,
em be the constants defined in (I4). Then, for all x > 0,

3/4 2\1/4 2 2 2
P <p(m) D,, - Dy (emx®)* 4+ 0.7/ Dpv2,x + 0.1507, x + €@ > < o2/ (15)

n

D,, 1.8D 4 (e, a4 +1.71/D, 02z + 4.06¢,, 22
P <— —p(m) > (ema) T+ Vi Em?® <2870 (16)

n

Comments : From ([[2), for all m in M,,
- . D, D,
s — 13 sw—%ﬁ+@mm—%;)m(7_m>)

42 <p(m) - %> + (2% _ pen(in )) + 6, m). (17)

n

6



It appears from ([[7]) that we can obtain oracle inequalities with a penalty of order 2D, /n
if, uniformly over m,m’ in M,,,

D . . .
p(m) — Tm << s — SmH2 and 6(m’,m) << ||s — SmH2 + s — sm/\|2.

Proposition proves that the first part holds with large probability for all m in M,
such that e, Vv2, << nE(||s — §,/|?). Actually, the other part also holds under the same
kind of assumption.

2.2 Main assumptions

For all m, m’ in My, let Dy, = nE (||sm — $m?),

R . D
—==E (s = 5ml?) = lIs = sml* + =,
n n
2 1 2
Vpnom! = sup Var(t(X)), emm = — sup It -
t€Sm+S,,1, |t <1 T teSm+S, 1,1t <1

For all k € N, let Mk = {m € M,,, R, € [k,k+1)}. For all n in N, for all k>0, ¥’ >0
and v > 0, let [k] be the integer part of k and let

by (K, k') = In(1 4 Card(MM)) 4+ In(1 + Card(ME)) + In((k + 1)(K +1)) + (Inn)" (18)

Assumption [V]: There exist v > 1 and a sequence (€,)nen, with €, — 0 such that, for
all n in N,

9 2
Uim,m! Cm,m’ 2 / 4
sup sup ——— | V=—— | IZ (k) } <e,.
(k") E(N*)2 (m,m? YEME x ME! (Rm v Rm’) Ry V Ry | 7 "

[BR] There exist two sequences (h})nen+ and (h)nen+ with (h% vV hY) — 0 as n — oo
such that, for all n in N*, for all m, € argmin,em,, By and all m* € arg maxyem,, Dim,

R, <o nl[s — sm+||* .

D+ D+ -

Comments:

e Assumption [V] ensures that the fluctuations of the ideal penalty are uniformly
small compared to the risk of the estimator §,,. Note that for all k, k', I, »(k, k") >
(Inn)?, thus, Assumption [V] holds only in typical non parametric situations where
R, = inf,em, Ry — 00 as n — 00.

e The slope heuristic states that the complexity A, of the selected estimator is too
large when the penalty term is too small. A minimal assumption for this heuristic
to hold with A,, = D,,, would be that there exists a sequence (0,,)nen+ with 6, — 0
as n — oo such that, for all n in N*, for all m, € argmin,ea, E ([|s — $m||?) and
all m* € argmaxpmert, E (|[sm — $ml?).

Dy < 0n Dy

Assumption [BR] is slightly stronger but will always hold in the examples (see
Section ).



In order to have an idea of the rates R,, €y, h}, h$ and 6,, let us briefly consider the very
simple following example:

Example HR: We assume that s is supported in [0, 1] and that (Sy,)mem,, is the collection
of the regular histograms on [0, 1], with d,,, = 1,...,n pieces. We will see in Section .9
that D,, ~ d,, asymptotically, hence D,,» ~ n. Moreover, we assume that s is Holderian
and not constant so that there exist positive constants ¢, ¢,, oy, o, such that, for all m in
M,,, see for example Arlot [,

ad, M <|s— sm||2 < cud, .

In Section B.3, we prove that this assumption implies [V] with ¢, < C'In(n)n~/Ga+d),
Moreover, there exists a constant C' > 0 such that R,,, < inf,em, (cund,* +dp) <
Cn~Y/Ceutl) thus R,,, /D, < Cnl/Ceutl)=1 — Op=20u/QCaut1)  GQince there exists C' > 0
such that n||s — s,,+||?/ D < Cd,; & = Cn~%, [BR] holds with h¢ = Cn~2u/(Zeutl)
and hy = Cn~%,

Other examples can be found in Birgé & Massart [J], see also Section J.

2.3 Results on the Slope Heuristic

Let us now turn to the slope heuristic presented in Section [L.2.1].

Theorem 2.2 (Minimal penalty) Let M, be a collection of models satisfying [V] and
[BR] and let € =€, V h.

Assume that there exists 0 < 0, < 1 such that 0 < pen(m) < (1 — 6,,)Dy/n. Let 1, § be
the random variables defined in ([f) and let

Op, — 28€;,
Cp=——"™-~".
1+ 16¢,
There exists a constant C' > 0 such that,
~ & . R _1
P <Dm > ey Dy, |5 = 3|> > 5}:% mleI}\f;ln l|s — Sm||2> >1—Ce2(mn)7, (19)

Comments: Assume that pen(m) < (1 — §)D,,/n, then, inequality ([J) proves that an
oracle inequality can not be obtained since ¢, /h% — oco. Moreover, D,;, > ¢D,,~ is as large
as possible. This proves point 1 of the slope heuristic.

Theorem 2.3 Let M,, be a collection of models satisfying Assumption [V]. Assume that
there exist 57 > 6_ > —1 and 0 < p’ < 1 such that, with probability at least 1 — p’,

D R D R
2" 4+ 5 < pen(m) < 272 4 5T,
n n n n

Let 1, § be the random variables defined in ([J) and let

146 — 466, -1
+ 6 6e \/O) .

+) —
- = (T ane

(Inn)”

There exists a constant C' > 0 such that, with probability larger than 1 —p’ — Ce™3

Dy < Co(8-,67)Rn,, |ls = 51° < Cn(3-,67) inf ls = 8m* (20)



Comments :

e Assume that pen(m) = KD,,/n with K > 1, then inequality () ensures that
Dy, < Co(K, K)Ry,. Hence, Dy, jumps from D,,~ (Theorem P.39) to R,,, (BQ) when
pen(m) is around D,,/n, which is much smaller thanks to Assumption [BR]. This
proves point 2 of the slope heuristic.

e Point 3 of this heuristic comes from inequality (B() applied with small 6_ and §.
The rate of convergence of the leading constant to 1 is then given by the supremum
between J_, 61 and e,.

e The condition on the penalty has the same form as the one given in Arlot & Massart
H. It comes from the fact that we do not know D,,/n in many cases, therefore, it
has to be estimated. We propose two alternatives to solve this issue. In Section .4,
we give a resampling estimator of D,,. It can be used for all collection of models
satisfying [V] and its error of approximation is upper bounded by €,R,,/n. Thus
Theorem holds with (6_ V 6T) < Ce,. In Section B.4, we will also see that, in
regular models, we can use d,, instead of D,, and the error is upper bounded by
CRy,/ Ry, , thus Theorem holds with (6_ vV 6%) < C/R,,, << €5, P’ = 0. In
both cases, we deduce from Theorem that the estimator § given by the slope
algorithm achieves an optimal oracle inequality OTO(ke,, Ce~3(n ")V). In Example
HR, for example, we obtain €, = Cn~1/ G+ In p,

