
HAL Id: hal-00422655
https://hal.science/hal-00422655v1

Submitted on 8 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal model selection in density estimation
Matthieu Lerasle

To cite this version:
Matthieu Lerasle. Optimal model selection in density estimation. Annales de l’Institut Henri Poincaré
(B) Probabilités et Statistiques, 2012, 48 (3), pp.884–908. �10.1214/11-AIHP425�. �hal-00422655�

https://hal.science/hal-00422655v1
https://hal.archives-ouvertes.fr


Optimal model selection in density estimation

Matthieu Lerasle
∗

Abstract

We build penalized least-squares estimators using the slope heuristic and re-

sampling penalties. We prove oracle inequalities for the selected estimator with

leading constant asymptotically equal to 1. We compare the practical perfor-

mances of these methods in a short simulation study.
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heuristic.
2000 Mathematics Subject Classification: 62G07, 62G09.

1 Introduction

The aim of model selection is to construct data-driven criteria to select a model among a
given list. The history of statistical model selection goes back at least to Akaike [1], [2] and
Mallows [18]. They proposed to select among a collection of parametric models the one
which minimizes an empirical loss plus some penalty term proportional to the dimension
of the model. Birgé & Massart [8] and Barron, Birgé & Massart [6] generalized this
approach, making in particular the link between model selection and adaptive estimation.
They proved that previous methods, in particular cross-validation (see Rudemo [20]) and
hard thresholding (see Donoho et.al. [12]) can be viewed as penalization methods. More
recently, Birgé & Massart [9], Arlot & Massart [5] and Arlot [4], (see also [3]) arised the
problem of optimal efficient model selection. Basically, the aim is to select an estimator
satisfying an oracle inequality with leading constant asymptotically equal to 1. They
obtained such procedures thanks to a sharp estimator of the ideal penalty penid. We will
be interested in two natural ideas, that are used in practice to evaluate penid and proved
to be efficient in other frameworks. The first one is the slope heuristic. It was introduced
in Birgé & Massart [9] in Gaussian regression and developed in Arlot & Massart [5] in
a M -estimation framework. It allows to optimize the choice of a leading constant in
the penalty term, provided that we know the shape of penid. The other one is Efron’s
resampling heuristic. The basic idea comes from Efron [14] and was used by Fromont [15]
in the classification framework. Then, Arlot [4] made the link with ideal penalties and
developed the general procedure. Up to our knowledge, these methods have only been
theoretically validated in regression frameworks. We propose here to prove their efficiency
in density estimation. Let us now explain more precisely our context.

1.1 Least-squares estimators

In this paper, we define and study efficient penalized least-squares estimators in the den-
sity estimation framework when the error is measured with the L2-loss. We observe n

∗Institut de Mathématiques (UMR 5219), INSA de Toulouse, Université de Toulouse, France
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i.i.d random variables X1, ...,Xn, defined on a probability space (Ω,A,P), valued in a
measurable space (X,X ), with common law P . We assume that a measure µ on (X,X ) is
given and we denote by L2(µ) the Hilbert space of square integrable real valued functions
defined on X. L2(µ) is endowed with its classical scalar product, defined for all t, t′ in
L2(µ) by

< t, t′ >=

∫

X

t(x)t′(x)dµ(x)

and the associated L2-norm ‖.‖, defined for all t in L2(µ) by ‖t‖ =
√
< t, t >. The

parameter of interest is the density s of P with respect to µ, we assume that it belongs
to L2(µ). The risk of an estimator ŝ of s is measured with the L2-loss, that is ‖s − ŝ‖2,
which is random when ŝ is.
s minimizes the integrated quadratic contrast PQ(t), where Q : L2(µ) → L1(P ) is defined
for all t in L2(µ) by Q(t) = ‖t‖2 − 2t. Hence, density estimation is a problem of M -
estimation. These problems are classically solved in two steps. First, we choose a ”model”
Sm that should be close to the parameter s, which means that inft∈Sm ‖s− t‖2 is ”small”.
Then, we minimize over Sm the empirical version of the integrated contrast, that is, we
choose

ŝm ∈ arg min
t∈Sm

PnQ(t). (1)

This last minimization can be computationaly untractable for general sets Sm, leading to
untractable procedures in practice. However, it can be easily solved when Sm is a linear
subspace of L2(µ) since, for all orthonormal basis (ψλ)λ∈m,

ŝm =
∑

λ∈m

(Pnψλ)ψλ. (2)

Thus, we will always assume that a model is a linear subspace in L2(µ). The risk of the
least-squares estimator ŝm defined in (1) is then decomposed in two terms, called bias and
variance, thanks to Pythagoras relation. Let sm be the orthogonal projection of s onto
Sm,

‖s − ŝm‖2 = ‖s− sm‖2 + ‖sm − ŝm‖2.

The statistician should choose a space Sm realizing a trade-off between those terms. Sm

must be sufficiently “large” to ensure a small bias ‖s − sm‖2, but not too much, for the
variance ‖sm − ŝm‖2 not to explose. The best trade-off depends on unknown properties
of s, since the bias is unknown, and on the behavior of the empirical minimizer ŝm in
the space Sm. Classically, Sm is a parametric space and the dimension dm of Sm as a
linear space is used to give upper bounds on Dm = nE

(

‖sm − ŝm‖2
)

. This approach
is validated in regular models under the assumption that the support of s is a known
compact, as mentioned in section 3. However, this definition can fail dramatically because
there exist simple models (histograms with a small dimension dm) where Dm is very
large, and infinite dimensional models where Dm is easily upper bounded. This issue is
extensively discussed in Birgé [7]. Birgé chooses to keep the dimension dm of Sm as a
complexity measure and build new estimators that achieve better risk bounds than the
empirical minimizer. His procedures are unfortunatly untractable for the practical user
because he can only prove the existence of his estimators. Even his bounds on the risk
are only interesting theoretically because they involve constants which are not optimal.
We will not take this point of view here and our estimator will always be the empirical
minimizer, mainly because it can easily be computed, see (2). We will focus on the quantity
Dm/n and introduce a general Assumption (namely Assumption [V]) that allows to work
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indifferently with Dm/n or with the actual risk ‖sm − ŝm‖2. We will also provide and
study an estimator of Dm/n based on the resampling heuristic.
We insist here on the fact that, unlike classical methods, we will not use in this paper
strong extra assumptions on s, like ‖s‖∞ <∞ or assume that s is compactly supported.

1.2 Model selection

Recall that the choice of an optimal model Sm is impossible without strong assumptions
on s, for example a precise information on its regularity. However, under less restrictive
hypotheses, we can build a countable collection of models (Sm)m∈Mn , growing with the
number of observations, such that the best estimator in the associated collection (ŝm)m∈Mn

realizes an optimal trade-off, see for example Birgé & Massart [8] and Barron, Birgé &
Massart [6]. The aim is then to build an estimator m̂ such that our final estimator, s̃ = ŝm̂

behaves almost as well as any model mo in the set of oracles

M∗
n = {mo ∈ Mn, ‖ŝmo − s‖2 = inf

m∈Mn

‖ŝm − s‖2}.

This is the problem of model selection. More precisely, we want that s̃ satisfies an oracle
inequality defined in general as follows.

Definition: (Trajectorial oracle inequality) Let (pn)n∈N be a summable sequence and let
(Cn)n∈N and (Rm,n)n∈N be sequences of positive real numbers. The estimator s̃ = ŝm̂

satisfies a trajectorial oracle inequality TO(Cn, (Rm,n)m∈Mn , pn) if

∀n ∈ N
∗, P

(

‖s̃ − s‖2 > Cn inf
m∈Mn

{

‖s − ŝm‖2 +Rm,n

}

)

≤ pn. (3)

When s̃ satisfies an oracle inequality, Cn is called the leading constant.

In this paper, we are interested in the problem of optimal model selection defined as
follows.

Definition: (Optimal model selection) We say that s̃ is optimal or that the procedure
of selection (X1, ...,Xn) 7→ m̂ is optimal when s̃ satisfies a trajectorial oracle inequality
TO(1 + rn, (Rm,n)m∈Mn , pn) with rn → 0 and for all n in N

∗ and m in Mn Rm,n = 0. In
order to simplify the notations, when s̃ is optimal we will say that s̃ satisfies an optimal
oracle inequality OTO(rn, pn).

In order to build m̂, we remark that, for all m in Mn,

‖s− ŝm‖2 = ‖ŝm‖2 − 2P ŝm + ‖s‖2 = PnQ(ŝm) + 2νn(ŝm) + ‖s‖2, (4)

where νn = Pn − P is the centered empirical process. An oracle minimizes ‖s − ŝm‖2

and thus PnQ(ŝm) + 2νn(ŝm). As we want to imitate the oracle, we will design a map
pen : Mn → R+ and choose

m̂ ∈ arg min
m∈Mn

PnQ(ŝm) + pen(m), s̃ = ŝm̂. (5)

It is clear that the ideal penalty is penid(m) = 2νn(ŝm). For all m in Mn, for all orthonor-
mal basis (ψλ)λ∈m, ŝm =

∑

λ∈m(Pnψλ)ψλ and sm =
∑

λ∈m(Pψλ)ψλ, thus

νn(ŝm − sm) = νn

(

∑

λ∈m

(νnψλ)ψλ

)

=
∑

λ∈m

(νnψλ)2 = ‖ŝm − sm‖2.
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Let us define, for all m in Mn

p(m) = νn(ŝm − sm) = ‖ŝm − sm‖2.

From (4), for all m in Mn,

‖s− s̃‖2 = ‖s̃‖2 − 2P s̃+ ‖s‖2 = ‖s̃‖2 − 2Pns̃+ 2νns̃+ ‖s‖2

≤ PnQ(ŝm) + pen(m) + (2νn(s̃) − pen(m̂)) + ‖s‖2

= ‖s− ŝm‖2 + (pen(m) − 2νn(ŝm)) + (2νn(s̃) − pen(m̂))

Hence, for all m in Mn,

‖s− s̃‖2 ≤ ‖s− ŝm‖2 + (pen(m) − 2p(m)) + (2p(m̂) − pen(m̂)) + 2νn(sm̂ − sm). (6)

Let us define, for all c1, c2 > 0, the function

fc1,c2 : R
+ → R

+, x 7→
{ 1+c1x

1−c2x − 1 if x < 1/c2
+∞ if x ≥ 1/c2

. (7)

It comes from inequality (6) that s̃ satisfies an oracle inequality OTO(f2,2(ǫn), pn) as soon
as, with probability larger than 1 − pn

∀m ∈ Mn
|2p(m) − pen(m)|

‖s− ŝm‖2 ≤ ǫn and (8)

∀(m,m′) ∈ M2
n,

2νn(sm′ − sm)

‖s− ŝm′‖2 + ‖s− ŝm‖2 ≤ ǫn. (9)

Inequality (9) does not depend on our choice of penalty, we will check that it can easily
be satisfied in classical collections of models. In order to obtain inequality (8), we use two
methods, defined in M -estimation, but studied only on some regression frameworks.