2.4 Resampling penalties

Optimal model selection is possible in density estimation provided that we have a sharp
estimation of Dy, = nE (sup;ep, (vn(t))?). We propose an estimator of this quantity
based on the resampling heuristic. The model selection algorithm that we deduce is the
same as the resampling penalization procedure introduced by Arlot [[I]. Let F' be a fixed
functional. Efron’s heuristic states that the law L(F(v,)) is close to the conditional law
LY (CwF(v)V)), where Cy is a normalizing constant depending only on the resampling
scheme and the functional F. Let P) = > | W;dx,/n and v} = PV — W, P,. The
resampling estimator of D,, is D}V = nC%VEW (SUPte B (Y (t))z) and the resampling
penalty associated is pen(m) = 2DY /n. Actually, the following result describes the
concentration of D)V around its mean D,, and around np(m).

Proposition 2.4 Let (W7,...,W,,) be a resampling scheme, let Sy, be a linear space, By, =
{t € Sp, ||t < 1}, p(m) = supyep,. (Vn(t))?, Dm = nE (p(m)) and let DY be the resam-
pling estimator of Dy, based on (Wi,...,W,), that is DY = nCEEY (supiep, (v} (1))?),
where vy, = Var(Wy — W) and C% = (v¥,) L.

Then, for all m in M, E(D,,Vf) = D,,. Moreover, let e,,, vy, be the quantities defined in
([4). For all z > 0, on an event of probability larger than 1 — 7.8¢™%,

DY —D,, < 8emDmz+enm (4?”” + %)
+9D,‘3{4(em;p2)1/4 +7.61/0%, D o
n—1
DY~ Dy = —/Sem Dt — em (%ﬂl%))
53100 (ema*)V/* + 302 Dy + U (22)
n—1



For all x > 0,

w 3/4 2\1/4 2 2 2
. (p (m) Do, 531D (ema?) 4 + 3\/0Z Dot + 302, + € (19.12) ) -

n—1
(23)
DV 9D (e, 22)V/4 4 7.61/02 Dot + €, (40.31)2
P(#”—Mm)é ) 4 —s oS ) <ase )

Remark

The concentration of the resampling estimator involves the same quantities as the concen-
tration of p(m), thus, it can be used to estimate the ideal penalty in the slope heuristic’s
algorithm presented in the previous section without extra assumptions on the collection
M,,. Proposition P.4 and Theorem P.3 prove that this resampling penalty leads to an
efficient model selection procedure. However, we do not need to use the slope heuristic in
our framework to obtain an optimal model selection procedure as shown by the following
theorem.

Theorem 2.5 Let Xq,..., X, be i.i.d random variables with common density s. Let M,, be
a collection of models satisfying Assumption [V]. Let W1, ...,W,, be a resampling scheme,
let W, = Y1 Wi/n, v3, = Var(Wy — W,,) and Cyw = 2(v¥,)~t. Let § be the penalized
least-squares estimator defined in () with

pen(m) = CyEV <sup 0 (t))2> .

teEBm

Then, there exists a constant C' > 0 such that
P <Hs —5]|* < (14 100€,) inf s — §m\|2> >1 - Qe 2nn)7, (25)

Comments : The main advantage of this results is that the penalty term is always
totally computable. Unlike the penalties derived from the slope heuristic, it does not
depend on an arbitrary choice of a constant K,;,, made by the observer, that may be
hard to detect in practice (see the paper of Alot & Massart [fJ] for an extensive discussion
on this important issue). However, Cyy is only optimal asymptotically. It is sometimes
useful to overpenalize a little in order to improve the non-asymptotic performances of our
procedures (see Massart [[[9]) and the slope heuristic can be used to do it in an optimal
way (see our short simulation study in Section [f]).

2.5 A remarks on the ”regularization phenomenon”

The regularization of the bootstrap phenomenon (see Arlot [[], ] and the references
therein) states that the resampling estimator CyEW (F (1)) of a functional F(v,) con-
centrates around its mean better than F'(v,). This phenomenon can be justified with our
previous results for our functional F. Recall that we have proven in Proposition P.1 that,

for all x > 0, with probability larger than 1 — 3.8¢7%/20,

‘p(m) _Dm| 18D (ema?) '/ + 1.5/ Dytdx + 0.203,0 + 4.1em:132'
no| n

In Example HR, we have the following upper bounds

d S
Dm S dma Em S me U%@ é CHSH dm
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Thus, there exists a constant C' such that, for all x > 0,

P (ynp(m) — Dy| > Cdyy, <\/%+ <%>2)> < 3.8 /%0, (26)

On the other hand, it comes from Inequalities (BI)) and (23), that, for all 2 > 0, on an
event of probability larger than 1 — 7.8e%/20,

2
DY —D,| < 0dep Dyt + e (1% + i‘l_x1>

. 1.8DY* (ema?) /4 + 1.45\/02 Doz + 0.202, 2
n—1 '

Thus, there exists a constant C' such that, for all x > 0,

P <|Dn”{ — Dy| > Cdy, <\/§+ (5)2» < 7867/,
n n

The concentration of DYV is then much better than the one of np(m). This implies that
DY is an estimator of D,, rather than an estimator of np(m). Thus, the resampling
penalty can be used when D,,/n is a good penalty for example, under [V]. When D,,,/n
is known to underpenalize (see the examples in Barron, Birgé & Massart [f]), there is no
chance that DYV /n can work.

3 Rates of convergence for classical examples

The aim of this section is to show that [V] can be derived from a more classical hypothesis
in two classical collections of models: the histograms and Fourier spaces. We derive the
rates ¢, under this new hypothesis.

3.1 Assumption on the risk of the oracle

As mentioned in Section .3, Assumption [V] can only hold if there exists v > 1 such that
R, (Inn)™7" — oo as n — oo, where R, = inf,,en,, Rin. In our example, we will make the
following Assumption that ensures that this condition is always satisfied.

[BR] (Bounds on the Risk) There exist constants Cy, > 0, ay, > 0, v > 1, and a sequence
(0 )nen with 6, — oo as n — oo such that, for all n in N*, for all m in M,

62(Inn)?’ < R, < R,, < Cyn°".

Comments: Assumption [BR] holds with 6,, = Cn® for the collection of regular his-
tograms of example HR, provided that s is an Holderian, non constant and compactly
supported function (see for example Arlot [[]). It is also a classical result of minimax the-
ory that there exist functions in Sobolev spaces satisfying this kind of Assumption when
M, is the collection of Fourier spaces that we will introduce below.

We want to check that these collections satisfy Assumption [V], i.e. that there exists
~v > 1 such that

2 2
Uim,m! Cm,m’ 2 / 4
sup sup _ V—>—1 (k? k ) <eE€,.
(k,k’)G(N*)z (m,m/)EMﬁXMﬁ/ <Rm V Rm/> Rm V Rm/ n,y\'" n

11



For all m € M, R,, < Cyn®, thus for all k& > C,n®, Card(MF) = 0. In particular,
we can assume in the previous supremum that k < C,n® and k' < C,n*. Hence, there
exists a constant x > 0 such that In[(1 + k)(1 + &¥')] < klnn. We also add the following
assumption that ensures that there exists a constant x > 0 such that, for all £ € N,
In(1 + Card(MF)) < kInn.

[PC] (Polynomial collection) There exist constants capq > 0, apg > 0, such that, for all n
n N,

Card(M,,) < cpnM.
Under Assumptions [BR] and [PC], there exists a constant x > 0 such that, for all v > 1
and n > 3,

2 2
Ym,m’ Em,m/ 2 /
sup sup —— | V=—— | I (k,K)
(kk")E(N*)2 (m,m? yeME x ME' <Rm v Rmf> Ry V Ry | 707
v? 2
! Em,m/ 2
< sup el Y ’ k(lnn)=7.
(m,m’)e(Mn)? (Rm V R, R,V R,

3.2 The histogram case

Let (X, X') be a measurable space. Let (Pp,)mem, be a collection of measurable partitions
Py, = (I))xem of subsets of X such that, for all m € M,,, for all A € m, 0 < p(I)) < oc.
Let m in M,,, the set S,, of histograms associated to P, is the set of functions which
are constant on each Iy, A € m. S, is a linear space. Setting, for all A € m, ¥, =
(v/p(1,)) "y, the functions ())rem form an orthonormal basis of S,,.

Let us recall that, for all m in M,,,

P(X € 1)

— IS 2.
e el @D

Dy =Y Var(a(X)) = 3 PW}) — (Pa)’ = 3

Aem AEM AEM

Moreover, from Cauchy-Schwarz inequality, for all z in X, for all m, m/ in M,,

1 1
2 2
sup t°(z) < Py (x), thus ey, pm = —  sup : (28)
teBm,m’ )\E%L;m’ A e N xemum’ /“L(I)\)
Finally, it is easy to check that, for all m ,m’ in M,,
P(X €el))(1—-P(X €1,
vfmm, = sup Var(¢)(X))= sup ( I ( )) (29)
xemum’ Aemum/ /L(IA)

We will consider two particular types of histograms.

Example 1 [Reg] : p-regular histograms.

For all m in M,,, P, is a partition of X and there exist a family (dp,)mem, bounded by
n and two constants c.p, Crp such that, for all m in M, for all X € M,

Crh
dm

Cr
d—h < () <

The typical example here is the collection described in Example HR.

Example 2 [Ada]: Adapted histograms.

12



There exist positive constants c,., Cyp such that, for all m in M,, for all X\ € M,,
w(Iy) > e,n~t and
P(X € 1))
— 22 C.
wly —

[Ada] is typically satisfied when s is bounded on X. Remark that the models satisfying
[Ada] have finite dimension d,, < Cn since

1 > Z P(X € [)\) > Cah Z N([)\) > C(ahcr’dmn_1
AeEm Aem

The example [Reg].
It comes from equations (R7, g, P9) and Assumption [Reg] that

Critdim — [15m 1 < Din < €l — Ilsum|.
-1 dm \/dm’ _1/2
B — Sup £l oo NI < NS/ i V

em7m, S CTh

<
n » Umom! = .

S

Thus 9
—1 (Bm V Row) + I8

Em,m’
) < Cr
horh T (R V Ry

_mm < Cn~1.
R,V Ry = <Cn

If D,V D,y < Hi(ln n)%,

/7\/D vD N+ |s H2 C
R V Ry \/R Crnr Gn(lnn)“f

If D,, V D,y > 62(Inn)>

—~/DOm V Do) + 152 C
__mm 1\/( m < )
R\ Ry = VOl Do N Dyt =9, (Inn)

There exists £ > 0 such that 62(Inn)?’ < kn since for all m in M,,, Ry, < nlls — sp> +
ctdm < (||s]> + ¢, )n. Hence Assumption [V] holds with 7 given in Assumption [BR]

and ¢, = C9;1/2.

The example [Ada].
It comes from inequalities (B§), (B9) and Assumption [Ada] that, for all m and m’ in M,,

emm < ¢, ' and v?n’m, < Cap.

Thus, there exists a constant x > 0 such that, for all m an m/ in M,,,

Ur2n,m ’ v Em,m < K
(ﬂ”Lm@’S)léI()./\/ln)2 Rm \% Rm’ Rm \% Rm’ n 6%(111 n)2'y '

Therefore Assumption [V] holds also with v given in Assumption [BR] and ¢, = k6, 12,

13



3.3 Fourier spaces

In this section, we assume that s is supported in [0, 1]. We introduce the classical Fourier
basis. Let 9g : [0,1] — R, z+— 1 and, for all £ € N*, we define the functions

Y1y 1 [0,1] = R, @+ V2cos(2mkz), oy : [0,1] — R, z +— 2sin(27k2).
For all j in N*, let
m; ={0}U{(i,k), i=1,2, k=1,...,5} and M,, = {m;,j =1,...,n}.

For all m in M,, let S, be the space spanned by the family (¥\)xem. (¥x)rem is an
orthonormal basis of Sy, and for all j in 1,...,n, dpn; =2j + 1.
Let 7 in 1,...n, for all z in [0, 1],

J
Z Vi(z) =142 Z cos®(2rkx) 4 sin? (2rkz) = 14 25 = dm, -
)\Emj k=1

Hence, for all m in M,,,

Dy, = P Z ¢§\ - ”SmH2 =dm — ”SmH2- (30)

)\ij

It is also clear that, for all m, m’/ in M,,,

e = I 2 sl V (31)

n

The collection of Fourier spaces of dimension d,,, < n satisfies Assumption [PC], and the
quantities Dy, e, ,,y and fufn v satisfy the same inequalities as in the collection [Reg],
therefore, [V] comes also in ‘this collection from [BR]. We have obtained the following
corollary of Theorem P.J

Corollary 3.1 Let M,, be either a collection of histograms satisfying Assumptions [PC]-
[Reg] or [PC]-[Ada] or the collection of Fourier spaces of dimension d,, < n. Assume
that s satisfies Assumption [BR] for some v > 1 and 6,, — co. Then, there exist constants
k>0 and C > 0 such that the estimator s selected by a resampling penalty satisfies

P <||8 — §||2 < (1 + K9;1/2) g}a ||S o '§m||2> >1— Ce_%(lnn)’y‘

Comment: Assumption [BR] is hard to check in practice. We mentioned that it holds
in Example HR provided that s is Holderian, non constant and compactly supported (see
Arlot [ff]). Tt is also classical to build functions satisfying [BR] with the Fourier spaces in
order to prove that the oracle reaches the minimax rate of convergence over some Sobolev
balls, see for example Birgé & Massart [§], Barron, Birgé & Massart [f] or Massart [[[J].
In these cases, there exist ¢ > 0, a > 0 such that 6, > cn®. In more general situations,
we can use the same trick as Arlot [[f] and use our main theorem only for the models
with dimension d,,, > (Inn)**27, they satisfy [BR] with 6,, = (Inn)?, at least when n is
sufficiently large, because

1512 + Rin = ||5]|2 + Dy > cdi > c(Inn)*(Inn)2".