1.2.1 The slope heuristic

The first one is refered as the ”slope heuristic”. The idea has been introduced by Birgé
& Massart [9] in the Gaussian regression framework and developed in a general algorithm
by Arlot & Massart [5]. This heuristic states that there exist a sequence (∆m)m∈Mn and
a constant Kmin satisfying the following properties,

1. when pen(m) < Kmin∆m, then ∆m̂ is too large, typically ∆m̂ ≥ Cmaxm∈Mn ∆m,

2. when pen(m) ≃ (Kmin + δ)∆m for some δ > 0, then ∆m̂ is much smaller,

3. when pen(m) ≃ 2Kmin∆m, the selected estimator is optimal.

Thanks to the third point, when ∆m and Kmin are known, this heuristic says that the
penalty pen(m) = 2Kmin∆m selects an optimal estimator. When ∆m only is known, the
first and the second point can be used to calibrate Kmin in practice, as shown by the
following algorithm (see Arlot & Massart [5]):

Slope algorithm
For all K > 0, compute the selected model m̂(K) given by (5) with the penalty pen(m) =
K∆m and the associated complexity ∆m̂(K).
Find the constant Kmin such that ∆m̂(K) is large when K < Kmin, and ”much smaller”
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when K > Kmin.
Take the final m̂ = m̂(2Kmin).

We will justify the slope heuristic in the density estimation framework for ∆m = E(‖sm −
ŝm‖2) = Dm/n and Kmin = 1. In general, Dm is unknown and has to be estimated, we
propose a resampling estimator and prove that it can be used without extra assumptions
to obtain optimal results.

1.2.2 Resampling penalties

Data-driven penalties have already been used in density estimation in particular cross-
validation methods as in Stone [21], Rudemo [20] or Celisse [11]. We are interested here
in the resampling penalties introduced by Arlot [4]. Let (W1, ...,Wn) be a resampling
scheme, i.e. a vector of random variables independent of X,X1, ...,Xn and exchangeable,
that is, for all permutations τ of (1, ..., n),

(W1, ...,Wn) has the same law as (Wτ(1), ...,Wτ(n)).

Hereafter, we denote by W̄n =
∑n

i=1Wi/n and by EW and LW respectively the expectation
and the law conditionally to the dataX,X1, ...,Xn. Let PW

n =
∑n

i=1WiδXi
/n, νW

n = PW
n −

W̄nPn be the resampled empirical processes. Arlot’s procedure is based on the resampling
heurististic of Efron (see Efron [13]), which states that the law of a functional F (P,Pn)
is close to its resampled counterpart, that is the conditional law LW (CWF (W̄nPn, P

W
n )).

CW is a renormalizing constant that depends only on the resampling scheme and on F .
Following this heuristic, Arlot defines as a penalty the resampling estimate of the ideal
penalty 2Dm/n, that is

pen(m) = 2CW E
W (νW

n (ŝW
m )), (10)

where ŝW
m minimizes PW

n Q(t) over Sm. We prove concentration inequalities for pen(m)
and deduce that pen(m) provides an optimal procedure.

The paper is organized as follows. In Section 2, we state our main results, we prove the
efficiency of the slope algorithm and the resampling penalties.
In Section 3, we compute the rates of convergence in the oracle inequalities using classical
collections of models. Section 4 is devoted to a short simulation study where we compare
different methods in practice. The proofs are postponed to Section 5. Section 6 is an
Appendix where we add some probabilistic material, we prove a concentration inequality
for Z2, where Z = supt∈B νn(t) and B is symmetric. We deduce a simple concentration
inequality for U -statistics of order 2 that extends a previous result by Houdré & Reynaud-
Bouret [16].

2 Main results

Hereafter, we will denote by c, C, K, κ, L, α, with various subscripts some constants that
may vary from line to line.

2.1 Concentration of the ideal penalty

Take an orthonormal basis (ψλ)λ∈m of Sm. Easy algebra leads to

sm =
∑

λ∈m

(Pψλ)ψλ, ŝm =
∑

λ∈m

(Pnψλ)ψλ, thus ‖sm − ŝm‖2 =
∑

λ∈m

(νn(ψλ))2.
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ŝm is an unbiased estimator of sm and

penid(m) = 2νn(ŝm) = 2νn(ŝm − sm) + 2νn(sm) = 2‖sm − ŝm‖2 + 2νn(sm).

For all m,m′ in Mn, let

p(m) = ‖sm − ŝm‖2 =
∑

λ∈m

(νn(ψλ))2, δ(m,m′) = 2νn(sm − sm′). (11)

From (6), for all m in Mn,

‖s− s̃‖2
2 ≤ ‖s− ŝm‖2

2 + (pen(m) − 2p(m)) + (2p(m̂) − pen(m̂)) + δ(m̂,m). (12)

In this section, we are interested in the concentration of p(m) around E(p(m)) = Dm/n.
Let us first remark that, for all m in Mn, p(m) is the supremum of the centered empirical
process over the ellipsoid Bm = {t ∈ Sm, ‖t‖ ≤ 1}. From Cauchy-Schwarz inequality, for
all real numbers (bλ)λ∈m,

∑

λ∈m

b2λ =

(

sup
P

a2

λ
≤1

∑

λ∈m

aλbλ

)2

. (13)

We apply this inequality with bλ = νn(ψλ). We obtain, since the system (ψλ)λ∈m is
orthonormal,

∑

λ∈m

(νn(ψλ))2 = sup
P

a2

λ
≤1

(

∑

λ∈m

aλνn(ψλ)

)2

= sup
P

a2

λ
≤1

(

νn

(

∑

λ∈m

aλψλ

))2

= sup
t∈Bm

(νn(t))2 .

Hence, p(m) is bounded by a Talagrand’s concentration inequality (see Talagrand [22]).
This inequality involves Dm = nE

(

‖ŝm − sm‖2
)

and the constants

em =
1

n
sup

t∈Bm

‖t‖2
∞ and v2

m = sup
t∈Bm

Var(t(X)). (14)

More precisely, the following proposition holds:

Proposition 2.1 Let X,X1, ...,Xn be iid random variables with common density s with
respect to a probability measure µ. Assume that s belongs to L2(µ) and let Sm be a
linear subspace in L2(µ). Let sm and ŝm be respectively the orthogonal projection and the
projection estimator of s onto Sm. Let p(m) = ‖sm − ŝm‖2, Dm = nE(p(m)) and let vm,
em be the constants defined in (14). Then, for all x > 0,

P

(

p(m) − Dm

n
>
D

3/4
m (emx

2)1/4 + 0.7
√

Dmv2
mx+ 0.15v2

mx+ emx
2

n

)

≤ e−x/20 (15)

P

(

Dm

n
− p(m) >

1.8D
3/4
m (emx

2)1/4 + 1.71
√

Dmv2
mx+ 4.06emx

2

n

)

≤ 2.8e−x/20 (16)

Comments : From (12), for all m in Mn,

‖s− s̃‖2
2 ≤ ‖s− ŝm‖2

2 +

(

pen(m) − 2
Dm

n

)

+ 2

(

Dm

n
− p(m)

)

+2

(

p(m̂) − Dm̂

n

)

+

(

2
Dm̂

n
− pen(m̂)

)

+ δ(m̂,m). (17)
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It appears from (17) that we can obtain oracle inequalities with a penalty of order 2Dm/n
if, uniformly over m,m′ in Mn,

p(m) − Dm

n
<< ‖s− ŝm‖2 and δ(m′,m) << ‖s − ŝm‖2 + ‖s− ŝm′‖2.

Proposition 2.1 proves that the first part holds with large probability for all m in Mn

such that em ∨ v2
m << nE(‖s− ŝm‖2). Actually, the other part also holds under the same

kind of assumption.

2.2 Main assumptions

For all m, m′ in Mn, let Dm = nE
(

‖sm − ŝm‖2
)

,

Rm

n
= E

(

‖s− ŝm‖2
)

= ‖s− sm‖2 +
Dm

n
,

v2
m,m′ = sup

t∈Sm+Sm′ ,‖t‖≤1
Var(t(X)), em,m′ =

1

n
sup

t∈Sm+Sm′ ,‖t‖≤1
‖t‖2

∞ .

For all k ∈ N, let Mk
n = {m ∈ Mn, Rm ∈ [k, k + 1)}. For all n in N, for all k > 0, k′ > 0

and γ ≥ 0, let [k] be the integer part of k and let

ln,γ(k, k′) = ln(1 + Card(M[k]
n )) + ln(1 + Card(M[k′]

n )) + ln((k+ 1)(k′ + 1)) + (lnn)γ (18)

Assumption [V]: There exist γ > 1 and a sequence (ǫn)n∈N, with ǫn → 0 such that, for
all n in N,

sup
(k,k′)∈(N∗)2

sup
(m,m′)∈Mk

n×Mk′
n











(

v2
m,m′

Rm ∨Rm′

)2

∨ em,m′

Rm ∨Rm′



 l2n,γ(k, k′)







≤ ǫ4n.

[BR] There exist two sequences (h∗n)n∈N∗ and (ho
n)n∈N∗ with (ho

n ∨ h∗n) → 0 as n → ∞
such that, for all n in N

∗, for all mo ∈ arg minm∈Mn Rm and all m∗ ∈ arg maxm∈Mn Dm,

Rmo

Dm∗

≤ ho
n,

n‖s− sm∗‖2

Dm∗

≤ h∗n.

Comments:

• Assumption [V] ensures that the fluctuations of the ideal penalty are uniformly
small compared to the risk of the estimator ŝm. Note that for all k, k′, ln,γ(k, k′) ≥
(lnn)γ , thus, Assumption [V] holds only in typical non parametric situations where
Rn = infm∈Mn Rm → ∞ as n→ ∞.

• The slope heuristic states that the complexity ∆m̂ of the selected estimator is too
large when the penalty term is too small. A minimal assumption for this heuristic
to hold with ∆m = Dm would be that there exists a sequence (θn)n∈N∗ with θn → 0
as n → ∞ such that, for all n in N

∗, for all mo ∈ arg minm∈Mn E
(

‖s− ŝm‖2
)

and
all m∗ ∈ arg maxm∈Mn E

(

‖sm − ŝm‖2
)

,

Dmo ≤ θnDm∗ .

Assumption [BR] is slightly stronger but will always hold in the examples (see
Section 3).
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In order to have an idea of the rates Rn, ǫn, h∗n, h
o
n and θn, let us briefly consider the very

simple following example:

Example HR: We assume that s is supported in [0, 1] and that (Sm)m∈Mn is the collection
of the regular histograms on [0, 1], with dm = 1, ..., n pieces. We will see in Section 3.2
that Dm ∼ dm asymptotically, hence Dm∗ ≃ n. Moreover, we assume that s is Hölderian
and not constant so that there exist positive constants cl, cu, αl, αu such that, for all m in
Mn, see for example Arlot [4],

cld
−αl
m ≤ ‖s− sm‖2 ≤ cud

−αu
m .

In Section 3.2, we prove that this assumption implies [V] with ǫn ≤ C ln(n)n−1/(8αl+4).
Moreover, there exists a constant C > 0 such that Rmo ≤ infm∈Mn (cund

−αu
m + dm) ≤

Cn−1/(2αu+1), thus Rmo/D
∗
m ≤ Cn1/(2αu+1)−1 = Cn−2αu/(2αu+1). Since there exists C > 0

such that n‖s − sm∗‖2/Dm∗ ≤ Cd−αu

m∗ = Cn−αu, [BR] holds with ho
n = Cn−2αu/(2αu+1)

and h∗n = Cn−αu.
Other examples can be found in Birgé & Massart [8], see also Section 3.

2.3 Results on the Slope Heuristic

Let us now turn to the slope heuristic presented in Section 1.2.1.

Theorem 2.2 (Minimal penalty) Let Mn be a collection of models satisfying [V] and
[BR] and let ǫ∗n = ǫn ∨ h∗n.
Assume that there exists 0 < δn < 1 such that 0 ≤ pen(m) ≤ (1 − δn)Dm/n. Let m̂, s̃ be
the random variables defined in (5) and let

cn =
δn − 28ǫ∗n
1 + 16ǫn

.

There exists a constant C > 0 such that,

P

(

Dm̂ ≥ cnDm∗ , ‖s− s̃‖2 ≥ cn
5ho

n

inf
m∈Mn

‖s− ŝm‖2

)

≥ 1 − Ce−
1

2
(ln n)γ

. (19)

Comments: Assume that pen(m) ≤ (1 − δ)Dm/n, then, inequality (19) proves that an
oracle inequality can not be obtained since cn/h

o
n → ∞. Moreover, Dm̂ ≥ cDm∗ is as large

as possible. This proves point 1 of the slope heuristic.

Theorem 2.3 Let Mn be a collection of models satisfying Assumption [V]. Assume that
there exist δ+ ≥ δ− > −1 and 0 ≤ p′ < 1 such that, with probability at least 1 − p′,

2
Dm

n
+ δ−

Rm

n
≤ pen(m) ≤ 2

Dm

n
+ δ+

Rm

n
.

Let m̂, s̃ be the random variables defined in (5) and let

Cn(δ−, δ
+) =

(

1 + δ− − 46ǫn
1 + δ+ + 26ǫn

∨ 0

)−1

.

There exists a constant C > 0 such that, with probability larger than 1 − p′ − Ce−
1

2
(ln n)γ

,

Dm̂ ≤ Cn(δ−, δ
+)Rmo , ‖s − s̃‖2 ≤ Cn(δ−, δ

+) inf
m∈Mn

‖s− ŝm‖2. (20)

8



Comments :

• Assume that pen(m) = KDm/n with K > 1, then inequality (20) ensures that
Dm̂ ≤ Cn(K,K)Rmo . Hence, Dm̂ jumps from Dm∗ (Theorem 2.2) to Rmo (20) when
pen(m) is around Dm/n, which is much smaller thanks to Assumption [BR]. This
proves point 2 of the slope heuristic.

• Point 3 of this heuristic comes from inequality (20) applied with small δ− and δ+.
The rate of convergence of the leading constant to 1 is then given by the supremum
between δ−, δ+ and ǫn.

• The condition on the penalty has the same form as the one given in Arlot & Massart
[5]. It comes from the fact that we do not know Dm/n in many cases, therefore, it
has to be estimated. We propose two alternatives to solve this issue. In Section 2.4,
we give a resampling estimator of Dm. It can be used for all collection of models
satisfying [V] and its error of approximation is upper bounded by ǫnRm/n. Thus
Theorem 2.3 holds with (δ− ∨ δ+) ≤ Cǫn. In Section 3.2, we will also see that, in
regular models, we can use dm instead of Dm and the error is upper bounded by
CRm/Rmo , thus Theorem 2.3 holds with (δ− ∨ δ+) ≤ C/Rmo << ǫn, p′ = 0. In
both cases, we deduce from Theorem 2.3 that the estimator s̃ given by the slope
algorithm achieves an optimal oracle inequality OTO(κǫn, Ce

− 1

2
(ln n)γ

). In Example
HR, for example, we obtain ǫn = Cn−1/(8αl+4) lnn.

2.4 Resampling penalties

Optimal model selection is possible in density estimation provided that we have a sharp
estimation of Dm = nE

(

supt∈Bm
(νn(t))2

)

. We propose an estimator of this quantity
based on the resampling heuristic. The model selection algorithm that we deduce is the
same as the resampling penalization procedure introduced by Arlot [4]. Let F be a fixed
functional. Efron’s heuristic states that the law L(F (νn)) is close to the conditional law
LW (CWF (νW

n )), where CW is a normalizing constant depending only on the resampling
scheme and the functional F . Let PW

n =
∑n

i=1WiδXi
/n and νW

n = PW
n − W̄nPn. The

resampling estimator of Dm is DW
m = nC2

W E
W
(

supt∈Bm
(νW

n (t))2
)

and the resampling
penalty associated is pen(m) = 2DW

m /n. Actually, the following result describes the
concentration of DW

m around its mean Dm and around np(m).

Proposition 2.4 Let (W1, ...,Wn) be a resampling scheme, let Sm be a linear space, Bm =
{t ∈ Sm, ‖t‖ ≤ 1}, p(m) = supt∈Bm

(νn(t))2, Dm = nE (p(m)) and let DW
m be the resam-

pling estimator of Dm based on (W1, ...,Wn), that is DW
m = nC2

W E
W
(

supt∈Bm
(νW

n (t))2
)

,
where v2

W = Var(W1 − W̄n) and C2
W = (v2

W )−1.
Then, for all m in Mn, E(DW

m ) = Dm. Moreover, let em, vm be the quantities defined in
(14). For all x > 0, on an event of probability larger than 1 − 7.8e−x,

DW
m −Dm ≤

√

8emDmx+ em

(

4x

3
+

(40.3x)2

n− 1

)

+
9D

3/4
m (emx

2)1/4 + 7.61
√

v2
mDmx

n− 1
. (21)

DW
m −Dm ≥ −

√

8emDmx− em

(

4x

3
+

(19.1x)2

n− 1

)

−5.31D
3/4
m (emx

2)1/4 + 3
√

v2
mDmx+ 3v2

mx

n− 1
. (22)

9



For all x > 0,

P

(

p(m) − DW
m

n
>

5.31D
3/4
m (emx

2)1/4 + 3
√

v2
mDmx+ 3v2

mx+ em(19.1x)2

n− 1

)

≤ 2e−x

(23)

P

(

DW
m

n
− p(m) ≤ 9D

3/4
m (emx

2)1/4 + 7.61
√

v2
mDmx+ em(40.3x)2

n− 1

)

≤ 3.8e−x. (24)

Remark
The concentration of the resampling estimator involves the same quantities as the concen-
tration of p(m), thus, it can be used to estimate the ideal penalty in the slope heuristic’s
algorithm presented in the previous section without extra assumptions on the collection
Mn. Proposition 2.4 and Theorem 2.3 prove that this resampling penalty leads to an
efficient model selection procedure. However, we do not need to use the slope heuristic in
our framework to obtain an optimal model selection procedure as shown by the following
theorem.

Theorem 2.5 Let X1, ...,Xn be i.i.d random variables with common density s. Let Mn be
a collection of models satisfying Assumption [V]. Let W1, ...,Wn be a resampling scheme,
let W̄n =

∑n
i=1Wi/n, v

2
W = Var(W1 − W̄n) and CW = 2(v2

W )−1. Let s̃ be the penalized
least-squares estimator defined in (5) with

pen(m) = CW E
W

(

sup
t∈Bm

(νW
n (t))2

)

.

Then, there exists a constant C > 0 such that

P

(

‖s− s̃‖2 ≤ (1 + 100ǫn) inf
m∈Mn

‖s− ŝm‖2

)

≥ 1 − Ce−
1

2
(ln n)γ

. (25)

Comments : The main advantage of this results is that the penalty term is always
totally computable. Unlike the penalties derived from the slope heuristic, it does not
depend on an arbitrary choice of a constant Kmin made by the observer, that may be
hard to detect in practice (see the paper of Alot & Massart [5] for an extensive discussion
on this important issue). However, CW is only optimal asymptotically. It is sometimes
useful to overpenalize a little in order to improve the non-asymptotic performances of our
procedures (see Massart [19]) and the slope heuristic can be used to do it in an optimal
way (see our short simulation study in Section 4).

2.5 A remarks on the ”regularization phenomenon”

The regularization of the bootstrap phenomenon (see Arlot [3, 4] and the references
therein) states that the resampling estimator CW E

W (F (νW
n )) of a functional F (νn) con-

centrates around its mean better than F (νn). This phenomenon can be justified with our
previous results for our functional F . Recall that we have proven in Proposition 2.1 that,
for all x > 0, with probability larger than 1 − 3.8e−x/20,

∣

∣

∣

∣

p(m) − Dm

n

∣

∣

∣

∣

≤ 1.8D
3/4
m (emx

2)1/4 + 1.5
√

Dmv2
mx+ 0.2v2

mx+ 4.1emx
2

n
.

In Example HR, we have the following upper bounds

Dm ≤ dm, em ≤ dm

n
, v2

m ≤ c‖s‖
√

dm.
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Thus, there exists a constant C such that, for all x > 0,

P

(

|np(m) −Dm| > Cdm

(

√

x√
n

+

(

x√
n

)2
))

≤ 3.8e−x/20. (26)

On the other hand, it comes from Inequalities (21) and (22), that, for all x > 0, on an
event of probability larger than 1 − 7.8e−x/20,

∣

∣DW
m −Dm

∣

∣ ≤
√

0.4emDmx+ em

(

x

15
+

4.1x2

n− 1

)

+
1.8D

3/4
m (emx

2)1/4 + 1.45
√

v2
mDmx+ 0.2v2

mx

n− 1
.

Thus, there exists a constant C such that, for all x > 0,

P

(

∣

∣DW
m −Dm

∣

∣ > Cdm

(
√

x

n
+
(x

n

)2
))

≤ 7.8e−x/20.

The concentration of DW
m is then much better than the one of np(m). This implies that

DW
m is an estimator of Dm rather than an estimator of np(m). Thus, the resampling

penalty can be used when Dm/n is a good penalty for example, under [V]. When Dm/n
is known to underpenalize (see the examples in Barron, Birgé & Massart [6]), there is no
chance that DW

m /n can work.

3 Rates of convergence for classical examples

The aim of this section is to show that [V] can be derived from a more classical hypothesis
in two classical collections of models: the histograms and Fourier spaces. We derive the
rates ǫn under this new hypothesis.

3.1 Assumption on the risk of the oracle

As mentioned in Section 2.2, Assumption [V] can only hold if there exists γ > 1 such that
Rn(lnn)−γ → ∞ as n→ ∞, where Rn = infm∈Mn Rm. In our example, we will make the
following Assumption that ensures that this condition is always satisfied.

[BR] (Bounds on the Risk) There exist constants Cu > 0, αu > 0, γ > 1, and a sequence
(θn)n∈N with θn → ∞ as n→ ∞ such that, for all n in N

∗, for all m in Mn

θ2
n(lnn)2γ ≤ Rn ≤ Rm ≤ Cun

αu .