With our concentration inequalities, we can control easily the risk of the mode1§ with
dimension d,, < (Inn)**2¥ by x(Inn)3+t%/2 with probability larger than 1 — Ce~z(mn)”
and we can then deduce the following corollary.

14



Corollary 3.2 Let M,, be either a collection of histograms satisfying Assumptions [PC]-
[Reg] or [PC]-[Ada] or the collection of Fourier spaces of dimension d, < n. There
exist constants k > 0, n > 3+ 5v/2 and C > 0 such that the estimator s selected by a
resampling penalty satisfies

Inn)"
P (HS - §||2 < (1 + K(lnn)_l) < inf Hs — §m||2 + M)) >1- Ce—%(lnn)’Y‘
meMy n

4 Simulation study

We propose in this section to show the practical performances of the slope algorithm and
the resampling penalties on two examples. We estimate the density

3 _
s(z) = 1" Y00 (2)
and we compare the three following methods.

1. The first one is the slope heuristic applied with the linear dimension d,, of the
models. We observe two main behaviors of dy, k) with respect to K. Most of the
times, we only observe one jump, as in Figure 1, and we find K, easily.

35

30 |

n n
(=] (S

-
o

dimension of m(K)

e
o

o

.
0 0005 001 0015 002 0025 003
K

Figure 1: Classical behavior of K — d;, k)

We also observe more difficult situations as the one of Figure 2 below, where we
can see several jumps. In these cases, as prescribed in the regression framework by
Arlot & Massart [fj], we choose the constant Ky, realizing the maximal jump of
dm(K)- Arlot & Massart [E] also proposed to select Ky, as the minimal K such
that dy,x) < dp-(In n)~!, but they obtained worse performances of the selected
estimator in their simulations.

We justify this method only for collection of models where d,, ~ KD, for some
constant K. We will see that it gives really good performances when this condition
is satisfied.

2. The second method is the resampling based penalization algorithm of Theorem P.j.
Note here that all the resampling penalties D,,VY /n can be easily computed, without
any Monte Carlo approximations. Actually, for all resampling scheme,

W n
Do _ Ly mi—ﬁ 3 (X (X))

n
AeEm i#j=1
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Resampling penalties give always good approximations of D,,. However, in non
asymptotic situations, it may be usefull to overpenalize a little bit in order to improve
the leading constants in the oracle inequality (in Theorem R.J, imagine that 46¢,, is
very close to 1).

3. In a third method, we propose therefore to use the slope algorithm applied with a
complexity Dnvlb/ . By this way, we hope to overpenalize a little bit the resampling
penalty when it is necessary.

4.1 Example 1: regular case

In the first example, we consider the collection of regular histograms described in example
HR and we observe n = 100 data. In this example, we saw that DV ~ D, ~ d,,. We can
actually verify in Figure 2 that these quantities almost coincide for the selected model.

100

90 -

80

Resampling estimation of Dn
W » a ) ~N
o o [e] o o

T T T T T

N
o
T

R
o
T

o

100 200 300 o 100 200 300
Constant K Constant K

o

Figure 2: Comparison of d,,, and D}V on the selected model

We compute N = 1000 times the oracle constant ¢ = ||s — §/|2/(infenm,, |5 — 3ml?) for
the 3 methods. We put in the following array the mean, the median and the 0.95-quantile,
qo.95 of these quantities.

method mean of the N constants ¢ | median | gg.95
slope + dp, 3.56 2.30 |10.07
resampling 4.43 2.52 | 1547
resampling + slope 3.57 2.21 10.86

We observe that the slope algorithm allows to improve the resampling penalty in practice.
This may be due to a little overpenalization even if it is not a straightforward consequence
of our theoretical results. Note that, as d,,, ~ DXX , the slope algorithm leads to the same
results when applied with d,,, or with D}Y. Although we have an explicite formula to
compute the resampling penalties, the computation time is much longer if we use D,VnV .
Therefore, we clearly recommand to use the slope algorithm with d,,, for regular collections
of model, as regular histograms or Fourier spaces described in Section B.3.

4.2 Example 2: a more complicated collection

In the next example, we want to show that the linear dimension shall not be used in
general. Let us consider a slightly more complicated collection. Let k,.Jy,Jo,n be four
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non null integers satisfying k <n, J; <k, Jo <n — k. We denote by S 7, 7, the linear
space of histograms on the following partition.

k k

k 1—-% k 1—-k
u{[;ﬂ n kL asn J/”[, 120,...J2_1}.

2 n 2

Let n € N* and let M,, = {(k,J1,J2) € (N*)3; k <n, J; <k, Jo <n—k} Itis clear
that Card(M,,) < n3. The oracle of this collection is better than the previous one since
the regular histograms belongs to (S, n)mem, - It is easy to check that the dimension of
Sk.J1.Jom 18 equal to J; + Jo and that Dy j, 5, is equal to (nJy/k)F(k/n) + (nJa/(n —
k))(1—F(k/n)) = Sk.s, Jonll?/n, where F is the distribution function of the observations.
Hence, there is no constant K, such that K,dy s, j,n =~ Dy, .J.,n as in the previous
example. Figure 3 let us see this fact on the selected model.

1.4 T T T T 1.4
1.2 1.2
<
g =
£ =
B =
o
8o S
B £
Q =
5 8
5 o. B
(=} =3
‘D
: i
E o &
o
0.
0 0
0 1 2 3 4 5 o] 1 2 3 4 5
constant K constant K
Figure 3: Comparison of d,,, and D}V on the selected model
We also compute N = 1000 times the oracle constant ¢ = ||s — 3||?/(infmenm, |5 — Sml?)

for the 3 methods, taking n = 100 observations each time. The results are summarized in
following array.

method mean of the N constants ¢ | median | ¢g.95
slope + dp, 8.30 7.01 | 19.73
resampling 6.11 5.08 | 13.52
resampling + slope 5.33 4.04 |12.92

The slope heuristic gives bad results when applied with d,,. This is due to the fact that
d,, is not proportional to D,, here. The resampling based penalty 2D}V /n is much better
and, as in the regular case, it is well improved by the slope algorithm. Therefore, for
general collections of models where we do not know an optimal shape of the ideal penalty,
we recommand to apply the slope algorithm with a complexity equal to DXIL/ .
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5 Proofs

5.1 Proof of Proposition P.7]
It is a straightforward application of Corollary .6 in the appendix.

5.2 Technical lemmas

Before giving the proofs of the main theorems, we state and prove some important technical
lemmas that we will use repeatedly all along the proofs. Let us recall here the main
notations. For all m, m/ in M,,,

p(m) = [|lsm = 3ml®, D = nE(p(m)) = nE (|3 — sml*)

R,, =nE (Hs — §m|]2) =nl|s — smH2 + Dy, 5(m,m') = vp (8 — Spr)-

For all n € N*, k>0, ¥ >0, v > 0,, let [k] be the integer part of k and let
Lnry (K K') = In((1 + Card(ME)) (1 4 Card(MIET))) + In((1 + k)(1 + ¥)) + (Inn)?.