Comments: Assumption [BR] holds with θn = Cnα for the collection of regular his-
tograms of example HR, provided that s is an Hölderian, non constant and compactly
supported function (see for example Arlot [3]). It is also a classical result of minimax the-
ory that there exist functions in Sobolev spaces satisfying this kind of Assumption when
Mn is the collection of Fourier spaces that we will introduce below.

We want to check that these collections satisfy Assumption [V], i.e. that there exists
γ > 1 such that

sup
(k,k′)∈(N∗)2

sup
(m,m′)∈Mk

n×Mk′
n











(

v2
m,m′

Rm ∨Rm′

)2

∨ em,m′

Rm ∨Rm′



 l2n,γ(k, k′)







≤ ǫ4n.
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For all m ∈ Mn, Rm ≤ Cun
αu , thus for all k > Cun

αu , Card(Mk
n) = 0. In particular,

we can assume in the previous supremum that k ≤ Cun
αu and k′ ≤ Cun

αu . Hence, there
exists a constant κ > 0 such that ln[(1 + k)(1 + k′)] ≤ κ ln n. We also add the following
assumption that ensures that there exists a constant κ > 0 such that, for all k ∈ N,
ln(1 + Card(Mk

n)) ≤ κ ln n.

[PC] (Polynomial collection) There exist constants cM ≥ 0, αM ≥ 0, such that, for all n
in N,

Card(Mn) ≤ cMnαM .

Under Assumptions [BR] and [PC], there exists a constant κ > 0 such that, for all γ > 1
and n ≥ 3,

sup
(k,k′)∈(N∗)2

sup
(m,m′)∈Mk

n×Mk′
n











(

v2
m,m′

Rm ∨Rm′

)2

∨ em,m′

Rm ∨Rm′



 l2n,γ(k, k′)







≤ sup
(m,m′)∈(Mn)2







(

v2
m,m′

Rm ∨Rm′

)2

∨ em,m′

Rm ∨Rm′







κ(ln n)2γ .

3.2 The histogram case

Let (X,X ) be a measurable space. Let (Pm)m∈Mn be a collection of measurable partitions
Pm = (Iλ)λ∈m of subsets of X such that, for all m ∈ Mn, for all λ ∈ m, 0 < µ(Iλ) < ∞.
Let m in Mn, the set Sm of histograms associated to Pm is the set of functions which
are constant on each Iλ, λ ∈ m. Sm is a linear space. Setting, for all λ ∈ m, ψλ =
(
√

µ(Iλ))−11Iλ
, the functions (ψλ)λ∈m form an orthonormal basis of Sm.

Let us recall that, for all m in Mn,

Dm =
∑

λ∈m

Var(ψλ(X)) =
∑

λ∈m

P (ψ2
λ) − (Pψλ)2 =

∑

λ∈m

P (X ∈ Iλ)

µ(Iλ)
− ‖sm‖2. (27)

Moreover, from Cauchy-Schwarz inequality, for all x in X, for all m, m′ in Mn

sup
t∈Bm,m′

t2(x) ≤
∑

λ∈m∪m′

ψ2
λ(x), thus em,m′ =

1

n
sup

λ∈m∪m′

1

µ(Iλ)
. (28)

Finally, it is easy to check that, for all m ,m′ in Mn

v2
m,m′ = sup

λ∈m∪m′

Var(ψλ(X)) = sup
λ∈m∪m′

P (X ∈ Iλ)(1 − P (X ∈ Iλ))

µ(Iλ)
. (29)

We will consider two particular types of histograms.
Example 1 [Reg] : µ-regular histograms.
For all m in Mn, Pm is a partition of X and there exist a family (dm)m∈Mn bounded by
n and two constants crh, Crh such that, for all m in Mn, for all λ ∈ Mn,

crh

dm
≤ µ(Iλ) ≤ Crh

dm
.

The typical example here is the collection described in Example HR.

Example 2 [Ada]: Adapted histograms.
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There exist positive constants cr, Cah such that, for all m in Mn, for all λ ∈ Mn,
µ(Iλ) ≥ crn

−1 and
P (X ∈ Iλ)

µ(Iλ)
≤ Cah.

[Ada] is typically satisfied when s is bounded on X. Remark that the models satisfying
[Ada] have finite dimension dm ≤ Cn since

1 ≥
∑

λ∈m

P (X ∈ Iλ) ≥ Cah

∑

λ∈m

µ(Iλ) ≥ Cahcrdmn
−1.

The example [Reg].
It comes from equations (27, 28, 29) and Assumption [Reg] that

C−1
rh dm − ‖sm‖2 ≤ Dm ≤ c−1

rh dm − ‖sm‖2.

em,m′ ≤ c−1
rh

dm ∨ dm′

n
, v2

m,m′ ≤ sup
t∈Bm,m′

‖t‖∞ ‖t‖‖s‖ ≤ c
−1/2
rh ‖s‖

√

dm ∨ dm′ .

Thus
em,m′

Rm ∨Rm′

≤ Crhc
−1
rh

(Rm ∨Rm′) + ‖s‖2

n(Rm ∨Rm′)
≤ Cn−1.

If Dm ∨Dm′ ≤ θ2
n(ln n)2γ ,

v2
m,m′

Rm ∨Rm′

≤
√

Crhc
−1
rh

√

(Dm ∨Dm′) + ‖s‖2

Rmo

≤ C

θn(lnn)γ
.

If Dm ∨Dm′ ≥ θ2
n(ln n)2γ ,

v2
m,m′

Rm ∨Rm′

≤
√

Crhc
−1
rh

√

(Dm ∨Dm′) + ‖s‖2

Dm ∨Dm′

≤ C

θn(lnn)γ
.

There exists κ > 0 such that θ2
n(ln n)2γ ≤ κn since for all m in Mn, Rm ≤ n‖s − sm‖2 +

c−1
rh dm ≤ (‖s‖2 + c−1

rh )n. Hence Assumption [V] holds with γ given in Assumption [BR]

and ǫn = Cθ
−1/2
n .

The example [Ada].
It comes from inequalities (28), (29) and Assumption [Ada] that, for all m and m′ in Mn

em,m′ ≤ c−1
r and v2

m,m′ ≤ Cah.

Thus, there exists a constant κ > 0 such that, for all m an m′ in Mn,

sup
(m,m′)∈(Mn)2







(

v2
m,m′

Rm ∨Rm′

)2

∨ em,m′

Rm ∨Rm′







≤ κ

θ2
n(lnn)2γ

.

Therefore Assumption [V] holds also with γ given in Assumption [BR] and ǫn = κθ
−1/2
n .
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3.3 Fourier spaces

In this section, we assume that s is supported in [0, 1]. We introduce the classical Fourier
basis. Let ψ0 : [0, 1] → R, x 7→ 1 and, for all k ∈ N

∗, we define the functions

ψ1,k : [0, 1] → R, x 7→
√

2 cos(2πkx), ψ2,k : [0, 1] → R, x 7→
√

2 sin(2πkx).

For all j in N
∗, let

mj = {0} ∪ {(i, k), i = 1, 2, k = 1, ..., j} and Mn = {mj, j = 1, ..., n}.
For all m in Mn, let Sm be the space spanned by the family (ψλ)λ∈m. (ψλ)λ∈m is an
orthonormal basis of Sm and for all j in 1, ..., n, dmj

= 2j + 1.
Let j in 1, ...n, for all x in [0, 1],

∑

λ∈mj

ψ2
λ(x) = 1 + 2

j
∑

k=1

cos2(2πkx) + sin2(2πkx) = 1 + 2j = dmj
.

Hence, for all m in Mn,

Dm = P





∑

λ∈mj

ψ2
λ



− ‖sm‖2 = dm − ‖sm‖2. (30)

It is also clear that, for all m, m′ in Mn,

em,m′ =
dm ∨ dm′

n
, v2

m,m′ ≤ ‖s‖
√

dm ∨ dm′ . (31)

The collection of Fourier spaces of dimension dm ≤ n satisfies Assumption [PC], and the
quantities Dm em,m′ and v2

m,m′ satisfy the same inequalities as in the collection [Reg],
therefore, [V] comes also in this collection from [BR]. We have obtained the following
corollary of Theorem 2.5.

Corollary 3.1 Let Mn be either a collection of histograms satisfying Assumptions [PC]-
[Reg] or [PC]-[Ada] or the collection of Fourier spaces of dimension dm ≤ n. Assume
that s satisfies Assumption [BR] for some γ > 1 and θn → ∞. Then, there exist constants
κ > 0 and C > 0 such that the estimator s̃ selected by a resampling penalty satisfies

P

(

‖s− s̃‖2 ≤ (1 + κθ−1/2
n ) inf

m∈Mn

‖s− ŝm‖2

)

≥ 1 − Ce−
1

2
(ln n)γ

.

Comment: Assumption [BR] is hard to check in practice. We mentioned that it holds
in Example HR provided that s is Hölderian, non constant and compactly supported (see
Arlot [4]). It is also classical to build functions satisfying [BR] with the Fourier spaces in
order to prove that the oracle reaches the minimax rate of convergence over some Sobolev
balls, see for example Birgé & Massart [8], Barron, Birgé & Massart [6] or Massart [19].
In these cases, there exist c > 0, α > 0 such that θn ≥ cnα. In more general situations,
we can use the same trick as Arlot [4] and use our main theorem only for the models
with dimension dm ≥ (ln n)4+2γ , they satisfy [BR] with θn = (lnn)2, at least when n is
sufficiently large, because

‖s‖2 +Rm ≥ ‖s‖2 +Dm ≥ cdm ≥ c(ln n)4(ln n)2γ .

With our concentration inequalities, we can control easily the risk of the models with
dimension dm ≤ (ln n)4+2γ by κ(ln n)3+5γ/2 with probability larger than 1 − Ce−

1

2
(ln n)γ

and we can then deduce the following corollary.
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Corollary 3.2 Let Mn be either a collection of histograms satisfying Assumptions [PC]-
[Reg] or [PC]-[Ada] or the collection of Fourier spaces of dimension dm ≤ n. There
exist constants κ > 0, η > 3 + 5γ/2 and C > 0 such that the estimator s̃ selected by a
resampling penalty satisfies

P

(

‖s− s̃‖2 ≤ (1 + κ(ln n)−1)

(

inf
m∈Mn

‖s − ŝm‖2 +
(lnn)η

n

))

≥ 1 −Ce−
1

2
(ln n)γ

.

4 Simulation study

We propose in this section to show the practical performances of the slope algorithm and
the resampling penalties on two examples. We estimate the density

s(x) =
3

4
x−1/41[0,1](x)

and we compare the three following methods.

1. The first one is the slope heuristic applied with the linear dimension dm of the
models. We observe two main behaviors of dm̂(K) with respect to K. Most of the
times, we only observe one jump, as in Figure 1, and we find Kmin easily.

Figure 1: Classical behavior of K 7→ dm̂(K)

We also observe more difficult situations as the one of Figure 2 below, where we
can see several jumps. In these cases, as prescribed in the regression framework by
Arlot & Massart [5], we choose the constant Kmin realizing the maximal jump of
dm̂(K). Arlot & Massart [5] also proposed to select Kmin as the minimal K such
that dm̂(K) ≤ dm∗(lnn)−1, but they obtained worse performances of the selected
estimator in their simulations.
We justify this method only for collection of models where dm ≃ KDm for some
constant K. We will see that it gives really good performances when this condition
is satisfied.

2. The second method is the resampling based penalization algorithm of Theorem 2.5.
Note here that all the resampling penalties DW

m /n can be easily computed, without
any Monte Carlo approximations. Actually, for all resampling scheme,

DW
m

n
=

1

n

∑

λ∈m



Pnψ
2
λ − 1

n(n− 1)

n
∑

i6=j=1

ψλ(Xi)ψλ(Xj)



 .
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Resampling penalties give always good approximations of Dm. However, in non
asymptotic situations, it may be usefull to overpenalize a little bit in order to improve
the leading constants in the oracle inequality (in Theorem 2.3, imagine that 46ǫn is
very close to 1).

3. In a third method, we propose therefore to use the slope algorithm applied with a
complexity DW

m . By this way, we hope to overpenalize a little bit the resampling
penalty when it is necessary.

4.1 Example 1: regular case

In the first example, we consider the collection of regular histograms described in example
HR and we observe n = 100 data. In this example, we saw that DW

m ≃ Dm ≃ dm. We can
actually verify in Figure 2 that these quantities almost coincide for the selected model.
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Figure 2: Comparison of dm and DW
m on the selected model

We compute N = 1000 times the oracle constant c = ‖s − s̃‖2/(infm∈Mn ‖s − ŝm‖2) for
the 3 methods. We put in the following array the mean, the median and the 0.95-quantile,
q0.95 of these quantities.

method mean of the N constants c median q0.95

slope + dm 3.56 2.30 10.07

resampling 4.43 2.52 15.47

resampling + slope 3.57 2.21 10.86

We observe that the slope algorithm allows to improve the resampling penalty in practice.
This may be due to a little overpenalization even if it is not a straightforward consequence
of our theoretical results. Note that, as dm ≃ DW

m , the slope algorithm leads to the same
results when applied with dm or with DW

m . Although we have an explicite formula to
compute the resampling penalties, the computation time is much longer if we use DW

m .
Therefore, we clearly recommand to use the slope algorithm with dm for regular collections
of model, as regular histograms or Fourier spaces described in Section 3.3.

4.2 Example 2: a more complicated collection

In the next example, we want to show that the linear dimension shall not be used in
general. Let us consider a slightly more complicated collection. Let k, J1, J2, n be four
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non null integers satisfying k ≤ n, J1 ≤ k, J2 ≤ n− k. We denote by Sk,J1,J2,n the linear
space of histograms on the following partition.

{[

l
k

J1n
, (l + 1)

k

J1n

[

, l = 0, ..., J1 − 1

}

∪
{[

k

n
+ l

1 − k/n

J2
,
k

n
+ (l + 1)

1 − k/n

J2

[

, l = 0, ...J2 − 1

}

.

Let n ∈ N
∗ and let Mn = {(k, J1, J2) ∈ (N∗)3; k ≤ n, J1 ≤ k, J2 ≤ n − k}. It is clear

that Card(Mn) ≤ n3. The oracle of this collection is better than the previous one since
the regular histograms belongs to (Sm,n)m∈Mn . It is easy to check that the dimension of
Sk,J1,J2,n is equal to J1 + J2 and that Dk,J1,J2,n is equal to (nJ1/k)F (k/n) + (nJ2/(n −
k))(1−F (k/n))−‖sk,J1 ,J2,n‖2/n, where F is the distribution function of the observations.
Hence, there is no constant Ko such that Kodk,J1,J2,n ≃ Dk,J1,J2,n as in the previous
example. Figure 3 let us see this fact on the selected model.
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Figure 3: Comparison of dm and DW
m on the selected model

We also compute N = 1000 times the oracle constant c = ‖s − s̃‖2/(infm∈Mn ‖s − ŝm‖2)
for the 3 methods, taking n = 100 observations each time. The results are summarized in
following array.

method mean of the N constants c median q0.95

slope + dm 8.30 7.01 19.73

resampling 6.11 5.08 13.52

resampling + slope 5.33 4.04 12.92

The slope heuristic gives bad results when applied with dm. This is due to the fact that
dm is not proportional to Dm here. The resampling based penalty 2DW

m /n is much better
and, as in the regular case, it is well improved by the slope algorithm. Therefore, for
general collections of models where we do not know an optimal shape of the ideal penalty,
we recommand to apply the slope algorithm with a complexity equal to DW

m .
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5 Proofs

5.1 Proof of Proposition 2.1

It is a straightforward application of Corollary 6.6 in the appendix.

5.2 Technical lemmas

Before giving the proofs of the main theorems, we state and prove some important technical
lemmas that we will use repeatedly all along the proofs. Let us recall here the main
notations. For all m, m′ in Mn,

p(m) = ‖sm − ŝm‖2, Dm = nE(p(m)) = nE
(

‖ŝm − sm‖2
)

Rm = nE
(

‖s− ŝm‖2
)

= n‖s− sm‖2 +Dm, δ(m,m
′) = νn(sm − sm′).

For all n ∈ N
∗, k > 0, k′ > 0, γ > 0,, let [k] be the integer part of k and let

ln,γ(k, k′) = ln((1 + Card(M[k]
n ))(1 + Card(M[k′]

n ))) + ln((1 + k)(1 + k′)) + (lnn)γ .

Recall that Assumption [V] implies that, for all m,m′ in Mn,

v2
m,m′ ln,γ(Rm, Rm′) ≤ ǫ2n(Rm ∨Rm′),

em,m′(ln,γ(Rm, Rm′))2 ≤ ǫ4n(Rm ∨Rm′). (32)

Let us prove a simple result

Lemma 5.1 For all K > 1,

Σ(K) =
∑

k∈N

∑

m∈Mk
n

e−K[ln(1+Card(Mk
n))+ln(1+k)] <∞. (33)

For all m in Mn, let lm = ln,γ(Rm, Rm), then, for all K > 1/
√

2,

∑

m∈Mn

e−K2lm = Σ(2K2)e−K2(ln n)γ

. (34)

For all m, m′ in Mn, let lm,m′ = ln,γ(Rm, Rm′), then, for all K > 1,

∑

(m,m′)∈(Mn)2

e−K2lm,m′ = (Σ(K2))2e−K2(ln n)γ

. (35)

Proof :

Inequality (33) comes from the fact that, when K > 1,

∀k ∈ N,
∑

m∈Mk
n

e−K[ln(1+Card(Mk
n))] ≤ 1, and

∑

k∈N∗

e−K ln k <∞.

For all integer k such that Mk
n 6= ∅, for all m in Mk

n, lm ≥ 2[ln(1 + Card(Mk
n)) + ln(1 +

k)] + (lnn)γ , thus, for all K > 1/
√

2, it comes from (33) that

∑

m∈Mn

e−K2lm ≤ e−K2(ln n)γ
∑

k∈N

∑

m∈Mk
n

e−2K2[ln(1+Card(Mk
n))+ln(1+k)] ≤ Σ(2K2)e−K2(ln n)γ

.
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Finally, for all integers (k, k′) such that Mk
n ×Mk′

n 6= ∅,

lm,m′ ≥ ln(1 + Card(Mk
n)) + ln(1 + k) + ln(1 + Card(Mk′

n )) + ln(1 + k′) + (ln n)γ .

Thus, from (33),

∑

(m,m′)∈(M2
n)

e−K2lm,m′ =





∑

k∈N

∑

m∈Mk
n

e−K2[ln(1+Card(Mk
n))+ln(1+k)]





2

e−K2(ln n)γ

.

Lemma 5.2 Let Mn be a collection of models satisfying Assumption [V]. We consider
the following events.

Ωδ =

{

∀(m,m′) ∈ M2
n, δ(m,m

′) ≤ 6ǫn
Rm ∨Rm′

n

}

Ωp =
⋂

m∈Mn

{{

p(m) − Dm

n
≤ 10ǫn

Rm

n

}

∩
{

p(m) − Dm

n
≥ −20ǫn

Rm

n

}}

and ΩT = Ωδ ∩ Ωp. Then there exists a constant C > 0 such that

P(Ωc
δ) ≤ Ce−(ln n)γ

, P(Ωc
p) ≤ Ce−

1

2
(ln n)γ

, P(Ωc
T ) ≤ Ce−

1

2
(ln n)γ

.

Proof :

Let K > 1 be a constant to be chosen later. We apply Lemma 6.8 in the appendix to
u = sm − sm′ , S = Sm + Sm′ , L = id, x = K2ln,γ(Rm, Rm′). For all η > 0, for all m,m′ in

Mn, on an event of probability larger than 1 − e−K2ln,γ(Rm,Rm′ ),

δ(m,m′) ≤ η

2
‖sm − sm′‖2 +

2v2
m,m′K2ln,γ(Rm, Rm′) + em,m′(K2ln,γ(Rm, Rm′))2/9

ηn
. (36)

From [V], for all m, m′ in Mn,

2v2
m,m′K2ln,γ(Rm, Rm′)) +

em,m′(K2ln,γ(Rm, Rm′))2

9
≤
(

2(Kǫn)2 +
(Kǫn)4

9

)

Rm ∨Rm′

n
.

Moreover, for all m,m′ in Mn,

‖sm − sm′‖2 ≤ 2(‖s − sm‖2 + ‖s − sm′‖2) ≤ 2(Rm +Rm′) ≤ 4(Rm ∨Rm′).

Let en(K) =
√

(Kǫn)2 + (Kǫn)4/18. In (36) we take η = en(K) and we obtain

P

(

δ(m,m′) > 4en(K)
Rm ∨Rm′

n

)

≤ e−Kln,γ(Rm,Rm′). (37)

From (35), for all K > 1,

P

(

∀(m,m′) ∈ M2
n, δ(m,m

′) > 4en(K)
Rm ∨Rm′

n

)

≤ (Σ(K))2e−K(lnn)2 .

Let K = 1.1 and take n sufficiently large so that K4ǫ2n/18 ≤ 1, then 4en(K) ≤ 6ǫn. Hence,
the first conclusion of Lemma 5.2 holds for sufficiently large n, it holds in general, provided
that we increase the constant C if necessary.
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We apply Assumption [V] (see (32)) with m = m′, let lm = ln,γ(Rm, Rm), for all K > 0,
for all n such that 4.06(Kǫn)3 ≤ 2,

D
3/4
m (em(K2lm)2)1/4 + 0.7

√

Dmv2
mK

2lm + 0.15v2
mK

2lm + em(K2lm)2

n

≤ (1.7Kǫn + 0.15(Kǫn)2 + (Kǫn)4)
Rm

n
≤ 3Kǫn

Rm

n
.

1.8D
3/4
m (em(K2lm)2)1/4 + 1.71

√

Dmv2
m(K2lm) + 4.06em(K2lm)2

n

≤ (3.51Kǫn + 4.06(Kǫn)4)
Rm

n
≤ 6Kǫn

Rm

n
.