Recall that Assumption [V] implies that, for all m,m’ in M,,,

Uy iy (Rins Ror) - < €0(Rin V Ry),
emm' (Iny(Riny Ror))? < €2 (R V Ry). (32)
Let us prove a simple result
Lemma 5.1 For all K > 1,
S(K) = Z Z e—K[1n(1+Card(M£§))+1n(1+k)] < 0. (33)

keENme Mk
For all m in My, let l,, =l v(Rm, Ry), then, for all K > 1/v/2,

37 e K = p(2K?)e K0 (34)
mEMn

For allm, m/ in M,,, let Ly, s = by (R, Ry ), then, for all K > 1,

Z e_Kzlm,m/ _ (E(K2))26—K2(lnn)'y. (35)
(m,m’)E(Mn)2

Proof :
Inequality (BJ) comes from the fact that, when K > 1,

Vk € N, Z e—K[ln(l—i—Card(Mﬁ))] <1, and Z e—Klnk < 0.
meMk LeN*

For all integer k such that ME £ (), for all m in MK, 1, > 2[In(1 + Card(ME)) 4+ In(1 +
k)] + (Inn)?, thus, for all K > 1/v/2, it comes from (BJ) that

Z e—KQZm < e—K2(lnn)'Y Z Z 6—2K2[ln(l—i-Card(Mﬁ))—l-ln(l—&-k)} < E(2K2)€_K2(lnn)’y.
meMy, keNmemk
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Finally, for all integers (k, k') such that M x ME £,
Ly > In(1 4 Card(ME)) + In(1 + k) 4 In(1 + Card(ME)) + In(1 + &) + (Inn)?.

Thus, from (B3J),
2
Z e—K%m,m, _ Z Z e—KZ[1n(1+card(/\41;,))+1n(1+k)] e—KZ(lnn)W_
(m,m’)e(M2) keNme Mk

Lemma 5.2 Let M,, be a collection of models satisfying Assumption [V]. We consider
the following events.

Qs = {V(m,m/) e M2, 5(m,m’) < GEnW}
D, R, D, Ry,
— _am < Ztm _am s —tm
Q, N {{p(m) < 106, } N {p(m) > 206, }}

mEMn

and Qp = Qs N §,. Then there exists a constant C > 0 such that
P(Q5) < Ce~ )| P(QS) < Ce 307 p(g) < Cemdnn),

Proof :

Let K > 1 be a constant to be chosen later. We apply Lemma [.§ in the appendix to
U= Sm — Smsy S = S+ Sy, L =id, © = K2, (R, Rpy). For all n > 0, for all m,m/ in
M,,, on an event of probability larger than 1 — e‘Kzl7W(Rm’Rm’),

202 ,K2ln7«,(Rm, Rm/) + em7m/(K2ln7«/(Rm, Rm/))2/9

m,m
nn

. (36)

(m.m') < Zlsm = s +

From [V], for all m, m' in M,,,

Em,m’ (K2ln,'y(Rma Rm’))2
9

207 o KUy (Romy Ri)) +

Moreover, for all m,m’ in M,,,

sm — smr|” < 2(lls = smll* + lIs = s |1*) < 2(Ri + Rir) < 4(Bin V Rir).

Let e,(K) = v/(Ken)? + (Ke,)*/18. In (Bf) we take n = e,(K) and we obtain

P (5(m,m') > 4en(K)7Rm \:sz/> < e Klny(Bm Rpr) (37)

From (BY), for all K > 1,

R,V Ry

P <V(m,m') e M2, 5(m,m’) > 4e,(K) -

Let K = 1.1 and take n sufficiently large so that K4¢2 /18 < 1, then 4e,,(K) < 6¢,. Hence,
the first conclusion of Lemma .9 holds for sufficiently large n, it holds in general, provided
that we increase the constant C' if necessary.
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We apply Assumption [V] (see (B)) with m = m/, let 1, = l,, (B, Rin), for all K > 0,
for all n such that 4.06(Ke,)? < 2,

DY (em (K 21n)2) YA + 0.7/ Do, K21, + 0.1502, K21, + e (K 2)?
n

< (1.7Ke, +0.15(Ke,)? + (Ken)”‘)R—: < 3KenR—:-

1.8D* (e (K 21)2) Y4 + 1.71\/ D02, (K 2ln) + 4.06€,, (K21, )2
n

< (3.51Ke, + 4.06(Ken)4)% < GKEH%.

n n

It comes then from Proposition .1 applied with = = K?I,, that, for all m in M,,

D R 2
P <p(m) - Tm > 3K€n7m> < e Solm,

Thus, from (B4), for all K > /10, and for all n sufficiently large,

2
P (vm € My, p(m) — % > 3K6n%> < S(K2/10)e 20 (0m),

We use the same arguments to prove that

Dy, m _K?
P <Vm e M,, p(m) — T < 6K6n%> < 2(K2/10)e 12<O (lnn)“/.

Fixe K = +/10.5, then for all n sufficiently large , the conclusion of Lemma holds. It
holds in general provided that we increase the constant C' if necessary.

Lemma 5.3 Let (¢))aen be an orthonormal system in L*(u) and let L be a linear func-
tional defined on L*(p). Let p(A) = 3, cp (Wn(L(¥2)))?. Let (W, ..., Wy,) be a resampling
scheme, let W,, =Y | Wi/n and let v, = Var(Wy — W,,). Let

DY = n(vfy) ™" D EY (! (L(2)))?) s

AEA

T = ea(L(n) — PL(¥»))?, D= PT and

U_ ﬁ ST S (L) (X)) — PL2))(L(1r)(X;) — PL(Wy)).

i#j=1 AeA

then
n—1

Dy _

1
p(A) = ~P, T+ ——U, D = P,T = U, p(A) = =2 =1,

E(DY)=D, DY —D=v,T - U.
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Proof :
It is easy to check that

pA) = SO LWAX) ~ PLA))Y = - S (L) (X3) — PL())?