It comes then from Proposition 2.1 applied with x = K2lm that, for all m in Mn

P

(

p(m) − Dm

n
> 3Kǫn

Rm

n

)

≤ e−
K2

20
lm .

Thus, from (34), for all K >
√

10, and for all n sufficiently large,

P

(

∀m ∈ Mn, p(m) − Dm

n
> 3Kǫn

Rm

n

)

≤ Σ(K2/10)e−
K2

20
(ln n)γ

.

We use the same arguments to prove that

P

(

∀m ∈ Mn, p(m) − Dm

n
< 6Kǫn

Rm

n

)

≤ Σ(K2/10)e−
K2

20
(ln n)γ

.

Fixe K =
√

10.5, then for all n sufficiently large , the conclusion of Lemma 5.2 holds. It
holds in general provided that we increase the constant C if necessary.

Lemma 5.3 Let (ψλ)λ∈Λ be an orthonormal system in L2(µ) and let L be a linear func-
tional defined on L2(µ). Let p(Λ) =

∑

λ∈Λ(νn(L(ψλ)))2. Let (W1, ...,Wn) be a resampling
scheme, let W̄n =

∑n
i=1Wi/n and let v2

W = Var(W1 − W̄n). Let

DW
Λ = n(v2

W )−1
∑

λ∈Λ

E
W
(

(νW
n (L(ψλ)))2

)

,

T =
∑

λ∈Λ(L(ψλ) − PL(ψλ))2, D = PT and

U =
1

n(n− 1)

n
∑

i6=j=1

∑

λ∈Λ

(L(ψλ)(Xi) − PL(ψλ))(L(ψλ)(Xj) − PL(ψλ)).

then

p(Λ) =
1

n
PnT +

n− 1

n
U, DW

Λ = PnT − U, p(Λ) − DW
Λ

n
= U,

E(DW
Λ ) = D, DW

Λ −D = νnT − U.
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Proof :

It is easy to check that

p(Λ) =
∑

λ∈Λ

(
1

n

n
∑

i=1

L(ψλ)(Xi) − PL(ψλ))2 =
1

n2

n
∑

i=1

(L(ψλ)(Xi) − PL(ψλ))2

+
1

n2

n
∑

i6=j=1

∑

λ∈Λ

(L(ψλ)(Xi) − PL(ψλ))(L(ψλ)(Xj) − PL(ψλ))

=
1

n
PnT +

n− 1

n
U.

Recall that νW
n = PW

n − W̄nPn. For all λ in Λ, since
∑n

i=1(Wi − W̄n) = 0,

νW
n (L(ψλ)) =

1

n

n
∑

i=1

(Wi − W̄n)L(ψλ)(Xi)

=
1

n

n
∑

i=1

(Wi − W̄n)(L(ψλ)(Xi) − PL(ψλ)).

Thus, if Ei,j = E
(

(Wi − W̄n)(Wj − W̄n)
)

/v2
W ,

DW
Λ = n(v2

W )−1
∑

λ∈Λ

E
W





(

1

n

n
∑

i=1

(Wi − W̄n)(L(ψλ)(Xi) − PL(ψλ))

)2




=
1

n

n
∑

i=1

E
(

(Wi − W̄n)2
)

v2
W

(L(ψλ)(Xi) − PL(ψλ))2 +

1

n

n
∑

i6=j=1

∑

λ∈Λ

Ei,j(L(ψλ)(Xi) − PL(ψλ))(L(ψλ)(Xj) − PL(ψλ)).

Since the weights are exchangeable, for all i = 1, .., n, E((Wi−W̄n)2) = Var(W1−W̄n) = v2
W

and for all i 6= j = 1, ..., n,

v2
WEi,j = E

(

(Wi − W̄n)(Wj − W̄n)
)

= E
(

(W1 − W̄n)(W2 − W̄n)
)

.

Moreover, since
∑n

i=1(Wi − W̄n) = 0,

0 = E





(

n
∑

i=1

(Wi − W̄n)

)2


 =

n
∑

i=1

E
(

(Wi − W̄n)2
)

+

n
∑

i6=j=1

v2
WEi,j

= nE((W1 − W̄n)2) + n(n− 1)E
(

(W1 − W̄n)(W2 − W̄n)
)

.

Hence, for all i 6= j = 1, ..., n, Ei,j = −1/(n− 1), thus

DW
Λ = PnT − U.

The last inequalities of Lemma 5.3 follow from the fact that E(U) = 0. Finally,

p(Λ) − DW
Λ

n
=

1

n
PnT +

n− 1

n
U −

(

1

n
PnT − 1

n
U

)

= U.
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Lemma 5.4 Let

Ωu =
⋂

m∈Mn

{

DW
m

n
− p(m) ≤ 10ǫn

Rm

n

}

Ωl =
⋂

m∈Mn

{

DW
m

n
− p(m) ≥ −12ǫn

Rm

n

}

and Ω̃p = Ωu ∩ Ωl. There exists a constant C > 0 such that P(Ω̃c
p) ≤ Ce−

1

2
(ln n)γ

.

Proof :

From Assumption [V] applied with m = m′, (see (32)), if lm = ln,γ(Rm, Rm), for all
K > 0,

D3/4
m (em(K2lm)2)1/4 ≤ KǫnRm,

√

v2
mDm(K2lm) ≤ KǫnRm,

v2
m(K2lm) ≤ (Kǫn)2Rm, em(Klm)2 ≤ (Kǫn)4Rm.

We apply Proposition 2.4 with x = K2lm and we obtain

P

(

DW
m

n
− p(m) >

(

8.31Kǫn + 3(Kǫn)2 + (19.1)2(Kǫn)4
) Rm

n− 1

)

≤ 2e−K2lm.

Thus, for all K > 1/(
√

2), if en(K) = n
(

8.31Kǫn + 3(Kǫn)2 + (19.1)2(Kǫn)4
)

/(n − 1),
from (34)

P

(

∀m ∈ Mn,
DW

m

n
− p(m) > en(K)

Rm

n

)

≤ 2Σ(2K2)e−K2(ln n)γ

.

Take K = 8/8.31 and n ≥ 10 sufficiently large to ensure that 3K2ǫn + (19.1)2K4ǫ3n ≤ 1,
then

en(K) ≤ 10

9
(8ǫn + ǫn) ≤ 10ǫn.

We deduce that, for sufficiently large n,

P(Ωc
u) ≤ 2Σ(2K2)e−K2(ln n)γ

.

We also apply Proposition 2.4 with x = K2lm, and we use the same arguments to prove
that, for K = 16/16.61, for all n ≥ 10 sufficiently large to ensure that (40.3)2K4ǫ3n ≤ 2

P

(

∀m ∈ Mn,
DW

m

n
− p(m) < −20ǫn

Rm

n

)

≤ 3.8Σ(2K2)e−K2(ln n)γ

.

Hence, the conclusion of Lemma 5.4 holds for sufficiently large n. It holds in general,
provided that we increase the constant C if necessary.

5.3 Proof of Theorem 2.2

If cn < 0, there is nothing to prove. We can then assume that cn ≥ 0, this implies in
particular that

28ǫn ≤ δn < 1.

We use the notations of Lemma 5.2. From Lemma 5.2, the inequalities (19) will be proved
if, on ΩT , Dm̂ ≥ cnDm∗ and

‖s− s̃‖2 ≥ cn
5ho

n

inf
m∈Mn

‖s − ŝm‖2.
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Let mo ∈ arg minm∈Mn Rm, m̂ minimizes over Mn the following criterion.

Crit(m) = PnQ(ŝm) + pen(m) + ‖s‖2 + 2νn(smo)

= ‖s− sm‖2 − p(m) + δ(mo,m) + pen(m).

Recall that 0 ≤ pen(m) ≤ (1 − δn)Dm/n. On ΩT , for all m in Mn, since Rm ≥ Rmo ,

Crit(m) ≥ ‖s− sm‖2 − Dm

n
− 16ǫn

Rm

n
≥ −(1 + 16ǫn)

Dm

n
.

Crit(m) ≤ ‖s− sm‖2 + 26ǫn
Rm

n
− δn

Dm

n
= (1 + 26ǫn)‖s − sm‖2 − (δn − 26ǫn)

Dm

n
.

When Dm ≤ cnDm∗ ,

(1 + 16ǫn)Dm ≤ Dm∗

(

(δn − 26ǫn) − (1 + 26ǫn)
n‖s − sm∗‖2

Dm∗

)

.

Thus Crit(m) ≥ Crit(m∗). This implies that Dm̂ ≥ cnDm∗ .
Moreover, on ΩT , we also have, for all m in Mn

‖s− s̃‖2 =
Rm̂

n
+

(

p(m̂) − Dm̂

n

)

≥ (1 − 20ǫn)
Rm̂

n
,

and

inf
m∈Mn

‖s− ŝm‖2 ≤ inf
m∈Mn

Rm

n
(1 + 10ǫn) ≤ Rmo

n
(1 + 10ǫn).

Thus

‖s− s̃‖2 ≥ (1 − 20ǫn)
Rm̂

n
≥ (1 − 20ǫn)

Dm̂

n
≥ (1 − 20ǫn)cn

Dm∗

n

≥ cn
1 − 20ǫn
ho

n

Rmo

n
≥ cn
ho

n

1 − 20ǫn
1 + 10ǫn

inf
m∈Mn

‖s− ŝm‖2.

We conclude the proof, saying that ǫn ≤ 1/28 implies that (1−20ǫn)(1+10ǫn)−1 ≥ 8/38 ≥
1/5.

5.4 Proof of Theorem 2.3

If δ− − 46ǫn < −1, there is nothing to prove, hence, we can assume in the following that
δ− − 46ǫn > −1.
We keep the notation ΩT introduced in Lemma 5.2. Let

Ωpen =
⋂

m∈Mn

{

2Dm

n
+ δ−

Rm

n
≤ pen(m) ≤ 2Dm

n
+ δ+

Rm

n

}

,

Ω = ΩT ∩ Ωpen and mo ∈ arg minm∈Mn Rm. Recall that P(Ωpen) ≥ 1 − p′ and that, m̂
minimizes over m the following criterion.

Crit(m) = PnQ(ŝm) + pen(m) + ‖s‖2 + 2νn(smo)

= ‖s− sm‖2 − p(m) + δ(mo,m) + pen(m).
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Therefore, on Ω, for all m in Mn, since Rm ≥ Rmo ,

Crit(m) ≥ (1 + δ−)
Rm

n
+

(

Dm

n
− p(m)

)

− 6ǫn
Rm

n

≥ (1 + δ− − 16ǫn)‖s− sm‖2 + (1 + δ− − 16ǫn)
Dm

n
≥ (1 + δ− − 16ǫn)

Dm

n

Crit(m) ≤ (1 + δ+ + 26ǫn)
Rm

n
.

If Dm > Cn(δ−, δ
+)Rmo ,

(1 + δ− − 16ǫn)Dm > (1 + δ+ + 26ǫn)Rmo ,

Thus Crit(m) > Crit(mo), hence Dm̂ ≤ Cn(δ−, δ
+)Rmo .

Moreover, from (6), for all m in Mn

‖s− s̃‖2 ≤ ‖s − ŝm‖2 + (pen(m) − 2p(m)) + (2p(m̂) − pen(m̂)) + δ(m̂,m)

≤ ‖s − ŝm‖2 + 2

(

Dm

n
− p(m)

)

+ (δ+ + 6ǫn)
Rm

n

+2

(

p(m̂) − Dm̂

n

)

+ (−δ− + 6ǫn)
Rm̂

n

≤ ‖s − ŝm‖2 + (46ǫn + δ+)
Rm

n
+ (26ǫn − δ−)

Rm̂

n
.

For all m in Mn, on ΩT ,

‖s − ŝm‖2 =
Rm

n
+

(

p(m) − Dm

n

)

≥ (1 − 20ǫn)
Rm

n
.

Hence, for all m ∈ Mn,

‖s − s̃‖2 ≤ ‖s − ŝm‖2

(

1 +
46ǫn + δ+

1 − 20ǫn

)

+
26ǫn − δ−
1 − 20ǫn

‖s − s̃‖2.

This concludes the proof of Proposition 2.3.

5.5 Proof of Proposition 2.4

We apply Lemma 5.3 with L = id and Λ = m. By definition of p(m) and DW
m ,

p(m) − DW
m

n
=

1

n(n− 1)

n
∑

i6=j=1

∑

λ∈m

(ψλ(Xi) − Pψλ)(ψλ(Xj) − Pψλ).

Thus, from Lemma 6.7 in the appendix, for all x > 0,

P

(

p(m) − DW
m

n
>

5.31D
3/4
m (emx

2)1/4 + 3
√

v2
mDmx+ 3v2

mx+ em(19.1x)2

n− 1

)

≤ 2e−x.

P

(

DW
m

n
− p(m) >

9D
3/4
m (emx

2)1/4 + 7.61
√

v2
mDmx+ em(40.3x)2

n− 1

)

≤ 3.8e−x.
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This proves (23) and (24).
In order to obtain (21) and (22), we introduce, for all m in Mn, the function Tm =
∑

λ∈m(ψλ − Pψλ)2 and the random variable

Um =
1

n(n− 1)

n
∑

i6=j=1

∑

λ∈m

(ψλ(Xi) − Pψλ)(ψλ(Xj) − Pψλ).

We apply Lemma 5.3 with L = id, we obtain

DW
m −Dm = νn(Tm) − Um.

From Bernstein’s inequality (see Proposition 6.3), for all x > 0 and all ξ in {−1, 1},

P

(

ξνn(Tm) >

√

2Var(Tm(X))x

n
+

‖Tm‖∞ x

3n

)

≤ e−x.

From Cauchy-Schwarz inequality, Tm = supt∈Bm
(t − Pt)2, thus ‖Tm‖∞ /n = 4em and

Var(Tm(X))/n ≤ ‖Tm‖∞ PTm/n = 4emDm, therefore, for all x > 0 and all ξ in {−1, 1},

P

(

ξνn(Tm) >
√

8emDmx+
4emx

3

)

≤ e−x.

Moreover, from Lemma 6.7 in the appendix, for all x > 0,

P

(

Um >
5.31D

3/4
m (emx

2)1/4 + 3
√

v2
mDmx+ 3v2

mx+ em(19.1x)2

n− 1

)

≤ 2e−x.

P

(

Um < −9D
3/4
m (emx

2)1/4 + 7.61
√

v2
mDmx+ em(40.3x)2

n− 1

)

≤ 3.8e−x.

We deduce that, for all x > 0, with probability larger than 1 − 4.8e−x,

DW
m −Dm ≤

√

8emDmx+ em

(

4x

3
+

(40.3x)2

n− 1

)

+
9D

3/4
m (emx

2)1/4 + 7.61
√

v2
mDmx

n− 1
.

Moreover, for all x > 0, on an event of probability larger than 1 − 3e−x,

DW
m −Dm ≥ −

√

8emDmx− em

(

4x

3
+

(19.1x)2

n− 1

)

−5.31D
3/4
m (emx

2)1/4 + 3
√

v2
mDmx+ 3v2

mx

n− 1
.

5.6 Proof of Theorem 2.5

Recall that P (Ωc
T ) ≤ Ce−

1

2
(ln n)γ

, and that, on ΩT ,

∀m ∈ Mn, (1 − 20ǫn)
Rm

n
≤ ‖s − ŝm‖2,

∀m,m′ ∈ M2
n, δ(m,m

′) ≤ 6ǫn
Rm ∨Rm′

n
.

25



Let Ω̃p be the event defined in Lemma 5.4 and let Ω = Ω̃p ∩ ΩT , from Lemma 5.2,

P (Ωc) ≤ Ce−
1

2
(ln n)γ

. Recall that pen(m) = 2DW
m /n. On Ω, from (6), for all n such that

20ǫn < 1, for all m in Mn,

‖s− s̃‖2 ≤ ‖s − ŝm‖2 + 26ǫn
Rm

n
+ 16ǫn

Rm̂

n

≤ ‖s − ŝm‖2 +
26ǫn

1 − 20ǫn
‖s− ŝm‖2 +

16ǫn
1 − 20ǫn

‖s− s̃‖2.

Hence, for all n such that 20ǫn < 1, on Ω,

(1 − 36ǫn)‖s − s̃‖2 ≤ (1 + 6ǫn) inf
m∈Mn

‖s − ŝm‖2.

For all n such that 42/(1 − 36ǫn) < 100,

‖s− s̃‖2 ≤
(

1 +
42ǫn

1 − 36ǫn

)

inf
m∈Mn

‖s− ŝm‖2 ≤ (1 + 100ǫn) inf
m∈Mn

‖s− ŝm‖2.

Hence (25) holds for sufficiently large n, it holds in general provided that we enlarge the
constant C if necessary..

6 Appendix

In this Section, we state and prove some technical lemmas that are useful in the proofs.
The main tool is the first Lemma based on Bousquet’s version of Talagrand’s inequality.
It is a concentration inequality for the square of the supremum of the empirical process
over a uniformly bounded class of functions. Recall first Bousquet’s [10] and Klein & Rio
[17] versions of Talagrand’s inequality.

Theorem 6.1 (Bousquet’s bound) Let X1, ...,Xn be i.i.d. random variables valued in a
measurable space (X,X ) and let S be a class of real valued functions bounded by b. Let
v2 = supt∈S Var(t(X)) and let Z = supt∈S νnt. Then

∀x > 0, P

(

Z > E(Z) +

√

2

n
(v2 + 2bE(Z))x+

bx

3n

)

≤ e−x.

Theorem 6.2 (Klein & Rio’s bound) Let X1, ...,Xn be i.i.d. random variables valued in
a measurable space (X,X ) and let S be a class of real valued functions bounded by b. Let
v2 = supt∈S Var(t(X)) and let Z = supt∈S νnt. Then

∀x > 0, P

(

Z < E(Z) −
√

2

n
(v2 + 2bE(Z))x− 8bx

3n

)

≤ e−x.

Let us now also recall Bernstein’s inequality.

Proposition 6.3 Bernstein’s inequality
Let X1, ...,Xn be iid random variables valued in a measurable space (X,X ) and let t be a
measurable real valued function. Then, for all x > 0,

P

(

νn(t) >

√

2Var(t(X1))x

n
+

‖t‖∞ x

3n

)

≤ e−x.
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We derive from these bounds the following useful corollary. Hereafter, S denotes a symetric
class of real valued functions upper bounded by b, v2 = supt∈S Var(t(X)), Z = supt∈S νnt,
nE(Z2) = D. Since S is symetric, we always have Z ≥ 0.

Corollary 6.4 Let S be a symetric class of real valued functions upper bounded by b,
v2 = supt∈S Var(t(X)), Z = supt∈S νnt, nE(Z2) = D, eb = b2/n and

nEm = 225eb +
(

2.1 +
√

2π
)√

v2D +
√

15D3/4e
1/4
b ,

then
E(Z21Z≥E(Z)) ≤ (E(Z))2P (Z ≥ E(Z)) + Em. (38)

In particular,
(E(Z))2 ≤ E(Z2) ≤ (E(Z))2 + Em. (39)

Proof :

We have

E(Z21Z≥E(Z)) =

∫ ∞

0
P(Z21Z≥E(Z) > x)dx =

∫ ∞

0
P(Z1Z≥E(Z) >

√
x)dx

= (E(Z))2P (Z ≥ E(Z)) +

∫ ∞

(E(Z))2
P(Z >

√
x)dx

Take x = (E(Z) +
√

2(v2 + 2bE(Z))y/n + by/(3n))2 in the previous integral, from Bous-
quet’s version of Talagrand’s inequality,

E(Z21Z≥E(Z)) ≤ E(Z)

√

2

n
(v2 + 2bE(Z))

∫ ∞

0

e−y

√
y
dy +

2v2 + 14bE(Z)/3

n

∫ ∞

0
e−ydy

+
b

n

√

2

n
(v2 + 2bE(Z))

∫ ∞

0
e−y√ydy +

2b2

9n2

∫ ∞

0
ye−ydy.

Classical computations lead to
∫ ∞

0

e−y

√
y
dy = 2

∫ ∞

0
e−y√ydy =

√
π,

∫ ∞

0
e−ydy =

∫ ∞

0
ye−ydy = 1.

Therefore, if eb = b2/n, using repeatedly the inequalities

aαb1−α ≤ αa+ (1 − α)b (40)

and
√
a+ b ≤ √

a+
√
b, we obtain, for all η > 0,

√
nebE(Z) ≤ eb

3η2
+

2η

3
e
1/4
b (

√
nE(Z))3/2,

(
√
nE(Z))1/2e

3/4
b ≤ η

3
e
1/4
b (

√
nE(Z))3/2 +

2eb
3
√
η
.

Thus

E(Z21Z≥E(Z)) ≤
(

2v2 +
2

9
eb + v

√
2πeb
2

)

1

n
+
√
π

√√
nE(Z) (eb)

3/4

n

+

(

14

3

√
eb + v

√
2π

) √
nE(Z)

n
+ 2

√
π

(
√
nE(Z))3/2 (eb)

1/4

n

≤
(

2 + η

√
2π

4

)

v2

n
+

√

2π

n
vE(Z) +

(

2

9
+

√
2π

4η
+

2
√
π

3
√
η

+
14

9η2

)

eb
n

+

(

η

(√
π

3
+

28

9

)

+ 2
√
π

)

(
√
nE(Z))3/2 (eb)

1/4

n
.
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Therefore, taking η = 0.088, we obtain

E(Z21Z≥E(Z)) ≤ 2.1
v2

n
+ 152 eb

n
+

√
2πv

√
nE(Z)

n
+

√
15

(
√
nE(Z))3/2 (eb)

1/4

n
.

Finally, we use Cauchy-Schwarz inequality to obtain that
√
nE(Z) ≤ (nE(Z2))1/2 =

(D)1/2. Since v2 ≤ D, we get (38).