AEA i=1 i=1

o 37 S (X0 ~ PLU) (LW (Xy) ~ PL()
i#j=1 A\eA
n—1

U.
n

1
- ~PT+
n

Recall that v}V = PV — W, P,. For all A in A, since Y"1 | (W; — W,,) =0,

A (L) = SO(Wi— W) L) (X)

Since the weights are exchangeable, for all i = 1, .., n, E((W;—W,,)?) = Var(W1—W,,) = v¥,
and for all i £ 5 =1,...,n,
vy Eij =E (W; = Wo)(W; —Wy,)) =E (Wi — W,,)(Wa — W)

Moreover, since > | (W; — W) =0,

= nE(Wi - Wa)?) +n(n — DE (W1 — W,,)(Wa — Wi,)) .
Hence, for all i # j =1,...,n, E;; = —1/(n — 1), thus
DY =P, T -U.
The last inequalities of Lemma follow from the fact that E(U) = 0. Finally,

DYV 1
p(A) — —A ——P.T+
n n

n—1

U — (anT— lU> =U.
n n n
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Lemma 5.4 Let

DW m
Q, = ﬂ {—m—p(m)§10enR—}
meMy " "
DY m
n n
mGMn

and Q, = Q, N Q. There exists a constant C > 0 such that IP’(QIC,) < Cem2(mn),

Proof :
From Assumption [V] applied with m = m/, (see (B])), if Ly, = ln 5 (B, Rin), for all
K >0,
D4 (em(K21)H)Y* < KepRon, /02D (K2,,) < KéyRon,
02 (K1) < (Ken)* Ry em(Kln)? < (Ken)* Ry
We apply Proposition P.4 with « = K?I,, and we obtain

DWVK 2 2 4 LBm -K?]
P " —p(m) > (8.31Ke, + 3(Kep)” + (19.1)*(Key) )m < 2~ K?lm,

Thus, for all K > 1/(v2), if €,(K) = n (8.31Ke, + 3(Ken)? + (19.1)*(Ken)?*) /(n — 1),
from (B4)
Drvr‘L/ R 2y _—K?(Inn)7
P(Vm e M,, - —p(m) > e"(K)T < 2%(2K%)e .

Take K = 8/8.31 and n > 10 sufficiently large to ensure that 3K?2¢, + (19.1)2 K% < 1,

then 10
en(K) < n (8€n + €) < 10¢p,.

We deduce that, for sufficiently large n,

P(Q5) < 28(2k2)e~ K (nn),
We also apply Proposition P4 with z = K 2l,,, and we use the same arguments to prove
that, for K = 16/16.61, for all n > 10 sufficiently large to ensure that (40.3)2K%e} < 2

Dn‘/lb/ Ry, 2\ —K2%(Inn)Y
P(Vm e M,, - —p(m) < —20€n7 < 3.8%(2K%)e .

Hence, the conclusion of Lemma [5.4 holds for sufficiently large n. It holds in general,
provided that we increase the constant C' if necessary.

5.3 Proof of Theorem 2.2

If ¢, < 0, there is nothing to prove. We can then assume that ¢, > 0, this implies in
particular that
28¢, < 6, < 1.

We use the notations of Lemma f.2 From Lemma .3, the inequalities ([[) will be proved
if, on Qp, Dy > ¢, Dy and

Cn

inf ||s — 5,2

— 32 >
Is = 5l" = 5h8 meMy,
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Let m, € argmin,,e s, R, ™M minimizes over M, the following criterion.

Crit(m) = PuQ(3m) + pen(m) + [|s[|* + 2vn(sm, )
= |ls = smll* = p(m) + 8(mo,m) + pen(m).

Recall that 0 < pen(m) < (1 — §,,) Dy, /n. On Qp, for all m in M,,, since R, > R, ,

D R D
Crit(m) > HS - Sm||2 - 7m - 165n7m > _(1 + 166n)7m-

v D Do
Crit(m) <[5 — sml? + 266n% 502 = (1 2660 |5 — s — (6 — 266)

When D,,, < ¢, D=,

nlls = sme ||
(14 16€,) D < D= | (8, — 26€n) — (1 + 26€,)——21 ) .

D+

Thus Crit(m) > Crit(m*). This implies that Dy, > ¢, Dyp+.
Moreover, on Qp, we also have, for all m in M,

Ry Dy Ry
_ g2 = a) — 21\ S (1 - 90e,) 2
s =7 = 22 (i - 22) > (1 - 200,) 2,

and

R R
. a2 < m < Lo .
mlel}\f/tn lIs — 8wl < mlel}\f;ln - (14 10e,) < - (14 10ey,)

Thus

; Dy Dy
s — 3> > (1- 2oen)R—7:"b > (1 - 2oen)7’” > (1 — 20e,)cy

o 1= 206y Biny  cp 1= 206, o 5 — 4
- " he n = h2 1+ 10€, meM, e

We conclude the proof, saying that e, < 1/28 implies that (1—20e,)(1+10e,)~! > 8/38 >
1/5.

5.4 Proof of Theorem 2.3

If 6_ — 46¢,, < —1, there is nothing to prove, hence, we can assume in the following that
6_ — 46€, > —1.
We keep the notation Qp introduced in Lemma [.3. Let
2D R 2D R
n n n n
mGMn

Q = Qp N Qpen and m, € argming,e s, Rm. Recall that P(Qpen) > 1 — p’ and that, m
minimizes over m the following criterion.

Crit(m) = PuQ(3m) + pen(m) + [|s[|* + 2vn(sm, )
= |ls = smll* = p(m) + 8(mo,m) + pen(m).
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Therefore, on €, for all m in M,,, since Ry, > R,

Crit(m) > (1+ 5_)R7m + <% —p(m)> — 6enR7m

D,, D,
> (1+40- —166n)||s — sl + (1 +6- - 166,)— = > (1+ 0. — 166,)—=

Crit(m) < (146" + 26e,)2m.
n

If Dy, > Cr(6_,67) R,
(14+0_ —16€,) Dy, > (1 + 6T + 26€,) R,

Thus Crit(m) > Crit(m,), hence Dy, < Cp,(6—,01) Ry, -
Moreover, from (B), for all m in M,,
Is =3[1> < lIs = &mll? + (pen(m) — 2p(m)) + (2p(1h) — pen(in)) + (i, m)
Dy, Ry,
< =6l +2 (22— ) + (6% + 60 22
n n
- Dn Ry,

< |ls = &ml® + (46€, + 5+)R—nm + (26¢,, — 5_)%.

For all m in M,,, on Qr,

R D R
a2 fm _Pm) S Lom
ls — &ml| - + <p(m) ) > (1 — 20¢,,) -

Hence, for all m € M,,,

+ —
s =317 < s = s (1+ 2T ) o oo 22

e _ =2
1— 206, 200, 18I
This concludes the proof of Proposition P.J.
5.5 Proof of Proposition P.4
We apply Lemma [.3 with L = id and A = m. By definition of p(m) and D}V,

DY

n  nn

p(m) 5 2 W)~ P (X,) ~ P,

1#j=1 Xeém

Thus, from Lemma [6.7 in the appendix, for all z > 0,

w 3/4 2\1/4 2 2 2
. (p(m) DI 53100 (em®)'/* + 3v/03 Dt + 303, + e (19.12) > P

n n—1

DV 9D (e, a2V £ 7.61\/02 Dot + €,,(40.32:)2
]P’( 72” —p(m) > (ema”) 7 + n—i)m 2+ em(40.3) < 3.8¢77.
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This proves (R3) and (£4).
In order to obtain (1) and (RY), we introduce, for all m in M,,, the function T, =

2 xem(Vx — P1y)? and the random variable
1 n
Un = ooy 2o 2 (X0 = PUa)(un(Xy) = Pen).
i#j=1\em
We apply Lemma p.3 with L = id, we obtain
DY — Dy = vn(Trn) — Unn.