We deduce from this result the following concentration inequalities for Z2

Corollary 6.5 Let eb = b2/n. We have, for all x > 0,

P

(

Z2 − D

n
>
D3/4(eb(19x)

2)1/4 + 3
√
Dv2x) + 3v2x+ eb(19x)

2

n

)

≤ e−x.

Moreover, for all x > 0, with probability larger than 1 − e−x,

D

n
− Z2 ≤ D3/4e

1/4
b (

√
15 + 4.127

√
x) +

√
v2D(4.61 + 3

√
x) + 225eb(6.2x

2 + 1)

n
. (41)

Proof :

From Bousquet’s version of Talagrand’s inequality and from (E(Z))2 ≤ E(Z2), we
obtain that, for all x > 0, with probability larger than 1 − e−x, Z2 − D/n is not larger
than

4D3/4(ebx
2)1/4 +

√
D(14

√

ebx2/3 + 2
√

2v2x) + 4D1/4(ebx
2)3/4/3 + 3v2x+ ebx

2/3

n
.

We use repeatedly the inequality aαb1−α ≤ αa+ (1− α)b to obtain that, with probability
at least 1 − e−x, Z2 −D/n is not larger than

(4 + 32η/9)D3/4(ebx
2)1/4 + 2

√
2
√
Dv2x+ 3v2x+ (3 + 14/η2 + 8/

√
η)ebx

2/9

n
.

For η = 0.07, this gives

Z2 − D

n
>
D3/4(eb(19x)

2)1/4 + 2
√

2
√
Dv2x+ 3v2x+ eb(19x)

2

n
.

For the second one we use Klein’s version of Talagrand’s inequality to obtain, for all x > 0
such that r(x) =

√

2(v2 + 2bE(Z))x/n + 8bx/3n < E(Z),

P

(

Z2 < (E(Z) − r(x))2
)

≤ e−x.

We have (E(Z) − r(x))2 = (E(Z))2 − 2E(Z)r(x) + r(x)2 ≥ (E(Z))2 − 2E(Z)r(x), thus

P
(

Z2 < (E(Z))2 − 2E(Z)r(x)
)

≤ e−x.

From the previous corollary, (E(Z))2 ≥ E(Z2) − Em, thus

P
(

Z2 < E(Z2) − Em − 2E(Z)r(x)
)

≤ e−x.

In order to conclude the proof of 6.5, just remark that

2E(Z)r(x) ≤ 4D3/4(ebx
2)1/4 + 3

√
Dv2x+ 16

√

Debx2/3

n

≤ (4 + 32η/9)D3/4(ebx
2)1/4 + 3

√
Dv2x+ 16/(9η2)ebx

2

n
.

For η = 0, 0357, we obtain (41).
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Finally, we have obtained the following result for the concentration of Z2 around its mean

Corollary 6.6 For all x > 0,

P

(

Z2 − D

n
>
D3/4(eb(19x)

2)1/4 + 3
√
Dv2x+ 3v2x+ eb(19x)

2

n

)

≤ e−x.

P

(

Z2 − D

n
< −8D3/4(ebx

2)1/4 + 7.61
√
v2Dx+ eb(40.25x)

2

n

)

≤ ee−x.

Proof :

In order to obtain the second inequality, we remark that the inequality is trivial when
x ≤ 1, thus we only have to use (41) for x > 1 and then

√
x > 1 and x2 > 1.

We will use this lemma to obtain a concentration inequality for totally degenerate U -
statistics of order 2. The following result generalizes a previous inequality due to Houdré
& Reynaud-Bouret [16] to random variables taking values in a measurable space.

Lemma 6.7 Let X,X1, ...,Xn be i.i.d random variables taking value in a measurable space
(X,X ) with common law P . Let µ be a measure on (X,X ) and let (tλ)λ∈Λ be a set of
functions in L2(µ). Let

B = {t =
∑

λ∈Λ

aλtλ,
∑

λ∈Λ

a2
λ ≤ 1}, D = E

(

sup
t∈B

(t(X) − Pt)2
)

,

v2 = sup
t∈B

Var(t(X)), b = sup
t∈B

‖t‖∞ and eb =
b2

n
.

Let

U =
1

n(n− 1)

n
∑

i6=j=1

∑

λ∈Λ

(tλ(Xi) − Ptλ)(tλ(Xj) − Ptλ).

Then the following inequality holds

∀x > 0, P

(

U >
5.31D3/4(ebx

2)1/4 + 3
√
v2Dx+ 3v2x+ eb(19.1x)

2

n− 1

)

≤ 2e−x. (42)

∀x > 0, P

(

U < −9D3/4(ebx
2)1/4 + 7.61

√
v2Dx+ eb(40.3x)

2

n− 1

)

≤ 3.8e−x. (43)

Proof :

Remark that, from Cauchy-Schwarz inequality,

sup
t∈B

(νn(t))2 =

(

sup
P

a2

λ
≤1

∑

λ∈Λ

aλνn(tλ)

)2

=
∑

λ∈Λ

(νn(tλ))2.

For all x in X, from Cauchy-Schwarz inequality,

sup
t∈B

(t(x) − Pt)2 =
∑

λ

(tλ(x) − Ptλ)2,
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in particular, D =
∑

λ∈Λ Var(ψλ(X)). Moreover, easy algebra leads to

∑

λ∈Λ

(νn(tλ))2 =
1

n2

n
∑

i=1

∑

λ∈Λ

(tλ(Xi) − Ptλ)2

+
1

n2

n
∑

i6=j=1

∑

λ∈Λ

(tλ(Xi) − Ptλ)(tλ(Xj) − Ptλ)

=
1

n
Pn

(

∑

λ∈Λ

(tλ − Ptλ)2

)

+
n− 1

n
U.

Let Z2 = supt∈B(νn(t))2, TΛ =
∑

λ∈Λ(tλ − Ptλ)2,

E(Z2) = E

(

1

n
PnTΛ

)

=
D

n
.

Hence

U =
n

n− 1

(

Z2 − E(Z2) − 1

n
νn(TΛ)

)

.

From Corollary 6.6, for all x > 0,

P

(

Z2 − D

n
>
D3/4(eb(19x)

2)1/4 + 3
√
v2Dx+ 3v2x+ eb(19x)

2

n

)

≤ e−x.

P

(

Z2 − D

n
< −8D3/4(eb(x)

2)1/4 + 7.61
√
v2Dx+ eb(40.25x)

2

n

)

≤ 2.8e−x.

Moreover, from Bernstein inequality, for all x > 0,

P

(

−νnTΛ >
√

2Debx+
ebx

3

)

≤ e−x.

P

(

νnTΛ >
√

2Debx+
ebx

3

)

≤ e−x.

We apply inequality (40) with a = D3/4(ebx
2)1/4, b = eb

√
x, α = 2/3 and we obtain

P

(

−νnTΛ >
2
√

2

3
D3/4(ebx

2)1/4 + eb

(

x+
√

2x

3

))

≤ e−x.

P

(

νnTΛ >
2
√

2

3
D3/4(ebx

2)1/4 + eb

(

x+
√

2x

3

))

≤ e−x.

Therefore, for all x > 0,

P

(

U >
5.31D3/4(ebx

2)1/4 + 3
√
v2Dx+ 3v2x+ eb

(

(19x)2 + (x+
√

2x)/3
)

n− 1

)

≤ 2e−x.

P

(

U < −9D3/4(ebx
2)1/4 + 7.61

√
v2Dx+ eb

(

(40.25x)2 + (x+
√

2x)/3
)

n− 1

)

≤ 3.8e−x.

These inequalities are trivial when x < 1. We only use them when x > 1 and we obtain
(42) and (43) since x < x2 and

√
x < x2 when x > 1.
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Let us now state the corollary of Bernstein’s inequality that we used repeatedly in the
article.

Lemma 6.8 Let X,X1, ...,Xn be i.i.d random variables taking value in a measurable space
(X,X ) with common law P . Let µ be a measure on (X,X ) and let (ψλ)λ∈Λ be an or-
thonormal system in L2(µ). Let L be a linear functional in L2(µ) and let B = {t =
∑

λ∈Λ aλL(ψλ),
∑

λ∈Λ a
2
λ ≤ 1}, v2 = supt∈B Var(t(X)), b = supt∈B ‖t‖∞ and eb = b2/n.

Let u be a function in S, the linear space spanned by the functions (ψλ)λ∈Λ and let η > 0.
Then the following inequality holds

∀x > 0, P

(

νn(L(u)) >
η

2
‖u‖2 +

2v2x+ ebx
2/9

ηn

)

≤ e−x. (44)

Proof :

From Bernstein’s inequality,

∀x > 0, P

(

νn(L(u)) >

√

2Var(L(u)(X))x

n
+

‖L(u)‖∞ x

3n

)

≤ e−x.

Since t = L(u/‖u‖) belongs to B,

√

2Var(L(u)(X))x

n
+

‖L(u)‖∞ x

3n
= ‖u‖

(
√

2Var(t(X))x

n
+

‖t‖∞ x

3n

)

≤ η

2
‖u‖2 +

1

2η

(
√

2v2x

n
+
bx

3n

)2

.

We conclude the proof using the inequality (a+ b)2 ≤ 2a2 + 2b2.
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[9] L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Probab.
Theory Related Fields, 138(1-2):33–73, 2007.

[10] O. Bousquet. A Bennett concentration inequality and its application to suprema of
empirical processes. C. R. Math. Acad. Sci. Paris, 334(6):495–500, 2002.

[11] A. Célisse. Density estimation via cross validation: Model selection point of view.
Preprint, downloadable on arXiv.org : 08110802, 2008.

[12] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Density estimation
by wavelet thresholding. Ann. Statist., 24(2):508–539, 1996.

[13] B. Efron. Bootstrap methods: another look at the jackknife. Ann. Statist., 7(1):1–26,
1979.

[14] B. Efron. Estimating the error rate of a prediction rule: improvement on cross-
validation. J. Amer. Statist. Assoc., 78(382):316–331, 1983.

[15] M. Fromont. Model selection by bootstrap penalization for classification. Machine
Learning, 66(2, 3):165–207, 2007.
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[17] T. Klein and E. Rio. Concentration around the mean for maxima of empirical pro-
cesses. Ann. Probab., 33(3):1060–1077, 2005.

[18] C.L. Mallows. Some comments on cp. Technometrics, 15:661–675, 1973.

[19] P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture
Notes in Mathematics. Springer, Berlin, 2007. Lectures from the 33rd Summer School
on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by Jean
Picard.

[20] M. Rudemo. Empirical choice of histograms and kernel density estimators. Scand. J.
Statist., 9(2):65–78, 1982.

[21] M. Stone. Cross-validatory choice and assessment of statistical predictions. J. Roy.
Statist. Soc. Ser. B, 36:111–147, 1974. With discussion by G. A. Barnard, A. C.
Atkinson, L. K. Chan, A. P. Dawid, F. Downton, J. Dickey, A. G. Baker, O. Barndorff-
Nielsen, D. R. Cox, S. Giesser, D. Hinkley, R. R. Hocking, and A. S. Young, and with
a reply by the authors.

[22] M. Talagrand. New concentration inequalities in product spaces. Invent. Math.,
126(3):505–563, 1996.

32