From Bernstein’s inequality (see Proposition @), for all z > 0 and all £ in {—1,1},

. (M(Tm) N WVar(Tm(X))x . ||Tmuoo:c> I

n 3n

From Cauchy-Schwarz inequality, Ty, = sup,ep, (t — Pt)?, thus ||T,,] . /n = 4e, and
Var(T,,(X))/n < ||Thllo PTm/n = 4€m Dy, therefore, for all z > 0 and all £ in {—1,1},

4
P <§1/n(Tm) > \/Sem Dy + e;”) <e?.

Moreover, from Lemma .7 in the appendix, for all z > 0,

. (Um N 5'31D2{4(emx2)1/4+3\/m+3v3n$+em(19.1$)2) < 9¢7.

n—1

3/4 2\1/4 2 2
P <Um - ~9Dm (em®) /T + 7.i1_\/memx + e, (40.32) > < 38677,

We deduce that, for all x > 0, with probability larger than 1 — 4.8¢™%,

4 40.3z)2
DY — D, < SemDmt + em <—x + M)

3 n—1
+9D$’,{4(emx2)1/4 +7.61\/0Z Dy
n—1 ’

Moreover, for all z > 0, on an event of probability larger than 1 — 3e™%,

4 19.1z)?
DY D, > —\/8emDmz — em <—$ + ﬂ)

3 n—1
5.31D5/* (eyma?) /4 4 3\/02 Do + 302,
n—1 '

5.6 Proof of Theorem P.5
Recall that P (£25) < Ce_%(ln")w, and that, on Qrp,

VYm € M,, (1 - 206n)R7m < HS - §m”27

Vm,m' € M2, §(m,m’) < GEnM.
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Let Q, be the event defined in Lemma 4 and let © = Q, N Qp, from Lemma [.3,

P(Q°) < Ce=2m™)7  Recall that pen(m) = 2D /n. On €, from (), for all n such that
20¢e, < 1, for all m in M,,,

R Ry
s =317 < |Is— 8m|* + 266, —= + 16¢,—
n n
26€ 16€
< lle_a |2 n a2 n _ 52
— ”S SmH + 1_206n”s Sm” + 1_206n”s SH

Hence, for all n such that 20¢, < 1, on €2,

(1 —366€,)||s — 5]|* < (1 + 6¢,) mle%n lls — &ml?.
For all n such that 42/(1 — 36¢,,) < 100,

5 42¢ . . . .
s =517 < (14 g ) int sl < (141006) int s
Hence () holds for sufficiently large n, it holds in general provided that we enlarge the
constant C' if necessary..

6 Appendix

In this Section, we state and prove some technical lemmas that are useful in the proofs.
The main tool is the first Lemma based on Bousquet’s version of Talagrand’s inequality.
It is a concentration inequality for the square of the supremum of the empirical process
over a uniformly bounded class of functions. Recall first Bousquet’s [[0] and Klein & Rio
7] versions of Talagrand’s inequality.

Theorem 6.1 (Bousquet’s bound) Let X1, ..., X, be i.i.d. random variables valued in a
measurable space (X, X) and let S be a class of real valued functions bounded by b. Let
v? = sup,eg Var(t(X)) and let Z = sup,cg vnt. Then

2 b
Ve >0, P <Z >E(Z) + \/E(v2 + 20E(Z))x + %) <e "
Theorem 6.2 (Klein & Rio’s bound) Let X1, ..., X, be i.i.d. random variables valued in

a measurable space (X, X) and let S be a class of real valued functions bounded by b. Let
v? = sup,eg Var(t(X)) and let Z = sup,;cg vnt. Then

V>0, P (Z <E(Z) - \/%(vz + 20E(Z))x — %) <e

Let us now also recall Bernstein’s inequality.

Proposition 6.3 Bernstein’s inequality
Let X4, ..., X, be iid random variables valued in a measurable space (X, X) and let t be a
measurable real valued function. Then, for all x > 0,

. (Vn(t) | [2Var(X))e utuooa:) i

n 3n
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We derive from these bounds the following useful corollary. Hereafter, S denotes a symetric
class of real valued functions upper bounded by b, v = sup,cg Var(t(X)), Z = sup,cg Vnt,
nE(Z?) = D. Since S is symetric, we always have Z > 0.

Corollary 6.4 Let S be a symetric class of real valued functions upper bounded by b,
v? = supyeg Var(t(X)), Z = supyeg vnt, nE(Z?) = D, e, = b*/n and

nk,, = 225e, + (2.1 + \/27T> VoD + \/ED3/4€;/4,

then
E(Z°1758(2) < (E(2))°P(Z > E(Z)) + Enm. (38)
In particular,
(E(2))* <E(2%) < (E(2))” + Enm. (39)
Proof :
We have

E(Z*1z25(2)) = /0 P(Z°1y557) > x)da :/0 P(Z1z>g(z) > V)da

= (E(2))*P(Z > E(2Z)) + /(IE(Z))2 P(Z > x)dx

Take z = (E(Z) + v/2(v2 + 2bE(Z))y/n + by/(3n))? in the previous integral, from Bous-
quet’s version of Talagrand’s inequality,

2 o]
202 + 14bE(Z) /3 / vy
0

E(Z°15807) < E(Z)J%(vuzbwn s %dw

+é\/g(v2 + 20E(Z)) /OO e Y\ ydy + 2 [ e ¥d
n\Vn 0 Vydy In? J, 4 v
Classical computations lead to
—y 00 00 00
e—dy = 2/ e Y\ ydy =/, / e Ydy = / ye Ydy = 1.
o VY 0 0 0
Therefore, if ¢, = b?/n, using repeatedly the inequalities
a®b' ™ < aa+ (1 —a)b (40)

and va + b < /a + Vb, we obtain, for all > 0,

VARE(Z) < 35+ 5 1+ 20 JrE(Z))V?,

3/4 77 1/4 2ep
(VRE(Z))'?e," < (VRE(2))** + ﬁ'
Thus
[ TiE(Z) ( 3/4
E(Z21Z2E(Z)) S <2U2 + geb‘i‘ 22776 ) \/_ eb
( Vot F) ViE(Z) |, fmﬁz( )2 (e)'"!
<

V2 2 2 V2 2 14
24" v—+1/—ﬂvE(Z)+ 2, VIm, 2ym, e
4 n n 9  4n  3ym 9I? ) n

+ (77 <\/7_T 28> N 2\/_> (VnE(Z))3/? (eb)l/ﬂ"

3
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Therefore, taking n = 0.088, we obtain

2 3/2 1/4
IE(Z212>]E(Z))32,1U_+152@+,/27;U\/HE(Z)+ /75 (WIE(2))" (en) T
- n n n n

<

Finally, we use Cauchy-Schwarz inequality to obtain that /nE(Z) (nE(Z2)1/?2 =

(D)'/2. Since v* < D, we get (BJ).
We deduce from this result the following concentration inequalities for Z?

Corollary 6.5 Let e, = b?/n. We have, for all x > 0,

P <Z2 D - D3/ (e, (192)2)V/* + 3V Duv2z) + 3v%z + eb(19:n)2> <o,

n n

xT

Moreover, for all x > 0, with probability larger than 1 —e™*,

D _ D34}/ (VT5 + 4.127/Z) + ViZD(4.61 + 3/x) + 225¢,(6.22% + 1)
n - n ’

Proof :

From Bousquet’s version of Talagrand’s inequality and from (E(Z))? < E(Z?), we
obtain that, for all z > 0, with probability larger than 1 — e™%, Z? — D/n is not larger
than

4D34 (eyz®)/* + D14/ ey /3 + 2V 202x) + 4DV (eyx2)3/* /3 + 302z + €422 /3

(41)

n
We use repeatedly the inequality a®b'~® < aa + (1 — a)b to obtain that, with probability
at least 1 — e, Z2 — D/n is not larger than

(4 + 320/9)D3/* (eyx?)Y/* + 22/ D2z + 302w + (3 + 14/n% + 8/ /M)epr? /9

n

For n = 0.07, this gives

> D D3/ (e (192)2)V* + 2¢/2v Dv2x + 3v%z + €,(192)?
n n ’

Z

For the second one we use Klein’s version of Talagrand’s inequality to obtain, for all x > 0
such that r(z) = \/2(v2 + 20E(Z))z/n + 8bz/3n < E(Z),

i (22 < (E(Z) - r(ac))2> <et.

We have (E(Z) — r(x))? = (B(Z))? — 2E(Z)r(z) + r(2)? > (E(Z))? — 2E(Z)r(z), thus
P(Z? < (E(Z))* - 2E(Z)r(z)) < e "
From the previous corollary, (E(Z))? > E(Z?) — E,,, thus
P (Z? < E(Z?) — Em — 2E(Z)r(z)) < e "
In order to conclude the proof of f.5, just remark that

4D3/4(€bl’2)1/4 + 3V Dvx + 16\/?{,1’2/3
n

2E(Z)r(x)

(4 + 321/9)D3/*(epx?)V/* 4+ 3V Dv2x 4 16/ (9n?)eyz?
- .

For n = 0,0357, we obtain ([]).
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Finally, we have obtained the following result for the concentration of Z? around its mean

Corollary 6.6 For all x > 0,

<e .

P (ZQ D - D3/(ep(192)%)Y4 + 3V Dv2x + 30z + eb(lga:)2>
n n

n

3/4(, 2\1/4 2 2
P <Z2 D - 8D (epa”) /" + 7.61V 02D + €, (40.25z) > < ee~®.
n

Proof :
In order to obtain the second inequality, we remark that the inequality is trivial when
x < 1, thus we only have to use () for > 1 and then \/z > 1 and 2% > 1.

We will use this lemma to obtain a concentration inequality for totally degenerate U-
statistics of order 2. The following result generalizes a previous inequality due to Houdré
& Reynaud-Bouret [[[f] to random variables taking values in a measurable space.

Lemma 6.7 Let X, Xq,..., X, bei.i.d random variables taking value in a measurable space
(X, X) with common law P. Let p be a measure on (X, X) and let (ty\)ren be a set of
functions in L?(u). Let

B={t= Z aty, Z a3 <1}, D=E <sup(t(X) — Pt)2> ,

AEA AEA teB

b2
v? = sup Var(t(X)), b=sup ||t ande, = —.
teB teB n

Let
U= ﬁ Z Z(t)\(Xi) = Pty)(tA(X;) — Pty).

i#j=1 AeA

Then the following inequality holds

3/4 2\1/4 D) 2 2
o0, P <U _ 531D () !/ + 3\/nv_ll)x + 3022 + ey(19.12) ) coer. (42)
9D3/*(eya®)/* + 7.61V02D 40.3x)2
Yz >0, P (U <- (epa”) © + — 1” v+ o030 ) _gge (3
Proof :

Remark that, from Cauchy-Schwarz inequality,

2
sup(vp (t))? = < sup Za;yn(t,\)) = Z(Vn(t)\))2.

teB > a3<1\en AEA

For all z in X, from Cauchy-Schwarz inequality,

sup(t(z) — Pt)* =) (ta(z) — Pty)?,
tel A
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in particular, D = )", Var(¢,(X)). Moreover, easy algebra leads to

St = 5 3 S (X) — Pha?

AEA i=1 AeA
1 n
T3 2 DX — PL)(A(X)) - Pt)
i#j=1 AeA
_ 1P Z(t JNCA n— 1U
= E n A )\) o .
AEA
Let Z% = supyep(vn(t))?, Ta = 3y (tr — Pty)?,
R(Z%) = <1PnTA) _D
n n
Hence
U = n Z2 o ]E(ZZ) o an(TA) '
n—1 n

From Corollary p.€, for all z > 0,

7 - =

p ( D - D3(ey(192)%)Y* + 3vv2 Dz + 302z + eb(lgw)2>
n n

D D3/4 2)1/4 4 7,61V 02D 40.25x)2
P <Z2 _D_ 8 (ep(z)*)"/* 4+ 7.61vVv2Dx + €,(40.25x) <9807,
n n

Moreover, from Bernstein inequality, for all > 0,

P (—I/nTA > \/2Deyx + %) <e™ ™

P (I/nTA > \/2Deyx + %) <e”.

We apply inequality () with a = D3/*(ey2?)'/4, b = eyy/z, @ = 2/3 and we obtain

P <_VnTA > ¥D3/4(eb$2)1/4 + ep (% V2w>> < e "

2v/2 V2
P <VnTA > %_D3/4(eb332)1/4 + ey <$+T:E>> <e .

Therefore, for all z > 0,

n—1

. (U N 5.31D3/4(ebw2)1/4 +3Vu2Dz + 30z + ¢ ((1936)2 + (z + \/296)/3)) < 90
< 2e7".

. <U _ 9D¥4(eya?)1/1 + 7.61vV0?Da + e, ((40.252) + (z + \/ﬂ)/?))) P

n—1

These inequalities are trivial when x < 1. We only use them when z > 1 and we obtain
({2) and ([{J) since = < 2% and /z < 22 when z > 1.
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Let us now state the corollary of Bernstein’s inequality that we used repeatedly in the
article.

Lemma 6.8 Let X, Xq,..., X, be i.i.d random variables taking value in a measurable space
(X, X) with common law P. Let p be a measure on (X, X) and let ({\)ren be an or-
thonormal system in L?(u). Let L be a linear functional in L?(p) and let B = {t =
S en arL ), Yaenad < 1}, 0% = supep Var(t(X)), b = supiep |t and e = b2/n.
Let u be a function in S, the linear space spanned by the functions (x)aea and let n > 0.
Then the following inequality holds

(44)

202 2/9
Vo >0, P (Vn(L(u)) > gnuH? + M) <e®.

nn

Proof :
From Bernstein’s inequality,

Ve >0, P (Vn(L(u)) N \/ZVar(L(u)(X)):E N ||L(u)\|oox) -

n 3n

Since t = L(u/||u||) belongs to B,

00 | e M( 2Var<t<X>>x+||t||oow)

n 3n n 3n

2
Ny o 1 [2v2z  bx

< a a .
- 2HuH + 2n < n * 3n

We conclude the proof using the inequality (a + b)? < 2a® + 2b%.
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